JP2004002909A - Complex metallographic structure type high tensile strength hot-dip galvanized cold rolled steel sheet with excellent deep drawability and stretch-flange formability, and manufacturing method - Google Patents

Complex metallographic structure type high tensile strength hot-dip galvanized cold rolled steel sheet with excellent deep drawability and stretch-flange formability, and manufacturing method Download PDF

Info

Publication number
JP2004002909A
JP2004002909A JP2002148855A JP2002148855A JP2004002909A JP 2004002909 A JP2004002909 A JP 2004002909A JP 2002148855 A JP2002148855 A JP 2002148855A JP 2002148855 A JP2002148855 A JP 2002148855A JP 2004002909 A JP2004002909 A JP 2004002909A
Authority
JP
Japan
Prior art keywords
phase
steel sheet
hot
mass
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002148855A
Other languages
Japanese (ja)
Other versions
JP3912181B2 (en
Inventor
▲吉▼田 裕美
Hiromi Yoshida
Saiji Matsuoka
松岡 才二
Takashi Sakata
坂田  敬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002148855A priority Critical patent/JP3912181B2/en
Publication of JP2004002909A publication Critical patent/JP2004002909A/en
Application granted granted Critical
Publication of JP3912181B2 publication Critical patent/JP3912181B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a complex metallographic structure type high tensile strength hot-dip galvanized cold rolled steel sheet having excellent deep drawability and stretch-flange formability and to provide its manufacturing method. <P>SOLUTION: The complex metallographic structure type high tensile strength hot-dip galvanized cold rolled steel sheet has a composition which consists, by mass, of 0.01 to 0.05% C, 0.1 to 1.0% Si, 1.0 to 3.0% Mn, ≤0.10% P, ≤0.02% S, 0.005 to 0.1% Al, ≤0.02% N, 0.01 to 0.2% V, 0.001 to 0.2% Nb and the balance essentially Fe with inevitable impurities and in which the respective contents (mass%) of V, Nb and C satisfy a relation of 0.5×C/12≤(V/51+Nb/93)≤2×C/12. This steel sheet has a steel structure in which a primary phase is composed of a ferritic phase consisting of a polygonal ferrite phase and a bainitic ferrite phase and which has a secondary phase containing ≥1% by area ratio of a martensite phase. Further, this steel sheet has a hot-dip galvanized layer on the surface. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、自動車用鋼板等の使途に有用な深絞り性と伸びフランジ性に優れた引張強さが440MPa以上の複合組織型高張力溶融亜鉛めっき冷延鋼板およびその製造方法に関するものである。
【0002】
【従来の技術】
近年、地球環境の保全という観点から、自動車の燃費改善が要求されている。加えて、車両衝突時に乗員を保護する観点から、自動車車体の安全性向上も要求されている。このようなことから、自動車車体の軽量化と強化の双方を図るための検討が積極的に進められている。
自動車車体の軽量化と強化を同時に満足させるには、部品素材を高強度化することが効果的であると言われており、最近では高張力鋼板が自動車部品に積極的に使用されている。
【0003】
鋼板を素材とする自動車部品の多くがプレス加工によって成形されるため、自動車用鋼板には優れたプレス成形性を具備していることが必要とされる。しかし、−般に、鋼板を高強度化すると、ランクフォード値(r値)および伸び(El)で表される延性が低下し、また、伸びフランジ性も低下して、プレス成形性が劣化するとともに、降伏応力が上昇して形状凍結性が劣化する傾向がある。特に引張強さ(TS)と伸び(El)との積TS×Elで表される、いわゆる強度伸びバランスの値が大きいほどプレス成形性には有利であり、従来から鋼板の高強度化と共に高延性化が図られてきた。
高強度と高延性を兼ね備えた鋼板については、歪み誘起塑性現象を利用した残留オーステナイト鋼(残留γ鋼)をはじめとしてポリゴナルフェライトとマルテンサイトの2相を有するDual‐Phase鋼(DP鋼)など、いわゆる複合組織鋼についての開発研究が進められている。
【0004】
一方、自動車部品には、適用部位によっては高い耐食性も要求されることから、従来より、自動車部品用鋼板として耐食性の優れた種々の表面処理鋼板が用いられている。かかる表面処理鋼板のうち、特に再結晶焼鈍およびめっきを同一ラインで行う連続溶融亜鉛めっき設備において製造される溶融亜鉛めっき鋼板は、優れた耐食性を有するとともに安価な製造が可能であり、また、溶融亜鉛めっき後にさらに加熱処理を施した合金化溶融亜鉛めっき鋼板も製造可能となり、耐食性に加え、溶接性やプレス成形性に優れていることから広く用いられている。
【0005】
したがって、自動車車体の軽量化および強化をより一層推進するためには、連続合金化溶融亜鉛めっきラインによって、耐食性とプレス成形性に優れる高張力溶融亜鉛めっき鋼板を開発することが望まれる。
【0006】
プレス成形性の良好な高張力鋼板の代表例としては、フェライトとマルテンサイトの複合組織からなる複合組織鋼板が挙げられ、特に連続焼鈍後ガスジェット冷却で製造される複合組織鋼板は、降伏応力(YS)が低く、さらに高延性と優れた焼付け硬化性とを兼ね備えている。しかしながら、連続溶融亜鉛めっきラインは、焼鈍設備とめっき設備を連続化して設置するのが一般的である。この連続化されためっき工程の存在により、焼鈍後の冷却はめっき温度で中断され、工程を通じた平均冷却速度も必然的に小さくなる。
【0007】
したがって、連続溶融亜鉛めっきラインで製造される鋼板では、冷却速度の大きい冷却条件下で生成するマルテンサイトを溶融めっき後の鋼板中に生成させることは難しい。このため、フェライトとマルテンサイトの複合組織を有する高張力溶融亜鉛めっき鋼板を連続溶融亜鉛めっきラインで製造することは、一般には困難である。
また、上記複合組織鋼板は、ランクフォード値(r値)が低く、深絞り成形性に劣るとともに、穴拡げ率(λ)が低く、伸びフランジ成形性に劣るという欠点があった。
【0008】
こうした不利な条件のもとで、組織強化型溶融亜鉛めっき高張力鋼板を製造する方法としては、CrやMoといった焼入性を高める合金元素を多量に添加した鋼を用い、低温変態相の生成を容易化する方法が一般的である。しかし、前記した合金元素を多量に添加することは製造コストの上昇を招くという問題がある。
【0009】
また、特公昭62−40405号公報等にて開示されているように、連続溶融亜鉛めっきラインでの焼鈍後やめっき後の冷却における冷却速度を規定することにより、組織強化型溶融亜鉛めっき高張力鋼板を製造する方法も提案されている。しかし、かかる方法は、連続溶融亜鉛めっきラインの設備上の制約から困難を伴う場合があり、この方法によって得られる鋼板の延性についてもさらなる改善が望まれていた。
【0010】
さらに、複合組織鋼板のランクフォード値(r値)を改善する試みがなされている。例えば特公昭55−10650号公報では、冷間圧延後、再結晶温度〜Ac3変態点の温度で箱焼鈍を行い、その後、複合組織とするため700〜800℃に加熱した後、焼入れ焼戻しを伴う連続焼鈍を行う技術が開示されている。しかしながら、この方法では、連続焼鈍時に焼入れ焼戻しを行うため降伏応力YSが高く、低い降伏比YRが得られない。なお、ここで降伏比YRは引張強さTSに対する降伏応力YSの比であり、YR=YS/TSである。この高降伏応力の鋼板はプレス成形が難しく、かつプレス部品の形状凍結性が悪いという欠点がある。
【0011】
この高降伏応力YSを改善するための方法としては、特開昭55−100934号公報に開示されている。この方法は、高いランクフォード値(r値)を得るためにまず箱焼鈍を行うが、箱焼鈍時の温度をフェライト(α)−オーステナイト(γ)の2相域とし、均熱時にα相からγ相にMnを濃化させる。このMn濃化相は連続焼鈍時に優先的にγ相となり、ガスジェット程度の冷却速度でも混合組織が得られ、さらに降伏応力YSも低い。しかし、この方法では、Mn濃化のためα−γの2相域という比較的高温で長時間の箱焼鈍が必要であり、そのため鋼板間の密着の多発、テンパーカラーの発生および炉体インナーカバーの寿命低下など製造工程上、多くの問題がある。従来、このように高いランクフォード値(r値)と低い降伏応力YSを兼ね備えた高張力鋼板を工業的に安定して製造することは困難であった。
【0012】
加えて、特公平1−35900号公報では、0.012質量%C−0.32質量%Si−0.53質量%Mn−0.03質量%P−0.051質量%Tiの組成の鋼を冷間圧延後、α−γの2相域である870℃に加熱後、100℃/sの平均冷却速度にて冷却することにより、r=1.61、YS=224MPa、TS=482MPaの非常に高いランクフォード値(r値)と低降伏応力を有する複合組織型冷延鋼板が製造可能となる技術が開示されている。しかしながら、100℃/sという高い冷却速度を、通常の連続溶融亜鉛めっきラインで実現することは困難であるため水焼入れ設備が必要となる他、水焼入れした冷延鋼板は、表面処理性の問題も顕在化するため、製造設備上および材質上の問題がある。
【0013】
【発明が解決しようとする課題】
本発明は、上記の問題を有利に解決するもので、鋼組成として特にCとVおよびNbの含有量、および製造条件として特に焼鈍温度を規制することにより、強度伸びバランスに優れ、且つ高いランクフォード値に加えて、伸びフランジ性に優れる複合組織型高張力溶融亜鉛めっき冷延鋼板と、これを安定して製造できる技術を提案することを目的とする。なお、本発明でいう「溶融亜鉛めっき冷延鋼板」とは、溶融亜鉛めっき後に加熱合金化処理を施さない、いわゆる非合金化溶融亜鉛めっき冷延鋼板および溶融亜鉛めっき後に加熱合金化処理を施す、いわゆる合金化溶融亜鉛めっき鋼板の双方を意味する。
【0014】
【課題を解決するための手段】
本発明者らは、上記した課題を達成するため、冷延鋼板表面に溶融亜鉛めっき層を具える溶融亜鉛めっき冷延鋼板のミクロ組織および再結晶集合組織におよぼす合金元素、および焼鈍温度条件の影響について鋭意研究を重ねた。その結果、C含有量を0.01〜0.05質量%とし、適正範囲のV、Nb量を含有することにより、再結晶焼鈍前には、固溶Cを極力低減させて{111}再結晶集合組織を発達させることにより、高いランクフォード値(r値)が得られること、また、1次連続焼鈍で750〜950℃の温度域で加熱することにより、VおよびNb系炭化物を溶解させて、固溶Cを大量に生成できること、および、引き続き2次焼鈍温度を(Ac3変態点−50℃)〜(Ac3変態点+50℃)とすることで、オーステナイト中にCを濃化させてその後の冷却過程でマルテンサイト相を生成させることにより、高強度にもかかわらず延性に優れ、ランクフォード値が高く、伸びフランジ性も良好な複合組織型高張力溶融亜鉛めっき冷延鋼板が製造可能であることを見出した。
【0015】
ここで、本発明鋼である複合組織型溶融亜鉛めっき冷延鋼板とは、主相がフェライト相であり、これはポリゴナルフェライトとオーステナイト域からの冷却過程により生成した転位密度の高いベイニチックフェライト相が混在したもので、さらに面積率で1%以上のマルテンサイト相を含む第2相との複合組織を有する溶融亜鉛めっき冷延鋼板である。
【0016】
まず、本発明者らが行った基礎的な実験結果について説明する。
質量%で、C:0.02%、Si:0.5%、Mn:2.0%、P:0.08%、S:0.005%、Al:0.03%、N:0.002%を基本組成とし、これにV:0.05〜0.10質量%の範囲およびNb:0.001〜0.16質量%の範囲で添加することによって、異なるVおよびNb含有量を有する種々の鋼素材について、1250℃に加熱−均熱後、仕上圧延終了温度が880℃となるように3パス圧延を行って板厚4.0mmとした。なお、仕上圧延終了後、コイル巻取り処理として650℃×3hの保温相当処理を施した。引き続き、圧下率70%の冷間圧延を施して板厚1.2mmとした。ついで、これらの冷延板に、880℃に加熱した後、400℃以下まで平均冷却速度15℃/sで冷却する1次連続焼鈍(再結晶焼鈍)を施した。次いで、(Ac3変態点−50℃)〜(Ac3変態点+50℃)の温度域内である850℃に加熱してから450〜500℃の温度域まで平均冷却速度15℃/sで冷却する2次連続焼鈍を施した後、Alを0.13質量%含有する溶融亜鉛めっき浴に浸漬してめっきした後、450〜550℃の温度範囲の合金化処理(めっき層中のFe含有率:約10質量%)を施し、その後、15℃/sの平均冷却速度で室温まで冷却した。
【0017】
得られた溶融亜鉛めっき鋼板について、引張試験を実施し引張特性を調査した。引張試験は、JIS5号引張試験片を用いて行った。引張強さTSおよび延性Elは、圧延方向に対して垂直方向に引張試験を行ったときの値である。r値は、圧延方向(r)、圧延方向に45度方向(r)および圧延方向に垂直(90度)方向(r)の平均r値{=(r+r+2×r)/4}として求めた。
【0018】
図1は、VとNbの含有量がCとの関係でr値と強度伸びバランス(TS×El)に及ぼす影響を示した図であり、横軸はVおよびNbの含有量とC含有量の原子比((V/51+Nb/93)/(C/12))であり、縦軸はr値と強度伸びバランス(TS×El)を上下に分けて示す。
【0019】
図1から、鋼中のVおよびNbの含有量をCとの原子比にして0.5〜2.0の範囲に制限することにより、高いr値と高い強度伸びバランスが得られ、高r値と高い延性Elを有する複合組織型溶融亜鉛めっき冷延鋼板が製造可能となることが明らかになった。
【0020】
つぎに、上記図1で用いた溶融亜鉛めっき冷延鋼板のうち、(V/51+Nb/93)/(C/12)=1.1の鋼素材(Ac3変態点:890℃)を熱間圧延し、引き続き酸洗した後、冷間圧延を施し、その後、850℃に加熱した後、400℃まで平均冷却速度15℃/sで冷却する1次連続焼鈍(再結晶焼鈍)を施し、760〜960℃の温度範囲に加熱してから450〜500℃の温度域まで平均冷却速度10℃/sで冷却する2次連続焼鈍を施した後、Alを0.13質量%含有する溶融亜鉛めっき浴に浸漬してめっきした後、450〜550℃の温度範囲の合金化処理(めっき層中のFe含有率:約10質量%)を施し、その後、平均冷却速度15℃/sで室温まで冷却することによって、得られた溶融亜鉛めっき鋼板について、穴拡げ試験を実施し穴拡げ率(λ)を求めて伸びフランジ性を評価した。
【0021】
穴拡げ試験は、JFST 1001の規定に準拠して、10mmφのポンチで打ち抜いて供試片にポンチ穴を形成したのち、頂角60°の円錐ポンチを用い、ばりが外側になるようにして、板厚を貫通する割れが発生するまで穴拡げを行い、穴拡げ率λを求めた。穴拡げ率λは、λ(%)={(d−d)/d}×100で求めた。なお、d:初期穴内径、d:割れ発生時の穴内径である。
【0022】
図2は、2次連続焼鈍温度が穴拡げ率(λ)に及ぼす影響を示した図である。2次連続焼鈍温度を(Ac3変態点−50℃)〜(Ac3変態点+50℃)とすることにより、高い穴拡げ率が得られ、伸びフランジ性に優れた複合組織型溶融亜鉛めっき鋼板が製造可能となることが明らかになった。
【0023】
本発明の溶融亜鉛めっき冷延鋼板では、1次連続焼鈍過程においては、再結晶焼鈍前には固溶CおよびNが少ないため、{111}再結晶集合組織が強く発達し、高いランクフォード値が得られるとともに、再結晶後にVおよびNb系炭化物が溶解し、固溶Cがオーステナイト相に多量に濃化することにより、その後の冷却過程においてオーステナイト相がマルテンサイト相に変態し、高いランクフォード値を有するフェライト相とマルテンサイト相の複合組織が得られる。この冷延鋼板を、さらに2次焼鈍過程において、(Ac3変態点−50℃)〜(Ac3変態点+50℃)に加熱することにより、固溶Cが多量に濃化したオーステナイト相と、固溶Cが少ないオーステナイト相およびフェライト相に変態し、その後の冷却過程において固溶Cが多量に濃化したオーステナイト相はマルテンサイト相に変態し、固溶Cが少ないオーステナイト相は転位密度の高いベイニチックフェライト相に変態することにより、主相がポリゴナルフェライトとベイニチックフェライト相で、第2相がマルテンサイト相の複合組織が得られる。このような組織を有する複合組織鋼板は、主相のポリゴナルフェライトおよびベイニチックフェライト相と、第2相のマルテンサイト相との硬度差が小さくなったため、穴拡げ率が高くなったものと考えられるが、詳細は明らかではない。
【0024】
本発明は、上記した知見に基づき、さらに検討して完成されたものであり、本発明の要旨は下記のとおりである。
(1)質量%で
C:0.01〜0.05%、Si:0.1〜1.0%、Mn:1.0〜3.0%、P:0.10%以下、S:0.02%以下、Al:0.005〜0.1%、N:0.02%以下、V:0.01〜0.2%およびNb:0.001〜0.2%を含有し、かつ、VおよびNbとCとの含有量(質量%)が、
0.5×C/12≦(V/51+Nb/93)≦2×C/12
なる関係を満たし、残部は実質的にFeおよび不可避的不純物からなる成分組成を有し、主相がポリゴナルフェライト相とベイニチックフェライト相からなるフェライト相で、さらに、面積率で1%以上のマルテンサイト相を含む第2相を有する鋼組織を有し、表面に溶融亜鉛めっき層を具えることを特徴とする、深絞り性と伸びフランジ性に優れた複合組織型高張力溶融亜鉛めっき冷延鋼板。
【0025】
(2)質量%で
C:0.01〜0.05%、Si:0.1〜1.0%、Mn:1.0〜3.0%、P:0.10%以下、S:0.02%以下、Al:0.005〜0.1%、N:0.02%以下、V:0.01〜0.2%、Nb:0.001〜0.2%およびTi:0.001〜0.3%を含有し、かつ、V、NbおよびTiとCとの含有量(質量%)が、
0.5×C/12≦(V/51+Nb/93+Ti/48)≦2×C/12
なる関係を満たし、残部は実質的にFeおよび不可避的不純物からなる成分組成を有し、主相がポリゴナルフェライト相とベイニチックフェライト相からなるフェライト相で、さらに、面積率で1%以上のマルテンサイト相を含む第2相を有する鋼組織を有し、表面に溶融亜鉛めっき層を具えることを特徴とする、深絞り性と伸びフランジ性に優れた複合組織型高張力溶融亜鉛めっき冷延鋼板。
【0026】
(3)上記組成に加えてさらにMo:0.01〜0.5質量%を含有することを特徴とする、上記(1)または(2)に記載の深絞り性と伸びフランジ性に優れた複合組織型高張力溶融亜鉛めっき冷延鋼板。
【0027】
(4)質量%で
C:0.01〜0.05%、Si:0.1〜1.0%、Mn:1.0〜3.0%、P:0.10%以下、S:0.02%以下、Al:0.005〜0.1%、N:0.02%以下、V:0.01〜0.2%およびNb:0.001〜0.2%を含有し、かつ、VおよびNbとCとの含有量(質量%)が、
0.5×C/12≦(V/51+Nb/93)≦2×C/12
なる関係を満たす組成になる鋼スラブを、熱間圧延し、引き続き酸洗した後、冷間圧延を施し、その後、750℃以上950℃以下に加熱した後、平均冷却速度5℃/s以上で400℃以下まで冷却する1次連続焼鈍を施し、次いで、(Ac3変態点−50℃)〜(Ac3変態点+50℃)で2次連続焼鈍してから溶融亜鉛めっきを施すことを特徴とする、深絞り性と伸びフランジ性に優れた複合組織型高張力溶融亜鉛めっき冷延鋼板の製造方法。
【0028】
(5)質量%で
C:0.01〜0.05%、Si:0.1〜1.0%、Mn:1.0〜3.0%、P:0.10%以下、S:0.02%以下、Al:0.005〜0.1%、N:0.02%以下、V:0.01〜0.2%、Nb:0.001〜0.2%およびTi:0.001〜0.3%を含有し、かつ、V、NbおよびTiとCとの含有量(質量%)が、
0.5×C/12≦(V/51+Nb/93+Ti/48)≦2×C/12
なる関係を満たす組成になる鋼スラブを、熱間圧延し、引き続き酸洗した後、冷間圧延を施し、その後、750℃以上950℃以下に加熱した後、平均冷却速度5℃/s以上で400℃以下まで冷却する1次連続焼鈍を施し、次いで、(Ac3変態点−50℃)〜(Ac3変態点+50℃)で2次連続焼鈍してから溶融亜鉛めっきを施すことを特徴とする、深絞り性と伸びフランジ性に優れた複合組織型高張力溶融亜鉛めっき冷延鋼板の製造方法。
【0029】
(6)鋼スラブは、上記組成に加えてさらにMo:0.01〜0.5質量%を含有することを特徴とする、上記(4)または(5)に記載の深絞り性と伸びフランジ性に優れた複合組織型高張力溶融亜鉛めっき鋼板の製造方法。
【0030】
(7)1次連続焼鈍と2次連続焼鈍の間で、鋼板表面に生成した鋼中成分の濃化層を除去する酸洗処理を施すことを特徴とする、上記(4)、(5)または(6)に記載の深絞り性と伸びフランジ性に優れた複合組織型高張力溶融亜鉛めっき冷延鋼板の製造方法。
【0031】
【発明の実施の形態】
本発明の溶融亜鉛めっき鋼板は、引張強さTSが440MPa以上の深絞り性と伸びフランジ性に優れた複合組織型高張力溶融亜鉛めっき冷延鋼板である。
【0032】
まず、本発明鋼板の組織について説明する。
本発明の溶融亜鉛めっき冷延鋼板の組織は、転位密度の低いポリゴナルフェライトと転位密度の高いベイニチックフェライト相が混合した主相と、マルテンサイト相を含む第2相との複合組織を有する。また、主相であるポリゴナルフェライトとベイニチックフェライト相は{111}集合組織が発達しており、高いランクフォード値を有する。
【0033】
低い降伏応力(YS)と高い強度伸びバランス(TS×El)を有し、優れた深絞り性と伸びフランジ性を有する溶融亜鉛めっき冷延鋼板とするために、本発明では冷延鋼板の組織を、ポリゴナルフェライト相およびベイニチックフェライト相からなるフェライト相である主相と、マルテンサイト相を含む第2相との複合組織とする必要がある。主相であるポリゴナルフェライト相およびベイニチックフェライト相は、面積率で80%以上とし、且つ主相中のベイニチックフェライト相は組織全体に対する面積率で5%以上含まれていることが好ましい。また、本発明では、ポリゴナルフェライト相は、組織全体に対する面積率で概ね40%以上含まれる。ポリゴナルフェライト相およびベイニチックフェライト相が、面積率で80%未満では、高い強度伸びバランスを確保することが困難となり、プレス成形性が低下する傾向があるからである。また、さらに良好な延性と穴拡げ性が要求される場合には、主相に占めるベイニチックフェライト相の割合が、面積率で10%以上とするのが好ましい。なお、複合組織の利点を利用するため、主相であるポリゴナルフェライト相およびベイニチックフェライト相は99%以下とするのが好ましい。
【0034】
また、第2相として、本発明では、マルテンサイト相が存在することが必要であり、本発明の鋼板は、マルテンサイト相を組織全体に対する面積率で1%以上含有するような複合組織鋼である。マルテンサイト相が面積率で1%未満では、低い降伏比(YR)と高い強度伸びバランス(TS×El)を同時に満足させることが難しい。なお、第2相は、面積率で1%以上のマルテンサイト相単独としても、あるいは面積率で1%以上のマルテンサイト相と、副相としてそれ以外のパーライト相、ベイナイト相、残留オーステナイト相のいずれかとの混合としてもよい。
【0035】
次に、本発明溶融亜鉛めっき冷延鋼板の組成を限定した理由について説明する。なお、質量%は単に%と記す。
C:0.01〜0.05%
Cは、鋼板の強度を増加し、さらに主相であるポリゴナルフェライト相およびベイニチックフェライト相と第2相であるマルテンサイト相の複合組織の形成を促進する元素であり、本発明では複合組織形成の観点から0.01%以上含有する必要がある。一方、0.05%を超える含有は、{111}再結晶集合組織の発達を阻害し、深絞り成形性および穴拡げ性を低下させる。このため、本発明では、C含有量は0.01〜0.05%に限定した。
【0036】
Si:0.1〜1.0%以下
Siは、鋼板の延性を顕著に低下させることなく、鋼板を高強度化、すなわち強度伸びバランスを向上させることができる有用な強化元素であり、この効果を得るためには、Si含有量は0.1%以上とする必要がある。しかしながら、Si含有量が1.0%を超えると、表面性状、とくにめっき性が悪化する。このため、Si含有量は0.1〜1.0%に限定した。なお、めっき性の観点から、Si含有量は0.7%未満とすることがより好ましい。
【0037】
Mn:1.0〜3.0%
Mnは、鋼を強化する作用があり、さらに主相であるポリゴナルフェライト相およびベイニチックフェライト相からなるフェライト相と、第2相であるマルテンサイト相との複合組織が得られる臨界冷却速度を低くし、主相であるポリゴナルフェライト相およびベイニチックフェライト相からなるフェライト相と、第2相であるマルテンサイト相の複合組織の形成を促進する作用を有しており、焼鈍後の冷却速度に応じ含有するのが好ましい。臨界冷却速度未満での緩慢な冷却速度ではマルテンサイト相は生成されず、代わりにベイナイト相あるいはパーライト相が生成されるが、第2相にマルテンサイトが存在しない場合、強度伸びバランスが低下する傾向にある。したがって、マルテンサイト相の生成を容易にするため、すなわち臨界冷却速度を低くするためには、Mnの添加が有効となる。また、Mnは、Sによる熱間割れを防止する有効な元素であり、含有するS量に応じて含有するのが好ましい。このような効果は、Mnを1.0%以上含有させることで顕著となる。一方、Mn含有量が3.0%を超えると、深絞り性および溶接性が劣化する。このため、本発明ではMn含有量は1.0〜3.0%の範囲に限定した。
【0038】
P:0.10%以下
Pは鋼を強化する作用があり、所望の強度に応じて適宜含有させることができるが、P含有量が0.10%を超えると、強度伸びバランスが低下するとともに深絞り性が劣化する。このため、P含有量は0.10%以下に限定した。なお、より優れたプレス成形性が要求される場合には、P含有量は0.08%以下とするのが好ましい。なお、上記効果を得るため、Pは0.005%以上含有することが好ましい。
【0039】
S:0.02%以下
Sは、鋼板中では介在物として存在し、鋼板の延性、成形性、とくに伸びフランジ性の劣化をもたらす元素であるため、できるだけ低減するのが好ましく、0.02%以下に低減すると、さほど悪影響を及ぼさなくなることから、本発明ではS含有量は0.02%を上限とした。なお、より優れた伸びフランジ性が要求される場合には、S含有量は0.01%以下とするのが好ましく、より好ましくは0.005%以下である。
【0040】
Al:0.005〜0.1%
Alは、鋼の脱酸元素として添加され、鋼の清浄度を向上させるのに有用な元素であるが、0.005%未満では添加の効果がなく、一方、0.1%を超えて含有してもより一層の脱酸効果は得られず、逆に深絞り性が劣化する.このため、Al含有量は0.005〜0.1%に限定した。なお、本発明では、Al脱酸以外の脱酸方法による溶製方法を排除するものではなく、たとえばTi脱酸やSi脱酸を行ってもよく、これらの脱酸法による鋼板も本発明の範囲に含まれる。その際、CaやREM等を溶鋼に添加しても、本発明鋼板の特徴はなんら阻害されず、CaやREM等を含む鋼板も本発明範囲に含まれるのは勿論である。
【0041】
N:0.02%以下
Nは、固溶強化や歪時効硬化で鋼板の強度を増加させる元素であるが、0.02%を超えて含有すると、鋼板中に窒化物が増加し、それにより鋼板の深絞り性が顕著に劣化する。このため、Nは0.02%以下に限定した。なお、よりプレス成形性の向上が要求される場合にはNは低減させることが好ましく、0.004%以下とするのが好適である。
【0042】
V:0.01〜0.2%、Nb:0.001〜0.2%でかつ0.5×C/12≦(V/51+Nb/93)≦2×C/12の関係を満たすこと
VおよびNbは、本発明において最も重要な元素であり、再結晶前には固溶CをVおよびNb系炭化物として析出固定することにより、{111}再結晶集合組織を発達させて高いランクフォード値を得ることができる。さらに、焼鈍時にはVおよびNb系炭化物を溶解させて固溶Cを多量にオーステナイト相に濃化させ、その後の冷却過程においてマルテンサイト変態させることにより、主相であるポリゴナルフェライト相およびベイニチックフェライト相からなるフェライト相と、第2相であるマルテンサイト相との複合組織鋼板を得る。このような効果を奏するには、VおよびNbの含有量がそれぞれ0.01%以上および0.001%以上でかつ、C、V、Nbの含有量(質量%)が0.5×C/12≦(V/51+Nb/93)の関係を満足することが必要である。一方、VおよびNbの少なくとも一方の含有量が0.2%を超えるか、あるいは、C、V、Nbの含有量(質量%)が(V/51+Nb/93)>2×C/12であると、焼鈍時におけるVおよびNb系炭化物の溶解が起こりにくくなるため、主相であるポリゴナルフェライト相およびベイニチックフェライト相からなるフェライト相と、第2相であるマルテンサイト相との複合組織が得られない。したがって、本発明では、V:0.01〜0.2%、Nb:0.001〜0.2%でかつ0.5×C/12≦(V/51+Nb/93)≦2×C/12の関係を満たすことに限定した。
【0043】
また、本発明では、上記した組成に加えて、質量%で、Ti:0.001〜0.3%を含有することが好ましく、この場合には、上記C、V、Nbの含有量(質量%)の関係式である0.5×C/12≦(V/51+Nb/93)≦2×C/12に代えて、上記C、V、Nb、Tiの含有量(質量%)の関係式、すなわち0.5×C/12≦(V/51+Nb/93+Ti/48)≦2×C/12なる関係式を満たすことが必要である。
Tiは炭化物形成元素であり、再結晶前には固溶CをV、NbおよびTi系炭化物として析出固定することにより、{111}再結晶集合組織を発達させて高いランクフォード値を得る。さらに、焼鈍時には、V、NbおよびTi系炭化物を溶解させて固溶Cを多量にオーステナイト相に濃化させ、その後の冷却過程においてマルテンサイト変態させることにより、主相であるポリゴナルフェライト相およびベイニチックフェライト相からなるフェライト相と、第2相であるマルテンサイト相との複合組織鋼板を得る。このような効果を奏するには、Ti含有量が0.001%以上でかつ0.5×C/12≦(V/51+Nb/93+Ti/48)の関係を満足することが必要である。一方、Ti含有量が0.3%を超えるか、あるいは、(V/51+Nb/93+Ti/48)>2×C/12であると、焼鈍時における炭化物の溶解が起こりにくくなるため、主相であるポリゴナルフェライト相およびベイニチックフェライト相からなるフェライト相と、第2相であるマルテンサイト相との複合組織が得られない。したがって、Tiを含有する場合には、Ti:0.001〜0.3%であって0.5×C/12≦(V/51+Nb/93+Ti/48)≦2×C/12なる関係を満たすことに限定した。
【0044】
また、本発明では、上記した組成に加えてさらにMo:0.01〜0.5%を含有することが好ましい。
Mo:0.01〜0.5%
MoはMnと同様に、主相であるポリゴナルフェライト相およびベイニチックフェライト相からなるフェライト相と、第2相であるマルテンサイト相との複合組織が得られる臨界冷却速度を低くし、フェライト相とマルテンサイト相の複合組織の形成を促進する作用を有しており、必要に応じて含有できる。その効果は、0.01%以上のMoの含有により発揮される。しかしながら、Mo含有量が0.5%を超えると、深絞り性が低下するため、Mo含有量は0.01〜0.5%に限定した。
【0045】
なお、本発明では、上記した成分以外の残部は実質的にFeおよび不可避的不純物の組成とすることが好ましいが、B、Ca、REM等を通常の鋼組成の範囲内であれば含有させてもなんら問題はない。
【0046】
Bは、鋼の焼入性を向上する作用を有する元素であり、必要に応じ含有できる。しかし、B含有量が0.003%を超えると、効果が飽和するため、Bは0.003%以下が好ましい。なお、より望ましい範囲は0.0001〜0.002%である。CaおよびREMは、硫化物系介在物の形態を制御する作用を有し、これにより鋼板の伸びフランジ性を向上させる効果を有する。このような効果は、CaおよびREMのうちから選ばれた1種または2種の含有量が合計で、0.01%を超えると飽和する。このため、CaおよびREMのうちの1種または2種の含有量は、合計で0.01%以下とするのが好ましい。なお、より好ましい範囲は0.001〜0.005%である。
【0047】
また、その他の不可避的不純物としては、例えばSb、Sn、Zn、Co等が挙げられ、これらの含有量の許容範囲としては、Sb:0.01%以下、Sn:0.1%以下、Zn:0.01%以下、Co:0.1%以下の範囲である。
【0048】
次に、本発明の溶融亜鉛めっき冷延鋼板の製造方法について説明する。
本発明の製造方法に用いられる鋼スラブの組成は、上述した溶融亜鉛めっき冷延鋼板の組成と同様であるので、鋼スラブの限定理由の説明については省略する。
本発明の溶融亜鉛めっき冷延鋼板は、上記した範囲内の組成を有する鋼スラブを素材とし、該素材に熱間圧延を施し熱延板とする熱延工程と、該熱延板を酸洗する酸洗工程と、該熱延板に冷間圧延を施し冷延板とする冷延工程と、該冷延板に再結晶焼鈍を施す連続焼鈍工程と、焼鈍および溶融亜鉛めっきを行い溶融亜鉛めっき鋼板とする連続溶融亜鉛めっき工程とを順次施すことにより製造される。また必要に応じて、連続焼鈍工程と連続溶融亜鉛めっき工程の間に、鋼板表面に生成した鋼中成分の濃化層を除去する酸洗を行う工程を施す。
【0049】
使用する鋼スラブは、成分のマクロ偏析を防止するために連続鋳造法で製造するのが好ましいが、造塊法、薄スラブ鋳造法で製造してもよい。また、鋼スラブを製造したのち、いったん室温まで冷却し、その後、再度加熱する従来法に加え、冷却しないで、温片のままで加熱炉に挿入する方法や、わずかの保熱を行った後に直ちに圧延する直送圧延・直接圧延する方法などの省エネルギープロセスも問題なく適用できる。
【0050】
上記した素材(鋼スラブ)を加熱し、熱間圧延を施し熱延板とする熱延工程を施す。熱延工程は所望の板厚の熱延板が製造できる条件であればよく、通常の圧延条件を用いても特に問題はない。なお、参考のため、好適な熱延条件を以下に示しておく。
【0051】
スラブ加熱温度:900℃以上
スラブ加熱温度は、析出物を粗大化させることにより、{111}再結晶集合組織を発達させ、深絞り性を改善するため、低い方が望ましい。しかし、加熱温度が900℃未満では、圧延荷重が増大し、熱間圧延時におけるトラブル発生の危険性が増大する。このため、スラブ加熱温度は900℃以上にすることが好ましい。また、酸化重量の増加に伴うスケールロスの増大などから、スラブ加熱温度の上限は1300℃とすることがより好適である。なお、スラブ加熱温度を低くし、かつ熱間圧延時のトラブルを防止するといった観点から、シートバーを加熱する、いわゆるシートバーヒーターを活用することは、有効な方法であることは言うまでもない。
【0052】
仕上圧延終了温度:700℃以上
仕上圧延終了温度(FDT)は、冷間圧延および再結晶焼鈍後に優れた深絞り性が得られる均一な熱延母板組織を得るため、700℃以上にすることが好ましい。すなわち、仕上圧延終了温度が700℃未満では、熱延母板組織が不均一となるとともに、熱間圧延時の圧延負荷が高くなり、熱間圧延時におけるトラブル発生の危険性が増大するからである。
【0053】
巻取温度:800℃以下
巻取温度は、800℃以下とするのが好ましい。すなわち、巻取温度が800℃を超えると、スケールが増加しスケールロスにより歩留りが低下する傾向があるからである。なお、巻取温度は200℃未満となると、鋼板形状が顕著に乱れ、実際の使用にあたり不具合を生じる危険性が増大するため、巻取温度の下限を200℃とすることがより好適である。
【0054】
このように、本発明の熱延工程では、鋼スラブを900℃以上に加熱した後、仕上圧延終了温度:700℃以上とする熱間圧延を施し、800℃以下好ましくは200℃以上の巻取温度で巻き取り熱延板とするのが好ましい。
なお、本発明における熱間圧延工程では、熱間圧延時の圧延荷重を低滅するため、仕上圧延の一部または全部のパス間で潤滑圧延としてもよい。加えて、潤滑圧延を行うことは、鋼板形状の均一化や材質の均一化の観点からも有効である。なお、潤滑圧延の際の摩擦係数は0.10〜0.25の範囲とすることが好ましい。
【0055】
また、相前後するシートバー同士を接合し、連続的に仕上圧延する連続圧延プロセスとすることが好ましい。連続圧延プロセスを適用することは、熱間圧延の操業安定性の観点からも望ましい。
【0056】
ついで、熱延板を酸洗後、冷間圧延を施し冷延板とする。酸洗は通常の条件にて行えばよい。冷間圧延条件は、所望の寸法形状の冷延板とすることができればよく、特に限定されないが、冷間圧延時の圧下率は40%以上とすることが好ましい。圧下率が40%未満では、{111}再結晶集合組織が発達せず、優れた深絞り性を得ることが困難となるからである。
【0057】
引き続き、上記冷延鋼板に再結晶焼鈍を行い冷延焼鈍板とする1次連続焼鈍工程を施す。再結晶焼鈍は、連続焼鈍ラインで行う。再結晶焼鈍の焼鈍温度は、750℃以上950℃以下の温度範囲で行う必要がある。焼鈍温度が750℃未満では、フェライト単相組織となり、かつVおよびNb系炭化物が十分に溶解しない。引き続く溶融亜鉛めっき処理を行った後でも、主相であるポリゴナルフェライト相およびベイニチックフェライト相からなるフェライト相と、第2相であるマルテンサイト相との複合組織が得られない。一方、950℃を超える高温では、伸びフランジ特性等が劣化するからである。
【0058】
なお、再結晶焼鈍における冷却は、マルテンサイト形成の観点から、焼鈍温度から平均冷却速度5℃/s以上で400℃以下まで冷却する必要がある。平均冷却速度が5℃/s未満だと、マルテンサイト相が形成されにくく、フェライト相とパーライト相からなる組織、あるいはフェライト相とベイナイト相からなる組織となり、強度伸びバランスが低下するからである。したがって、本発明においては、マルテンサイト相を含む第2相の存在が必須であることから、そのために上記平均冷却速度を、臨界冷却速度以上である5℃/s以上とすることが必要である。
【0059】
次いで、冷延鋼板を連続溶融亜鉛めっきラインにて、2次連続焼鈍してから溶融亜鉛めっきを施し、溶融亜鉛めっき冷延鋼板とする。2次連続焼鈍温度は、(Ac3変態点−50℃)〜(Ac3変態点+50℃)の温度域にて行う必要がある。2次連続焼鈍温度が(Ac3変態点−50℃)未満では、ベイニチックフェライトが形成しにくく、したがって穴拡げ性を向上させるのに必要なベイニチックフェライト組織が得られない。一方、(Ac3変態点+50℃)を超える温度域では、結晶粒が粗大化するとともに、{111}再結晶集合組織が発達せずに深絞り性が著しく劣化するからである。
【0060】
上記2次連続焼鈍後は、溶融亜鉛めっき処理温度である380〜530℃の温度域に急冷するのが好ましい。急冷停止温度が380℃未満では不めっきが発生しやすくなり、−方、530℃を超えるとめっき表面にむらが発生しやすくなるため好ましくないからである。なお、冷却速度は、主相であるポリゴナルフェライト相およびベイニチックフェライト相と、第2相であるマルテンサイト相との複合組織とするため、2次連続焼鈍温度から溶融亜鉛めっき処理温度までの平均冷却速度を5℃/s以上で急冷するのが好ましい。上記急冷後は引き続いて溶融亜鉛めっき浴に浸漬して溶融亜鉛めっきする。この時、めっき浴のAl濃度は0.12〜0.145mass%の範囲にするのが好ましい。めっき浴中のAl含有量が0.12 mass%未満では合金化が進み過ぎてめっき密着性(耐パウダリング性)が劣化する傾向があるからであり、一方、0.145 mass%を超えると不めっきが発生しやすくなるからである。
【0061】
また、溶融亜鉛めっき処理後にめっき層の合金化処理を施してもよい。なお、合金化処理を行う場合には、めっき層中のFe含有率が9〜12%となるように実施するのが好ましい。
【0062】
合金化処理は、溶融亜鉛めっき処理後、450〜550℃の温度域まで再加熱し溶融亜鉛めっき層の合金化を行うのが好ましい。合金化処理後は、5℃/s以上の平均冷却速度で少なくとも300℃まで冷却するのが好ましい。550℃を超える高温での合金化は、マルテンサイト相の形成が難しく、鋼板の延性が低下するおそれがあり、一方、合金化温度が450℃未満では、合金化の進行が遅く生産性が低下する傾向があるからである。
【0063】
また、合金化処理後の冷却速度が極端に小さい場合にはマルテンサイト相の形成が困難になる。このため、合金化処理後から300℃までの温度範囲における平均冷却速度を5℃/s以上にするのが好ましい。
【0064】
なお、めっき性をより一層改善する必要がある場合には、1次連続焼鈍と2次連続焼鈍の間で、鋼板表面に生成した鋼中成分の濃化層を除去する酸洗処理を施すことが好ましい。1次連続焼鈍ラインにて焼鈍された鋼板は、表面に鋼中成分であるPが鋼板表面に析出し、Si、Mn、Crなどが酸化物として濃化する傾向があるため、かかる表面濃化層を酸洗により除去することがめっき性を向上させる点で好ましいからである。その後、連続溶融亜鉛めっきラインで、還元焼鈍である2次連続焼鈍を行う。なお、酸洗は、連続溶融亜鉛めっきラインに設置されている酸洗槽で行ってもよい。
【0065】
また、めっき処理後あるいは合金化処理後の鋼板には、形状矯正、表面粗度等の調整のための調質圧延を加えてもよい。また、樹脂あるいは油脂コーティング、各種塗装あるいは電気めっき等の処理を施しても何ら不都合はない。
【0066】
【実施例】
表1に示す組成の溶鋼を転炉で溶製し、連続鋳造法でスラブとした。ついで、これら鋼スラブを1250℃に加熱したのち、仕上圧延終了温度:880℃、巻取温度:650℃とする熱間圧延を施す熱延工程により、板厚4.0mmの熱延鋼帯(熱延板)とした。引き続き、これら熱延鋼帯(熱延板)に酸洗、冷間圧延を施す冷延工程により、板厚1.2mmの冷延鋼帯(冷延板)とした。ついで、これら冷延鋼帯(冷延板)に、連続焼鈍ラインで表2に示す条件で1次連続焼鈍を行った。なお、表2に示す1次連続焼鈍における冷却速度は、300℃までの平均冷却速度とした。引き続き、連続溶融亜鉛めっきラインで、表2に示す条件で2次連続焼鈍を施した後、溶融亜鉛めっきおよび合金化処理を施した。ここで、溶融亜鉛めっき処理は、溶融亜鉛めっき処理温度である380〜530℃に冷却した後、Alを0.13質量%含有する溶融亜鉛めっき浴に浸漬してめっきした後、450〜550℃の温度範囲の合金化処理(めっき層中のFe含有量:約10質量%)を施し、その後、300℃までの平均冷却速度を15℃/sとして300℃以下まで冷却した。なお、表2に示す2次連続焼鈍における冷却速度は、溶融亜鉛めっき処理までの平均冷却速度とした。また、一部の鋼帯(表2の鋼板No.1および3)に関しては、1次連続焼鈍後、連続溶融亜鉛めっきライン内にて、酸洗処理を施した後、2次連続焼鈍を行った。得られた鋼帯(溶融亜鉛めっき冷延鋼板)に、さらに伸び率:0.5%の調質圧延を施した。
【0067】
得られた鋼帯から試験片を採取し、圧延方向に平行な断面(L断面)について、光学顕微鏡あるいは走査型電子顕微鏡を用いて400〜1000倍程度の倍率で微視組織を撮像し、画像解析装置を用いて主相であるポリゴナルフェライトおよびベイニチックフェライトの組織分率および第2相の種類と組織分率を求めた。また、得られた鋼帯から、前述の基礎的な実験結果を得た時と同様にJIS5号引張試験片を採取し、JIS Z 2241の規定に準拠して引張試験を行い、降伏応力(YS)、引張強さ(TS)、伸び(El)、降伏比(YR)を求めた。またr値は、得られた鋼帯から採取したJIS5号引張試験片を用いてJIS Z2254の規定に準拠して平均r値(平均塑性ひずみ比)を求め、これをr値とした。さらに、穴拡げ率(λ)も求めた。ここで、穴拡げ率(λ)は、得られた鋼帯から試験片を採取し、前述のようにJFST 1001の規定に準拠して穴拡げ試験を行って求めた。これらの結果を表2に示す。
【0068】
【表1】

Figure 2004002909
【0069】
【表2】
Figure 2004002909
【0070】
表2に示す結果から、本発明例は、いずれも、目標とする、低い降伏比(YR≦70%)、高い伸び(El≧28%)、高いランクフォード値(r≧1.3)および高い穴拡げ率(λ≧100%)を有し、深絞り成形性に優れた鋼板となっている。特に本発明例では、2次連続焼鈍温度を、本発明の範囲である(Ac3変態点−50℃)〜(Ac3変態点+50℃)の温度域とすることによって、穴拡げ率(λ)が飛躍的に上昇し、λ≧100%以上を確保できる。これに対し、本発明の範囲を外れる条件で製造した比較例では、降伏比(YR)が高いか、伸び(El)、ランクフォード値(r値)または穴拡げ率(λ)が低下した鋼板となっている。
【0071】
【発明の効果】
本発明によれば、強度伸びバランスに優れるとともに、深絞り成形性および伸びフランジ性にも優れた溶融亜鉛めっき冷延鋼板を安定して製造することが可能となり、産業上格段の効果を奏する。本発明の溶融亜鉛めっき冷延鋼板を自動車部品に適用した場合、プレス成形が容易で、自動車車体の軽量化に十分に寄与できるという効果もある。
【図面の簡単な説明】
【図1】VとNbの含有量とCとの関係を表す比(V/51+Nb/93)/(C/12)がランクフォード値(r値)と強度伸びバランス(TS×El)に及ぼす影響を示した図である。
【図2】2次連続焼鈍温度が穴拡げ率(λ)に及ぼす影響を示した図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a composite structure type high-tensile hot-dip galvanized cold-rolled steel sheet having a tensile strength of 440 MPa or more, which is useful for using steel sheets for automobiles and the like, and a method for producing the same.
[0002]
[Prior art]
In recent years, there has been a demand for improvement in fuel efficiency of automobiles from the viewpoint of conservation of the global environment. In addition, from the viewpoint of protecting occupants in the event of a vehicle collision, it is also required to improve the safety of the automobile body. For this reason, studies are being actively conducted to reduce the weight and strengthen the automobile body.
It is said that it is effective to increase the strength of component materials in order to satisfy the weight reduction and strengthening of the automobile body at the same time. Recently, high-tensile steel plates have been actively used for automobile parts.
[0003]
Since many automobile parts made of steel plates are formed by press working, the steel plates for automobiles are required to have excellent press formability. However, generally, when the strength of the steel sheet is increased, the ductility represented by the Rankford value (r value) and the elongation (El) is lowered, and the stretch flangeability is also lowered, so that the press formability is deteriorated. At the same time, the yield stress increases and the shape freezing property tends to deteriorate. In particular, the larger the so-called strength-elongation balance value expressed by the product TS × El of tensile strength (TS) and elongation (El), the more advantageous the press formability. Ductility has been attempted.
Steel sheets that have both high strength and high ductility include residual austenitic steel (residual γ steel) using strain-induced plasticity, dual-phase steel (DP steel) having two phases of polygonal ferrite and martensite. Development research on so-called composite structure steel is underway.
[0004]
On the other hand, since high corrosion resistance is also required for automobile parts depending on the application site, conventionally, various surface-treated steel sheets having excellent corrosion resistance have been used as steel sheets for automobile parts. Among such surface-treated steel sheets, hot-dip galvanized steel sheets manufactured in a continuous hot-dip galvanizing facility that performs recrystallization annealing and plating on the same line have excellent corrosion resistance and can be manufactured at low cost. An alloyed hot-dip galvanized steel sheet that is further heat-treated after galvanization can be produced, and is widely used because of its excellent weldability and press formability in addition to corrosion resistance.
[0005]
Therefore, in order to further promote weight reduction and strengthening of the automobile body, it is desired to develop a high-tensile hot-dip galvanized steel sheet having excellent corrosion resistance and press formability by a continuous alloying hot-dip galvanizing line.
[0006]
As a typical example of a high-tensile steel sheet having good press formability, a composite structure steel sheet composed of a composite structure of ferrite and martensite can be cited. Particularly, a composite structure steel sheet manufactured by gas jet cooling after continuous annealing has a yield stress ( YS) is low, and it has both high ductility and excellent bake hardenability. However, the continuous hot dip galvanizing line is generally installed with the annealing equipment and the plating equipment being made continuous. Due to the presence of this continuous plating process, cooling after annealing is interrupted at the plating temperature, and the average cooling rate throughout the process is necessarily reduced.
[0007]
Therefore, in a steel plate manufactured by a continuous hot dip galvanizing line, it is difficult to generate martensite generated under cooling conditions with a high cooling rate in the steel plate after hot dipping. For this reason, it is generally difficult to produce a high-tensile hot-dip galvanized steel sheet having a composite structure of ferrite and martensite in a continuous hot-dip galvanizing line.
Further, the above-mentioned composite structure steel plate has the disadvantages that the Rankford value (r value) is low and the deep drawability is inferior, the hole expansion ratio (λ) is low and the stretch flangeability is inferior.
[0008]
Under these unfavorable conditions, the production of high-strength hot-dip galvanized steel sheets with a high degree of hardenability, such as Cr and Mo, is used to produce a low-temperature transformation phase. A method for facilitating the process is common. However, there is a problem that adding a large amount of the above-described alloy element causes an increase in manufacturing cost.
[0009]
In addition, as disclosed in Japanese Patent Publication No. 62-40405, etc., by specifying the cooling rate after annealing in a continuous hot dip galvanizing line or cooling after plating, high strength of structure strengthened hot dip galvanizing A method of manufacturing a steel sheet has also been proposed. However, such a method may be difficult due to the restrictions on the equipment of the continuous hot dip galvanizing line, and further improvement has been desired for the ductility of the steel sheet obtained by this method.
[0010]
Furthermore, attempts have been made to improve the Rankford value (r value) of the composite structure steel plate. For example, in Japanese Patent Publication No. 55-10650, after cold rolling, a recrystallization temperature of ~ A c3 A technique is disclosed in which box annealing is performed at the temperature of the transformation point, and then heating is performed at 700 to 800 ° C. to obtain a composite structure, followed by continuous annealing with quenching and tempering. However, in this method, since quenching and tempering is performed during continuous annealing, the yield stress YS is high and a low yield ratio YR cannot be obtained. Here, the yield ratio YR is the ratio of the yield stress YS to the tensile strength TS, and YR = YS / TS. This high yield stress steel sheet has the disadvantages that it is difficult to press form and the shape freezing property of the pressed parts is poor.
[0011]
A method for improving the high yield stress YS is disclosed in JP-A-55-100934. In this method, in order to obtain a high Rankford value (r value), box annealing is first performed. The temperature during box annealing is set to a two-phase region of ferrite (α) -austenite (γ), and from the α phase during soaking. Mn is concentrated in the γ phase. This Mn-concentrated phase preferentially becomes a γ phase during continuous annealing, a mixed structure can be obtained even at a cooling rate comparable to that of a gas jet, and the yield stress YS is also low. However, this method requires a relatively high temperature annealing in a relatively high temperature of two phases of α-γ for Mn concentration. Therefore, frequent adhesion between steel plates, generation of temper color, and furnace body inner cover There are a number of problems in the manufacturing process, such as a reduction in the service life. Conventionally, it has been difficult to industrially stably produce a high-tensile steel plate having such a high Rankford value (r value) and a low yield stress YS.
[0012]
In addition, in Japanese Examined Patent Publication No. 1-35900, a steel having a composition of 0.012 mass% C-0.32 mass% Si-0.53 mass% Mn-0.03 mass% P-0.051 mass% Ti. After cold rolling, heating to 870 ° C., which is a two-phase region of α-γ, and cooling at an average cooling rate of 100 ° C./s, r = 1.61, YS = 224 MPa, TS = 482 MPa A technique is disclosed that enables the production of a composite structure cold-rolled steel sheet having a very high Rankford value (r value) and low yield stress. However, since it is difficult to achieve a high cooling rate of 100 ° C./s with a normal continuous hot dip galvanizing line, water quenching equipment is required, and water quenching cold rolled steel sheet has a problem of surface treatment. However, there are problems in manufacturing equipment and materials.
[0013]
[Problems to be solved by the invention]
The present invention advantageously solves the above problems, and by regulating the steel composition, in particular, the contents of C, V, and Nb, and in particular, the annealing temperature as a production condition, it has an excellent strength-elongation balance and has a high rank. In addition to the Ford value, the objective is to propose a composite-structured high-tensile hot-dip galvanized cold-rolled steel sheet that is excellent in stretch flangeability and a technology that can be stably manufactured. The “hot-dip galvanized cold-rolled steel sheet” as used in the present invention is a so-called non-alloyed hot-dip galvanized cold-rolled steel sheet that is not subjected to heat alloying treatment after hot-dip galvanization and heat-alloying treatment after hot-dip galvanization. It means both so-called galvannealed steel sheets.
[0014]
[Means for Solving the Problems]
In order to achieve the above-mentioned problems, the present inventors have determined the alloy elements that affect the microstructure and recrystallization texture of the hot-dip galvanized cold-rolled steel sheet having a hot-dip galvanized layer on the surface of the cold-rolled steel sheet, and the annealing temperature conditions. We have earnestly studied the influence. As a result, by setting the C content to 0.01 to 0.05% by mass and containing the appropriate amounts of V and Nb, before recrystallization annealing, the solid solution C is reduced as much as possible to {111} By developing the crystal texture, a high Rankford value (r value) can be obtained, and by heating in a temperature range of 750 to 950 ° C. by primary continuous annealing, V and Nb carbides are dissolved. Thus, a large amount of solid solution C can be generated, and the secondary annealing temperature can be subsequently set to (A c3 Transformation point −50 ° C.) to (A c3 By making the transformation point + 50 ° C), C is concentrated in the austenite and a martensite phase is generated in the subsequent cooling process, so that it has excellent ductility, high rankford value, elongation It was found that a composite structure type high-tensile hot-dip galvanized cold-rolled steel sheet with good flangeability can be produced.
[0015]
Here, the composite structure type hot-dip galvanized cold-rolled steel sheet, which is the steel of the present invention, has a main phase of ferrite phase, which is bainitic with high dislocation density generated by cooling process from polygonal ferrite and austenite region. It is a hot-dip galvanized cold-rolled steel sheet having a composite structure with a second phase containing a martensite phase with an area ratio of 1% or more, in which a ferrite phase is mixed.
[0016]
First, basic experimental results performed by the present inventors will be described.
By mass%, C: 0.02%, Si: 0.5%, Mn: 2.0%, P: 0.08%, S: 0.005%, Al: 0.03%, N: 0.00. By adding 002% as a basic composition and adding V in the range of 0.05 to 0.10% by mass and Nb in the range of 0.001 to 0.16% by mass, different V and Nb contents are obtained. The various steel materials were heated to 1250 ° C. and soaked, and then subjected to three-pass rolling so that the finish rolling finish temperature was 880 ° C. to a plate thickness of 4.0 mm. In addition, after finishing rolling, a heat retention equivalent process of 650 ° C. × 3 h was performed as a coil winding process. Subsequently, cold rolling with a rolling reduction of 70% was performed to a sheet thickness of 1.2 mm. Subsequently, these cold-rolled sheets were heated to 880 ° C. and then subjected to primary continuous annealing (recrystallization annealing) that was cooled to 400 ° C. or lower at an average cooling rate of 15 ° C./s. Then (A c3 Transformation point −50 ° C.) to (A c3 The secondary continuous annealing is performed by heating to 850 ° C. which is within the temperature range of the transformation point + 50 ° C. and then cooling to the temperature range of 450 to 500 ° C. at an average cooling rate of 15 ° C./s, and then 0.13 mass of Al. After immersing in a hot dip galvanizing bath containing 5%, alloying treatment in a temperature range of 450 to 550 ° C. (Fe content in the plating layer: about 10% by mass) is performed, and then 15 ° C./s. Cooled to room temperature at an average cooling rate.
[0017]
About the obtained hot-dip galvanized steel sheet, the tensile test was implemented and the tensile characteristic was investigated. The tensile test was performed using a JIS No. 5 tensile test piece. The tensile strength TS and ductility El are values when a tensile test is performed in a direction perpendicular to the rolling direction. The r value is the rolling direction (r L ), 45 degree direction (r D ) And the direction perpendicular to the rolling direction (90 degrees) (r c ) Average r value {= (r L + R c + 2 × r D ) / 4}.
[0018]
FIG. 1 is a graph showing the influence of the contents of V and Nb on the r value and the strength elongation balance (TS × El) in relation to C, and the horizontal axis represents the contents of V and Nb and the C content. The atomic ratio ((V / 51 + Nb / 93) / (C / 12)), and the vertical axis shows the r value and the strength elongation balance (TS × El) separately.
[0019]
From FIG. 1, by limiting the content of V and Nb in the steel to an atomic ratio with C within a range of 0.5 to 2.0, a high r value and a high strength elongation balance can be obtained. It became clear that a composite structure type hot-dip galvanized cold-rolled steel sheet having high value and high ductility El can be produced.
[0020]
Next, (V / 51 + Nb / 93) / (C / 12) = 1.1 steel material (A / A) among the hot-dip galvanized cold-rolled steel sheets used in FIG. c3 Transformation point: 890 ° C.), followed by pickling, followed by cold rolling, followed by heating to 850 ° C. and then cooling to 400 ° C. at an average cooling rate of 15 ° C./s. (Recrystallization annealing), after heating to a temperature range of 760 to 960 ° C. and then cooling at an average cooling rate of 10 ° C./s to a temperature range of 450 to 500 ° C., Al is reduced to 0. After immersion and plating in a hot dip galvanizing bath containing 13% by mass, an alloying treatment in a temperature range of 450 to 550 ° C. (Fe content in the plating layer: about 10% by mass) is performed, and then average cooling is performed. By cooling to room temperature at a rate of 15 ° C./s, the obtained hot-dip galvanized steel sheet was subjected to a hole expansion test to obtain a hole expansion ratio (λ) and to evaluate stretch flangeability.
[0021]
In the hole expansion test, a punch hole was formed in the specimen by punching with a 10 mmφ punch in accordance with the provisions of JFST 1001, and then using a conical punch with an apex angle of 60 °, the flash was on the outside, Hole expansion was performed until a crack penetrating the plate thickness occurred, and the hole expansion ratio λ was obtained. The hole expansion ratio λ is λ (%) = {(d−d 0 ) / D 0 } It calculated | required in x100. D 0 : Initial hole inner diameter, d: hole inner diameter when cracking occurs.
[0022]
FIG. 2 is a diagram showing the influence of the secondary continuous annealing temperature on the hole expansion rate (λ). Secondary annealing temperature (A c3 Transformation point −50 ° C.) to (A c3 It has been clarified that, by setting the transformation point to + 50 ° C., a high hole expansion ratio can be obtained, and a composite structure type hot-dip galvanized steel sheet excellent in stretch flangeability can be produced.
[0023]
In the hot-dip galvanized cold-rolled steel sheet of the present invention, the {111} recrystallized texture is strongly developed in the primary continuous annealing process, since there is little solid solution C and N before recrystallization annealing, and a high Rankford value. In addition, V and Nb carbides are dissolved after recrystallization, and solid solution C is concentrated in the austenite phase in a large amount. As a result, the austenite phase is transformed into a martensite phase in the subsequent cooling process. A composite structure of a ferrite phase and a martensite phase having a value can be obtained. This cold-rolled steel sheet is further subjected to (A c3 Transformation point −50 ° C.) to (A c3 (Transformation point + 50 ° C.) is transformed into an austenite phase in which a large amount of solid solution C is concentrated, an austenite phase and a ferrite phase in which a small amount of solid solution C is present, and a large amount of solid solution C is concentrated in the subsequent cooling process. The transformed austenite phase is transformed into a martensite phase, and the austenite phase with less solid solution C is transformed into a bainitic ferrite phase with a high dislocation density, so that the main phase is a polygonal ferrite and bainitic ferrite phase. A composite structure in which the two phases are martensite phases is obtained. The composite structure steel sheet having such a structure has a high hole expansion ratio because the difference in hardness between the polygonal and bainitic ferrite phases of the main phase and the martensite phase of the second phase is small. Though possible, details are not clear.
[0024]
The present invention has been completed by further study based on the above-described findings, and the gist of the present invention is as follows.
(1) By mass%
C: 0.01 to 0.05%, Si: 0.1 to 1.0%, Mn: 1.0 to 3.0%, P: 0.10% or less, S: 0.02% or less, Al : 0.005 to 0.1%, N: 0.02% or less, V: 0.01 to 0.2% and Nb: 0.001 to 0.2%, and V, Nb and C And the content (mass%)
0.5 × C / 12 ≦ (V / 51 + Nb / 93) ≦ 2 × C / 12
The remainder has a component composition consisting essentially of Fe and inevitable impurities, the main phase is a ferrite phase consisting of a polygonal ferrite phase and a bainitic ferrite phase, and the area ratio is 1% or more Composite structure type high-tensile hot dip galvanizing with excellent deep drawability and stretch flangeability, characterized by having a steel structure having a second phase containing a martensite phase and having a hot dip galvanized layer on the surface Cold rolled steel sheet.
[0025]
(2) In mass%
C: 0.01 to 0.05%, Si: 0.1 to 1.0%, Mn: 1.0 to 3.0%, P: 0.10% or less, S: 0.02% or less, Al : 0.005-0.1%, N: 0.02% or less, V: 0.01-0.2%, Nb: 0.001-0.2% and Ti: 0.001-0.3% And the content (% by mass) of V, Nb and Ti and C is
0.5 × C / 12 ≦ (V / 51 + Nb / 93 + Ti / 48) ≦ 2 × C / 12
The remainder has a component composition consisting essentially of Fe and inevitable impurities, the main phase is a ferrite phase consisting of a polygonal ferrite phase and a bainitic ferrite phase, and the area ratio is 1% or more Composite structure type high-tensile hot dip galvanizing with excellent deep drawability and stretch flangeability, characterized by having a steel structure having a second phase containing a martensite phase and having a hot dip galvanized layer on the surface Cold rolled steel sheet.
[0026]
(3) In addition to the above composition, Mo: 0.01 to 0.5% by mass is further included, and is excellent in deep drawability and stretch flangeability as described in (1) or (2) above Composite type high-tensile hot-dip galvanized cold-rolled steel sheet.
[0027]
(4) In mass%
C: 0.01 to 0.05%, Si: 0.1 to 1.0%, Mn: 1.0 to 3.0%, P: 0.10% or less, S: 0.02% or less, Al : 0.005 to 0.1%, N: 0.02% or less, V: 0.01 to 0.2% and Nb: 0.001 to 0.2%, and V, Nb and C And the content (mass%)
0.5 × C / 12 ≦ (V / 51 + Nb / 93) ≦ 2 × C / 12
A steel slab having a composition satisfying the following relationship is hot-rolled, subsequently pickled, then cold-rolled, and then heated to 750 ° C. or more and 950 ° C. or less, and then at an average cooling rate of 5 ° C./s or more. Apply primary continuous annealing to cool to 400 ° C or lower, then (A c3 Transformation point −50 ° C.) to (A c3 A method for producing a composite structure type high-tensile hot-dip galvanized cold-rolled steel sheet excellent in deep drawability and stretch flangeability, characterized by performing hot-dip galvanization after secondary continuous annealing at a transformation point + 50 ° C.
[0028]
(5) By mass%
C: 0.01 to 0.05%, Si: 0.1 to 1.0%, Mn: 1.0 to 3.0%, P: 0.10% or less, S: 0.02% or less, Al : 0.005-0.1%, N: 0.02% or less, V: 0.01-0.2%, Nb: 0.001-0.2% and Ti: 0.001-0.3% And the content (% by mass) of V, Nb and Ti and C is
0.5 × C / 12 ≦ (V / 51 + Nb / 93 + Ti / 48) ≦ 2 × C / 12
A steel slab having a composition satisfying the following relationship is hot-rolled, subsequently pickled, then cold-rolled, and then heated to 750 ° C. or more and 950 ° C. or less, and then at an average cooling rate of 5 ° C./s or more. Apply primary continuous annealing to cool to 400 ° C or lower, then (A c3 Transformation point −50 ° C.) to (A c3 A method for producing a composite structure type high-tensile hot-dip galvanized cold-rolled steel sheet excellent in deep drawability and stretch flangeability, characterized by performing hot-dip galvanization after secondary continuous annealing at a transformation point + 50 ° C.
[0029]
(6) The steel slab further contains Mo: 0.01 to 0.5% by mass in addition to the above composition, and the deep drawability and stretch flange according to the above (4) or (5) For producing a composite structure type high-tensile hot-dip galvanized steel sheet having excellent properties.
[0030]
(7) The above (4), (5), characterized in that a pickling treatment is performed between the primary continuous annealing and the secondary continuous annealing to remove a concentrated layer of steel components generated on the steel sheet surface. Or the manufacturing method of the composite structure type | mold high tension hot-dip galvanized cold-rolled steel plate excellent in the deep drawability and stretch flangeability as described in (6).
[0031]
DETAILED DESCRIPTION OF THE INVENTION
The hot-dip galvanized steel sheet of the present invention is a composite structure type high-tensile hot-dip galvanized cold-rolled steel sheet excellent in deep drawability and stretch flangeability with a tensile strength TS of 440 MPa or more.
[0032]
First, the structure of the steel sheet of the present invention will be described.
The structure of the hot-dip galvanized cold-rolled steel sheet of the present invention is a composite structure of a main phase in which polygonal ferrite having a low dislocation density and a bainitic ferrite phase having a high dislocation density are mixed, and a second phase containing a martensite phase. Have. In addition, the polygonal ferrite and bainitic ferrite phase, which are the main phases, have developed {111} textures and have high Rankford values.
[0033]
In order to obtain a hot-dip galvanized cold-rolled steel sheet having a low yield stress (YS) and a high strength-elongation balance (TS × El) and having excellent deep drawability and stretch flangeability, the structure of the cold-rolled steel sheet is used in the present invention. Needs to be a composite structure of a main phase which is a ferrite phase composed of a polygonal ferrite phase and a bainitic ferrite phase and a second phase including a martensite phase. Polygonal ferrite phase and bainitic ferrite phase that are main phases should be 80% or more in area ratio, and the bainitic ferrite phase in the main phase should be included in the area ratio of 5% or more with respect to the entire structure. preferable. In the present invention, the polygonal ferrite phase is contained in an area ratio of about 40% or more with respect to the entire structure. This is because if the polygonal ferrite phase and bainitic ferrite phase are less than 80% in terms of area ratio, it is difficult to ensure a high strength-elongation balance and press formability tends to decrease. Moreover, when better ductility and hole expansibility are required, the proportion of the bainitic ferrite phase in the main phase is preferably 10% or more in terms of area ratio. In order to utilize the advantages of the composite structure, the polygonal ferrite phase and bainitic ferrite phase which are the main phases are preferably 99% or less.
[0034]
Further, as the second phase, in the present invention, the martensite phase needs to be present, and the steel sheet of the present invention is a composite structure steel containing the martensite phase in an area ratio of 1% or more with respect to the entire structure. is there. If the martensite phase is less than 1% in terms of area ratio, it is difficult to simultaneously satisfy a low yield ratio (YR) and a high strength-elongation balance (TS × El). The second phase may be composed of a martensite phase with an area ratio of 1% or more alone, or a martensite phase with an area ratio of 1% or more and other pearlite, bainite, and retained austenite phases as subphases. It is good also as a mixture with either.
[0035]
Next, the reason for limiting the composition of the hot dip galvanized cold rolled steel sheet of the present invention will be described. The mass% is simply written as%.
C: 0.01 to 0.05%
C is an element that increases the strength of the steel sheet and further promotes the formation of a composite structure of a polygonal ferrite phase as a main phase and a bainitic ferrite phase and a martensite phase as a second phase. It is necessary to contain 0.01% or more from the viewpoint of tissue formation. On the other hand, the content exceeding 0.05% inhibits the development of {111} recrystallized texture and lowers the deep drawability and hole expandability. For this reason, in this invention, C content was limited to 0.01 to 0.05%.
[0036]
Si: 0.1 to 1.0% or less
Si is a useful strengthening element that can increase the strength of the steel sheet, that is, improve the strength-elongation balance, without significantly reducing the ductility of the steel sheet. To obtain this effect, the Si content is 0. Must be 1% or more. However, if the Si content exceeds 1.0%, the surface properties, particularly the plating properties, deteriorate. For this reason, Si content was limited to 0.1 to 1.0%. From the viewpoint of plating properties, the Si content is more preferably less than 0.7%.
[0037]
Mn: 1.0-3.0%
Mn has an action of strengthening steel, and further, a critical cooling rate at which a composite structure of a ferrite phase composed of a polygonal ferrite phase and a bainitic ferrite phase as main phases and a martensite phase as a second phase is obtained. And has a function of promoting the formation of a composite structure of a ferrite phase composed of a polygonal ferrite phase and a bainitic ferrite phase, which are main phases, and a martensite phase, which is a second phase. It is preferably contained depending on the cooling rate. A martensite phase is not generated at a slow cooling rate below the critical cooling rate, and a bainite phase or a pearlite phase is generated instead. However, when no martensite is present in the second phase, the strength-elongation balance tends to decrease. It is in. Therefore, the addition of Mn is effective for facilitating the formation of the martensite phase, that is, for reducing the critical cooling rate. Mn is an effective element for preventing hot cracking due to S, and is preferably contained according to the amount of S contained. Such an effect becomes remarkable when Mn is contained by 1.0% or more. On the other hand, if the Mn content exceeds 3.0%, the deep drawability and weldability deteriorate. For this reason, in this invention, Mn content was limited to 1.0 to 3.0% of range.
[0038]
P: 0.10% or less
P has the effect | action which strengthens steel, and can be contained suitably according to desired intensity | strength, However, When P content exceeds 0.10%, intensity | strength elongation balance will fall and deep drawability will deteriorate. For this reason, the P content is limited to 0.10% or less. In addition, when more excellent press formability is required, the P content is preferably 0.08% or less. In addition, in order to acquire the said effect, it is preferable to contain P 0.005% or more.
[0039]
S: 0.02% or less
S is an element present in the steel sheet as an inclusion, and is an element that causes deterioration of the ductility and formability of the steel sheet, particularly stretch flangeability. Therefore, it is preferable to reduce it as much as possible. In the present invention, the upper limit of the S content is 0.02%. In addition, when the more excellent stretch flangeability is requested | required, it is preferable that S content shall be 0.01% or less, More preferably, it is 0.005% or less.
[0040]
Al: 0.005 to 0.1%
Al is added as a deoxidizing element for steel, and is an element useful for improving the cleanliness of steel. However, if it is less than 0.005%, there is no effect of addition, while it exceeds 0.1%. Even so, no further deoxidation effect can be obtained, and conversely the deep drawability deteriorates. For this reason, Al content was limited to 0.005-0.1%. In the present invention, a melting method by a deoxidation method other than Al deoxidation is not excluded. For example, Ti deoxidation or Si deoxidation may be performed. Included in the range. At that time, even if Ca, REM, or the like is added to the molten steel, the characteristics of the steel sheet of the present invention are not inhibited at all, and it is a matter of course that a steel sheet containing Ca, REM, etc. is also included in the scope of the present invention.
[0041]
N: 0.02% or less
N is an element that increases the strength of the steel sheet by solid solution strengthening or strain age hardening. However, when it exceeds 0.02%, nitride increases in the steel sheet, and thereby the deep drawability of the steel sheet is remarkable. It deteriorates to. For this reason, N was limited to 0.02% or less. In addition, when improvement of press formability is requested | required more, it is preferable to reduce N, and it is suitable to set it as 0.004% or less.
[0042]
V: 0.01 to 0.2%, Nb: 0.001 to 0.2%, and satisfy the relationship of 0.5 × C / 12 ≦ (V / 51 + Nb / 93) ≦ 2 × C / 12.
V and Nb are the most important elements in the present invention, and the {111} recrystallized texture is developed by precipitating and fixing solute C as V and Nb-based carbides before recrystallization, thereby increasing the rank of Ford. A value can be obtained. Further, during annealing, V and Nb-based carbides are dissolved so that a large amount of solid solution C is concentrated in the austenite phase, and then the martensite transformation is performed in the subsequent cooling process. A steel sheet having a composite structure of a ferrite phase composed of a ferrite phase and a martensite phase as a second phase is obtained. In order to achieve such an effect, the contents of V and Nb are 0.01% or more and 0.001% or more, respectively, and the contents (mass%) of C, V and Nb are 0.5 × C / It is necessary to satisfy the relationship of 12 ≦ (V / 51 + Nb / 93). On the other hand, the content of at least one of V and Nb exceeds 0.2%, or the content (mass%) of C, V, and Nb is (V / 51 + Nb / 93)> 2 × C / 12 And the dissolution of V and Nb-based carbides during annealing hardly occur, so that the composite phase of the ferrite phase consisting of the polygonal ferrite phase and bainitic ferrite phase as the main phase and the martensite phase as the second phase Cannot be obtained. Therefore, in the present invention, V: 0.01 to 0.2%, Nb: 0.001 to 0.2%, and 0.5 × C / 12 ≦ (V / 51 + Nb / 93) ≦ 2 × C / 12. It was limited to satisfying the relationship.
[0043]
Further, in the present invention, in addition to the above composition, it is preferable to contain Ti: 0.001 to 0.3% by mass%. In this case, the contents of C, V, and Nb (mass) %), Which is 0.5 × C / 12 ≦ (V / 51 + Nb / 93) ≦ 2 × C / 12, the relational expression of the contents of C, V, Nb and Ti (% by mass). That is, it is necessary to satisfy the relational expression of 0.5 × C / 12 ≦ (V / 51 + Nb / 93 + Ti / 48) ≦ 2 × C / 12.
Ti is a carbide forming element. Before recrystallization, solid solution C is precipitated and fixed as V, Nb and Ti carbides, thereby developing a {111} recrystallized texture and obtaining a high Rankford value. Furthermore, during annealing, V, Nb, and Ti-based carbides are dissolved to concentrate a large amount of solid solution C into the austenite phase, and then the martensitic transformation is performed in the subsequent cooling process, whereby the polygonal ferrite phase that is the main phase and A steel sheet having a composite structure of a ferrite phase composed of a bainitic ferrite phase and a martensite phase as a second phase is obtained. In order to achieve such an effect, it is necessary that the Ti content is 0.001% or more and the relationship of 0.5 × C / 12 ≦ (V / 51 + Nb / 93 + Ti / 48) is satisfied. On the other hand, if the Ti content exceeds 0.3% or (V / 51 + Nb / 93 + Ti / 48)> 2 × C / 12, it is difficult for carbides to dissolve during annealing. A composite structure of a ferrite phase composed of a certain polygonal ferrite phase and bainitic ferrite phase and a martensite phase as the second phase cannot be obtained. Therefore, when Ti is contained, Ti is 0.001 to 0.3% and satisfies the relationship of 0.5 × C / 12 ≦ (V / 51 + Nb / 93 + Ti / 48) ≦ 2 × C / 12. Limited to that.
[0044]
Moreover, in this invention, it is preferable to contain Mo: 0.01-0.5% further in addition to the above-mentioned composition.
Mo: 0.01 to 0.5%
Mo, like Mn, reduces the critical cooling rate at which a composite structure of a ferrite phase composed of a polygonal ferrite phase and a bainitic ferrite phase, which are main phases, and a martensite phase, which is a second phase, is obtained. It has an action of promoting the formation of a composite structure of a phase and a martensite phase, and can be contained as necessary. The effect is exhibited by the inclusion of 0.01% or more of Mo. However, when the Mo content exceeds 0.5%, the deep drawability deteriorates, so the Mo content is limited to 0.01 to 0.5%.
[0045]
In the present invention, the balance other than the above-described components is preferably substantially composed of Fe and inevitable impurities, but B, Ca, REM, etc. are included within the range of the normal steel composition. There is no problem.
[0046]
B is an element having an effect of improving the hardenability of steel and can be contained as necessary. However, if the B content exceeds 0.003%, the effect is saturated, so B is preferably 0.003% or less. A more desirable range is 0.0001 to 0.002%. Ca and REM have the effect | action which controls the form of a sulfide type inclusion, and it has the effect which improves the stretch flangeability of a steel plate by this. Such an effect is saturated when the content of one or two selected from Ca and REM exceeds 0.01% in total. For this reason, it is preferable that the content of one or two of Ca and REM is 0.01% or less in total. A more preferable range is 0.001 to 0.005%.
[0047]
Other inevitable impurities include, for example, Sb, Sn, Zn, Co, etc. The allowable ranges of these contents are Sb: 0.01% or less, Sn: 0.1% or less, Zn : 0.01% or less, Co: 0.1% or less.
[0048]
Next, the manufacturing method of the hot dip galvanized cold rolled steel sheet of this invention is demonstrated.
Since the composition of the steel slab used in the production method of the present invention is the same as that of the above-described hot-dip galvanized cold-rolled steel sheet, description of the reason for limiting the steel slab is omitted.
The hot-dip galvanized cold-rolled steel sheet of the present invention comprises a steel slab having a composition within the above-described range as a raw material, hot-rolling the raw material into a hot-rolled sheet, and pickling the hot-rolled sheet. Pickling process, cold rolling process to cold-roll the hot-rolled sheet to make a cold-rolled sheet, continuous annealing process to recrystallize the cold-rolled sheet, and hot-dip zinc by annealing and hot-dip galvanizing It is manufactured by sequentially performing a continuous hot dip galvanizing step to form a plated steel sheet. Moreover, the process of performing the pickling which removes the concentrated layer of the component in steel produced | generated on the steel plate surface is given between a continuous annealing process and a continuous hot-dip galvanization process as needed.
[0049]
The steel slab to be used is preferably produced by a continuous casting method in order to prevent macro segregation of components, but may be produced by an ingot casting method or a thin slab casting method. After manufacturing the steel slab, in addition to the conventional method of cooling to room temperature and then heating it again, without cooling, the method of inserting it into a heating furnace as it is, or after performing a slight heat retention Energy-saving processes such as direct feed rolling and direct rolling, which are immediately rolled, can be applied without problems.
[0050]
The above-mentioned raw material (steel slab) is heated and subjected to a hot rolling step of hot rolling to obtain a hot rolled sheet. The hot rolling process only needs to be a condition that enables the production of a hot rolled sheet having a desired thickness, and there is no particular problem even if normal rolling conditions are used. For reference, suitable hot rolling conditions are shown below.
[0051]
Slab heating temperature: 900 ℃ or more
The slab heating temperature is preferably low because the precipitates are coarsened to develop a {111} recrystallized texture and improve deep drawability. However, if the heating temperature is less than 900 ° C., the rolling load increases and the risk of trouble occurring during hot rolling increases. For this reason, it is preferable that slab heating temperature shall be 900 degreeC or more. In addition, the upper limit of the slab heating temperature is more preferably 1300 ° C. due to an increase in scale loss accompanying an increase in oxidized weight. Needless to say, using a so-called sheet bar heater that heats the sheet bar from the viewpoint of lowering the slab heating temperature and preventing troubles during hot rolling is of course effective.
[0052]
Finishing rolling finish temperature: 700 ° C or higher
The finish rolling finish temperature (FDT) is preferably 700 ° C. or higher in order to obtain a uniform hot-rolled base metal structure that provides excellent deep drawability after cold rolling and recrystallization annealing. That is, when the finish rolling finish temperature is less than 700 ° C., the hot rolled base metal structure becomes non-uniform, the rolling load during hot rolling increases, and the risk of trouble occurring during hot rolling increases. is there.
[0053]
Winding temperature: 800 ℃ or less
The winding temperature is preferably 800 ° C. or lower. That is, when the coiling temperature exceeds 800 ° C., the scale increases and the yield tends to decrease due to the scale loss. If the coiling temperature is less than 200 ° C., the shape of the steel sheet is remarkably disturbed and the risk of causing problems in actual use increases. Therefore, the lower limit of the coiling temperature is more preferably 200 ° C.
[0054]
As described above, in the hot rolling step of the present invention, after the steel slab is heated to 900 ° C. or higher, the hot rolling at a finish rolling finish temperature of 700 ° C. or higher is performed, and the winding at 800 ° C. or lower, preferably 200 ° C. or higher is performed. It is preferable to use a hot-rolled sheet wound at temperature.
In the hot rolling process of the present invention, in order to reduce the rolling load during hot rolling, lubrication rolling may be performed between some or all passes of finish rolling. In addition, performing lubrication rolling is also effective from the viewpoint of uniform steel plate shape and uniform material. In addition, it is preferable to make the friction coefficient in the case of lubrication rolling into the range of 0.10-0.25.
[0055]
Moreover, it is preferable to set it as the continuous rolling process which joins the sheet | seat bars which precede and follow, and finish-rolls continuously. The application of the continuous rolling process is also desirable from the viewpoint of the operational stability of hot rolling.
[0056]
Next, the hot-rolled sheet is pickled and then cold-rolled to obtain a cold-rolled sheet. Pickling may be performed under normal conditions. The cold rolling condition is not particularly limited as long as it can be a cold-rolled sheet having a desired size and shape, but the rolling reduction during cold rolling is preferably 40% or more. This is because if the rolling reduction is less than 40%, the {111} recrystallization texture does not develop and it becomes difficult to obtain excellent deep drawability.
[0057]
Then, the primary continuous annealing process which recrystallizes and anneals the said cold-rolled steel plate to make a cold-rolled annealing plate is performed. Recrystallization annealing is performed in a continuous annealing line. The annealing temperature for recrystallization annealing needs to be performed in a temperature range of 750 ° C. or more and 950 ° C. or less. When the annealing temperature is less than 750 ° C., a ferrite single phase structure is formed, and V and Nb carbides are not sufficiently dissolved. Even after the subsequent hot dip galvanizing treatment, a composite structure of a ferrite phase composed of a polygonal ferrite phase and a bainitic ferrite phase as main phases and a martensite phase as a second phase cannot be obtained. On the other hand, at a high temperature exceeding 950 ° C., the stretch flange characteristics and the like deteriorate.
[0058]
In the recrystallization annealing, it is necessary to cool from the annealing temperature to 400 ° C. or less at an average cooling rate of 5 ° C./s or more from the viewpoint of martensite formation. If the average cooling rate is less than 5 ° C./s, the martensite phase is difficult to be formed, and a structure composed of a ferrite phase and a pearlite phase, or a structure composed of a ferrite phase and a bainite phase is formed, and the strength-elongation balance decreases. Therefore, in the present invention, since the presence of the second phase containing the martensite phase is essential, it is necessary to set the average cooling rate to 5 ° C./s or more which is equal to or higher than the critical cooling rate. .
[0059]
Next, the cold-rolled steel sheet is subjected to secondary continuous annealing in a continuous hot-dip galvanizing line, and then hot-dip galvanized to give a hot-dip galvanized cold-rolled steel sheet. The secondary continuous annealing temperature is (A c3 Transformation point −50 ° C.) to (A c3 It is necessary to carry out in the temperature range of transformation point + 50 ° C. Secondary continuous annealing temperature is (A c3 If the transformation point is less than −50 ° C., bainitic ferrite is difficult to form, and therefore the bainitic ferrite structure necessary for improving hole expansibility cannot be obtained. On the other hand, (A c3 This is because in the temperature range exceeding the transformation point + 50 ° C., the crystal grains become coarse and the {111} recrystallization texture does not develop and the deep drawability deteriorates remarkably.
[0060]
After the secondary continuous annealing, it is preferable to rapidly cool to a temperature range of 380 to 530 ° C., which is a hot dip galvanizing treatment temperature. If the quenching stop temperature is less than 380 ° C., non-plating is likely to occur, and if it exceeds 530 ° C., unevenness is likely to occur on the plating surface, which is not preferable. The cooling rate is from a secondary continuous annealing temperature to a hot dip galvanizing temperature in order to obtain a composite structure of the polygonal ferrite phase and bainitic ferrite phase as the main phase and the martensite phase as the second phase. It is preferable to rapidly cool at an average cooling rate of 5 ° C./s or more. After the rapid cooling, it is subsequently immersed in a hot dip galvanizing bath and hot dip galvanized. At this time, the Al concentration of the plating bath is preferably in the range of 0.12 to 0.145 mass%. This is because when the Al content in the plating bath is less than 0.12 mass%, alloying tends to proceed excessively and the plating adhesion (powdering resistance) tends to deteriorate, while on the other hand, when the Al content exceeds 0.145 mass%. This is because non-plating is likely to occur.
[0061]
Moreover, you may perform the alloying process of a plating layer after the hot dip galvanization process. In addition, when performing an alloying process, it is preferable to implement so that Fe content rate in a plating layer may be 9 to 12%.
[0062]
In the alloying treatment, it is preferable to reheat to a temperature range of 450 to 550 ° C. to alloy the hot dip galvanized layer after the hot dip galvanizing treatment. After the alloying treatment, it is preferable to cool to at least 300 ° C. at an average cooling rate of 5 ° C./s or more. Alloying at a high temperature exceeding 550 ° C makes it difficult to form a martensite phase and may reduce the ductility of the steel sheet. On the other hand, if the alloying temperature is lower than 450 ° C, the alloying progresses slowly and the productivity decreases. Because there is a tendency to.
[0063]
Further, when the cooling rate after the alloying treatment is extremely small, it becomes difficult to form a martensite phase. For this reason, it is preferable to make the average cooling rate in the temperature range from 300 degreeC after an alloying process into 5 degrees C / s or more.
[0064]
In addition, when it is necessary to further improve the plating property, a pickling treatment is performed between the primary continuous annealing and the secondary continuous annealing to remove the concentrated layer of steel components generated on the steel sheet surface. Is preferred. The steel sheet annealed in the primary continuous annealing line has a surface concentration because P, which is a component in the steel, precipitates on the surface of the steel sheet and Si, Mn, Cr, etc. tend to concentrate as oxides. This is because it is preferable to remove the layer by pickling in terms of improving the plating property. Then, secondary continuous annealing which is reduction annealing is performed in a continuous hot dip galvanizing line. In addition, you may perform pickling in the pickling tank installed in the continuous hot-dip galvanizing line.
[0065]
Further, the steel plate after the plating treatment or the alloying treatment may be subjected to temper rolling for adjusting the shape correction, surface roughness, and the like. Moreover, there is no inconvenience even if treatments such as resin or oil coating, various paintings or electroplating are performed.
[0066]
【Example】
Molten steel having the composition shown in Table 1 was melted in a converter and made into a slab by a continuous casting method. Then, after heating these steel slabs to 1250 ° C., a hot rolling process of hot rolling at a finish rolling finish temperature of 880 ° C. and a winding temperature of 650 ° C. Hot rolled sheet). Subsequently, a cold-rolled steel strip (cold-rolled sheet) having a thickness of 1.2 mm was obtained by a cold-rolling process in which the hot-rolled steel strip (hot-rolled sheet) was pickled and cold-rolled. Subsequently, primary cold annealing was performed on these cold-rolled steel strips (cold-rolled sheets) under the conditions shown in Table 2 in a continuous annealing line. In addition, the cooling rate in the primary continuous annealing shown in Table 2 was an average cooling rate up to 300 ° C. Subsequently, secondary continuous annealing was performed on the continuous hot dip galvanizing line under the conditions shown in Table 2, followed by hot dip galvanizing and alloying treatment. Here, the hot dip galvanizing treatment is cooled to 380 to 530 ° C. which is the hot dip galvanizing treatment temperature, and then immersed and plated in a hot dip galvanizing bath containing 0.13% by mass of Al, followed by 450 to 550 ° C. Alloying treatment (Fe content in the plating layer: about 10% by mass) in the temperature range was applied, and then cooled to 300 ° C. or less at an average cooling rate up to 300 ° C. of 15 ° C./s. In addition, the cooling rate in the secondary continuous annealing shown in Table 2 was an average cooling rate up to the hot dip galvanizing treatment. In addition, some steel strips (steel plates No. 1 and 3 in Table 2) were subjected to pickling treatment in a continuous hot-dip galvanizing line after primary continuous annealing and then subjected to secondary continuous annealing. It was. The obtained steel strip (hot-dip galvanized cold-rolled steel sheet) was further subjected to temper rolling with an elongation of 0.5%.
[0067]
A specimen is taken from the obtained steel strip, and a microscopic structure is imaged at a magnification of about 400 to 1000 times using an optical microscope or a scanning electron microscope with respect to a cross section (L cross section) parallel to the rolling direction. Using an analyzer, the structure fraction of the main phase polygonal ferrite and bainitic ferrite and the type and structure fraction of the second phase were determined. In addition, from the obtained steel strip, a JIS No. 5 tensile test piece was sampled in the same manner as when the above-mentioned basic experimental results were obtained, and a tensile test was conducted in accordance with the provisions of JIS Z 2241 to obtain a yield stress (YS ), Tensile strength (TS), elongation (El), and yield ratio (YR). Moreover, the r value calculated | required the average r value (average plastic strain ratio) based on the prescription | regulation of JISZ2254 using the JIS5 tension test piece extract | collected from the obtained steel strip, and made this r value. Further, the hole expansion rate (λ) was also obtained. Here, the hole expansion rate (λ) was obtained by collecting a test piece from the obtained steel strip and performing a hole expansion test in accordance with the provisions of JFST 1001 as described above. These results are shown in Table 2.
[0068]
[Table 1]
Figure 2004002909
[0069]
[Table 2]
Figure 2004002909
[0070]
From the results shown in Table 2, all of the inventive examples are aimed at low yield ratio (YR ≦ 70%), high elongation (El ≧ 28%), high Rankford value (r ≧ 1.3) and The steel sheet has a high hole expansion ratio (λ ≧ 100%) and is excellent in deep drawability. Particularly in the present invention example, the secondary continuous annealing temperature is within the scope of the present invention (A c3 Transformation point −50 ° C.) to (A c3 By setting the temperature range to the transformation point + 50 ° C., the hole expansion rate (λ) increases dramatically, and λ ≧ 100% or more can be secured. On the other hand, in the comparative example manufactured under conditions outside the scope of the present invention, the steel sheet having a high yield ratio (YR) or a low elongation (El), rankford value (r value), or hole expansion ratio (λ). It has become.
[0071]
【The invention's effect】
According to the present invention, it is possible to stably produce a hot-dip galvanized cold-rolled steel sheet having excellent strength-elongation balance and excellent deep-drawing formability and stretch flangeability. When the hot-dip galvanized cold-rolled steel sheet of the present invention is applied to automobile parts, press forming is easy, and there is an effect that it can sufficiently contribute to weight reduction of an automobile body.
[Brief description of the drawings]
FIG. 1 shows the ratio (V / 51 + Nb / 93) / (C / 12) representing the relationship between the content of V and Nb and C, which influences the Rankford value (r value) and the strength-elongation balance (TS × El). It is the figure which showed the influence.
FIG. 2 is a graph showing the influence of secondary continuous annealing temperature on the hole expansion rate (λ).

Claims (7)

質量%で
C:0.01〜0.05%、Si:0.1〜1.0%、Mn:1.0〜3.0%、P:0.10%以下、S:0.02%以下、Al:0.005〜0.1%、N:0.02%以下、V:0.01〜0.2%およびNb:0.001〜0.2%を含有し、かつ、VおよびNbとCとの含有量(質量%)が、
0.5×C/12≦(V/51+Nb/93)≦2×C/12
なる関係を満たし、残部は実質的にFeおよび不可避的不純物からなる成分組成を有し、主相がポリゴナルフェライト相とベイニチックフェライト相からなるフェライト相で、さらに、面積率で1%以上のマルテンサイト相を含む第2相を有する鋼組織を有し、表面に溶融亜鉛めっき層を具えることを特徴とする、深絞り性と伸びフランジ性に優れた複合組織型高張力溶融亜鉛めっき冷延鋼板。
C: 0.01 to 0.05%, Si: 0.1 to 1.0%, Mn: 1.0 to 3.0%, P: 0.10% or less, S: 0.02% in mass% Hereinafter, Al: 0.005 to 0.1%, N: 0.02% or less, V: 0.01 to 0.2% and Nb: 0.001 to 0.2%, and V and Content (mass%) of Nb and C is
0.5 × C / 12 ≦ (V / 51 + Nb / 93) ≦ 2 × C / 12
The remainder has a component composition consisting essentially of Fe and inevitable impurities, the main phase is a ferrite phase consisting of a polygonal ferrite phase and a bainitic ferrite phase, and the area ratio is 1% or more Composite structure type high-tensile hot dip galvanizing with excellent deep drawability and stretch flangeability, characterized by having a steel structure having a second phase containing a martensite phase and having a hot dip galvanized layer on the surface Cold rolled steel sheet.
質量%で
C:0.01〜0.05%、Si:0.1〜1.0%、Mn:1.0〜3.0%、P:0.10%以下、S:0.02%以下、Al:0.005〜0.1%、N:0.02%以下、V:0.01〜0.2%、Nb:0.001〜0.2%およびTi:0.001〜0.3%を含有し、かつ、V、NbおよびTiとCとの含有量(質量%)が、
0.5×C/12≦(V/51+Nb/93+Ti/48)≦2×C/12
なる関係を満たし、残部は実質的にFeおよび不可避的不純物からなる成分組成を有し、主相がポリゴナルフェライト相とベイニチックフェライト相からなるフェライト相で、さらに、面積率で1%以上のマルテンサイト相を含む第2相を有する鋼組織を有し、表面に溶融亜鉛めっき層を具えることを特徴とする、深絞り性と伸びフランジ性に優れた複合組織型高張力溶融亜鉛めっき冷延鋼板。
C: 0.01 to 0.05%, Si: 0.1 to 1.0%, Mn: 1.0 to 3.0%, P: 0.10% or less, S: 0.02% in mass% Hereinafter, Al: 0.005 to 0.1%, N: 0.02% or less, V: 0.01 to 0.2%, Nb: 0.001 to 0.2%, and Ti: 0.001 to 0 .3%, and the content (mass%) of V, Nb and Ti and C is
0.5 × C / 12 ≦ (V / 51 + Nb / 93 + Ti / 48) ≦ 2 × C / 12
The remainder has a component composition consisting essentially of Fe and inevitable impurities, the main phase is a ferrite phase consisting of a polygonal ferrite phase and a bainitic ferrite phase, and the area ratio is 1% or more Composite structure type high-tensile hot dip galvanizing with excellent deep drawability and stretch flangeability, characterized by having a steel structure having a second phase containing a martensite phase and having a hot dip galvanized layer on the surface Cold rolled steel sheet.
上記組成に加えてさらにMo:0.01〜0.5質量%を含有することを特徴とする、請求項1または2に記載の深絞り性と伸びフランジ性に優れた複合組織型高張力溶融亜鉛めっき冷延鋼板。In addition to the above composition, Mo: 0.01 to 0.5 mass% is further contained, and the composite structure type high-tensile fusion excellent in deep drawability and stretch flangeability according to claim 1 or 2 Galvanized cold rolled steel sheet. 質量%で
C:0.01〜0.05%、Si:0.1〜1.0%、Mn:1.0〜3.0%、P:0.10%以下、S:0.02%以下、Al:0.005〜0.1%、N:0.02%以下、V:0.01〜0.2%およびNb:0.001〜0.2%を含有し、かつ、VおよびNbとCとの含有量(質量%)が、
0.5×C/12≦(V/51+Nb/93)≦2×C/12
なる関係を満たす組成になる鋼スラブを、熱間圧延し、引き続き酸洗した後、冷間圧延を施し、その後、750℃以上950℃以下に加熱した後、平均冷却速度5℃/s以上で400℃以下まで冷却する1次連続焼鈍を施し、次いで、(Ac3変態点−50℃)〜(Ac3変態点+50℃)で2次連続焼鈍してから溶融亜鉛めっきを施すことを特徴とする、深絞り性と伸びフランジ性に優れた複合組織型高張力溶融亜鉛めっき冷延鋼板の製造方法。
C: 0.01 to 0.05%, Si: 0.1 to 1.0%, Mn: 1.0 to 3.0%, P: 0.10% or less, S: 0.02% in mass% Hereinafter, Al: 0.005 to 0.1%, N: 0.02% or less, V: 0.01 to 0.2% and Nb: 0.001 to 0.2%, and V and Content (mass%) of Nb and C is
0.5 × C / 12 ≦ (V / 51 + Nb / 93) ≦ 2 × C / 12
A steel slab having a composition satisfying the following relationship is hot-rolled, subsequently pickled, then cold-rolled, and then heated to 750 ° C. or more and 950 ° C. or less, and then at an average cooling rate of 5 ° C./s or more. It is characterized in that it is subjected to primary continuous annealing to cool to 400 ° C. or lower, and then subjected to secondary continuous annealing at ( Ac3 transformation point−50 ° C.) to ( Ac3 transformation point + 50 ° C.) and then hot dip galvanizing. A method for producing a composite structure type high-tensile hot-dip galvanized cold-rolled steel sheet excellent in deep drawability and stretch flangeability.
質量%で
C:0.01〜0.05%、Si:0.1〜1.0%、Mn:1.0〜3.0%、P:0.10%以下、S:0.02%以下、Al:0.005〜0.1%、N:0.02%以下、V:0.01〜0.2%、Nb:0.001〜0.2%およびTi:0.001〜0.3%を含有し、かつ、V、NbおよびTiとCとの含有量(質量%)が、
0.5×C/12≦(V/51+Nb/93+Ti/48)≦2×C/12
なる関係を満たす組成になる鋼スラブを、熱間圧延し、引き続き酸洗した後、冷間圧延を施し、その後、750℃以上950℃以下に加熱した後、平均冷却速度5℃/s以上で400℃以下まで冷却する1次連続焼鈍を施し、次いで、(Ac3変態点−50℃)〜(Ac3変態点+50℃)で2次連続焼鈍してから溶融亜鉛めっきを施すことを特徴とする、深絞り性と伸びフランジ性に優れた複合組織型高張力溶融亜鉛めっき冷延鋼板の製造方法。
C: 0.01 to 0.05%, Si: 0.1 to 1.0%, Mn: 1.0 to 3.0%, P: 0.10% or less, S: 0.02% in mass% Hereinafter, Al: 0.005 to 0.1%, N: 0.02% or less, V: 0.01 to 0.2%, Nb: 0.001 to 0.2%, and Ti: 0.001 to 0 .3%, and the content (mass%) of V, Nb and Ti and C is
0.5 × C / 12 ≦ (V / 51 + Nb / 93 + Ti / 48) ≦ 2 × C / 12
A steel slab having a composition satisfying the following relationship is hot-rolled, subsequently pickled, then cold-rolled, and then heated to 750 ° C. or more and 950 ° C. or less, and then at an average cooling rate of 5 ° C./s or more. It is characterized in that it is subjected to primary continuous annealing to cool to 400 ° C. or lower, and then subjected to secondary continuous annealing at ( Ac3 transformation point−50 ° C.) to ( Ac3 transformation point + 50 ° C.) and then hot dip galvanizing. A method for producing a composite structure type high-tensile hot-dip galvanized cold-rolled steel sheet excellent in deep drawability and stretch flangeability.
鋼スラブは、上記組成に加えてさらにMo:0.01〜0.5質量%を含有することを特徴とする、請求項4または5に記載の深絞り性と伸びフランジ性に優れた複合組織型高張力溶融亜鉛めっき鋼板の製造方法。Steel slab contains Mo: 0.01-0.5 mass% further in addition to the said composition, The composite structure excellent in the deep drawability and stretch flangeability of Claim 4 or 5 characterized by the above-mentioned. Type high-tensile hot-dip galvanized steel sheet. 1次連続焼鈍と2次連続焼鈍の間で、鋼板表面に生成した鋼中成分の濃化層を除去する酸洗処理を施すことを特徴とする、請求項4、5または6に記載の深絞り性と伸びフランジ性に優れた複合組織型高張力溶融亜鉛めっき冷延鋼板の製造方法。7. The depth according to claim 4, 5 or 6, wherein a pickling treatment is performed between the primary continuous annealing and the secondary continuous annealing to remove the concentrated layer of the steel components generated on the steel sheet surface. A method for producing a composite structure type high-tensile hot-dip galvanized cold-rolled steel sheet excellent in drawability and stretch flangeability.
JP2002148855A 2002-03-28 2002-05-23 Composite structure type high-tensile hot-dip galvanized cold-rolled steel sheet excellent in deep drawability and stretch flangeability and manufacturing method thereof Expired - Fee Related JP3912181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002148855A JP3912181B2 (en) 2002-03-28 2002-05-23 Composite structure type high-tensile hot-dip galvanized cold-rolled steel sheet excellent in deep drawability and stretch flangeability and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002091231 2002-03-28
JP2002148855A JP3912181B2 (en) 2002-03-28 2002-05-23 Composite structure type high-tensile hot-dip galvanized cold-rolled steel sheet excellent in deep drawability and stretch flangeability and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004002909A true JP2004002909A (en) 2004-01-08
JP3912181B2 JP3912181B2 (en) 2007-05-09

Family

ID=30446218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002148855A Expired - Fee Related JP3912181B2 (en) 2002-03-28 2002-05-23 Composite structure type high-tensile hot-dip galvanized cold-rolled steel sheet excellent in deep drawability and stretch flangeability and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3912181B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007186789A (en) * 2005-12-14 2007-07-26 Jfe Steel Kk High-strength steel sheet excellent in strength-ductility balance and deep drawability, and its manufacturing method
JP2007321169A (en) * 2006-05-30 2007-12-13 Jfe Steel Kk Method for producing high-strength hot-dip galvanized steel sheet having excellent formability
AU2005200300C1 (en) * 2004-01-29 2008-03-06 Jfe Steel Corporation High strength steel sheet and method for manufacturing same
JP2008266685A (en) * 2007-04-17 2008-11-06 Nippon Steel Corp Method for producing high-tensile strength hot dip galvannealed steel sheet having excellent appearance
EP2527482A1 (en) * 2010-01-22 2012-11-28 JFE Steel Corporation High-strength hot-dip galvanized steel sheet with excellent material stability and processability and process for producing same
EP2762580A4 (en) * 2011-09-29 2015-06-03 Jfe Steel Corp Hot-dip galvanized steel sheet and method for producing same
US9157138B2 (en) 2007-10-10 2015-10-13 Nucor Corporation Complex metallographic structured high strength steel and method of manufacturing

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2005200300C1 (en) * 2004-01-29 2008-03-06 Jfe Steel Corporation High strength steel sheet and method for manufacturing same
JP2007186789A (en) * 2005-12-14 2007-07-26 Jfe Steel Kk High-strength steel sheet excellent in strength-ductility balance and deep drawability, and its manufacturing method
JP2007321169A (en) * 2006-05-30 2007-12-13 Jfe Steel Kk Method for producing high-strength hot-dip galvanized steel sheet having excellent formability
JP4715637B2 (en) * 2006-05-30 2011-07-06 Jfeスチール株式会社 Method for producing high-strength hot-dip galvanized steel sheet with excellent formability
JP2008266685A (en) * 2007-04-17 2008-11-06 Nippon Steel Corp Method for producing high-tensile strength hot dip galvannealed steel sheet having excellent appearance
US9157138B2 (en) 2007-10-10 2015-10-13 Nucor Corporation Complex metallographic structured high strength steel and method of manufacturing
EP2527482A1 (en) * 2010-01-22 2012-11-28 JFE Steel Corporation High-strength hot-dip galvanized steel sheet with excellent material stability and processability and process for producing same
EP2527482A4 (en) * 2010-01-22 2017-04-05 JFE Steel Corporation High-strength hot-dip galvanized steel sheet with excellent material stability and processability and process for producing same
EP2762580A4 (en) * 2011-09-29 2015-06-03 Jfe Steel Corp Hot-dip galvanized steel sheet and method for producing same

Also Published As

Publication number Publication date
JP3912181B2 (en) 2007-05-09

Similar Documents

Publication Publication Date Title
JP5709151B2 (en) High-strength hot-dip galvanized steel sheet with excellent formability and method for producing the same
JP4635525B2 (en) High-strength steel sheet excellent in deep drawability and manufacturing method thereof
KR101335069B1 (en) High-strength cold-rolled steel sheet having excellent workability, molten galvanized high-strength steel sheet, and method for producing the same
KR101218448B1 (en) High-strength hot-dip galvanized steel sheet with excellent processability and process for producing the same
JP5194841B2 (en) High-strength hot-dip galvanized steel sheet with excellent formability and manufacturing method thereof
JP4998757B2 (en) Manufacturing method of high strength steel sheet with excellent deep drawability
JP5504737B2 (en) High-strength hot-dip galvanized steel strip excellent in formability with small variations in material within the steel strip and method for producing the same
JP4501699B2 (en) High-strength steel sheet excellent in deep drawability and stretch flangeability and method for producing the same
JP5256690B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and impact resistance and method for producing the same
JP4407449B2 (en) High strength steel plate and manufacturing method thereof
JP4752522B2 (en) Manufacturing method of high strength cold-rolled steel sheet for deep drawing
JP5251207B2 (en) High strength steel plate with excellent deep drawability and method for producing the same
JP3912181B2 (en) Composite structure type high-tensile hot-dip galvanized cold-rolled steel sheet excellent in deep drawability and stretch flangeability and manufacturing method thereof
JP5262372B2 (en) High-strength steel sheet excellent in deep drawability and manufacturing method thereof
JP2009144225A (en) High-strength hot-dip galvanized steel sheet superior in formability and manufacturing method therefor
JP3882679B2 (en) Manufacturing method of high-strength hot-dip galvanized cold-rolled steel sheet with excellent deep-drawability with good plating appearance
JP4320913B2 (en) High-tensile hot-dip galvanized steel sheet with excellent formability and method for producing the same
JP4010132B2 (en) Composite structure type high-tensile hot-dip galvanized steel sheet excellent in deep drawability and method for producing the same
JP4380353B2 (en) High-strength steel sheet excellent in deep drawability and strength-ductility balance and manufacturing method thereof
JP4506380B2 (en) Manufacturing method of high-strength steel sheet
JP2005206920A (en) High-tensile-strength hot-dip galvanized hot-rolled steel sheet with low yield ratio and composite structure superior in extension flange, and manufacturing method therefor
JP2003193189A (en) High tensile strength galvanized steel sheet with composite structure having excellent deep drawability and production method therefor
JP4301045B2 (en) High-strength steel plate, plated steel plate, and production method thereof
JP3870840B2 (en) Composite structure type high-tensile cold-rolled steel sheet excellent in deep drawability and stretch flangeability and method for producing the same
JP2005206919A (en) High-tensile-strength hot-dip galvanized hot-rolled steel sheet with composite structure superior in ductility and extension flange, and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070122

R150 Certificate of patent or registration of utility model

Ref document number: 3912181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees