JP3882679B2 - Manufacturing method of high-strength hot-dip galvanized cold-rolled steel sheet with excellent deep-drawability with good plating appearance - Google Patents

Manufacturing method of high-strength hot-dip galvanized cold-rolled steel sheet with excellent deep-drawability with good plating appearance Download PDF

Info

Publication number
JP3882679B2
JP3882679B2 JP2002149045A JP2002149045A JP3882679B2 JP 3882679 B2 JP3882679 B2 JP 3882679B2 JP 2002149045 A JP2002149045 A JP 2002149045A JP 2002149045 A JP2002149045 A JP 2002149045A JP 3882679 B2 JP3882679 B2 JP 3882679B2
Authority
JP
Japan
Prior art keywords
hot
steel sheet
less
rolling
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002149045A
Other languages
Japanese (ja)
Other versions
JP2003342644A (en
Inventor
裕美 ▲吉▼田
才二 松岡
敬 坂田
一章 京野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002149045A priority Critical patent/JP3882679B2/en
Publication of JP2003342644A publication Critical patent/JP2003342644A/en
Application granted granted Critical
Publication of JP3882679B2 publication Critical patent/JP3882679B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、自動車用鋼板等の使途に有用なめっき外観の良好な深絞り性に優れた複合組織型高張力溶融亜鉛めっき冷延鋼板の製造方法に関するものである。
【0002】
【従来の技術】
近年、地球環境の保全という観点から、自動車の燃費改善が要求されている。加えて、車両衝突時に乗員を保護する観点から、自動車車体の安全性向上も要求されている。このようなことから、自動車車体の軽量化と強化の双方を図るための検討が積極的に進められている。
自動車車体の軽量化と強化を同時に満足させるには、部品素材を高強度化することが効果的であると言われており、最近では高張力鋼板が自動車部品に積極的に使用されている。
【0003】
鋼板を素材とする自動車部品の多くがプレス加工によって成形されるため、自動車部品用鋼板には優れたプレス成形性が要求される。プレス成形性を向上させるためには、鋼板の機械的特性として、高いランクフォード値(r値)と高い延性(El)および低い降伏応力(YS)が必要である。しかし、−般に、鋼板を高強度化すると、r値および延性が低下し、プレス成形性が劣化するとともに、降伏応力が上昇して形状凍結性が劣化する傾向がある。
【0004】
一方、自動車部品は、適用部位によっては高い耐食性も要求されることから、従来より、自動車部品用鋼板として耐食性の優れた種々の表面処理鋼板が用いられている。かかる表面処理鋼板のうち、特に再結晶焼鈍およびめっきを同一ラインで行う連続溶融亜鉛めっき設備において製造される溶融亜鉛めっき鋼板は、優れた耐食性を有するとともに安価な製造が可能であり、また、溶融亜鉛めっき後にさらに加熱処理を施すことによって合金化溶融亜鉛めっき鋼板も製造可能となり、耐食性に加え、溶接性やプレス成形性に優れていることから広く用いられている。
【0005】
したがって、自動車車体の軽量化および強化をより一層推進するためには、連続溶融亜鉛めっきラインによって、耐食性とプレス成形性に優れる高張力溶融亜鉛めっき鋼板を開発することが望まれる。
【0006】
プレス成形性の良好な高張力鋼板の代表例としては、フェライトとマルテンサイトの複合組織からなる複合組織鋼板が挙げられ、特に連続焼鈍後ガスジェット冷却で製造される複合組織鋼板は、降伏応力(YS)が低く、さらに高い延性(El)と優れた焼付け硬化性とを兼ね備えている。しかしながら、連続溶融亜鉛めっきラインは、焼鈍設備とめっき設備を連続化して設置するのが一般的である。この連続化されためっき工程の存在により、焼鈍後の冷却はめっき温度で中断され、工程を通じた平均冷却速度も必然的に小さくなる。
【0007】
したがって、連続溶融亜鉛めっきラインで製造される鋼板では、冷却速度の大きい冷却条件下で生成するマルテンサイト相を溶融めっき後の鋼板中に生成させることは難しい。このため、フェライトとマルテンサイトの複合組織を有する高張力溶融亜鉛めっき鋼板を連続溶融亜鉛めっきラインで製造することは、一般には困難である。
また、上記複合組織鋼板は、ランクフォード値(r値)が低く、深絞り成形性に劣るという欠点があった。
【0008】
こうした不利な条件のもとで、組織強化型溶融亜鉛めっき高張力鋼板を製造する方法としては、CrやMoといった焼入性を高める合金元素を多量に添加した鋼を用い、低温変態相の生成を容易化する方法が一般的である。しかし、前記した合金元素を多量に添加することは製造コストの上昇を招くという問題がある。
【0009】
さらに、一般に、高張力鋼には、Si、Mn、P、Crなどの合金元素が添加されている。これらの元素を多量に含有する鋼板を、溶融亜鉛めっき設備で焼鈍とめっきを行うとき、鋼板表面の加熱によってこれらの元素、特にSiが選択的に酸化され、鋼板表面に拡散するため、これらの酸化物が濃化して鋼板表面で被膜を形成する。これらの酸化物は還元焼鈍でも還元されず、溶融亜鉛との濡れ性を著しく阻害し、めっき密着性を悪くする。それにより、鋼板に溶融亜鉛が付着しない、いわゆる不めっきがしばしば起こり、良好なめっき外観を呈しない。
【0010】
また、特公昭62−40405号公報等にて開示されているように、連続溶融亜鉛めっきラインでの焼鈍後やめっき後の冷却における冷却速度を規定することにより、組織強化型溶融亜鉛めっき高張力鋼板を製造する方法も提案されている。しかし、かかる方法は、連続溶融亜鉛めっきラインの設備上の制約から困難を伴う場合があり、この方法によって得られる鋼板の延性(El)についてもさらなる改善が望まれていた。
【0011】
さらに、複合組織鋼板のランクフォード値(r値)を改善する試みがなされている。例えば特公昭55−10650号公報では、冷間圧延後、再結晶温度〜Ac3変態点の温度で箱焼鈍を行い、その後、複合組織とするため700〜800℃に加熱した後、焼入れ焼戻しを伴う連続焼鈍を行う技術が開示されている。しかしながら、この方法では、連続焼鈍時に焼入れ焼戻しを行うため降伏応力YSが高く、低い降伏比YRが得られない。なお、ここで降伏比YRは引張強さTSに対する降伏応力YSの比であり、YR=YS/TSである。この高降伏応力の鋼板はプレス成形に適さず、かつプレス部品の形状凍結性が悪いという欠点がある。
【0012】
この高降伏応力YSを改善するための方法としては、特開昭55−100934号公報に開示されている。この方法は、高いランクフォード値(r値)を得るためにまず箱焼鈍を行うが、箱焼鈍時の温度をフェライト(α)−オーステナイト(γ)の2相域とし、均熱時にα相からγ相にMnを濃化させる。このMn濃化相は連続焼鈍時に優先的にγ相となり、ガスジェット程度の冷却速度でも混合組織が得られ、さらに降伏応力YSも低い。しかし、この方法では、Mn濃化のためα−γの2相域という比較的高温で長時間の箱焼鈍が必要であり、そのため鋼板間の密着の多発、テンパーカラーの発生および炉体インナーカバーの寿命低下など製造工程上、多くの問題がある。従来、このように高いランクフォード値(r値)と低い降伏応力YSを兼ね備えた高張力鋼板を工業的に安定して製造することは困難であった。
【0013】
加えて、特公平1-35900号公報では、0.012質量%C-0.32質量%Si-0.53質量%Mn-0.03質量%P−0.051質量%Tiの組成の鋼を冷間圧延後、α-γの2相域である870℃に加熱後、100℃/sの平均冷却速度にて冷却することにより、r=1.61、YS=224MPa、TS=482MPaの非常に高いランクフォード値(r値)と低降伏応力を有する複合組織型冷延鋼板が製造可能となる技術が開示されている。しかしながら、100℃/sという高い冷却速度を、通常の連続溶融亜鉛めっきラインで実現することは困難であるため水焼入れ設備が必要となる他、水焼入れした冷延鋼板は、表面処理性の問題も顕在化するため、製造設備上および材質上の問題がある。
【0014】
【発明が解決しようとする課題】
本発明は、上記の問題を有利に解決するもので、鋼組成として特にCとVおよびNbの含有量、および製造条件として特に加熱時の露点および雰囲気と均熱温度を制御することにより、鋼中にSi、Mn、Pなどの合金元素を多量に含有する高張力鋼板において、酸化被膜の密着性を良好にし、これら元素の表面濃化を抑制することにより、強度伸びバランスに優れ、且つ高いランクフォード値を有するめっき外観が良好な複合組織型高張力溶融亜鉛めっき冷延鋼板を安定して製造できる技術を提案することを目的とする。なお、本発明でいう「溶融亜鉛めっき冷延鋼板」とは、溶融亜鉛めっき後に加熱合金化処理を施さない、いわゆる非合金化溶融亜鉛めっき冷延鋼板および溶融亜鉛めっき後に加熱合金化処理を施す、いわゆる合金化溶融亜鉛めっき冷延鋼板の双方を意味する。
【0015】
【課題を解決するための手段】
本発明者らは、上記した課題を達成するため、冷延鋼板表面に溶融めっき層を具える溶融亜鉛めっき冷延鋼板のミクロ組織および再結晶集合組織におよぼす合金元素の影響について鋭意研究を重ねた。その結果、C含有量を低炭素域とし、適正範囲のV、Nb量を含有することにより、冷間圧延後に施される再結晶焼鈍の前には、固溶Cを極力低減させて{111}再結晶集合組織を発達させることにより、高いランクフォード値(r値)が得られること、また、連続溶融亜鉛めっきラインにて、露点を20℃以上の酸化雰囲気に制御した加熱帯にて酸化処理を施した後、還元雰囲気中で780〜950℃の温度域で連続焼鈍し、焼鈍温度から溶融亜鉛めっき処理温度までを平均冷却速度5℃/s以上で冷却し、溶融亜鉛めっきを施すことで、めっき外観が良好で、ランクフォード値の高い複合組織型高張力溶融亜鉛めっき冷延鋼板が製造可能であることを見出した。
【0016】
ここで、本発明鋼である複合組織型高張力溶融亜鉛めっき冷延鋼板とは、主相であるフェライト相と、面積率で1%以上のマルテンサイト相を含む第2相との複合組織を有する高張力溶融亜鉛めっき冷延鋼板である。
【0017】
まず、本発明者らが行った基礎的な実験結果について説明する。
質量%で、C:0.02%、Si:0.5%、Mn:2.0%、P:0.01%、S:0.004%、Al:0.03%、N:0.002%を基本組成とし、これにV:0.01〜0.15質量%の範囲およびNb:0.001〜0.16質量%の範囲で添加することによって、異なるVおよびNb含有量を有する種々の鋼素材について、1250℃に加熱−均熱後、仕上圧延終了温度が900℃となるように3パス圧延を行って板厚4.0mmとした。なお、仕上圧延終了後、コイル巻取り処理として650℃×3hの保温相当処理を施した。引き続き、圧下率70%の冷間圧延を施して板厚1.2mmとした。ついで、これらの冷延板を、連続溶融亜鉛めっきラインにて、露点を−20℃から55℃の範囲の所定の温度で制御した加熱帯にて加熱後、20vol%H−80vol%Nの還元雰囲気中で850℃の均熱温度にて連続焼鈍してから、450〜500℃の温度域まで15℃/sの冷却速度で冷却し、Alを0.13mass%含有する溶融亜鉛めっき浴に浸漬してめっきした後、450〜550℃の温度範囲の合金化処理(めっき層中のFe含有率:約10質量%)を施し、その後、15℃/sの冷却速度で室温まで冷却した。なお、一部の試料については、加熱帯で形成されるFe酸化量を測定するため、加熱後急冷し、Fe酸化量を測定した。また、露点の調整にはコークス炉ガスまたは水素水蒸気とN混合ガスを用いた。
【0018】
得られた溶融亜鉛めっき鋼板について、引張試験を実施し引張特性を調査した。引張試験は、JIS5号引張試験片を用いて行った。引張強さTSおよび延性Elは、圧延方向に対して垂直方向に引張試験を行ったときの値である。r値は、圧延方向(rL)、圧延方向に45度方向(rD)および圧延方向に垂直(90度)方向(rc)の平均r値{=(rL +rc +2×rD)/4}として求めた。また、その時のめっき表面外観も調査した。めっき表面外観は、点状の不めっきの発生の有無にて良好か否かで判定した。
【0019】
図1は、VとNbの含有量がCの含有量との関係でr値と強度伸びバランス(TS×El)に及ぼす影響を示した図であり、横軸はVおよびNbの含有量とC含有量の原子比((V/51+Nb/93)/(C/12))であり、縦軸はr値と強度伸びバランス(TS×El)を上下に分けて示す。
【0020】
図1から、鋼中のVおよびNbの含有量をCの含有量との原子比にして0.5〜2.0の範囲に制限することにより、高いr値と高い強度伸びバランスが得られ、高r値を有する複合組織型溶融亜鉛めっき冷延鋼板が製造可能となることが明らかになった。
【0021】
本発明の溶融亜鉛めっき冷延鋼板では、再結晶焼鈍前には固溶CおよびNが少ないため、{111}再結晶集合組織が強く発達し、高いランクフォード値が得られる。一方、780〜950℃にて焼鈍することにより、VおよびNb系炭化物が溶解し、固溶Cがオーステナイト相に多量に濃化することにより、その後の冷却過程においてオーステナイト相がマルテンサイト相に変態し、フェライト相とマルテンサイト相の複合組織となり、降伏比YRが低く、延性に優れた特性が得られることを明らかにした。
【0022】
図2に、Fe酸化量に及ぼす加熱帯の露点の影響を示す。加熱帯の露点を20℃以上とすることにより、鋼板表層に形成されるFe酸化量が600mg/m2以上になり、めっき表面外観が良好になることが明らかになった。すなわち、加熱時の露点が20℃未満では、加熱時に形成される鋼板表層のFe酸化量が600mg/m2未満となり、鋼板のFe酸化物が少なく、Si、Mn、P等の合金元素の表面の濃化を防止することができず、めっき表面外観を劣化させることが明らかになった。なお、ここでFe酸化量とは、酸化処理前後の鋼板について鋼中の酸素量を蛍光X線にて測定し、測定量を鋼板表面積で除した値である。また、鋼板表層に形成されるFe酸化物とは、主としてFe、Feなどである。
【0023】
本発明は、上記した知見に基づき、さらに検討して完成されたものであり、本発明の要旨は下記のとおりである。
(1)質量%で
C:0.01〜0.05%、Si:0.1〜1.0%、Mn:1.0〜3.0%、P:0.10%以下、S:0.02%以下、Al:0.005〜0.1%、N:0.02%以下、V:0.01〜0.2%およびNb:0.005〜0.2%を含有し、かつ、VおよびNbとCとの含有量(質量%)が、
0.5×C/12≦(V/51+Nb/93)≦2×C/12
なる関係を満たし、残部が鉄および不可避的不純物からなる組成になる鋼スラブを、熱間圧延し、引き続き酸洗した後、冷間圧延を施し、その後、連続溶融亜鉛めっきラインにて、露点を20℃以上の酸化雰囲気に制御した加熱帯にて酸化処理を施した後、還元雰囲気中で780〜950℃の温度域で連続焼鈍し、焼鈍温度から溶融亜鉛めっき処理温度までを平均冷却速度5℃/s以上で冷却し、溶融亜鉛めっきを施すことを特徴とする、めっき外観の良好な深絞り性に優れた複合組織型高張力溶融亜鉛めっき冷延鋼板の製造方法。
【0024】
(2)質量%で
C:0.01〜0.05%、Si:0.1〜1.0%、Mn:1.0〜3.0%、P:0.10%以下、S:0.02%以下、Al:0.005〜0.1%、N:0.02%以下、V:0.01〜0.2%、Nb:0.005〜0.2%およびTi:0.001〜0.3%を含有し、かつ、V、NbおよびTiとCとの含有量(質量%)が、
0.5×C/12≦(V/51+Nb/93+Ti/48)≦2×C/12
なる関係を満たし、残部が鉄および不可避的不純物からなる組成になる鋼スラブを、熱間圧延し、引き続き酸洗した後、冷間圧延を施し、その後、連続溶融亜鉛めっきラインにて、露点を20℃以上の酸化雰囲気に制御した加熱帯にて酸化処理を施した後、還元雰囲気中で780〜950℃の温度域で連続焼鈍し、焼鈍温度から溶融亜鉛めっき処理温度までを平均冷却速度5℃/s以上で冷却し、溶融亜鉛めっきを施すことを特徴とする、めっき外観の良好な深絞り性に優れた複合組織型高張力溶融亜鉛めっき冷延鋼板の製造方法。
【0025】
(3)鋼スラブは、上記組成に加えてさらにMo:0.01〜0.5質量%を含有することを特徴とする、上記(1)または(2)に記載の、めっき外観の良好な深絞り性に優れた複合組織型高張力溶融亜鉛めっき冷延鋼板の製造方法。
【0026】
【発明の実施の形態】
まず、本発明の溶融亜鉛めっき冷延鋼板の製造方法に用いた鋼スラブの組成を限定した理由について説明する。なお、質量%は単に%と記す。
【0027】
C:0.01〜0.05%
Cは、鋼板の強度を増加し、さらに主相であるフェライト相と、第2相を構成するマルテンサイト相との複合組織の形成を促進する元素であり、本発明では複合組織形成の観点から0.01%以上含有する必要がある。一方、0.05%を超える含有は、{111}再結晶集合組織の発達を阻害し、深絞り成形性を低下させる。このため、本発明では、C含有量は0.01〜0.05%に限定した。
【0028】
Si:0.1〜1.0%
Siは、鋼板の延性を顕著に低下させることなく、鋼板を高強度化、すなわち強度伸びバランスを向上させることができる有用な強化元素であり、この効果を得るためには、Si含有量は0.1%以上とする必要がある。しかしながら、Si含有量が1.0%を超えると、深絞り性の劣化を招くとともに、表面性状、とくにめっき表面外観が著しく悪化する。このため、Si含有量は0.1〜1.0%に限定した。
【0029】
Mn:1.0〜3.0%
Mnは、鋼を強化する作用があり、さらに主相であるフェライト相と、第2相であるマルテンサイト相との複合組織が得られる臨界冷却速度を低くし、フェライト相とマルテンサイト相の複合組織の形成を促進する作用を有しており、焼鈍後の冷却速度に応じ含有するのが好ましい。臨界冷却速度未満での緩慢な冷却速度ではマルテンサイト相は生成されず、代わりにベイナイト相あるいはパーライト相が生成されるが、第2相にマルテンサイト相が存在しない場合、強度伸びバランスが低下する傾向にある。したがって、マルテンサイト相の生成を容易にするため、すなわち臨界冷却速度を低くするためには、Mnの添加が有効となる。また、Mnは、Sによる熱間割れを防止する有効な元素であり、含有するS量に応じて含有するのが好ましい。このような効果は、Mnを1.0%以上含有させることで顕著となる。一方、Mn含有量が3.0%を超えると、深絞り性および溶接性が劣化する。このため、本発明ではMn含有量は1.0〜3.0%の範囲に限定した。
【0030】
P:0.10%以下
Pは鋼を強化する作用があり、所望の強度に応じて適宜含有させることができるが、P含有量が0.10%を超えると、強度伸びバランスが低下するとともに深絞り性が劣化する。このため、P含有量は0.10%以下に限定した。なお、より優れたプレス成形性が要求される場合には、P含有量は0.08%以下とするのが好ましい。なお、上記効果を得るため、Pは0.005%以上含有することが好ましい。
【0031】
S:0.02%以下
Sは、鋼板中では介在物として存在し、鋼板の延性、成形性、とくに伸びフランジ性の劣化をもたらす元素であるため、できるだけ低減するのが好ましく、0.02%以下に低減すると、さほど悪影響を及ぼさなくなることから、本発明ではS含有量は0.02%を上限とした。なお、より優れた伸びフランジ成形性が要求される場合には、S含有量は0.01%以下とするのが好ましく、より好ましくは0.005%以下である。
【0032】
Al:0.005〜0.1%
Alは、鋼の脱酸元素として添加され、鋼の清浄度を向上させるのに有用な元素であるが、0.005%未満では添加の効果がなく、一方、0.1%を超えて含有してもより一層の脱酸効果は得られず、逆に深絞り性が劣化する.このため、Al含有量は0.005〜0.1%に限定した。なお、本発明では、Al脱酸以外の脱酸方法による溶製方法を排除するものではなく、たとえばTi脱酸やSi脱酸を行ってもよく、これらの脱酸法による鋼板も本発明の範囲に含まれる。その際、CaやREM等を溶鋼に添加しても、本発明鋼板の特徴はなんら阻害されず、CaやREM等を含む鋼板も本発明範囲に含まれるのは勿論である。
【0033】
N:0.02%以下
Nは、固溶強化や歪時効硬化で鋼板の強度を増加させる元素であるが、0.02%を超えて含有すると、鋼板中に窒化物が増加し、それにより鋼板の深絞り性が顕著に劣化する。このため、Nは0.02%以下に限定した。なお、よりプレス成形性の向上が要求される場合には、Nは低減させることが好ましく、0.01%以下とするのが好適であり、より好ましくはNを極力低減させて0.004%以下とする。
【0034】
V:0.01〜0.2% 、Nb:0.005〜0.2%でかつ0.5×C/12≦(V/51+Nb/93)≦2×C/12の関係を満たすこと
VおよびNbは、本発明において最も重要な元素であり、再結晶前には固溶CをVおよびNb系炭化物として析出固定することにより、{111}再結晶集合組織を発達させて高いランクフォード値を得ることができる。さらに、焼鈍時にはVおよびNb系炭化物を溶解させて固溶Cを多量にオーステナイト相に濃化させ、その後の冷却過程においてマルテンサイト変態させることにより、フェライト相と、第2相であるマルテンサイト相との複合組織鋼板を得る。このような効果を奏するには、VおよびNbの含有量がそれぞれ0.01%以上および0.005%以上でかつ、C、V、Nbの含有量(質量%)が0.5×C/12≦(V/51+Nb/93)の関係を満足することが必要である。一方、VおよびNbの少なくとも一方の含有量が0.2%を超えるか、あるいは、C、V、Nbの含有量(質量%)が(V/51+Nb/93)>2×C/12であると、焼鈍時におけるVおよびNb系炭化物の溶解が起こりにくくなるため、主相であるフェライト相と、第2相であるマルテンサイト相との複合組織が得られない。したがって、本発明では、V:0.01〜0.2% 、Nb:0.005〜0.2%でかつ0.5×C/12≦(V/51+Nb/93)≦2×C/12の関係を満たすことに限定した。
【0035】
また、本発明では、上記した組成に加えて、質量%で、Ti:0.001〜0.3%を含有することが好ましく、この場合には、上記C、V、Nbの含有量(質量%)の関係式である0.5×C/12≦(V/51+Nb/93)≦2×C/12に代えて、上記C、V、Nb、Tiの含有量(質量%)の関係式、すなわち0.5×C/12≦(V/51+Nb/93+Ti/48)≦2×C/12なる関係式を満たすことが必要である。
Tiは炭化物形成元素であり、再結晶前には固溶CをV、NbおよびTi系炭化物として析出固定することにより、{111}再結晶集合組織を発達させて高いランクフォード値を得る。さらに、焼鈍時には、V、NbおよびTi系炭化物を溶解させて固溶Cを多量にオーステナイト相に濃化させ、その後の冷却過程においてマルテンサイト変態させることにより、主相であるフェライト相と、第2相であるマルテンサイト相との複合組織鋼板を得る。このような効果を奏するには、Ti含有量が0.001%以上でかつ0.5×C/12≦(V/51+Nb/93+Ti/48)の関係を満足することが必要である。一方、Ti含有量が0.3%を超えるか、あるいは、(V/51+Nb/93+Ti/48)>2×C/12であると、焼鈍時に炭化物の溶解が起こりにくくなるため、主相であるフェライト相と、第2相であるマルテンサイト相との複合組織が得られない。したがって、Tiを含有する場合には、Ti:0.001〜0.3%であって0.5×C/12≦(V/51+Nb/93+Ti/48)≦2×C/12なる関係を満たすことに限定した。
【0036】
また、本発明では、上記した組成に加えてさらにMo:0.01〜0.5%を含有することが好ましい。
Mo:0.01〜0.5%
MoはMnと同様に、主相であるフェライト相と、第2相であるマルテンサイト相との複合組織が得られる臨界冷却速度を低くし、フェライト相とマルテンサイト相の複合組織の形成を促進する作用を有しており、必要に応じて含有できる。その効果は、0.01%以上のMoの含有により発揮される。しかしながら、Mo含有量が0.5%を超えると、深絞り性が低下するため、Mo含有量は0.01〜0.5%に限定した。
【0037】
なお、本発明では、上記した成分以外の残部は実質的にFeおよび不可避的不純物の組成とする、B、Ca、REM等を通常の鋼組成の範囲内であれば含有させてもなんら問題はない。
【0038】
Bは、鋼の焼入性を向上する作用を有する元素であり、必要に応じ含有できる。しかし、B含有量が0.003%を超えると、効果が飽和するため、Bは0.003%以下が好ましい。なお、より望ましい範囲は0.0001〜0.002%である。CaおよびREMは、硫化物系介在物の形態を制御する作用を有し、これにより鋼板の伸びフランジ性を向上させる効果を有する。このような効果は、CaおよびREMのうちから選ばれた1種または2種の含有量が合計で、0.01%を超えると飽和する。このため、CaおよびREMのうちの1種または2種の含有量は、合計で0.01%以下とするのが好ましい。なお、より好ましい範囲は0.001〜0.005%である。
【0039】
また、その他の不可避的不純物としては、例えばSb、Sn、Zn、Co等が挙げられ、これらの含有量の許容範囲としては、Sb:0.01%以下、Sn:0.1%以下、Zn:0.01%以下、Co:0.1%以下の範囲である。
【0040】
次に、本発明において、製造条件を限定した理由について説明する。
本発明の溶融亜鉛めっき冷延鋼板は、上記した範囲内の組成を有する鋼スラブを素材とし、該素材に熱間圧延を施し熱延板とする熱延工程と、該熱延板を酸洗する酸洗工程と、該熱延板に冷間圧延を施し冷延板とする冷延工程と、該冷延板に再結晶焼鈍および溶融亜鉛めっきを行い溶融亜鉛めっき冷延鋼板とする連続溶融亜鉛めっき工程とを順次施すことにより製造される。また必要に応じて、連続溶融亜鉛めっき工程の前に、該鋼板に焼鈍および酸洗を行う工程を施す。
【0041】
使用する鋼スラブは、成分のマクロ偏析を防止するために連続鋳造法で製造するのが好ましいが、造塊法、薄スラブ鋳造法で製造してもよい。また、鋼スラブを製造したのち、いったん室温まで冷却し、その後、再度加熱する従来法に加え、冷却しないで、温片のままで加熱炉に挿入する方法や、わずかの保熱を行った後に直ちに圧延する直送圧延・直接圧延する方法などの省エネルギープロセスも問題なく適用できる。
【0042】
上記した素材(鋼スラブ)を加熱し、熱間圧延を施し熱延板とする熱延工程を施す。熱延工程は所望の板厚の熱延板が製造できる条件であればよく、通常の圧延条件を用いても特に問題はない。なお、参考のため、好適な熱延条件を以下に示しておく。
【0043】
スラブ加熱温度:900℃以上
スラブ加熱温度は、析出物を粗大化させることにより、{111}再結晶集合組織を発達させ、深絞り性を改善するため、低い方が望ましい。しかし、加熱温度が900℃未満では、圧延荷重が増大し、熱間圧延時におけるトラブル発生の危険性が増大する。このため、スラブ加熱温度は900℃以上にすることが好ましい。また、酸化重量の増加に伴うスケールロスの増大などから、スラブ加熱温度の上限は1300℃とすることがより好適である。なお、スラブ加熱温度を低くし、かつ熱間圧延時のトラブルを防止するといった観点から、シートバーを加熱する、いわゆるシートバーヒーターを活用することは、有効な方法であることは言うまでもない。
【0044】
仕上圧延終了温度:700℃以上
仕上圧延終了温度(FDT)は、冷間圧延および再結晶焼鈍後に優れた深絞り性が得られる均一な熱延母板組織を得るため、700℃以上にすることが好ましい。すなわち、仕上圧延終了温度が700℃未満では、熱延母板組織が不均一となるとともに、熱間圧延時の圧延負荷が高くなり、熱間圧延時におけるトラブル発生の危険性が増大するからである。
【0045】
巻取温度:800℃以下
巻取温度は、800℃以下とするのが好ましい。すなわち、巻取温度が800℃を超えると、スケールが増加しスケールロスにより歩留りが低下する傾向があるからである。なお、巻取温度は200℃未満となると、鋼板形状が顕著に乱れ、実際の使用にあたり不具合を生じる危険性が増大するため、巻取温度の下限を200℃とすることがより好適である。
【0046】
このように、本発明の熱延工程では、鋼スラブを900℃以上に加熱した後、仕上圧延終了温度:700℃以上とする熱間圧延を施し、800℃以下好ましくは200℃以上の巻取温度で巻き取り熱延板とするのが好ましい。
なお、本発明における熱間圧延工程では、熱間圧延時の圧延荷重を低滅するため、仕上圧延の一部または全部のパス間で潤滑圧延としてもよい。加えて、潤滑圧延を行うことは、鋼板形状の均一化や材質の均一化の観点からも有効である。なお、潤滑圧延の際の摩擦係数は0.10〜0.25の範囲とすることが好ましい。
【0047】
また、相前後するシートバー同士を接合し、連続的に仕上圧延する連続圧延プロセスとすることが好ましい。連続圧延プロセスを適用することは、熱間圧延の操業安定性の観点からも望ましい。
【0048】
ついで、熱延板を酸洗後、冷間圧延を施し冷延板とする。酸洗は通常の条件にて行えばよい。冷間圧延条件は、所望の寸法形状の冷延板とすることができればよく、特に限定されないが、冷間圧延時の圧下率は40%以上とすることが好ましい。圧下率が40%未満では、{111}再結晶集合組織が発達せず、優れた深絞り性を得ることが困難となるからである。
【0049】
引き続き、上記冷延鋼板に連続溶融亜鉛めっきラインにて再結晶焼鈍および溶融亜鉛めっきを施し、溶融亜鉛めっき鋼板とする。ここで、まず、露点を20℃以上の酸化雰囲気に制御した加熱帯にて酸化処理を行った後、還元雰囲気中で780〜950℃で再結晶焼鈍を行い、これによって、鋼板表層に形成したFe酸化層を十分に還元する必要がある。焼鈍温度が780℃未満では、ほぼフェライト単相組織となり、TS×Elバランスが劣化するからであり、一方、950℃を超える高温では、結晶粒が粗大化するとともに{111}再結晶集合組織が発達せずに深絞り性が著しく劣化すると同時に、TS×Elバランスも劣化する。加熱時の露点が20℃未満では、加熱時に鋼板表層に形成されるFe酸化量が600mg/m2未満となり、鋼板のFe酸化物が少なく、Si、Mn、P等の合金元素の表面の濃化を防止することができず、めっき表面外観を劣化させるためである。なお、加熱帯の露点は20℃以上が必要であり、好ましくは40℃以上である。なお、露点が高すぎると鋼板表層に形成されるFe酸化量が多くなりすぎ、還元時にFe酸化物量が十分に還元されなくなる。したがって、露点は100℃以下が好ましい。
次いで、還元雰囲気中で上記温度範囲で再結晶焼鈍を行い、鋼板表層に形成されたFe酸化物を十分に還元することにより、鋼板表面の最表層に還元Fe層を形成して不めっきを防止する。
なお、均熱時の還元雰囲気の好適な条件は、雰囲気ガスとして、5vol%〜30vol%程度の水素ガスを含有する窒素ガスを用いることが好ましい。
【0050】
上記焼鈍後は、溶融亜鉛めっき処理温度である380〜530℃の温度域に急冷するのが好ましい。急冷停止温度が380℃未満では不めっきが発生しやすくなり、一方、530℃を超えるとめっき表面にむらが発生しやすくなるため好ましくないからである。なお、冷却速度は、主相であるフェライト相と、第2相であるマルテンサイト相との複合組織とするため、前記焼鈍温度から溶融亜鉛めっき処理温度までの平均冷却速度を5℃/s以上で急冷する上記急冷後は引き続いて溶融亜鉛めっき浴に浸漬して溶融亜鉛めっきする。この時、めっき浴のAl濃度は0.12〜0.145mass%の範囲にするのが好ましい。めっき浴中のAl含有量が0.12 mass%未満では合金化が進み過ぎてめっき密着性(耐パウダリング性)が劣化する傾向があるからであり、一方、0.145 mass%を超えると不めっきが発生しやすくなるからである。
【0051】
また、溶融亜鉛めっき処理後にめっき層の合金化処理を施してもよい。なお、合金化処理を行う場合には、めっき層中のFe含有率が9〜12%となるように実施するのが好ましい。
【0052】
合金化処理は、溶融亜鉛めっき処理後、450〜550℃の温度域まで再加熱し溶融亜鉛めっき層の合金化を行うのが好ましい。合金化処理後は、5℃/s以上の平均冷却速度で300℃まで冷却するのが好ましい。550℃を超える高温での合金化は、マルテンサイト相の形成が難しく、鋼板の延性が低下するおそれがあり、一方、合金化温度が450℃未満では、合金化の進行が遅く生産性が低下する傾向があるからである。
【0053】
また、合金化処理後の冷却速度が極端に小さい場合にはマルテンサイト相の形成が困難になる。このため、合金化処理後から300℃までの温度範囲における平均冷却速度を5℃/s以上にするのが好ましい。
【0054】
なお、めっき処理後あるいは合金化処理後の鋼板には、形状矯正、表面粗度等の調整のための調質圧延を加えてもよい。また、樹脂あるいは油脂コーティング、各種塗装あるいは電気めっき等の処理を施しても何ら不都合はない。
上述したように適正化を図った鋼スラブの組成および製造条件を具備する本発明の製造方法によって製造された溶融亜鉛めっき鋼板は、引張強さTSが440MPa以上の深絞り性に優れた複合組織型高張力溶融亜鉛めっき冷延鋼板である。
【0055】
次に、本発明鋼板の組織について説明する。
本発明の溶融亜鉛めっき鋼板は、組織が、主相であるフェライト相と、組織全体に対する面積率で1%以上のマルテンサイト相を含む第2相との複合組織を有する。
【0056】
低い降伏応力(YS)と高い延性(El)を有し、優れた深絞り性を有する溶融亜鉛めっき冷延鋼板とするために、本発明では鋼板の組織を、主相であるフェライト相と、組織全体に対する面積率で1%以上のマルテンサイト相を含む第2相との複合組織とする必要がある。主相であるフェライト相は、組織全体に対する面積率で80%以上とするのが好ましい。フェライト相が、面積率で80%未満では、高い延性を確保することが困難となり、プレス成形性が低下する傾向があるからである。また、さらに良好な延性が要求される場合には、フェライト相の面積率は85%以上とするのが好ましい。特に、複合組織の利点を利用するため、主相であるフェライト相は99%以下とするのが好ましい。なお、本発明のフェライト相は、転位密度の低いポリゴナルフェライトのみからなっていても、あるいはα→γ変態を経た転位密度の高いベイニチックフェライトのみからなっていてもよく、さらに、これらの混合相からなっていてもよい。
【0057】
また、第2相として、本発明では、マルテンサイト相を組織全体に対する面積率で1%以上含有する必要がある。マルテンサイト相が面積率で1%未満では、低い降伏比(YR)と高い延性(El)を同時に満足させることが難しい。なお、第2相は、面積率で1%以上のマルテンサイト相単独としても、あるいは面積率で1%以上のマルテンサイト相と、副相としてそれ以外のパーライト相、ベイナイト相、残留オーステナイト相のいずれかとの混合としてもよく、特に限定されない。
【0058】
本発明の方法によって製造した上記した組織を有する溶融亜鉛めっき冷延鋼板は、低降伏応力で高延性を有する深絞り性に優れた鋼板である。
【0059】
【実施例】
表1に示す組成の溶鋼を転炉で溶製し、連続鋳造法でスラブとした。ついで、これら鋼スラブを1150℃に加熱したのち、仕上圧延終了温度:900℃、巻取温度:650℃とする熱間圧延を施す熱延工程により、板厚4.0mmの熱延鋼帯(熱延板)とした。引き続き、これら熱延鋼帯(熱延板)に酸洗、冷間圧延を施す冷延工程により、板厚1.2mmの冷延鋼帯(冷延板)とした。ついで、これら冷延鋼帯(冷延板)に、連続溶融亜鉛めっきラインで、表2に示す露点の酸化雰囲気に制御した加熱帯にて酸化処理後、均熱帯にてH2濃度が20vol%で残部窒素ガスからなる雰囲気ガスを用いて還元雰囲気とした中で焼鈍および還元処理後、15℃/sの冷却速度で冷却し、Alを0.13mass%含有した480℃の溶融亜鉛めっき浴に浸漬してめっきした後、520℃で合金化処理(めっき層中のFe含有率:約10%)を施した後、15℃/sの冷却速度で室温まで冷却した。ここで露点はコークス炉ガスまたは水素水蒸気とNの混合ガスを用いて制御した。さらに、得られた鋼帯(溶融亜鉛めっき鋼板)に、さらに伸び率:0.8%の調質圧延を施した。なお、表2中の鋼板No.1〜11のうち、No.2および5は、加熱帯が還元雰囲気であるオールラジアントタイプの連続溶融亜鉛めっきライン(CGL)にて行い、No.1、3、4および6〜11は、加熱帯が酸化雰囲気である無酸化炉(NOF)タイプの連続溶融亜鉛めっきライン(CGL)にて行った。
【0060】
得られた鋼帯から試験片を採取し、圧延方向に直交する断面(C断面)について、光学顕微鏡あるいは走査型電子顕微鏡を用いて微視組織を撮像し、画像解析装置を用いて主相であるフェライトの組織分率および第2相の種類と組織分率を求めた。また、得られた鋼帯から、前述の基礎的な実験結果を得た時と同様にJIS5号引張試験片を採取して、JIS Z 2241の規定に準拠して引張試験を行い、降伏応力(YS)、引張強さ(TS)、伸び(El)、強度伸びバランス(TS×El)、降伏比(YR)を求めた。また、r値は、鋼帯から採取したJIS5号引張試験片を用いてJIS Z 2254の規定に準拠して平均r値(平均塑性ひずみ比)を求め、これをr値とした。さらに、めっき表面外観は、目視により点状の不めっきの発生の有無によって評価した。これらの結果を表2に示す。
【0061】
【表1】

Figure 0003882679
【0062】
【表2】
Figure 0003882679
【0063】
表2に示す結果から、本発明例は、いずれも、めっき表面外観が良好で、かつ低い降伏応力YSと高い伸びElと低い降伏比YRを有し、さらに高いランクフォード値を示して深絞り成形性に優れた鋼板となっている。これに対し、本発明の範囲を外れる条件で製造した比較例では、めっき表面外観が悪いか、降伏応力YSが高く降伏比が高くなっているか、伸びElが低いか、あるいはランクフォード値(r値)が低下した鋼板となっている。
【0064】
【発明の効果】
本発明によれば、めっき表面外観が良好で、かつ優れた深絞り成形性を有する溶融亜鉛めっき鋼板を安定して製造することが可能となり、産業上格段の効果を奏する。本発明の溶融亜鉛めっき鋼板を自動車部品に適用した場合、プレス成形が容易で、自動車車体の軽量化に十分に寄与できるという効果もある。
【図面の簡単な説明】
【図1】 VとNbの含有量とCとの関係を表す比(V/51+Nb/93)/(C/12)がランクフォード値(r値)と強度伸びバランス(TS×El)に及ぼす影響を示した図である。
【図2】 Fe酸化量に及ぼす加熱帯の露点の影響を示した図である。[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a method for producing a composite structure type high-tensile hot-dip galvanized cold-rolled steel sheet that is useful for the use of steel sheets for automobiles, etc., and has a good deep drawability with a good plating appearance.
[0002]
[Prior art]
In recent years, there has been a demand for improvement in fuel efficiency of automobiles from the viewpoint of conservation of the global environment. In addition, from the viewpoint of protecting occupants in the event of a vehicle collision, it is also required to improve the safety of the automobile body. For this reason, studies are being actively conducted to reduce the weight and strengthen the automobile body.
It is said that it is effective to increase the strength of component materials in order to satisfy the weight reduction and strengthening of the automobile body at the same time. Recently, high-tensile steel plates have been actively used for automobile parts.
[0003]
Since many automobile parts made of steel plates are formed by press working, excellent press formability is required for steel sheets for automobile parts. In order to improve the press formability, as the mechanical properties of the steel sheet, a high Rankford value (r value), a high ductility (El), and a low yield stress (YS) are required. However, generally, when the strength of a steel sheet is increased, the r value and ductility are lowered, the press formability is deteriorated, the yield stress is increased, and the shape freezing property tends to be deteriorated.
[0004]
On the other hand, since automobile parts also require high corrosion resistance depending on the application site, conventionally, various surface-treated steel sheets having excellent corrosion resistance have been used as steel sheets for automobile parts. Among such surface-treated steel sheets, hot-dip galvanized steel sheets manufactured in a continuous hot-dip galvanizing facility that performs recrystallization annealing and plating on the same line have excellent corrosion resistance and can be manufactured at low cost. An alloyed hot-dip galvanized steel sheet can be produced by further heat treatment after galvanization, and is widely used because of its excellent weldability and press formability in addition to corrosion resistance.
[0005]
Therefore, in order to further promote weight reduction and strengthening of an automobile body, it is desired to develop a high-tensile hot-dip galvanized steel sheet having excellent corrosion resistance and press formability by a continuous hot-dip galvanizing line.
[0006]
As a typical example of a high-tensile steel sheet having good press formability, a composite structure steel sheet composed of a composite structure of ferrite and martensite can be cited. Particularly, a composite structure steel sheet manufactured by gas jet cooling after continuous annealing has a yield stress ( YS) is low, and it has both high ductility (El) and excellent bake hardenability. However, the continuous hot dip galvanizing line is generally installed with the annealing equipment and the plating equipment being made continuous. Due to the presence of this continuous plating process, cooling after annealing is interrupted at the plating temperature, and the average cooling rate throughout the process is necessarily reduced.
[0007]
Therefore, in a steel sheet manufactured by a continuous hot dip galvanizing line, it is difficult to generate a martensite phase generated under cooling conditions with a high cooling rate in the steel sheet after hot dipping. For this reason, it is generally difficult to produce a high-tensile hot-dip galvanized steel sheet having a composite structure of ferrite and martensite in a continuous hot-dip galvanizing line.
Further, the above-mentioned composite structure steel plate has a drawback that it has a low Rankford value (r value) and is inferior in deep drawability.
[0008]
Under these unfavorable conditions, as a method of producing a structure-strengthened hot-dip galvanized high-strength steel sheet, a low-temperature transformation phase is generated by using a steel to which a large amount of alloying elements such as Cr and Mo are added to enhance hardenability. A method for facilitating the process is common. However, there is a problem that adding a large amount of the above-described alloy element causes an increase in manufacturing cost.
[0009]
Furthermore, generally, alloy elements such as Si, Mn, P, and Cr are added to high-tensile steel. When steel sheets containing a large amount of these elements are annealed and plated in hot dip galvanizing equipment, these elements, especially Si, are selectively oxidized by the heating of the steel sheet surface and diffuse to the steel sheet surface. The oxide is concentrated to form a film on the steel sheet surface. These oxides are not reduced even by reduction annealing, significantly impairing wettability with molten zinc, and worsening plating adhesion. As a result, so-called non-plating, in which molten zinc does not adhere to the steel sheet, often occurs and does not exhibit a good plating appearance.
[0010]
In addition, as disclosed in Japanese Patent Publication No. 62-40405, etc., by specifying the cooling rate in the cooling after the annealing and the plating in the continuous hot dip galvanizing line, A method of manufacturing a steel sheet has also been proposed. However, this method may be difficult due to equipment limitations of the continuous hot dip galvanizing line, and further improvement has been desired for the ductility (El) of the steel sheet obtained by this method.
[0011]
Furthermore, attempts have been made to improve the Rankford value (r value) of the composite structure steel plate. For example, in Japanese Patent Publication 55-10650 and JP after cold rolling, subjected to box annealing at a temperature of recrystallization temperature to A c3 transformation point, then, after heating to 700 to 800 ° C. for a composite structure, the quenching and tempering A technique for performing continuous annealing is disclosed. However, in this method, since quenching and tempering is performed during continuous annealing, the yield stress YS is high, and a low yield ratio YR cannot be obtained. Here, the yield ratio YR is the ratio of the yield stress YS to the tensile strength TS, and YR = YS / TS. This high yield stress steel sheet is not suitable for press forming and has the disadvantages that the shape freezing property of the pressed part is poor.
[0012]
A method for improving this high yield stress YS is disclosed in JP-A-55-100934. In this method, in order to obtain a high Rankford value (r value), box annealing is first performed. The temperature during box annealing is set to a two-phase region of ferrite (α) -austenite (γ), and from the α phase during soaking. Enrich Mn in the γ phase. This Mn-concentrated phase preferentially becomes a γ phase during continuous annealing, a mixed structure can be obtained even at a cooling rate comparable to that of a gas jet, and the yield stress YS is also low. However, this method requires a relatively high temperature and long-time box annealing in the α-γ two-phase region for Mn concentration. Therefore, frequent adhesion between steel plates, generation of temper color, and furnace body inner cover There are a number of problems in the manufacturing process, such as a reduction in the service life. Conventionally, it has been difficult to industrially stably produce a high-tensile steel plate having such a high Rankford value (r value) and a low yield stress YS.
[0013]
In addition, in Japanese Patent Publication No. 1-35900, after cold rolling a steel having a composition of 0.012 mass% C-0.32 mass% Si-0.53 mass% Mn-0.03 mass% P-0.051 mass% Ti, After heating to 870 ° C, which is a two-phase region, and cooling at an average cooling rate of 100 ° C / s, extremely high Rankford values (r values) of r = 1.61, YS = 224 MPa, TS = 482 MPa and low A technique is disclosed that makes it possible to produce a composite-structure cold-rolled steel sheet having a yield stress. However, since it is difficult to achieve a high cooling rate of 100 ° C / s with a normal continuous hot dip galvanizing line, water quenching equipment is required. However, there are problems in manufacturing equipment and materials.
[0014]
[Problems to be solved by the invention]
The present invention advantageously solves the above-mentioned problems. By controlling the content of C, V, and Nb, particularly as the steel composition, and the production conditions, particularly the dew point during heating, the atmosphere, and the soaking temperature, In high-tensile steel sheets containing a large amount of alloy elements such as Si, Mn, P, etc., the adhesion of oxide films is improved, and by suppressing the surface concentration of these elements, the strength elongation balance is excellent and high. It is an object of the present invention to propose a technique capable of stably producing a composite structure type high-tensile hot-dip galvanized cold-rolled steel sheet having a Rankford value and good appearance. The “hot-dip galvanized cold-rolled steel sheet” as used in the present invention is a so-called non-alloyed hot-dip galvanized cold-rolled steel sheet that is not subjected to heat alloying treatment after hot-dip galvanization and heat-alloying treatment after hot-dip galvanization It means both so-called galvannealed cold-rolled steel sheets.
[0015]
[Means for Solving the Problems]
In order to achieve the above-mentioned problems, the present inventors have conducted extensive research on the influence of alloying elements on the microstructure and recrystallization texture of a hot-dip galvanized cold-rolled steel sheet having a hot-dip plated layer on the surface of the cold-rolled steel sheet. It was. As a result, by setting the C content to a low carbon region and containing the appropriate amounts of V and Nb, the solid solution C can be reduced as much as possible before the recrystallization annealing performed after cold rolling {111 } By developing a recrystallized texture, a high Rankford value (r value) can be obtained, and in a continuous hot-dip galvanizing line, oxidation is performed in a heating zone in which the dew point is controlled to an oxidizing atmosphere of 20 ° C or higher. After the treatment, continuous annealing is performed in a temperature range of 780 to 950 ° C. in a reducing atmosphere, and the temperature from the annealing temperature to the hot dip galvanizing temperature is cooled at an average cooling rate of 5 ° C./s or more, and galvanizing is performed Thus, it has been found that a composite structure type high-tensile hot-dip galvanized cold-rolled steel sheet having a good plating appearance and high Rankford value can be produced.
[0016]
Here, the composite structure type high-tensile hot-dip galvanized cold-rolled steel sheet, which is the steel of the present invention, is a composite structure of a ferrite phase as a main phase and a second phase containing a martensite phase with an area ratio of 1% or more. It is a high-tensile hot-dip galvanized cold-rolled steel sheet.
[0017]
First, basic experimental results performed by the present inventors will be described.
The basic composition is C: 0.02%, Si: 0.5%, Mn: 2.0%, P: 0.01%, S: 0.004%, Al: 0.03%, N: 0.002%, and V: 0.01 to 0.15. By adding in the range of% by mass and Nb: 0.001 to 0.16% by mass, various steel materials having different V and Nb contents are heated to 1250 ° C. and soaked, and the finish rolling finish temperature is 900 ° C. 3 pass rolling was performed to obtain a plate thickness of 4.0 mm. In addition, after finishing rolling, a heat retention equivalent process of 650 ° C. × 3 h was performed as a coil winding process. Subsequently, cold rolling with a rolling reduction of 70% was performed to a sheet thickness of 1.2 mm. Subsequently, these cold-rolled plates are heated in a continuous hot-dip galvanizing line in a heating zone in which the dew point is controlled at a predetermined temperature in the range of −20 ° C. to 55 ° C., and then 20 vol% H 2 -80 vol% N 2. After continuous annealing at a soaking temperature of 850 ° C. in a reducing atmosphere, the steel is cooled to a temperature range of 450 to 500 ° C. at a cooling rate of 15 ° C./s to obtain a hot dip galvanizing bath containing 0.13 mass% of Al. After dipping and plating, an alloying treatment in a temperature range of 450 to 550 ° C. (Fe content in the plating layer: about 10% by mass) was performed, and then cooled to room temperature at a cooling rate of 15 ° C./s. In addition, about some samples, in order to measure the amount of Fe oxidation formed in a heating zone, it cooled rapidly after heating and measured the amount of Fe oxidation. For adjusting the dew point, coke oven gas or hydrogen water vapor and N 2 mixed gas was used.
[0018]
About the obtained hot-dip galvanized steel sheet, the tensile test was implemented and the tensile characteristic was investigated. The tensile test was performed using a JIS No. 5 tensile test piece. The tensile strength TS and ductility El are values when a tensile test is performed in a direction perpendicular to the rolling direction. The r value is the average r value in the rolling direction (r L ), 45 ° direction (r D ) in the rolling direction and 90 ° direction (r c ) in the rolling direction {= (r L + r c + 2 × r D ) / 4}. The appearance of the plating surface at that time was also investigated. The appearance of the plating surface was determined by whether or not dot-like non-plating occurred or not.
[0019]
FIG. 1 is a graph showing the influence of the contents of V and Nb on the r value and the strength elongation balance (TS × El) in relation to the content of C. The horizontal axis represents the contents of V and Nb. The atomic ratio of the C content ((V / 51 + Nb / 93) / (C / 12)), and the vertical axis shows the r value and the strength elongation balance (TS × El) separately.
[0020]
From FIG. 1, by limiting the content of V and Nb in the steel to an atomic ratio with the content of C within the range of 0.5 to 2.0, a high r value and a high strength elongation balance can be obtained, and a high r value is obtained. It became clear that it became possible to manufacture a composite structure hot-dip galvanized cold-rolled steel sheet having the following.
[0021]
In the hot-dip galvanized cold-rolled steel sheet of the present invention, the {111} recrystallized texture is strongly developed and a high Rankford value is obtained because there is little solid solution C and N before recrystallization annealing. On the other hand, by annealing at 780 to 950 ° C., V and Nb carbides are dissolved, and solid solution C is concentrated in the austenite phase in a large amount, so that the austenite phase is transformed into the martensite phase in the subsequent cooling process. It was clarified that a composite structure of ferrite phase and martensite phase was obtained, yield ratio YR was low, and excellent ductility was obtained.
[0022]
FIG. 2 shows the influence of the dew point of the heating zone on the amount of Fe oxidation. It has been clarified that when the dew point of the heating zone is 20 ° C. or higher, the amount of Fe oxidation formed on the surface layer of the steel sheet is 600 mg / m 2 or more and the appearance of the plated surface is improved. That is, when the dew point at the time of heating is less than 20 ° C., the amount of Fe oxidation of the steel sheet surface layer formed at the time of heating is less than 600 mg / m 2, and the surface of the alloy element such as Si, Mn, P, etc. It has become clear that the thickening of the steel cannot be prevented and the appearance of the plating surface is deteriorated. Here, the amount of Fe oxidation is a value obtained by measuring the amount of oxygen in the steel sheet before and after the oxidation treatment with fluorescent X-rays and dividing the measured amount by the surface area of the steel sheet. Moreover, the Fe oxide formed on the steel sheet surface layer is mainly Fe 2 O 3 , Fe 3 O 4, or the like.
[0023]
The present invention has been completed by further study based on the above-described findings, and the gist of the present invention is as follows.
(1) By mass% C: 0.01 to 0.05%, Si: 0.1 to 1.0%, Mn: 1.0 to 3.0%, P: 0.10% or less, S: 0.02% or less, Al: 0.005 to 0.1%, N: 0.02% Hereinafter, V: 0.01-0.2% and Nb: 0.005-0.2% are contained, and content (mass%) of V, Nb, and C is,
0.5 × C / 12 ≦ (V / 51 + Nb / 93) ≦ 2 × C / 12
Meets the relationship, the steel slab comprising the composition balance of iron and unavoidable impurities, hot rolling, subsequently after pickling, subjected to cold rolling, then in a continuous galvanizing line, the dew point Is subjected to an oxidation treatment in a heating zone controlled to an oxidation atmosphere of 20 ° C or higher, then continuously annealed in a temperature range of 780 to 950 ° C in a reducing atmosphere, and the average cooling rate from the annealing temperature to the hot dip galvanizing temperature A method for producing a composite structure type high-tensile hot-dip galvanized cold-rolled steel sheet, which is cooled at 5 ° C./s or more and is subjected to hot dip galvanization and has a good plating appearance and excellent deep drawability.
[0024]
(2) By mass% C: 0.01 to 0.05%, Si: 0.1 to 1.0%, Mn: 1.0 to 3.0%, P: 0.10% or less, S: 0.02% or less, Al: 0.005 to 0.1%, N: 0.02% Hereinafter, V: 0.01 to 0.2%, Nb: 0.005 to 0.2% and Ti: 0.001 to 0.3%, and the content (% by mass) of V, Nb, Ti and C is
0.5 × C / 12 ≦ (V / 51 + Nb / 93 + Ti / 48) ≦ 2 × C / 12
Meets the relationship, the steel slab comprising the composition balance of iron and unavoidable impurities, hot rolling, subsequently after pickling, subjected to cold rolling, then in a continuous galvanizing line, the dew point Is subjected to an oxidation treatment in a heating zone controlled to an oxidation atmosphere of 20 ° C or higher, then continuously annealed in a temperature range of 780 to 950 ° C in a reducing atmosphere, and the average cooling rate from the annealing temperature to the hot dip galvanizing temperature A method for producing a composite structure type high-tensile hot-dip galvanized cold-rolled steel sheet, which is cooled at 5 ° C./s or more and is subjected to hot dip galvanization and has a good plating appearance and excellent deep drawability.
[0025]
(3) In addition to the above composition, the steel slab further contains Mo: 0.01 to 0.5% by mass. The deep slabability of the plating appearance according to the above (1) or (2) is good. A method for producing an excellent composite structure type high-tensile hot-dip galvanized cold-rolled steel sheet.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
First, the reason which limited the composition of the steel slab used for the manufacturing method of the hot dip galvanized cold rolled steel sheet of this invention is demonstrated. The mass% is simply written as%.
[0027]
C: 0.01-0.05%
C is an element that increases the strength of the steel sheet and further promotes the formation of a composite structure of a ferrite phase as a main phase and a martensite phase constituting the second phase. In the present invention, from the viewpoint of forming a composite structure It is necessary to contain 0.01% or more. On the other hand, a content exceeding 0.05% inhibits the development of {111} recrystallized texture and reduces deep drawability. For this reason, in this invention, C content was limited to 0.01 to 0.05%.
[0028]
Si: 0.1-1.0%
Si is a useful strengthening element that can increase the strength of the steel sheet, that is, improve the strength-elongation balance, without significantly reducing the ductility of the steel sheet. To obtain this effect, the Si content is 0.1%. % Or more is necessary. However, if the Si content exceeds 1.0%, the deep drawability is deteriorated and the surface properties, particularly the plating surface appearance, are remarkably deteriorated. For this reason, Si content was limited to 0.1 to 1.0%.
[0029]
Mn: 1.0-3.0%
Mn has the effect of strengthening steel, and further lowers the critical cooling rate at which a composite structure of the ferrite phase as the main phase and the martensite phase as the second phase can be obtained, and the composite of the ferrite phase and the martensite phase. It has the effect | action which accelerates | stimulates formation of a structure | tissue and it is preferable to contain according to the cooling rate after annealing. At a slow cooling rate below the critical cooling rate, a martensite phase is not generated, and instead a bainite phase or a pearlite phase is generated. However, when no martensite phase is present in the second phase, the strength-elongation balance decreases. There is a tendency. Therefore, the addition of Mn is effective for facilitating the formation of the martensite phase, that is, for reducing the critical cooling rate. Mn is an effective element for preventing hot cracking due to S, and is preferably contained according to the amount of S contained. Such an effect becomes remarkable by containing Mn 1.0% or more. On the other hand, if the Mn content exceeds 3.0%, deep drawability and weldability deteriorate. For this reason, in this invention, Mn content was limited to 1.0 to 3.0% of range.
[0030]
P: 0.10% or less P has an effect of strengthening steel and can be appropriately contained depending on the desired strength. However, if the P content exceeds 0.10%, the strength-elongation balance is lowered and deep drawability is reduced. to degrade. For this reason, P content was limited to 0.10% or less. In addition, when more excellent press formability is required, the P content is preferably 0.08% or less. In addition, in order to acquire the said effect, it is preferable to contain P 0.005% or more.
[0031]
S: 0.02% or less S is an element that exists as an inclusion in the steel sheet and causes deterioration of the ductility and formability of the steel sheet, particularly stretch flangeability. Therefore, it is preferable to reduce it as much as possible. In the present invention, the upper limit of the S content is 0.02%. In addition, when more excellent stretch flange formability is required, the S content is preferably 0.01% or less, and more preferably 0.005% or less.
[0032]
Al: 0.005-0.1%
Al is added as a deoxidizing element for steel and is an element useful for improving the cleanliness of steel. However, if it is less than 0.005%, there is no effect of addition, while if it exceeds 0.1%, it is more effective. A further deoxidation effect cannot be obtained, and conversely the deep drawability deteriorates. For this reason, Al content was limited to 0.005-0.1%. In the present invention, it does not exclude a melting method by a deoxidation method other than Al deoxidation. For example, Ti deoxidation or Si deoxidation may be performed. Included in the range. At that time, even if Ca, REM, etc. are added to the molten steel, the characteristics of the steel sheet of the present invention are not inhibited at all, and it is a matter of course that a steel sheet containing Ca, REM, etc. is also included in the scope of the present invention.
[0033]
N: 0.02% or less N is an element that increases the strength of the steel sheet by solid solution strengthening or strain age hardening. However, if it exceeds 0.02%, nitride increases in the steel sheet, thereby deep drawing the steel sheet. Remarkably deteriorates. For this reason, N was limited to 0.02% or less. In addition, when improvement of press formability is requested | required more, it is preferable to reduce N, and it is suitable to set it as 0.01% or less, More preferably, N is reduced as much as possible to 0.004% or less.
[0034]
V: 0.01 to 0.2%, Nb: 0.005 to 0.2%, and satisfying the relationship of 0.5 × C / 12 ≦ (V / 51 + Nb / 93) ≦ 2 × C / 12 V and Nb are the most important in the present invention. It is an element, and by resolving solid solution C as V and Nb carbides before recrystallization, a {111} recrystallized texture can be developed to obtain a high Rankford value. Further, during annealing, V and Nb-based carbides are dissolved so that a large amount of solid solution C is concentrated in the austenite phase, and in the subsequent cooling process, martensite transformation is performed, so that the ferrite phase and the second phase martensite phase are obtained. To obtain a steel sheet with a composite structure. In order to achieve such an effect, the contents of V and Nb are 0.01% or more and 0.005% or more, respectively, and the contents (mass%) of C, V and Nb are 0.5 × C / 12 ≦ (V / 51 + Nb / 93) needs to be satisfied. On the other hand, when the content of at least one of V and Nb exceeds 0.2%, or the content (mass%) of C, V, and Nb is (V / 51 + Nb / 93)> 2 × C / 12, Since the dissolution of V and Nb carbide during annealing hardly occurs, a composite structure of the ferrite phase as the main phase and the martensite phase as the second phase cannot be obtained. Therefore, in this invention, it was limited to satisfy | fill the relationship of V: 0.01-0.2%, Nb: 0.005-0.2% and 0.5 * C / 12 <= (V / 51 + Nb / 93) <= 2 * C / 12.
[0035]
Further, in the present invention, in addition to the above-described composition, it is preferable to contain Ti: 0.001 to 0.3% by mass%. In this case, the relationship between the contents (mass%) of C, V, and Nb. Instead of the formula 0.5 × C / 12 ≦ (V / 51 + Nb / 93) ≦ 2 × C / 12, the relational expression of the contents (mass%) of the above C, V, Nb, Ti, that is, 0.5 × C / It is necessary to satisfy the relational expression 12 ≦ (V / 51 + Nb / 93 + Ti / 48) ≦ 2 × C / 12.
Ti is a carbide forming element. Before recrystallization, solid solution C is precipitated and fixed as V, Nb and Ti carbides, thereby developing a {111} recrystallization texture and obtaining a high Rankford value. Furthermore, at the time of annealing, V, Nb, and Ti-based carbides are dissolved so that a large amount of solid solution C is concentrated in the austenite phase, and then the martensitic transformation is performed in the subsequent cooling process. A steel sheet having a composite structure with a martensite phase which is two phases is obtained. In order to achieve such an effect, it is necessary that the Ti content is 0.001% or more and the relationship of 0.5 × C / 12 ≦ (V / 51 + Nb / 93 + Ti / 48) is satisfied. On the other hand, if the Ti content exceeds 0.3% or (V / 51 + Nb / 93 + Ti / 48)> 2 × C / 12, it is difficult for carbides to dissolve during annealing, so the ferrite phase is the main phase. And a composite structure with the martensite phase which is the second phase cannot be obtained. Therefore, when Ti is contained, it is limited to satisfying the relationship of Ti: 0.001 to 0.3% and 0.5 × C / 12 ≦ (V / 51 + Nb / 93 + Ti / 48) ≦ 2 × C / 12.
[0036]
Moreover, in this invention, it is preferable to contain Mo: 0.01-0.5% further in addition to the above-mentioned composition.
Mo: 0.01-0.5%
Mo, like Mn, reduces the critical cooling rate at which a composite structure of the ferrite phase as the main phase and the martensite phase as the second phase is obtained, and promotes the formation of a composite structure of the ferrite phase and the martensite phase. It can be contained if necessary. The effect is exhibited by the inclusion of 0.01% or more of Mo. However, when the Mo content exceeds 0.5%, the deep drawability deteriorates, so the Mo content is limited to 0.01 to 0.5%.
[0037]
In the present invention, the balance other than the components described above but a composition of substantially Fe and inevitable impurities, B, Ca, any be contained as long as it is within the range of the REM like ordinary steel composition issues There is no.
[0038]
B is an element having an effect of improving the hardenability of steel and can be contained as necessary. However, if the B content exceeds 0.003%, the effect is saturated, so B is preferably 0.003% or less. A more desirable range is 0.0001 to 0.002%. Ca and REM have the effect of controlling the morphology of the sulfide inclusions, thereby improving the stretch flangeability of the steel sheet. Such an effect is saturated when the content of one or two selected from Ca and REM exceeds 0.01% in total. For this reason, the total content of one or two of Ca and REM is preferably 0.01% or less. A more preferable range is 0.001 to 0.005%.
[0039]
Other inevitable impurities include, for example, Sb, Sn, Zn, Co, etc. The allowable ranges of these contents are Sb: 0.01% or less, Sn: 0.1% or less, Zn: 0.01% or less , Co: 0.1% or less.
[0040]
Next, the reason why the manufacturing conditions are limited in the present invention will be described.
The hot-dip galvanized cold-rolled steel sheet of the present invention comprises a steel slab having a composition within the above-described range as a raw material, hot-rolling the raw material into a hot-rolled sheet, and pickling the hot-rolled sheet. A pickling process, a cold rolling process in which the hot-rolled sheet is cold-rolled to form a cold-rolled sheet, and a continuous hot-dip galvanized cold-rolled steel sheet by performing recrystallization annealing and hot-dip galvanizing on the cold-rolled sheet It is manufactured by sequentially performing a galvanizing process. Moreover, the process of annealing and pickling is given to this steel plate before a continuous hot-dip galvanization process as needed.
[0041]
The steel slab to be used is preferably produced by a continuous casting method in order to prevent macro segregation of components, but may be produced by an ingot casting method or a thin slab casting method. After manufacturing the steel slab, in addition to the conventional method of cooling to room temperature and then heating it again, without cooling, the method of inserting it into a heating furnace as it is, or after performing a slight heat retention Energy-saving processes such as direct feed rolling and direct rolling, which are immediately rolled, can be applied without problems.
[0042]
The above-mentioned raw material (steel slab) is heated and subjected to a hot rolling step of hot rolling to obtain a hot rolled sheet. The hot rolling process only needs to be a condition that enables the production of a hot rolled sheet having a desired thickness, and there is no particular problem even if normal rolling conditions are used. For reference, suitable hot rolling conditions are shown below.
[0043]
Slab heating temperature: 900 ° C. or higher The slab heating temperature is preferably low because the precipitates are coarsened to develop {111} recrystallized texture and improve deep drawability. However, if the heating temperature is less than 900 ° C., the rolling load increases and the risk of trouble occurring during hot rolling increases. For this reason, it is preferable that slab heating temperature shall be 900 degreeC or more. In addition, the upper limit of the slab heating temperature is more preferably 1300 ° C. due to an increase in scale loss accompanying an increase in oxidized weight. Needless to say, using a so-called sheet bar heater that heats the sheet bar from the viewpoint of lowering the slab heating temperature and preventing troubles during hot rolling is of course effective.
[0044]
Finish rolling end temperature: 700 ° C or higher Finish rolling end temperature (FDT) should be 700 ° C or higher to obtain a uniform hot-rolled base metal structure that provides excellent deep drawability after cold rolling and recrystallization annealing. Is preferred. In other words, if the finish rolling finish temperature is less than 700 ° C, the hot rolled base metal structure becomes non-uniform, the rolling load during hot rolling increases, and the risk of trouble occurring during hot rolling increases. is there.
[0045]
Winding temperature: 800 ° C. or lower The winding temperature is preferably 800 ° C. or lower. That is, when the coiling temperature exceeds 800 ° C., the scale increases and the yield tends to decrease due to scale loss. When the coiling temperature is less than 200 ° C., the shape of the steel sheet is significantly disturbed and the risk of causing problems in actual use increases. Therefore, the lower limit of the coiling temperature is more preferably 200 ° C.
[0046]
Thus, in the hot rolling step of the present invention, after the steel slab is heated to 900 ° C. or higher, the finish rolling finish temperature is subjected to hot rolling to 700 ° C. or higher, and the winding is performed at 800 ° C. or lower, preferably 200 ° C. or higher. It is preferable to use a hot-rolled sheet wound at temperature.
In the hot rolling process of the present invention, in order to reduce the rolling load during hot rolling, lubrication rolling may be performed between some or all passes of finish rolling. In addition, performing lubrication rolling is also effective from the viewpoint of uniform steel plate shape and uniform material. In addition, it is preferable to make the friction coefficient in the case of lubrication rolling into the range of 0.10-0.25.
[0047]
Moreover, it is preferable to set it as the continuous rolling process which joins the sheet | seat bars which precede and follow, and finish-rolls continuously. The application of the continuous rolling process is also desirable from the viewpoint of the operational stability of hot rolling.
[0048]
Next, the hot-rolled sheet is pickled and then cold-rolled to obtain a cold-rolled sheet. Pickling may be performed under normal conditions. The cold rolling condition is not particularly limited as long as it can be a cold rolled sheet having a desired size and shape, but the rolling reduction during cold rolling is preferably 40% or more. This is because if the rolling reduction is less than 40%, the {111} recrystallization texture does not develop and it becomes difficult to obtain excellent deep drawability.
[0049]
Subsequently, the cold-rolled steel sheet is subjected to recrystallization annealing and hot-dip galvanizing in a continuous hot-dip galvanizing line to obtain a hot-dip galvanized steel sheet. Here, first, after performing an oxidation treatment in a heating zone in which the dew point was controlled to an oxidizing atmosphere of 20 ° C. or higher, recrystallization annealing was performed at 780 to 950 ° C. in a reducing atmosphere, thereby forming a steel sheet surface layer. It is necessary to sufficiently reduce the Fe oxide layer. This is because when the annealing temperature is less than 780 ° C., a ferrite single-phase structure is formed, and the TS × El balance deteriorates. On the other hand, when the annealing temperature is higher than 950 ° C., the crystal grains become coarse and {111} recrystallized texture is formed. At the same time as the deep drawability deteriorates significantly without development, the TS x El balance also deteriorates. When the dew point during heating is less than 20 ° C., the amount of Fe oxidation formed on the surface layer of the steel sheet during heating is less than 600 mg / m 2 , there is little Fe oxide in the steel sheet, and the concentration of the surface of alloy elements such as Si, Mn, P, etc. This is because the appearance of the plating surface cannot be prevented and the appearance of the plating surface is deteriorated. The dew point of the heating zone needs to be 20 ° C. or higher, preferably 40 ° C. or higher. If the dew point is too high, the amount of Fe oxidation formed on the surface layer of the steel sheet becomes too large, and the amount of Fe oxide is not sufficiently reduced during the reduction. Therefore, the dew point is preferably 100 ° C. or lower.
Next, recrystallization annealing is performed in the above temperature range in a reducing atmosphere to sufficiently reduce the Fe oxide formed on the steel sheet surface layer, thereby forming a reduced Fe layer on the outermost surface of the steel sheet surface to prevent unplating. To do.
In addition, it is preferable to use the nitrogen gas containing about 5 vol%-30 vol% hydrogen gas as atmosphere gas for the suitable conditions of the reducing atmosphere at the time of soaking.
[0050]
After the annealing, it is preferable to rapidly cool to a temperature range of 380 to 530 ° C. which is a hot dip galvanizing treatment temperature. If the quenching stop temperature is less than 380 ° C., non-plating is likely to occur. On the other hand, if it exceeds 530 ° C., unevenness is likely to occur on the plating surface, which is not preferable. The cooling rate is a composite structure of the ferrite phase as the main phase and the martensite phase as the second phase. Therefore, the average cooling rate from the annealing temperature to the hot dip galvanizing temperature is 5 ° C./s or more. Cool quickly . After the rapid cooling, it is subsequently immersed in a hot dip galvanizing bath and hot dip galvanized. At this time, the Al concentration of the plating bath is preferably in the range of 0.12 to 0.145 mass%. This is because when the Al content in the plating bath is less than 0.12 mass%, alloying proceeds too much and the plating adhesion (powdering resistance) tends to deteriorate, whereas when it exceeds 0.145 mass%, non-plating occurs. It is easy to do.
[0051]
Moreover, you may perform the alloying process of a plating layer after the hot dip galvanization process. In addition, when performing an alloying process, it is preferable to implement so that Fe content rate in a plating layer may be 9 to 12%.
[0052]
In the alloying treatment, it is preferable to reheat to a temperature range of 450 to 550 ° C. to alloy the hot dip galvanized layer after the hot dip galvanizing treatment. After the alloying treatment, it is preferable to cool to 300 ° C. at an average cooling rate of 5 ° C./s or more. Alloying at a high temperature exceeding 550 ° C makes it difficult to form a martensite phase and may reduce the ductility of the steel sheet. On the other hand, if the alloying temperature is less than 450 ° C, the alloying progresses slowly and the productivity decreases. Because there is a tendency to.
[0053]
Further, when the cooling rate after the alloying treatment is extremely small, it becomes difficult to form a martensite phase. For this reason, it is preferable that the average cooling rate in the temperature range from 300 degreeC after an alloying process shall be 5 degrees C / s or more.
[0054]
In addition, you may add the temper rolling for adjustment of shape correction, surface roughness, etc. to the steel plate after a plating process or an alloying process. Moreover, there is no inconvenience even if treatments such as resin or oil coating, various paintings or electroplating are performed.
As described above, the hot-dip galvanized steel sheet manufactured by the manufacturing method of the present invention having the composition and manufacturing conditions of the steel slab that has been optimized is a composite structure excellent in deep drawability with a tensile strength TS of 440 MPa or more. It is a type high-tensile hot-dip galvanized cold-rolled steel sheet.
[0055]
Next, the structure of the steel sheet of the present invention will be described.
The hot-dip galvanized steel sheet of the present invention has a composite structure of a ferrite phase that is a main phase and a second phase that includes a martensite phase with an area ratio of 1% or more with respect to the entire structure.
[0056]
In order to obtain a hot-dip galvanized cold-rolled steel sheet having low yield stress (YS) and high ductility (El) and having excellent deep drawability, the structure of the steel sheet in the present invention is the main phase, the ferrite phase, It is necessary to form a composite structure with a second phase including a martensite phase of 1% or more in terms of the area ratio with respect to the entire structure. The ferrite phase as the main phase is preferably 80% or more in terms of the area ratio relative to the entire structure. This is because if the ferrite phase is less than 80% in area ratio, it is difficult to ensure high ductility, and press formability tends to decrease. In addition, when better ductility is required, the area ratio of the ferrite phase is preferably 85% or more. In particular, in order to utilize the advantages of the composite structure, the ferrite phase as the main phase is preferably 99% or less. The ferrite phase of the present invention may be composed only of polygonal ferrite having a low dislocation density, or may be composed only of bainitic ferrite having a high dislocation density that has undergone an α → γ transformation. It may consist of a mixed phase.
[0057]
Moreover, as a 2nd phase, in this invention, it is necessary to contain a martensite phase 1% or more by area ratio with respect to the whole structure | tissue. If the martensite phase is less than 1% in area ratio, it is difficult to satisfy both a low yield ratio (YR) and a high ductility (El) at the same time. The second phase may be composed of a martensite phase with an area ratio of 1% or more alone, or a martensite phase with an area ratio of 1% or more and other pearlite, bainite, and retained austenite phases as subphases. It may be mixed with either, and is not particularly limited.
[0058]
The hot-dip galvanized cold-rolled steel sheet having the above-described structure produced by the method of the present invention is a steel sheet excellent in deep drawability having low yield stress and high ductility.
[0059]
【Example】
Molten steel having the composition shown in Table 1 was melted in a converter and made into a slab by a continuous casting method. Next, after these steel slabs are heated to 1150 ° C, a hot-rolled steel strip with a thickness of 4.0 mm (hot) is applied by hot rolling at a finish rolling finish temperature of 900 ° C and a winding temperature of 650 ° C. Sheet). Subsequently, a cold-rolled steel strip (cold-rolled sheet) having a thickness of 1.2 mm was obtained by a cold-rolling process in which the hot-rolled steel strip (hot-rolled sheet) was pickled and cold-rolled. Then, these cold-rolled steel strips (cold-rolled sheets) were oxidized in a continuous hot-dip galvanizing line in a heating zone controlled to the dew point oxidation atmosphere shown in Table 2, and then the H 2 concentration was 20 vol% in the soaking zone. After annealing and reducing treatment in a reducing atmosphere using an atmosphere gas consisting of the remaining nitrogen gas, the sample was cooled at a cooling rate of 15 ° C / s and immersed in a 480 ° C hot dip galvanizing bath containing 0.13 mass% Al. Then, after alloying at 520 ° C. (Fe content in the plating layer: about 10%), it was cooled to room temperature at a cooling rate of 15 ° C./s. Here, the dew point was controlled using a coke oven gas or a mixed gas of hydrogen water vapor and N 2 . Furthermore, the obtained steel strip (hot dip galvanized steel sheet) was further subjected to temper rolling with an elongation of 0.8%. Of steel plates Nos. 1 to 11 in Table 2, Nos. 2 and 5 were performed on an all radiant type continuous hot dip galvanizing line (CGL) in which the heating zone was a reducing atmosphere. Nos. 4 and 6 to 11 were performed in a non-oxidizing furnace (NOF) type continuous hot dip galvanizing line (CGL) in which the heating zone was an oxidizing atmosphere.
[0060]
A specimen is collected from the obtained steel strip, and the cross section (C cross section) orthogonal to the rolling direction is used to image the microstructure using an optical microscope or a scanning electron microscope, and in the main phase using an image analyzer. The structure fraction of a certain ferrite and the type and structure fraction of the second phase were determined. Also, from the obtained steel strip, a JIS No. 5 tensile test piece was taken in the same manner as when the above-mentioned basic experimental results were obtained, and a tensile test was performed in accordance with the provisions of JIS Z 2241 to obtain a yield stress ( YS), tensile strength (TS), elongation (El), strength-elongation balance (TS × El), and yield ratio (YR) were determined. Moreover, the r value calculated | required the average r value (average plastic strain ratio) based on the prescription | regulation of JISZ2254 using the JIS5 tension test piece extract | collected from the steel strip, and made this r value. Furthermore, the appearance of the plating surface was evaluated by the presence or absence of occurrence of spot-like unplating. These results are shown in Table 2.
[0061]
[Table 1]
Figure 0003882679
[0062]
[Table 2]
Figure 0003882679
[0063]
From the results shown in Table 2, all of the inventive examples have good plating surface appearance, low yield stress YS, high elongation El and low yield ratio YR, and deep drawing with a higher Rankford value. The steel sheet is excellent in formability. On the other hand, in the comparative example manufactured under conditions outside the scope of the present invention, the plating surface appearance is poor, the yield stress YS is high, the yield ratio is high, the elongation El is low, or the Rankford value (r Value) is a reduced steel plate.
[0064]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to manufacture stably the hot dip galvanized steel plate which has a favorable plating surface external appearance, and has the outstanding deep drawing formability, and has a remarkable industrial effect. When the hot dip galvanized steel sheet of the present invention is applied to automobile parts, press forming is easy, and there is an effect that it can sufficiently contribute to weight reduction of the automobile body.
[Brief description of the drawings]
FIG. 1 The ratio (V / 51 + Nb / 93) / (C / 12) representing the relationship between the contents of V and Nb and C affects the Rankford value (r value) and the strength-elongation balance (TS × El). It is the figure which showed the influence.
FIG. 2 is a graph showing the influence of the dew point of a heating zone on the amount of Fe oxidation.

Claims (3)

質量%で
C:0.01〜0.05%、Si:0.1〜1.0%、Mn:1.0〜3.0%、P:0.10%以下、S:0.02%以下、Al:0.005〜0.1%、N:0.02%以下、V:0.01〜0.2%およびNb:0.005〜0.2%を含有し、かつ、VおよびNbとCとの含有量(質量%)が、
0.5×C/12≦(V/51+Nb/93)≦2×C/12
なる関係を満たし、残部が鉄および不可避的不純物からなる組成になる鋼スラブを、熱間圧延し、引き続き酸洗した後、冷間圧延を施し、その後、連続溶融亜鉛めっきラインにて、露点を20℃以上の酸化雰囲気に制御した加熱帯にて酸化処理を施した後、還元雰囲気中で780〜950℃の温度域で連続焼鈍し、焼鈍温度から溶融亜鉛めっき処理温度までを平均冷却速度5℃/s以上で冷却し、溶融亜鉛めっきを施すことを特徴とする、めっき外観の良好な深絞り性に優れた複合組織型高張力溶融亜鉛めっき冷延鋼板の製造方法。
In mass% C: 0.01 to 0.05%, Si: 0.1 to 1.0%, Mn: 1.0 to 3.0%, P: 0.10% or less, S: 0.02% or less, Al: 0.005 to 0.1%, N: 0.02% or less, V : 0.01-0.2% and Nb: 0.005-0.2%, and the content (mass%) of V, Nb, and C is
0.5 × C / 12 ≦ (V / 51 + Nb / 93) ≦ 2 × C / 12
Meets the relationship, the steel slab comprising the composition balance of iron and unavoidable impurities, hot rolling, subsequently after pickling, subjected to cold rolling, then in a continuous galvanizing line, the dew point Is subjected to an oxidation treatment in a heating zone controlled to an oxidation atmosphere of 20 ° C or higher, then continuously annealed in a temperature range of 780 to 950 ° C in a reducing atmosphere, and the average cooling rate from the annealing temperature to the hot dip galvanizing temperature A method for producing a composite structure type high-tensile hot-dip galvanized cold-rolled steel sheet, which is cooled at 5 ° C./s or more and is subjected to hot dip galvanization and has a good plating appearance and excellent deep drawability.
質量%で
C:0.01〜0.05%、Si:0.1〜1.0%、Mn:1.0〜3.0%、P:0.10%以下、S:0.02%以下、Al:0.005〜0.1%、N:0.02%以下、V:0.01〜0.2%、Nb:0.005〜0.2%およびTi:0.001〜0.3%を含有し、かつ、V、NbおよびTiとCとの含有量(質量%)が、
0.5×C/12≦(V/51+Nb/93+Ti/48)≦2×C/12
なる関係を満たし、残部が鉄および不可避的不純物からなる組成になる鋼スラブを、熱間圧延し、引き続き酸洗した後、冷間圧延を施し、その後、連続溶融亜鉛めっきラインにて、露点を20℃以上の酸化雰囲気に制御した加熱帯にて酸化処理を施した後、還元雰囲気中で780〜950℃の温度域で連続焼鈍し、焼鈍温度から溶融亜鉛めっき処理温度までを平均冷却速度5℃/s以上で冷却し、溶融亜鉛めっきを施すことを特徴とする、めっき外観の良好な深絞り性に優れた複合組織型高張力溶融亜鉛めっき冷延鋼板の製造方法。
In mass% C: 0.01 to 0.05%, Si: 0.1 to 1.0%, Mn: 1.0 to 3.0%, P: 0.10% or less, S: 0.02% or less, Al: 0.005 to 0.1%, N: 0.02% or less, V : 0.01 to 0.2%, Nb: 0.005 to 0.2% and Ti: 0.001 to 0.3%, and the content (% by mass) of V, Nb, Ti and C is
0.5 × C / 12 ≦ (V / 51 + Nb / 93 + Ti / 48) ≦ 2 × C / 12
Meets the relationship, the steel slab comprising the composition balance of iron and unavoidable impurities, hot rolling, subsequently after pickling, subjected to cold rolling, then in a continuous galvanizing line, the dew point Is subjected to an oxidation treatment in a heating zone controlled to an oxidation atmosphere of 20 ° C or higher, then continuously annealed in a temperature range of 780 to 950 ° C in a reducing atmosphere, and the average cooling rate from the annealing temperature to the hot dip galvanizing temperature A method for producing a composite structure type high-tensile hot-dip galvanized cold-rolled steel sheet, which is cooled at 5 ° C./s or more and is subjected to hot dip galvanization and has a good plating appearance and excellent deep drawability.
鋼スラブは、上記組成に加えてさらにMo:0.01〜0.5質量%を含有することを特徴とする、請求項1または2に記載の、めっき外観の良好な深絞り性に優れた複合組織型高張力溶融亜鉛めっき冷延鋼板の製造方法。  The steel slab further contains Mo: 0.01 to 0.5% by mass in addition to the above composition, and the composite structure type high excellent in deep drawability with good plating appearance according to claim 1 or 2 A method for producing a tension hot-dip galvanized cold-rolled steel sheet.
JP2002149045A 2002-05-23 2002-05-23 Manufacturing method of high-strength hot-dip galvanized cold-rolled steel sheet with excellent deep-drawability with good plating appearance Expired - Fee Related JP3882679B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002149045A JP3882679B2 (en) 2002-05-23 2002-05-23 Manufacturing method of high-strength hot-dip galvanized cold-rolled steel sheet with excellent deep-drawability with good plating appearance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002149045A JP3882679B2 (en) 2002-05-23 2002-05-23 Manufacturing method of high-strength hot-dip galvanized cold-rolled steel sheet with excellent deep-drawability with good plating appearance

Publications (2)

Publication Number Publication Date
JP2003342644A JP2003342644A (en) 2003-12-03
JP3882679B2 true JP3882679B2 (en) 2007-02-21

Family

ID=29767353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002149045A Expired - Fee Related JP3882679B2 (en) 2002-05-23 2002-05-23 Manufacturing method of high-strength hot-dip galvanized cold-rolled steel sheet with excellent deep-drawability with good plating appearance

Country Status (1)

Country Link
JP (1) JP3882679B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2876711B1 (en) * 2004-10-20 2006-12-08 Usinor Sa HOT-TEMPERATURE COATING PROCESS IN ZINC BATH OF CARBON-MANGANESE STEEL BANDS
WO2006106999A1 (en) * 2005-03-30 2006-10-12 Nippon Steel Corporation Process for producing hot-dipped hot-rolled steel sheet
KR20070038730A (en) 2005-10-06 2007-04-11 주식회사 포스코 The precipitation hardening cold rolled steel sheet having excellent yield ratios, and the method for manufacturing the same
CA2701903C (en) 2007-10-10 2017-02-28 Nucor Corporation Complex metallographic structured steel and method of manufacturing same
JP5354178B2 (en) * 2009-03-25 2013-11-27 Jfeスチール株式会社 Manufacturing method of high-strength hot-dip galvanized steel sheet and high-strength galvannealed steel sheet
JP5672743B2 (en) * 2009-03-31 2015-02-18 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5630370B2 (en) * 2011-05-17 2014-11-26 新日鐵住金株式会社 Method for producing P-containing high-strength galvannealed steel sheet
WO2015185956A1 (en) 2014-06-06 2015-12-10 ArcelorMittal Investigación y Desarrollo, S.L. High strength multiphase galvanized steel sheet, production method and use

Also Published As

Publication number Publication date
JP2003342644A (en) 2003-12-03

Similar Documents

Publication Publication Date Title
JP5709151B2 (en) High-strength hot-dip galvanized steel sheet with excellent formability and method for producing the same
JP5402007B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
JP4635525B2 (en) High-strength steel sheet excellent in deep drawability and manufacturing method thereof
EP2415894B1 (en) Steel sheet excellent in workability and method for producing the same
JP5413546B2 (en) High strength thin steel sheet and method for producing the same
JP4998757B2 (en) Manufacturing method of high strength steel sheet with excellent deep drawability
JP5504737B2 (en) High-strength hot-dip galvanized steel strip excellent in formability with small variations in material within the steel strip and method for producing the same
JP5310919B2 (en) Method for producing high-strength cold-rolled steel sheets with excellent aging resistance and seizure curability
JP5256690B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and impact resistance and method for producing the same
JP4752522B2 (en) Manufacturing method of high strength cold-rolled steel sheet for deep drawing
JP5251207B2 (en) High strength steel plate with excellent deep drawability and method for producing the same
JP5853884B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JP4735552B2 (en) Manufacturing method of high strength steel plate and high strength plated steel plate
JP3882679B2 (en) Manufacturing method of high-strength hot-dip galvanized cold-rolled steel sheet with excellent deep-drawability with good plating appearance
JP5262372B2 (en) High-strength steel sheet excellent in deep drawability and manufacturing method thereof
JP3912181B2 (en) Composite structure type high-tensile hot-dip galvanized cold-rolled steel sheet excellent in deep drawability and stretch flangeability and manufacturing method thereof
JP4320913B2 (en) High-tensile hot-dip galvanized steel sheet with excellent formability and method for producing the same
JP4010132B2 (en) Composite structure type high-tensile hot-dip galvanized steel sheet excellent in deep drawability and method for producing the same
JP5076480B2 (en) High-strength steel sheet excellent in strength-ductility balance and deep drawability and method for producing the same
JP4380353B2 (en) High-strength steel sheet excellent in deep drawability and strength-ductility balance and manufacturing method thereof
JP4506380B2 (en) Manufacturing method of high-strength steel sheet
JP4301045B2 (en) High-strength steel plate, plated steel plate, and production method thereof
JP4525386B2 (en) Manufacturing method of high-strength steel sheets with excellent shape freezing and deep drawability
JP5251206B2 (en) High-strength steel sheet excellent in deep drawability, aging resistance and bake hardenability, and its manufacturing method
JP4325233B2 (en) Composite structure type high-tensile cold-rolled steel sheet and hot-dip galvanized steel sheet excellent in deep drawability and strain age hardenability, and methods for producing them

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061106

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131124

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees