WO2018088421A1 - High-strength cold-rolled thin steel sheet and method for producing high-strength cold-rolled thin steel sheet - Google Patents

High-strength cold-rolled thin steel sheet and method for producing high-strength cold-rolled thin steel sheet Download PDF

Info

Publication number
WO2018088421A1
WO2018088421A1 PCT/JP2017/040219 JP2017040219W WO2018088421A1 WO 2018088421 A1 WO2018088421 A1 WO 2018088421A1 JP 2017040219 W JP2017040219 W JP 2017040219W WO 2018088421 A1 WO2018088421 A1 WO 2018088421A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
rolled
cold
steel sheet
hot
Prior art date
Application number
PCT/JP2017/040219
Other languages
French (fr)
Japanese (ja)
Inventor
美絵 小幡
植田 圭治
金子 真次郎
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2018512636A priority Critical patent/JP6597889B2/en
Publication of WO2018088421A1 publication Critical patent/WO2018088421A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present invention relates to a high-strength cold-rolled steel sheet and a method for producing a high-strength cold-rolled steel sheet. More specifically, the present invention relates to a high-strength cold-rolled thin steel sheet having a tensile strength TS of 980 MPa or more and suitable for automobile parts and a method for producing the same.
  • Patent Documents 1 to 3 In recent years, from the viewpoint of preservation of the global environment, there has been a demand for improved fuel economy of automobiles, and it has been promoted to apply high-strength cold-rolled thin steel sheets having a tensile strength of 980 MPa or more to body parts and the like (for example, Patent Documents 1 to 3). Furthermore, recently, there has been an increasing demand for improving the collision safety of automobiles, and from the viewpoint of ensuring the safety of passengers in the event of a collision, the tensile strength for structural members such as the skeleton part of a vehicle body is extremely high at 1180 MPa or more. Application of high-strength cold-rolled thin steel sheets having strength has also been studied (for example, Patent Documents 1 to 3).
  • the ductility may be insufficient or the stretch flangeability may be insufficient.
  • an object of the present invention is to provide a high-strength cold-rolled thin steel sheet having a tensile strength of 980 MPa or more and having high ductility and high stretch flangeability, and a method for producing the same.
  • Thin steel plate refers to a steel plate having a thickness of 5 mm or less.
  • a cold-rolled thin steel sheet having a specific composition and structure has a high tensile strength of 980 MPa or more, and has ductility and stretch flangeability.
  • the present invention was completed.
  • the present invention provides the following [1] to [5].
  • the above composition is further mass%, Ti: 0.005% to 0.030%, Nb: 0.005% to 0.030%, B: 0.0001% to 0.0050%
  • Cr 0.05% to 0.20%
  • Cu 0.05% to 0.20%
  • Sb 0.002% to 0.050%
  • Sn 0.002% to 0.000%.
  • Ta 0.001% or more and 0.100% or less
  • Ca 0.0005% or more and 0.0050% or less
  • Mg 0.0005% or more and 0.0050% or less
  • REM 0.0005
  • the high-strength cold-rolled thin steel sheet according to [1] above which contains at least one element selected from the group consisting of% or more and 0.0050% or less.
  • [3] The high-strength cold-rolled thin steel sheet according to [1] or [2], which has a hot-dip galvanized layer, an alloyed hot-dip galvanized layer, or an electrogalvanized layer on the surface.
  • the first stage having a structure in which the sum of martensite and bainite is 80% or more by volume ratio by cooling to a cooling stop temperature T 2 of 500 ° C. or less at an average cooling rate of 5 ° C./s or more.
  • annealing temperature T 3 At annealing temperature T 3, and held 10s or 900s or less, from the annealing temperature T 3, at an average cooling rate of 50 ° C. / s or less 5 ° C. / s or higher, up to 200 ° C. or higher 500 ° C. or less of the cooling stop temperature T 4 cooling, in the cooling stop temperature T 4, by holding 10s or 1800s or less, the method of producing a high strength cold rolled steel sheets having a second-stage annealing process of obtaining a second Danhiyanobe annealed sheet, a.
  • the present invention it is possible to provide a high-strength cold-rolled thin steel sheet having a tensile strength of 980 MPa or more and having high ductility and high stretch flangeability, and a method for producing the same.
  • the high-strength cold-rolled thin steel sheet of the present invention to, for example, an automobile structural member, it is possible to greatly contribute to the weight reduction of the automobile body and to greatly contribute to the improvement of the fuel consumption of the automobile.
  • the high-strength cold-rolled thin steel sheet of the present invention has a composition and a volume ratio of 10% to 70% polygonal ferrite, 5% to 40% bainitic ferrite, 15% to 40% in terms of the composition described later. Residual austenite and a structure having martensite of greater than 0% and less than 30%, the average crystal grain size of the polygonal ferrite is 10.0 ⁇ m or less, and the aspect ratio of the polygonal ferrite is 1 A high-strength cold-rolled thin steel sheet having an average crystal grain size of 2.0 ⁇ m or less and an aspect ratio of the retained austenite of 2.0 or more.
  • composition of the high-strength cold-rolled steel sheet of the present invention will be described first, and then the structure of the high-strength cold-rolled steel sheet of the present invention will be described.
  • the high-strength cold-rolled thin steel sheet of the present invention is, in mass%, C: more than 0.15% and 0.45% or less, Si: 0.50% or more and 2.50% or less, Mn: 1.50% or more. 50% or less, P: 0.001% or more and 0.050% or less, S: 0.0100% or less, N: 0.0100% or less, and Al: 0.010% or more and 1.00%, the balance It has a composition consisting of Fe and inevitable impurities. First, the reason for composition limitation will be described. Hereinafter, unless otherwise specified, “mass%” is simply expressed as “%”.
  • C has a high solid solution strengthening ability, contributes to increase in strength, stabilizes retained austenite, secures retained austenite having a desired volume ratio, and contributes effectively to improving ductility.
  • C needs to contain more than 0.15%.
  • a large content exceeding 0.45% invites concern about deterioration of toughness and weldability and occurrence of delayed fracture.
  • ductility and stretch flangeability are reduced. Therefore, the C content is more than 0.15% and 0.45% or less, preferably 0.18% or more and 0.42% or less, and more preferably 0.20% or more and 0.40% or less.
  • Si is a useful element that has a high solid solution strengthening ability in ferrite, contributes to an increase in strength, suppresses the formation of carbide (cementite), and contributes to stabilization of retained austenite.
  • Si has the effect
  • Si dissolved in ferrite improves work hardening ability and contributes to improvement of ductility of ferrite itself. In order to acquire such an effect, Si needs to contain 0.50% or more.
  • the Si content is 0.50% or more and 2.50% or less, preferably 0.80% or more and 2.00% or less, and more preferably 1.00% or more and 1.80% or less.
  • Mn is an element that contributes effectively to an increase in strength through solid solution strengthening or improvement in hardenability and stabilizes austenite, and is an indispensable element for securing a desired amount of retained austenite. In order to acquire such an effect, Mn needs to contain 1.50% or more. On the other hand, when Mn exceeds 3.50%, it becomes difficult to obtain a desired amount of retained austenite, and martensite is excessively generated. For this reason, content of Mn is 1.50% or more and 3.50% or less, and 2.30% or more and 3.00% or less are preferable.
  • P is an element contributing to an increase in strength by solid solution strengthening, and can be contained in an appropriate amount according to a desired strength.
  • P is an element that has an action of promoting ferrite transformation and is effective in forming a composite structure. In order to acquire such an effect, P needs to contain 0.001% or more.
  • P exceeds 0.050%, weldability is deteriorated and grain boundary fracture due to grain boundary segregation is promoted. For this reason, content of P is 0.001% or more and 0.050% or less, and 0.005% or more and 0.030% or less are preferable.
  • S is an element that segregates at the grain boundaries and embrittles the steel during hot working, and is present in the steel as a sulfide to reduce local deformability, and is preferably reduced as much as possible. % Or less, the above-mentioned adverse effects are acceptable. For this reason, content of S is 0.0100% or less, and 0.0050% or less is preferable. Since excessively reducing S leads to restrictions on production technology or an increase in refining costs, the S content is preferably 0.0001% or more.
  • N is an element that lowers the aging resistance of steel and is preferably reduced as much as possible. However, if it is 0.0100% or less, the above-described adverse effects can be tolerated. For this reason, content of N is 0.0100% or less, and 0.0070% or less is preferable. Since excessively reducing N leads to restrictions on production technology or an increase in refining costs, the N content is preferably 0.0005% or more.
  • Al is a ferrite-forming element and is an element that improves the balance between strength and ductility (strength-ductility balance). In order to acquire such an effect, it is necessary to contain Al 0.010% or more. On the other hand, the content of Al exceeding 1.00% causes a decrease in surface properties. For this reason, content of Al is 0.010% or more and 1.00% or less, 0.030% or more and 0.500% or less are preferable, and 0.050% or more and 0.450% or less are more preferable.
  • the above composition is a basic composition, but the composition is further Ti: 0.005% to 0.030%, Nb: 0.005% to 0.030%, B: 0.0001% to 0 .0050% or less, Cr: 0.05% to 0.20%, Cu: 0.05% to 0.20%, Sb: 0.002% to 0.050%, Sn: 0.002% 0.050% or less, Ta: 0.001% or more and 0.100% or less, Ca: 0.0005% or more and 0.0050% or less, Mg: 0.0005% or more and 0.0050% or less, and REM: It may contain at least one element selected from the group consisting of 0.0005% or more and 0.0050% or less.
  • Ti and Nb are both effective elements that suppress the coarsening of crystal grains during heating in the annealing step or the like and contribute to the refinement and homogenization of the steel sheet structure after annealing. In order to obtain such effects, it is preferable to contain Ti: 0.005% or more and Nb: 0.005% or more, respectively. On the other hand, when the content exceeds Ti: 0.030% and Nb: 0.030%, respectively, Ti-based and Nb-based precipitates are excessively generated in the ferrite, so that the ductility may be lowered. For this reason, the content of Ti is preferably 0.005% or more and 0.030% or less, and more preferably 0.010% or more and 0.020% or less. The Nb content is preferably 0.005% or more and 0.030% or less, and more preferably 0.010% or more and 0.020% or less.
  • (B) B is an effective element that contributes to strengthening of the steel sheet through improvement of hardenability. In order to acquire such an effect, it is preferable to contain 0.0001% or more. On the other hand, if the content exceeds 0.0050%, the content of martensite is excessively increased, and the increase in strength is excessively increased, which may cause a decrease in ductility. For this reason, when B is contained, the content of B is preferably 0.0001% or more and 0.0050% or less, and more preferably 0.0005% or more and 0.0030% or less.
  • (Cr) Cr contributes to the strengthening of the steel sheet by solid solution strengthening, stabilizes austenite during cooling in the annealing process, and facilitates complexation of the structure.
  • the content is preferably 0.05% or more.
  • the content of Cr is preferably 0.05% or more and 0.20% or less.
  • (Cu) Cu contributes to the strengthening of the steel sheet by solid solution strengthening, stabilizes austenite during cooling in the annealing process, and facilitates complexation of the structure.
  • the content is preferably 0.05% or more.
  • the content of Cu is preferably 0.05% or more and 0.20% or less.
  • Sb and Sn have an effect of suppressing decarburization of the steel sheet surface layer (a region of several tens of ⁇ m) caused by nitriding and oxidation of the steel sheet surface.
  • By suppressing such nitriding and oxidation of the steel sheet surface layer it is possible to prevent a reduction in the amount of martensite produced on the steel sheet surface. As a result, it is effective to secure a desired strength.
  • variations in strength and elongation due to temperature fluctuations during annealing can be reduced, which is also effective in ensuring manufacturing stability.
  • the toughness may be lowered.
  • the content of Sb and Sn is preferably 0.002% or more and 0.050% or less, respectively.
  • Ta Ta generates carbides and carbonitrides and contributes to increasing the strength of the steel sheet.
  • the content is preferably 0.001% or more.
  • the content of Ta is preferably 0.001% or more and 0.100% or less.
  • Ca, Mg and REM are all elements used for deoxidation, and have an effect of improving the adverse effect on the local ductility and stretch flangeability of sulfides by making the shape of sulfides spherical. Yes, it can contain 1 type or 2 types or more as needed.
  • Ca, Mg, and REM are each preferably contained in a content of 0.0005% or more.
  • the content of Ca, Mg and REM is preferably 0.0005% or more and 0.0050% or less, respectively.
  • Remainder Fe and inevitable impurities In the above composition, the balance other than the above components consists of Fe (remainder Fe) and inevitable impurities.
  • the high-strength cold-rolled thin steel sheet of the present invention has a structure (composite structure) composed of polygonal ferrite, bainitic ferrite, retained austenite, and martensite.
  • the high-strength cold-rolled steel sheet of the present invention has a volume ratio of 10% or more and 70 at a position corresponding to 1 ⁇ 4 of the plate thickness in the plate thickness direction from the surface (plate thickness 1 ⁇ 4 position).
  • volume ratio of polygonal ferrite 10% to 70%
  • Polygonal ferrite contributes to improvement of ductility (elongation). For this reason, it is set as the structure
  • ⁇ Volume ratio of bainitic ferrite: 5% to 40% Bainitic ferrite has a high dislocation density and contributes not only to an increase in strength but also to an improvement in stretch flangeability (hole expansion ratio). Furthermore, in order to concentrate C in untransformed austenite, it is necessary to secure desired retained austenite. In order to acquire such an effect, bainitic ferrite is made into 5% or more by volume ratio. On the other hand, if the bainitic ferrite exceeds 40% by volume, the desired high strength cannot be ensured. For this reason, the volume ratio of bainitic ferrite is 5% or more and 40% or less.
  • the “bainitic ferrite” referred to here is a ferrite generated by the upper bainite transformation, and has a higher dislocation density than polygonal ferrite.
  • volume ratio of retained austenite more than 15% and 40% or less
  • Residual austenite itself is rich in ductility, but is a structure that contributes to further improving ductility by strain-induced transformation, and contributes to improving ductility and improving the strength-ductility balance.
  • the retained austenite needs to exceed 15% by volume.
  • the volume ratio of retained austenite is 15% to 40%, preferably 17% to 40%.
  • the “martensite” here includes fresh martensite and tempered martensite. When martensite exceeds 30% in volume ratio, desired ductility and stretch flangeability cannot be secured. On the other hand, in order to ensure a desired high strength, martensite is preferably in a volume ratio exceeding 0% (not including 0%) and 3% or more. For this reason, the volume ratio of martensite is more than 0% and 30% or less, and preferably 3% or more and 30% or less.
  • Average crystal grain size of polygonal ferrite 10.0 ⁇ m or less
  • the average crystal grain size of polygonal ferrite is preferably 8.0 ⁇ m or less.
  • the lower limit of the average grain size of polygonal ferrite is not particularly limited, but is, for example, 3.0 ⁇ m or more.
  • aspects ratio of polygonal ferrite 1.5 or more
  • the aspect ratio of polygonal ferrite is 1.5 or more, and preferably 2.0 or more.
  • the upper limit of the aspect ratio of polygonal ferrite is not particularly limited, but is, for example, 4.0 or less.
  • Average crystal grain size of retained austenite 2.0 ⁇ m or less
  • the average crystal grain size of retained austenite needs to be 2.0 ⁇ m or less.
  • the average crystal grain size of retained austenite is preferably 1.7 ⁇ m or less.
  • the lower limit of the average crystal grain size of retained austenite is not particularly limited, but is, for example, 0.3 ⁇ m or more.
  • aspects ratio of retained austenite 2.0 or more
  • the aspect ratio of retained austenite is 2.0 or more, and preferably 2.3 or more.
  • the upper limit of the aspect ratio of retained austenite is not particularly limited, but is, for example, 5.0 or less.
  • non-recrystallized ferrite, pearlite, cementite and the like may be further generated.
  • the volume ratio is preferably 10% or less for non-recrystallized ferrite, 5% or less for pearlite, and 5% or less for cementite.
  • the high-strength cold-rolled thin steel sheet of the present invention having the above composition and the above structure may further have a plating layer on its surface in order to improve corrosion resistance.
  • a hot dip galvanized layer, an alloyed hot dip galvanized layer, or an electrogalvanized layer is preferable.
  • the hot-dip galvanized layer, the alloyed hot-dip galvanized layer, and the electrogalvanized layer are not particularly limited, and are conventionally known hot-dip galvanized layer, conventionally known alloyed hot-dip galvanized layer, and conventionally known, respectively.
  • the electrogalvanized layer is preferably used.
  • the electrogalvanized layer may be a zinc alloy plated layer obtained by adding an appropriate amount of elements such as Fe, Cr, Ni, Mn, Co, Sn, Pb, or Mo to Zn according to the purpose. .
  • the manufacturing method of the present invention generally includes the above-described high-strength cold-rolled thin film of the present invention by sequentially performing hot rolling, pickling, cold rolling, and annealing on a steel material having the above composition. It is a method of obtaining a steel plate. And in the manufacturing method of this invention, the process of annealing is divided into two processes.
  • the steel material is not particularly limited as long as it is a steel material having the above composition.
  • the steel material having the above composition is melted by a conventional melting method using a converter or the like, and a continuous casting method is used.
  • the obtained slab having a predetermined dimension is preferably used.
  • a steel piece (steel material) may be manufactured by ingot-bundling rolling.
  • a hot rolling process is a process of obtaining a hot-rolled sheet by hot-rolling the steel raw material which has the said composition.
  • the hot rolling process is not particularly limited as long as it is a process in which a steel material having the above composition is heated and subjected to hot rolling to obtain a hot rolled sheet having a predetermined size, and a normal hot rolling process is applied. it can.
  • a normal hot rolling process for example, a steel material is heated to a heating temperature of 1100 ° C. or more and 1250 ° C. or less, and the heated steel material is hot rolled at a hot rolling outlet temperature of 850 ° C. or more and 950 ° C. or less.
  • an appropriate post-rolling cooling (specifically, for example, an average cooling rate of 40 ° C./s to 100 ° C./s in a temperature range of 450 ° C. to 950 ° C.)
  • the steel sheet is wound at a coiling temperature of 450 ° C. or higher and 650 ° C. or lower to obtain a hot-rolled sheet having a predetermined size and shape.
  • the pickling step is a step of pickling the hot-rolled sheet obtained through the hot rolling step.
  • the pickling step is not particularly limited as long as it can be pickled to such an extent that cold rolling can be performed on the hot-rolled sheet.
  • a conventional pickling step using hydrochloric acid or sulfuric acid can be applied.
  • the cold rolling process is a process of performing cold rolling on the hot-rolled sheet that has undergone the pickling process. More specifically, the cold rolling step is a step of obtaining a thin cold rolled plate having a predetermined thickness by subjecting the hot rolled plate subjected to pickling to cold rolling with a rolling reduction of 30% or more.
  • ⁇ Cold rolling reduction 30% or more>
  • the rolling reduction of cold rolling is 30% or more.
  • the processing amount is insufficient, and recrystallization of the processed ferrite cannot be sufficiently achieved in the subsequent annealing step.
  • the upper limit of the rolling reduction is determined by the capability of the cold rolling mill, but if the rolling reduction is too high, the rolling load increases and the productivity may decrease. For this reason, the rolling reduction is preferably 70% or less.
  • the number of rolling passes and the rolling reduction per pass are not particularly limited.
  • An annealing process is a process which anneals the thin cold-rolled sheet obtained through the cold rolling process, and is a process including the 1st stage annealing process and 2nd stage annealing process mentioned later in detail.
  • First stage annealing process a thin cold-rolled sheet is heated at an annealing temperature T 1 of the 800 ° C. or higher 950 ° C. or less, from the annealing temperatures T 1, at 5 ° C. / s or more average cooling rate, cooling below 500 °C by cooling to stop temperature T 2, which is a step of obtaining a first Danhiyanobe annealed sheets having tissue total of martensite and bainite is not less than 80% by volume.
  • annealing temperature T 1 800 ° C. or higher and 950 ° C. or lower
  • the annealing temperature T 1 is less than 800 ° C., too much amount of generated ferrite during annealing, it can not be secured on the total amount of the desired martensite and bainite.
  • it exceeds annealing temperature T 1 is 950 ° C., and the austenite grains are excessively coarsened, since the formation of ferrite is suppressed in the second stage annealing process, a second Danhiyanobe obtained through the second-stage annealing process Martensite is excessively generated in the annealed plate.
  • annealing temperatures T 1 is 800 ° C. or higher 950 ° C. or less.
  • Holding time at the annealing temperatures T 1 is not particularly limited, for example, is 10s or 900s or less.
  • the cooling is preferably gas cooling, but may be performed in combination with furnace cooling and mist cooling.
  • Cooling stop temperature T 2 500 ° C. or less
  • the cooling stop temperature T 2 In tissue after cooling, to 80% or more by volume of the total of martensite and bainite, the cooling stop temperature T 2 and the temperature of the temperature range below 500 °C. Cooling stop temperature T 2 is preferably 300 ° C. or higher 480 ° C. or less.
  • the second-stage annealing process may be continued. After cooling is stopped, it is allowed to cool, and after cooling to room temperature, it may be shifted to the second stage annealing step.
  • total volume ratio of martensite and bainite 80% or more
  • the second stage obtained through the second stage annealing step when the sum of martensite and bainite is less than 80% in volume ratio.
  • a cold-rolled annealed sheet it becomes difficult to secure desired retained austenite and it is difficult to secure polygonal ferrite having a desired shape (aspect ratio).
  • “bainite” includes upper bainite and lower bainite.
  • Second stage annealing process a first Danhiyanobe annealed sheets obtained through the first-stage annealing process, at 700 ° C. or higher 850 ° C. below the annealing temperature T 3, and held 10s or 900s or less, the annealing temperature T 3 from an average cooling rate of 50 ° C. / s or less 5 ° C. / s or more, cooled to 200 of the cooling stop ° C. or higher 500 ° C. or less temperature T 4, the cooling stop temperature T 4, by holding 10s or 1800s or less, This is a step of obtaining a second-stage cold-rolled annealed plate.
  • the annealing temperature T 3 700 °C more than 850 °C or less.
  • the annealing temperature T 3 is lower than 700 ° C., can not be secured a sufficient amount of austenite during annealing, final desired amount of retained austenite and bainitic ferrite can not be secured.
  • the annealing temperature T 3 is higher than 850 ° C., since the austenite single-phase region, and finally, after that can not be generated residual austenite desired amount, residual austenite with a desired aspect ratio, and a desired aspect ratio
  • the annealing temperature T 3 is at 700 ° C. or higher 850 ° C. or less, preferably 720 ° C. or higher 830 ° C. or less.
  • Holding time at the annealing temperature T 3 is less than 10s, can not be ensured a sufficient amount of austenite during annealing, final desired amount of retained austenite and bainitic ferrite can not be secured.
  • the holding time at the annealing temperature T 3 is when it comes to long beyond 900s, resulting grain coarsening, eventually no longer able to generate residual austenite desired amount. Therefore, the holding time at the annealing temperature T 3 is 10s or 900s or less.
  • the average cooling rate from the annealing temperature T 3 to a cooling stop temperature T 4 is lower than 5 ° C. / s, and generates a large amount of polygonal ferrite and pearlite during cooling, it can be ensured desired amount of bainitic ferrite Disappear.
  • the average cooling rate from the annealing temperature T 3 to a cooling stop temperature T 4 is greater than 50 ° C. / s, the low temperature transformation structure such as martensite is generated excessively. Therefore, the average cooling rate from the annealing temperature T 3 to a cooling stop temperature T 4 is 50 ° C. / s or less 5 ° C. / or.
  • the cooling is preferably gas cooling, but can be performed by combining furnace cooling and mist cooling.
  • the cooling stop temperature T 4 is 200 ° C. or more and 500 ° C. or less. If the cooling stop temperature T 4 is lower than 200 ° C., during retention after cooling down, a large amount of martensite is produced, it can not be ensured the desired tissue (volume ratio and aspect ratio of retained austenite). On the other hand, the cooling stop temperature T 4 is more than 500 ° C., during retention after cooling down, to generate a large amount of polygonal ferrite and pearlite, it can not be ensured the desired tissue. Specifically, for polygonal ferrite, the volume ratio is excessive, while the aspect ratio is excessive. Moreover, the volume fraction of bainitic ferrite becomes too small. Furthermore, the volume fraction and aspect ratio of retained austenite are too small. Therefore, the cooling stop temperature T 4 is 200 ° C. or higher 500 ° C. or less.
  • Second Danhiyanobe annealed sheet after holding in the cooling stop temperature T 4 cools.
  • This cooling is not particularly limited, and the cooling can be performed to a desired temperature such as room temperature by an arbitrary method such as cooling.
  • the second-stage cold-rolled annealed sheet obtained through the second-stage annealing process becomes the high-strength cold-rolled thin steel sheet of the present invention.
  • the second-stage cold-rolled annealed sheet may be referred to as “cold-rolled thin steel sheet”.
  • the second-stage cold-rolled annealed plate (cold-rolled thin steel plate) obtained through the second-stage annealing step may be further subjected to a plating treatment to form a plating layer on the surface thereof.
  • the second-stage cold-rolled annealed plate having a plating layer formed on the surface is the high-strength cold-rolled thin steel plate of the present invention.
  • hot dip galvanizing treatment hot dip galvanizing treatment and alloying treatment, or electrogalvanizing treatment is preferable.
  • the hot dip galvanizing treatment, the hot dip galvanizing treatment and the alloying treatment, and the electrogalvanizing treatment are not particularly limited, and are conventionally known hot dip galvanizing treatment, conventionally known hot dip galvanizing treatment and alloying treatment, respectively.
  • a conventionally known electrogalvanizing treatment is preferably used.
  • pretreatment such as degreasing and phosphate treatment may be performed prior to the plating treatment.
  • the hot dip galvanizing treatment for example, a conventional continuous hot dip galvanizing line is used to immerse the second stage cold-rolled annealing plate in a hot dip galvanizing bath and form a predetermined amount of hot dip galvanized layer on the surface. It is preferable that When immersed in a hot dip galvanizing bath, the temperature of the second-stage cold-rolled annealed plate is not less than the temperature of the hot dip galvanizing bath temperature ⁇ 50 ° C. and not more than the temperature of the hot dip galvanizing bath temperature + 80 ° C. by reheating or cooling. It is preferable to adjust within the range.
  • the temperature of the hot dip galvanizing bath is preferably 440 ° C or higher, and more preferably 500 ° C or lower.
  • the hot dip galvanizing bath may contain Al, Fe, Mg, Si or the like in addition to pure zinc.
  • the adhesion amount of the hot-dip galvanized layer can be adjusted to a desired adhesion amount by adjusting gas wiping or the like, and is preferably about 45 g / m 2 per side.
  • the plated layer (hot galvanized layer) formed by the hot dip galvanizing process may be an alloyed hot dip galvanized layer by performing a usual alloying process as necessary.
  • the temperature for the alloying treatment is preferably 460 ° C. or more and 600 ° C. or less.
  • adjusting the effective Al concentration in the hot dip galvanizing bath to a range of 0.10% by mass or more and 0.22% by mass or less from the viewpoint of securing a desired plating appearance. preferable.
  • the electrogalvanizing treatment is preferably, for example, a treatment of forming a predetermined amount of electrogalvanized layer on the surface of the second stage cold-rolled annealed plate using a conventional electrogalvanizing line.
  • the adhesion amount of the electrogalvanized layer can be adjusted to a predetermined adhesion amount by adjusting the sheet passing speed or the current value, and is preferably about 30 g / m 2 per side.
  • the annealing process was a two-stage process consisting of a first stage annealing process and a second stage annealing process. Holding time at the annealing temperature T 1 of the first stage annealing process was 100s. After the first stage annealing step, a specimen for observing the structure was collected from the first stage cold-rolled annealed sheet, and the structure was observed.
  • a hot-dip galvanized layer is formed on the surface of the hot-dip galvanized thin steel plate after the annealing has been completed. It was.
  • the hot dip galvanizing process using a continuous hot dip galvanizing line, the second-stage cold-rolled annealed plate (cold-rolled thin steel plate) is reheated to a temperature in the range of 430 ° C. or higher and 480 ° C. or lower as necessary. It was immersed in a hot dip galvanizing bath (bath temperature: 470 ° C.).
  • the bath composition was Zn-0.18 mass% Al. At this time, in some hot-dip galvanized steel sheets, the bath composition was Zn-0.14 mass% Al, and after the plating treatment, alloying treatment was performed at 520 ° C. to obtain an alloyed hot-dip galvanized thin steel sheet. .
  • the Fe concentration in the plating layer was 9% by mass or more and 12% by mass or less.
  • an electric galvanizing line is used after the annealing, so that the amount of plating is 30 g / m 2 per side. A galvanizing treatment was performed to obtain an electrogalvanized sheet steel.
  • the second-stage cold-rolled annealed sheet (cold-rolled sheet steel) that does not form a plating layer is “CR”
  • the hot-dip galvanized sheet steel is “GI”
  • the galvannealed sheet steel is “GA”.
  • the electrogalvanized sheet steel was denoted as “EG”.
  • tissue of the test piece was observed in the visual field of the range of 40 micrometers x 40 micrometers, respectively, and it imaged and obtained the SEM image.
  • the fraction (area ratio) of each tissue was determined by image analysis. The obtained value was treated as a volume fraction and used as a fraction of each tissue.
  • “Image-Pro” (trade name) manufactured by Media Cybernetics was used as analysis software.
  • polygonal ferrite is gray, martensite and retained austenite are white, so each structure was judged from the color tone.
  • a structure in which retained austenite and cementite are observed in fine lines or dots in ferrite is bainite.
  • the volume ratio of the retained austenite obtained separately was subtracted from the volume ratio of the structure exhibiting white to obtain the volume ratio of martensite.
  • the major axis and minor axis of each polygonal ferrite were determined by image analysis, the area was calculated from the determined major axis and minor axis, and the equivalent circle diameter was calculated from the calculated area. The values were arithmetically averaged to obtain the average crystal grain size of polygonal ferrite. From the obtained major axis and minor axis, the aspect ratio of each polygonal ferrite was calculated, and the obtained values were arithmetically averaged to obtain the polygonal ferrite aspect ratio (average).
  • Test specimens for observation with a transmission electron microscope were collected from the second-stage cold-rolled annealed plate (cold-rolled thin steel plate) or the second-stage cold-rolled annealed plate (cold-rolled thin steel plate) on which the plating layer was formed.
  • the collected specimen was ground and polished (mechanical polishing and electrolytic polishing) so that a position corresponding to 1/4 of the plate thickness was an observation position, and a thin film sample was obtained.
  • tissue was observed using the transmission electron microscope (TEM) (magnification: 15000 times), and 20 or more visual fields were imaged in the visual field of the range of 3 micrometers x 3 micrometers, and the TEM image was obtained.
  • TEM transmission electron microscope
  • the volume fraction of bainitic ferrite and the average crystal grain size and aspect ratio (average) of retained austenite were determined by image analysis.
  • the average crystal grain size of retained austenite was obtained by calculating the area of each retained austenite, calculating the equivalent circle diameter from the determined area, and arithmetically averaging the obtained values to obtain the average crystal grain size of retained austenite.
  • the major axis and the minor axis of each retained austenite are obtained by image analysis, the aspect ratio of each retained austenite is calculated, the obtained value is arithmetically averaged, and the aspect ratio of the retained austenite (average) ).
  • “Image-Pro” (trade name) of Media Cybernetics was used as the analysis software in the same manner as the image analysis of the SEM image.
  • Test specimens were collected. The collected specimen was ground and polished so that the position corresponding to 1/4 of the plate thickness was the measurement surface. About the test piece which grind
  • the volume fraction of retained austenite In calculating the volume fraction of retained austenite, the integrated intensity of the peaks of the ⁇ 111 ⁇ , ⁇ 200 ⁇ , ⁇ 220 ⁇ and ⁇ 311 ⁇ faces of austenite and the ⁇ 110 ⁇ , ⁇ 200 ⁇ and ⁇ 211 ⁇ faces of ferrite The intensity ratio was calculated for all the combinations. The average value thereof was obtained, and the volume fraction of retained austenite was calculated.
  • TS 980 MPa or more, it can be evaluated as high strength.
  • TS ⁇ El is 24500 MPa ⁇ % or more, and when TS is 1180 MPa or more, if TS ⁇ El is 23600 MPa ⁇ % or more, it can be evaluated that the strength-ductility balance is good.
  • each of the cold-rolled thin steel sheets (including the cold-rolled thin steel sheet on which the plating layer is formed) of the present invention has high strength, high ductility, excellent strength-ductility balance, and elongation. Flangeability was also good.
  • the cold-rolled thin steel sheet of the comparative example (including the cold-rolled thin steel sheet on which the plating layer is formed) has ductility and / or stretch flange even if the strength is insufficient or the strength is sufficient. Sex was insufficient.

Abstract

Provided are: a high-strength cold-rolled thin steel sheet which has a tensile strength of 980 MPa or more, while exhibiting high ductility and high stretch flangeability; and a method for producing this high-strength cold-rolled thin steel sheet. This high-strength cold-rolled thin steel sheet has a specific composition and a structure that comprises, in a volume percentage, from 10% to 70% (inclusive) of polygonal ferrite, from 5% to 40% (inclusive) of bainitic ferrite, more than 15% but 40% or less of residual austenite and more than 0% but 30% or less of martensite. The polygonal ferrite has an average crystal grain size of 10.0 μm or less; and the polygonal ferrite has an aspect ratio of 1.5 or more. The residual austenite has an average crystal grain size of 2.0 μm or less; and the residual austenite has an aspect ratio of 2.0 or more.

Description

高強度冷延薄鋼板および高強度冷延薄鋼板の製造方法High strength cold-rolled steel sheet and method for producing high-strength cold-rolled steel sheet
 本発明は、高強度冷延薄鋼板および高強度冷延薄鋼板の製造方法に関する。より詳細には、引張強さTSが980MPa以上であり、自動車部品用として好適な、高強度冷延薄鋼板およびその製造方法に関する。 The present invention relates to a high-strength cold-rolled steel sheet and a method for producing a high-strength cold-rolled steel sheet. More specifically, the present invention relates to a high-strength cold-rolled thin steel sheet having a tensile strength TS of 980 MPa or more and suitable for automobile parts and a method for producing the same.
 近年、地球環境の保全という観点から、自動車の燃費向上が要望されており、車体部品等に、引張強さが980MPa以上である高強度冷延薄鋼板を適用することが促進されている(例えば、特許文献1~3)。
 さらに、最近では、自動車の衝突安全性の向上に対する要求が高まり、衝突時の乗員の安全性確保という観点から、車体の骨格部分等の構造部材用として、引張強さが1180MPa以上である極めて高い強度を有する高強度冷延薄鋼板の適用も検討されている(例えば、特許文献1~3)。
In recent years, from the viewpoint of preservation of the global environment, there has been a demand for improved fuel economy of automobiles, and it has been promoted to apply high-strength cold-rolled thin steel sheets having a tensile strength of 980 MPa or more to body parts and the like (for example, Patent Documents 1 to 3).
Furthermore, recently, there has been an increasing demand for improving the collision safety of automobiles, and from the viewpoint of ensuring the safety of passengers in the event of a collision, the tensile strength for structural members such as the skeleton part of a vehicle body is extremely high at 1180 MPa or more. Application of high-strength cold-rolled thin steel sheets having strength has also been studied (for example, Patent Documents 1 to 3).
特開2011-157583号公報JP 2011-157583 A 特開2007-321237号公報JP 2007-32237 A 特開2008-174802号公報JP 2008-174802 A
 しかしながら、従来の冷延薄鋼板は、引張強さが980MPa以上の高強度であっても、延性が不十分であったり、伸びフランジ性が不十分であったりする場合があった。 However, even if the conventional cold-rolled thin steel sheet has a high strength of 980 MPa or more, the ductility may be insufficient or the stretch flangeability may be insufficient.
 そこで、本発明は、980MPa以上の引張強さを有し、かつ、高延性および高伸びフランジ性を有する高強度冷延薄鋼板およびその製造方法を提供することを目的とする。
 「薄鋼板」とは、板厚が5mm以下である鋼板をいうものとする。
Accordingly, an object of the present invention is to provide a high-strength cold-rolled thin steel sheet having a tensile strength of 980 MPa or more and having high ductility and high stretch flangeability, and a method for producing the same.
“Thin steel plate” refers to a steel plate having a thickness of 5 mm or less.
 本発明者らは、上記目的を達成するために鋭意検討した結果、特定の組成および組織を有する冷延薄鋼板は、引張強さが980MPa以上の高強度であり、かつ、延性および伸びフランジ性にも優れることを見出し、本発明を完成させた。 As a result of intensive studies to achieve the above object, the present inventors have found that a cold-rolled thin steel sheet having a specific composition and structure has a high tensile strength of 980 MPa or more, and has ductility and stretch flangeability. The present invention was completed.
 すなわち、本発明は、以下の[1]~[5]を提供する。
 [1]質量%で、C:0.15%超え0.45%以下、Si:0.50%以上2.50%以下、Mn:1.50%以上3.50%以下、P:0.001%以上0.050%以下、S:0.0100%以下、N:0.0100%以下、および、Al:0.010%以上1.00%以下を含み、残部Feおよび不可避的不純物からなる組成と、体積率で、10%以上70%以下のポリゴナルフェライト、5%以上40%以下のベイニティックフェライト、15%超え40%以下の残留オーステナイト、および、0%超え30%以下のマルテンサイトを有する組織と、を有し、上記ポリゴナルフェライトの平均結晶粒径が10.0μm以下で、かつ、上記ポリゴナルフェライトのアスペクト比が1.5以上であり、上記残留オーステナイトの平均結晶粒径が2.0μm以下で、かつ、上記残留オーステナイトのアスペクト比が2.0以上である、高強度冷延薄鋼板。
 [2]上記組成が、さらに、質量%で、Ti:0.005%以上0.030%以下、Nb:0.005%以上0.030%以下、B:0.0001%以上0.0050%以下、Cr:0.05%以上0.20%以下、Cu:0.05%以上0.20%以下、Sb:0.002%以上0.050%以下、Sn:0.002%以上0.050%以下、Ta:0.001%以上0.100%以下、Ca:0.0005%以上0.0050%以下、Mg:0.0005%以上0.0050%以下、および、REM:0.0005%以上0.0050%以下からなる群から選ばれる少なくとも1種の元素を含む、上記[1]に記載の高強度冷延薄鋼板。
 [3]表面に、溶融亜鉛めっき層、合金化溶融亜鉛めっき層、または、電気亜鉛めっき層を有する、上記[1]または[2]に記載の高強度冷延薄鋼板。
 [4]上記[1]~[3]のいずれかに記載の高強度冷延薄鋼板を製造する方法であって、上記[1]または[2]に記載の組成を有する鋼素材に、熱間圧延を施すことにより、熱延板を得る熱間圧延工程と、上記熱延板に酸洗処理を施す酸洗工程と、上記酸洗処理が施された上記熱延板に、圧下率30%以上の冷間圧延を施すことにより、薄冷延板を得る冷間圧延工程と、上記薄冷延板を、800℃以上950℃以下の焼鈍温度Tで加熱し、上記焼鈍温度Tから、5℃/s以上の平均冷却速度で、500℃以下の冷却停止温度Tまで冷却することにより、マルテンサイトとベイナイトとの合計が体積率で80%以上である組織を有する第1段冷延焼鈍板を得る第1段焼鈍工程と、上記第1段冷延焼鈍板を、700℃以上850℃以下の焼鈍温度Tで、10s以上900s以下保持し、上記焼鈍温度Tから、5℃/s以上50℃/s以下の平均冷却速度で、200℃以上500℃以下の冷却停止温度Tまで冷却し、上記冷却停止温度Tで、10s以上1800s以下保持することにより、第2段冷延焼鈍板を得る第2段焼鈍工程と、を備える高強度冷延薄鋼板の製造方法。
 [5]上記第2段冷延焼鈍板に、溶融亜鉛めっき処理、溶融亜鉛めっき処理および合金化処理、または、電気亜鉛めっき処理を施すめっき工程をさらに備える、上記[4]に記載の高強度冷延薄鋼板の製造方法。
That is, the present invention provides the following [1] to [5].
[1] By mass%, C: more than 0.15% to 0.45% or less, Si: 0.50% to 2.50%, Mn: 1.50% to 3.50%, P: 0.00. 001% or more and 0.050% or less, S: 0.0100% or less, N: 0.0100% or less, and Al: 0.010% or more and 1.00% or less, and the balance is Fe and inevitable impurities Composition and volume ratio of 10% to 70% polygonal ferrite, 5% to 40% bainitic ferrite, 15% to 40% residual austenite, and 0% to 30% martensite A structure having a site, the average grain size of the polygonal ferrite is 10.0 μm or less, the aspect ratio of the polygonal ferrite is 1.5 or more, and the average grain size of the retained austenite is Particle size at 2.0μm or less, and is the aspect ratio of the residual austenite is 2.0 or more, high strength cold rolled steel sheets.
[2] The above composition is further mass%, Ti: 0.005% to 0.030%, Nb: 0.005% to 0.030%, B: 0.0001% to 0.0050% Hereinafter, Cr: 0.05% to 0.20%, Cu: 0.05% to 0.20%, Sb: 0.002% to 0.050%, Sn: 0.002% to 0.000%. 050% or less, Ta: 0.001% or more and 0.100% or less, Ca: 0.0005% or more and 0.0050% or less, Mg: 0.0005% or more and 0.0050% or less, and REM: 0.0005 The high-strength cold-rolled thin steel sheet according to [1] above, which contains at least one element selected from the group consisting of% or more and 0.0050% or less.
[3] The high-strength cold-rolled thin steel sheet according to [1] or [2], which has a hot-dip galvanized layer, an alloyed hot-dip galvanized layer, or an electrogalvanized layer on the surface.
[4] A method for producing a high-strength cold-rolled thin steel sheet according to any one of [1] to [3], wherein a steel material having the composition according to [1] or [2] A rolling reduction ratio of 30 is applied to the hot rolling step of obtaining a hot rolled sheet by performing hot rolling, the pickling step of performing pickling treatment on the hot rolled plate, and the hot rolled plate subjected to the pickling treatment. % Of cold rolling to obtain a thin cold rolled sheet, and the thin cold rolled sheet is heated at an annealing temperature T 1 of 800 ° C. or more and 950 ° C. or less, and the annealing temperature T 1. The first stage having a structure in which the sum of martensite and bainite is 80% or more by volume ratio by cooling to a cooling stop temperature T 2 of 500 ° C. or less at an average cooling rate of 5 ° C./s or more. A first-stage annealing step for obtaining a cold-rolled annealed plate and the first-stage cold-rolled annealed plate at 700 ° C. or higher and 850 ° C. or lower At annealing temperature T 3, and held 10s or 900s or less, from the annealing temperature T 3, at an average cooling rate of 50 ° C. / s or less 5 ° C. / s or higher, up to 200 ° C. or higher 500 ° C. or less of the cooling stop temperature T 4 cooling, in the cooling stop temperature T 4, by holding 10s or 1800s or less, the method of producing a high strength cold rolled steel sheets having a second-stage annealing process of obtaining a second Danhiyanobe annealed sheet, a.
[5] The high strength according to [4], further comprising a plating step of subjecting the second-stage cold-rolled annealed plate to a hot dip galvanizing treatment, a hot dip galvanizing treatment and an alloying treatment, or an electrogalvanizing treatment. A method for producing a cold-rolled thin steel sheet.
 本発明によれば、980MPa以上の引張強さを有し、かつ、高延性および高伸びフランジ性を有する高強度冷延薄鋼板およびその製造方法を提供することができる。
 本発明の高強度冷延薄鋼板を、例えば自動車構造部材に適用することにより、自動車車体の軽量化に大きく寄与でき、自動車の燃費向上に大きく貢献できるという効果もある。
According to the present invention, it is possible to provide a high-strength cold-rolled thin steel sheet having a tensile strength of 980 MPa or more and having high ductility and high stretch flangeability, and a method for producing the same.
By applying the high-strength cold-rolled thin steel sheet of the present invention to, for example, an automobile structural member, it is possible to greatly contribute to the weight reduction of the automobile body and to greatly contribute to the improvement of the fuel consumption of the automobile.
[高強度冷延薄鋼板]
 本発明の高強度冷延薄鋼板は、後述する組成と、体積率で、10%以上70%以下のポリゴナルフェライト、5%以上40%以下のベイニティックフェライト、15%超え40%以下の残留オーステナイト、および、0%超え30%以下のマルテンサイトを有する組織と、を有し、上記ポリゴナルフェライトの平均結晶粒径が10.0μm以下で、かつ、上記ポリゴナルフェライトのアスペクト比が1.5以上であり、上記残留オーステナイトの平均結晶粒径が2.0μm以下で、かつ、上記残留オーステナイトのアスペクト比が2.0以上である、高強度冷延薄鋼板である。
[High strength cold-rolled thin steel sheet]
The high-strength cold-rolled thin steel sheet of the present invention has a composition and a volume ratio of 10% to 70% polygonal ferrite, 5% to 40% bainitic ferrite, 15% to 40% in terms of the composition described later. Residual austenite and a structure having martensite of greater than 0% and less than 30%, the average crystal grain size of the polygonal ferrite is 10.0 μm or less, and the aspect ratio of the polygonal ferrite is 1 A high-strength cold-rolled thin steel sheet having an average crystal grain size of 2.0 μm or less and an aspect ratio of the retained austenite of 2.0 or more.
 以下では、まず、本発明の高強度冷延薄鋼板が有する組成について説明した後、次いで、本発明の高強度冷延薄鋼板が有する組織について説明する。 Hereinafter, the composition of the high-strength cold-rolled steel sheet of the present invention will be described first, and then the structure of the high-strength cold-rolled steel sheet of the present invention will be described.
 〈組成〉
 本発明の高強度冷延薄鋼板は、質量%で、C:0.15%超え0.45%以下、Si:0.50%以上2.50%以下、Mn:1.50%以上3.50%以下、P:0.001%以上0.050%以下、S:0.0100%以下、N:0.0100%以下、および、Al:0.010%以上1.00%を含み、残部Feおよび不可避的不純物からなる組成を有する。
 まず、組成限定の理由を説明する。以下、特に断らない限り、「質量%」を単に「%」で記す。
<composition>
The high-strength cold-rolled thin steel sheet of the present invention is, in mass%, C: more than 0.15% and 0.45% or less, Si: 0.50% or more and 2.50% or less, Mn: 1.50% or more. 50% or less, P: 0.001% or more and 0.050% or less, S: 0.0100% or less, N: 0.0100% or less, and Al: 0.010% or more and 1.00%, the balance It has a composition consisting of Fe and inevitable impurities.
First, the reason for composition limitation will be described. Hereinafter, unless otherwise specified, “mass%” is simply expressed as “%”.
 《C:0.15%超え0.45%以下》
 Cは、高い固溶強化能を有し、強度の増加に寄与するとともに、残留オーステナイトを安定化させ、所望の体積率の残留オーステナイトを確保し、延性の向上に有効に寄与する。このような効果を得るためには、Cは、0.15%超えの含有を必要とする。
 一方、0.45%を超える多量の含有は、靭性および溶接性の低下ならびに遅れ破壊発生の懸念を招く。また、延性および伸びフランジ性の低下を招く。
 このため、Cの含有量は、0.15%超え0.45%以下であり、0.18%以上0.42%以下が好ましく、0.20%以上0.40%以下がより好ましい。
<< C: more than 0.15% and less than 0.45% >>
C has a high solid solution strengthening ability, contributes to increase in strength, stabilizes retained austenite, secures retained austenite having a desired volume ratio, and contributes effectively to improving ductility. In order to acquire such an effect, C needs to contain more than 0.15%.
On the other hand, a large content exceeding 0.45% invites concern about deterioration of toughness and weldability and occurrence of delayed fracture. In addition, ductility and stretch flangeability are reduced.
Therefore, the C content is more than 0.15% and 0.45% or less, preferably 0.18% or more and 0.42% or less, and more preferably 0.20% or more and 0.40% or less.
 《Si:0.50%以上2.50%以下》
 Siは、フェライト中で高い固溶強化能を有し、強度の増加に寄与するとともに、炭化物(セメンタイト)の生成を抑制し、残留オーステナイトの安定化に寄与する、有用な元素である。また、Siは、フェライト中のC(固溶)をオーステナイトに排出させ、フェライトを清浄化し、延性の向上に寄与する作用を有する。また、フェライトに固溶したSiは、加工硬化能を向上させ、フェライト自身の延性向上に寄与する。このような効果を得るためには、Siは、0.50%以上の含有を必要とする。
 一方、Siが2.50%を超えると、炭化物(セメンタイト)の生成を抑制し、残留オーステナイトの安定化に寄与する効果は飽和するだけでなく、フェライト中に固溶するSi量が過度となるため延性が低下する。
 このため、Siの含有量は、0.50%以上2.50%以下であり、0.80%以上2.00%以下が好ましく、1.00%以上1.80%以下がより好ましい。
<< Si: 0.50% or more and 2.50% or less >>
Si is a useful element that has a high solid solution strengthening ability in ferrite, contributes to an increase in strength, suppresses the formation of carbide (cementite), and contributes to stabilization of retained austenite. Moreover, Si has the effect | action which discharges C (solid solution) in a ferrite to austenite, cleans a ferrite, and contributes to a ductile improvement. Moreover, Si dissolved in ferrite improves work hardening ability and contributes to improvement of ductility of ferrite itself. In order to acquire such an effect, Si needs to contain 0.50% or more.
On the other hand, if Si exceeds 2.50%, not only the effect of suppressing the formation of carbide (cementite) and stabilizing the retained austenite is saturated, but the amount of Si dissolved in ferrite becomes excessive. Therefore, ductility is reduced.
For this reason, the Si content is 0.50% or more and 2.50% or less, preferably 0.80% or more and 2.00% or less, and more preferably 1.00% or more and 1.80% or less.
 《Mn:1.50%以上3.50%以下》
 Mnは、固溶強化または焼入れ性向上を介して強度増加に有効に寄与するとともに、オーステナイトを安定化させる元素であり、所望量の残留オーステナイトの確保に必要不可欠な元素である。このような効果を得るために、Mnは、1.50%以上の含有を必要とする。
 一方、Mnが3.50%を超えると、所望量の残留オーステナイトを得ることが困難になり、また、マルテンサイトが過度に生成する。
 このため、Mnの含有量は、1.50%以上3.50%以下であり、2.30%以上3.00%以下が好ましい。
<< Mn: 1.50% to 3.50% >>
Mn is an element that contributes effectively to an increase in strength through solid solution strengthening or improvement in hardenability and stabilizes austenite, and is an indispensable element for securing a desired amount of retained austenite. In order to acquire such an effect, Mn needs to contain 1.50% or more.
On the other hand, when Mn exceeds 3.50%, it becomes difficult to obtain a desired amount of retained austenite, and martensite is excessively generated.
For this reason, content of Mn is 1.50% or more and 3.50% or less, and 2.30% or more and 3.00% or less are preferable.
 《P:0.001%以上0.050%以下》
 Pは、固溶強化により強度増加に寄与する元素であり、所望の強度に応じて適正量含有できる。Pは、フェライト変態を促進する作用を有し、複合組織の形成に有効な元素である。このような効果を得るためには、Pは、0.001%以上の含有を必要とする。
 一方、Pが0.050%を超えると、溶接性の低下を招くとともに、粒界偏析による粒界破壊を助長する。
 このため、Pの含有量は、0.001%以上0.050%以下であり、0.005%以上0.030%以下が好ましい。
<< P: 0.001% to 0.050% >>
P is an element contributing to an increase in strength by solid solution strengthening, and can be contained in an appropriate amount according to a desired strength. P is an element that has an action of promoting ferrite transformation and is effective in forming a composite structure. In order to acquire such an effect, P needs to contain 0.001% or more.
On the other hand, if P exceeds 0.050%, weldability is deteriorated and grain boundary fracture due to grain boundary segregation is promoted.
For this reason, content of P is 0.001% or more and 0.050% or less, and 0.005% or more and 0.030% or less are preferable.
 《S:0.0100%以下》
 Sは、粒界に偏析して熱間加工時に鋼を脆化させるとともに、硫化物として鋼中に存在して局部変形能を低下させる元素であり、極力低減することが好ましいが、0.0100%以下であれば、上記した悪影響は許容できる。
 このため、Sの含有量は、0.0100%以下であり、0.0050%以下が好ましい。Sを過度に低減することは、生産技術上の制約または精錬コストの高騰を招くため、Sの含有量は、0.0001%以上とすることが好ましい。
<< S: 0.0100% or less >>
S is an element that segregates at the grain boundaries and embrittles the steel during hot working, and is present in the steel as a sulfide to reduce local deformability, and is preferably reduced as much as possible. % Or less, the above-mentioned adverse effects are acceptable.
For this reason, content of S is 0.0100% or less, and 0.0050% or less is preferable. Since excessively reducing S leads to restrictions on production technology or an increase in refining costs, the S content is preferably 0.0001% or more.
 《N:0.0100%以下》
 Nは、鋼の耐時効性を低下させる元素であり、極力低減することが好ましいが、0.0100%以下であれば、上記した悪影響は許容できる。
 このため、Nの含有量は、0.0100%以下であり、0.0070%以下が好ましい。Nを過度に低減することは、生産技術上の制約または精錬コストの高騰を招くため、Nの含有量は、0.0005%以上とすることが好ましい。
<< N: 0.0100% or less >>
N is an element that lowers the aging resistance of steel and is preferably reduced as much as possible. However, if it is 0.0100% or less, the above-described adverse effects can be tolerated.
For this reason, content of N is 0.0100% or less, and 0.0070% or less is preferable. Since excessively reducing N leads to restrictions on production technology or an increase in refining costs, the N content is preferably 0.0005% or more.
 《Al:0.010%以上1.00%以下》
 Alは、フェライト生成元素であり、強度と延性とのバランス(強度-延性バランス)を向上させる元素である。このような効果を得るためには、Alを0.010%以上含有する必要がある。
 一方、1.00%を超えるAlの含有は、表面性状の低下を招く。
 このため、Alの含有量は、0.010%以上1.00%以下であり、0.030%以上0.500%以下が好ましく、0.050%以上0.450%以下がより好ましい。
<< Al: 0.010% or more and 1.00% or less >>
Al is a ferrite-forming element and is an element that improves the balance between strength and ductility (strength-ductility balance). In order to acquire such an effect, it is necessary to contain Al 0.010% or more.
On the other hand, the content of Al exceeding 1.00% causes a decrease in surface properties.
For this reason, content of Al is 0.010% or more and 1.00% or less, 0.030% or more and 0.500% or less are preferable, and 0.050% or more and 0.450% or less are more preferable.
 《その他の成分(元素)》
 上記組成が基本の組成であるが、上記組成は、さらに、Ti:0.005%以上0.030%以下、Nb:0.005%以上0.030%以下、B:0.0001%以上0.0050%以下、Cr:0.05%以上0.20%以下、Cu:0.05%以上0.20%以下、Sb:0.002%以上0.050%以下、Sn:0.002%以上0.050%以下、Ta:0.001%以上0.100%以下、Ca:0.0005%以上0.0050%以下、Mg:0.0005%以上0.0050%以下、および、REM:0.0005%以上0.0050%以下からなる群から選ばれる少なくとも1種の元素を含むことができる。
<Other components (elements)>
The above composition is a basic composition, but the composition is further Ti: 0.005% to 0.030%, Nb: 0.005% to 0.030%, B: 0.0001% to 0 .0050% or less, Cr: 0.05% to 0.20%, Cu: 0.05% to 0.20%, Sb: 0.002% to 0.050%, Sn: 0.002% 0.050% or less, Ta: 0.001% or more and 0.100% or less, Ca: 0.0005% or more and 0.0050% or less, Mg: 0.0005% or more and 0.0050% or less, and REM: It may contain at least one element selected from the group consisting of 0.0005% or more and 0.0050% or less.
 (TiおよびNb)
 TiおよびNbは、いずれも焼鈍工程等の加熱時における結晶粒の粗大化を抑制し、焼鈍後の鋼板組織の細粒化および均一化に寄与する有効な元素である。このような効果を得るためには、それぞれ、Ti:0.005%以上、Nb:0.005%以上の含有が好ましい。
 一方、それぞれ、Ti:0.030%、Nb:0.030%を超える含有は、フェライト中にTi系、Nb系の析出物が過度に生成するため、延性が低下する場合がある。
 このため、Tiの含有量は、0.005%以上0.030%以下が好ましく、0.010%以上0.020%以下がより好ましい。Nbの含有量は、0.005%以上0.030%以下が好ましく、0.010%以上0.020%以下がより好ましい。
(Ti and Nb)
Ti and Nb are both effective elements that suppress the coarsening of crystal grains during heating in the annealing step or the like and contribute to the refinement and homogenization of the steel sheet structure after annealing. In order to obtain such effects, it is preferable to contain Ti: 0.005% or more and Nb: 0.005% or more, respectively.
On the other hand, when the content exceeds Ti: 0.030% and Nb: 0.030%, respectively, Ti-based and Nb-based precipitates are excessively generated in the ferrite, so that the ductility may be lowered.
For this reason, the content of Ti is preferably 0.005% or more and 0.030% or less, and more preferably 0.010% or more and 0.020% or less. The Nb content is preferably 0.005% or more and 0.030% or less, and more preferably 0.010% or more and 0.020% or less.
 (B)
 Bは、焼入れ性の向上を介して、鋼板の強化に寄与する有効な元素である。このような効果を得るためには、0.0001%以上含有することが好ましい。
 一方、0.0050%を超える含有は、マルテンサイトの含有量が多くなりすぎ、強度増加が大きくなりすぎて、延性低下の懸念を招く場合がある。
 このため、Bを含有する場合、Bの含有量は、0.0001%以上0.0050%以下が好ましく、0.0005%以上0.0030%以下がより好ましい。
(B)
B is an effective element that contributes to strengthening of the steel sheet through improvement of hardenability. In order to acquire such an effect, it is preferable to contain 0.0001% or more.
On the other hand, if the content exceeds 0.0050%, the content of martensite is excessively increased, and the increase in strength is excessively increased, which may cause a decrease in ductility.
For this reason, when B is contained, the content of B is preferably 0.0001% or more and 0.0050% or less, and more preferably 0.0005% or more and 0.0030% or less.
 (Cr)
 Crは、固溶強化により、鋼板の強化に寄与するとともに、焼鈍工程の冷却時に、オーステナイトを安定化し、組織の複合化を容易にする。
 このような効果を得るためには、0.05%以上の含有量にすることが好ましい。
 一方、0.20%を超えて多量に含有すると、成形性が低下する場合がある。
 このため、Crを含有する場合、Crの含有量は、0.05%以上0.20%以下が好ましい。
(Cr)
Cr contributes to the strengthening of the steel sheet by solid solution strengthening, stabilizes austenite during cooling in the annealing process, and facilitates complexation of the structure.
In order to obtain such an effect, the content is preferably 0.05% or more.
On the other hand, when it contains more than 0.20%, moldability may fall.
For this reason, when Cr is contained, the content of Cr is preferably 0.05% or more and 0.20% or less.
 (Cu)
 Cuは、固溶強化により、鋼板の強化に寄与するとともに、焼鈍工程の冷却時に、オーステナイトを安定化し、組織の複合化を容易にする。
 このような効果を得るためには、0.05%以上の含有量にすることが好ましい。
 一方、0.20%を超えて多量に含有すると、成形性が低下する場合がある。
 このため、Cuを含有する場合、Cuの含有量は、0.05%以上0.20%以下が好ましい。
(Cu)
Cu contributes to the strengthening of the steel sheet by solid solution strengthening, stabilizes austenite during cooling in the annealing process, and facilitates complexation of the structure.
In order to obtain such an effect, the content is preferably 0.05% or more.
On the other hand, when it contains more than 0.20%, moldability may fall.
For this reason, when Cu is contained, the content of Cu is preferably 0.05% or more and 0.20% or less.
 (SbおよびSn)
 SbおよびSnは、鋼板表面の窒化および酸化によって生じる、鋼板表層(数十μm程度の領域)の脱炭を抑制する作用を有する。このような鋼板表層の窒化および酸化を抑制すれば、鋼板表面においてマルテンサイトの生成量が減少するのを防止できる。その結果、所望の強度の確保にも有効となる。また、焼鈍時の温度変動に起因する強度および伸びのばらつきを減少させることができ、製造安定性の確保にも有効となる。
 このような効果を得るためには、SbおよびSnを、それぞれ0.002%以上含有させることが好ましい。
 一方、SbおよびSnを、それぞれ、0.050%を超えて過剰に含有すると、靭性の低下を招く場合がある。
 このため、Sbおよび/またはSnを含有する場合には、SbおよびSnの含有量は、それぞれ、0.002%以上0.050%以下が好ましい。
(Sb and Sn)
Sb and Sn have an effect of suppressing decarburization of the steel sheet surface layer (a region of several tens of μm) caused by nitriding and oxidation of the steel sheet surface. By suppressing such nitriding and oxidation of the steel sheet surface layer, it is possible to prevent a reduction in the amount of martensite produced on the steel sheet surface. As a result, it is effective to secure a desired strength. In addition, variations in strength and elongation due to temperature fluctuations during annealing can be reduced, which is also effective in ensuring manufacturing stability.
In order to obtain such an effect, it is preferable to contain 0.002% or more of Sb and Sn, respectively.
On the other hand, when Sb and Sn are respectively contained excessively exceeding 0.050%, the toughness may be lowered.
For this reason, when Sb and / or Sn are contained, the content of Sb and Sn is preferably 0.002% or more and 0.050% or less, respectively.
 (Ta)
 Taは、炭化物および炭窒化物を生成して、鋼板の高強度化に寄与する。このような効果を得るには、0.001%以上の含有量にすることが好ましい。
 一方、0.100%を超えて過剰に含有すると、材料コストが増加し、含有量に見合う効果が期待できなくなり、経済的に不利となる場合がある。
 このため、Taを含有する場合、Taの含有量は、0.001%以上0.100%以下が好ましい。
(Ta)
Ta generates carbides and carbonitrides and contributes to increasing the strength of the steel sheet. In order to obtain such an effect, the content is preferably 0.001% or more.
On the other hand, if the content exceeds 0.100%, the material cost increases, and an effect commensurate with the content cannot be expected, which may be economically disadvantageous.
For this reason, when Ta is contained, the content of Ta is preferably 0.001% or more and 0.100% or less.
 (Ca、MgおよびREM)
 Ca、MgおよびREM(希土類元素)は、いずれも、脱酸に用いる元素であるとともに、硫化物の形状を球状化し、硫化物の局部延性および伸びフランジ性に対する悪影響を改善する作用を有する元素であり、必要に応じて1種または2種以上を含有できる。
 このような効果を得るためには、Ca、MgおよびREMは、それぞれ、0.0005%以上の含有量にすることが好ましい。
 一方、0.0050%を超えて過剰に含有すると、介在物等の増加を招き、表面欠陥および内部欠陥を発生させる場合がある。
 Ca、MgおよびREMを含有する場合、Ca、MgおよびREMの含有量は、それぞれ、0.0005%以上0.0050%以下が好ましい。
(Ca, Mg and REM)
Ca, Mg, and REM (rare earth elements) are all elements used for deoxidation, and have an effect of improving the adverse effect on the local ductility and stretch flangeability of sulfides by making the shape of sulfides spherical. Yes, it can contain 1 type or 2 types or more as needed.
In order to obtain such an effect, Ca, Mg, and REM are each preferably contained in a content of 0.0005% or more.
On the other hand, if the content exceeds 0.0050%, inclusions and the like increase, and surface defects and internal defects may occur.
When Ca, Mg and REM are contained, the content of Ca, Mg and REM is preferably 0.0005% or more and 0.0050% or less, respectively.
 《残部Feおよび不可避的不純物》
 上記組成において、上記成分以外の残部は、Fe(残部Fe)および不可避的不純物からなる。
<< Remainder Fe and inevitable impurities >>
In the above composition, the balance other than the above components consists of Fe (remainder Fe) and inevitable impurities.
 〈組織〉
 次に、本発明の高強度冷延薄鋼板の組織限定について説明する。
 本発明の高強度冷延薄鋼板は、ポリゴナルフェライト、ベイニティックフェライト、残留オーステナイト、および、マルテンサイトからなる組織(複合組織)を有する。具体的には、本発明の高強度冷延薄鋼板は、表面から板厚方向に板厚の1/4に相当する位置(板厚1/4位置)において、体積率で、10%以上70%以下のポリゴナルフェライトと、5%以上40%以下のベイニティックフェライトと、15%超え40%以下の残留オーステナイトと、0%超え30%以下のマルテンサイトとからなる複合組織を有する。
<Organization>
Next, the structure limitation of the high-strength cold-rolled thin steel sheet of the present invention will be described.
The high-strength cold-rolled thin steel sheet of the present invention has a structure (composite structure) composed of polygonal ferrite, bainitic ferrite, retained austenite, and martensite. Specifically, the high-strength cold-rolled steel sheet of the present invention has a volume ratio of 10% or more and 70 at a position corresponding to ¼ of the plate thickness in the plate thickness direction from the surface (plate thickness ¼ position). % Of polygonal ferrite, 5% to 40% bainitic ferrite, 15% to 40% residual austenite, and 0% to 30% martensite.
 《ポリゴナルフェライトの体積率:10%以上70%以下》
 ポリゴナルフェライトは、延性(伸び)の向上に寄与する。このため、体積率で、10%以上のポリゴナルフェライトを含む組織とする。ポリゴナルフェライトが、体積率で10%未満では、所望の延性を確保することが難しい。
 一方、ポリゴナルフェライトが体積率で70%を超えると、所望の高強度を確保できなくなる。
 このため、ポリゴナルフェライトの体積率は、10%以上70%以下であり、15%以上65%以下が好ましい。
<< Volume ratio of polygonal ferrite: 10% to 70% >>
Polygonal ferrite contributes to improvement of ductility (elongation). For this reason, it is set as the structure | tissue containing 10% or more polygonal ferrite by volume ratio. If the polygonal ferrite is less than 10% by volume, it is difficult to ensure desired ductility.
On the other hand, if the polygonal ferrite exceeds 70% by volume, the desired high strength cannot be ensured.
For this reason, the volume fraction of polygonal ferrite is 10% or more and 70% or less, and preferably 15% or more and 65% or less.
 《ベイニティックフェライトの体積率:5%以上40%以下》
 ベイニティックフェライトは、転位密度が高く、強度の増加に寄与するだけでなく、伸びフランジ性(穴広げ率)の向上に寄与する。さらに、未変態オーステナイト中のCを濃化させるため、所望の残留オーステナイトを確保するために必要である。このような効果を得るために、ベイニティックフェライトを体積率で5%以上とする。
 一方、ベイニティックフェライトが体積率で40%を超えると、所望の高強度を確保できなくなる。
 このため、ベイニティックフェライトの体積率は、5%以上40%以下である。
 ここでいう「ベイニティックフェライト」とは、上部ベイナイト変態によって生成するフェライトであり、ポリゴナルフェライトよりも高い転位密度を有する。
<< Volume ratio of bainitic ferrite: 5% to 40% >>
Bainitic ferrite has a high dislocation density and contributes not only to an increase in strength but also to an improvement in stretch flangeability (hole expansion ratio). Furthermore, in order to concentrate C in untransformed austenite, it is necessary to secure desired retained austenite. In order to acquire such an effect, bainitic ferrite is made into 5% or more by volume ratio.
On the other hand, if the bainitic ferrite exceeds 40% by volume, the desired high strength cannot be ensured.
For this reason, the volume ratio of bainitic ferrite is 5% or more and 40% or less.
The “bainitic ferrite” referred to here is a ferrite generated by the upper bainite transformation, and has a higher dislocation density than polygonal ferrite.
 《残留オーステナイトの体積率:15%超え40%以下》
 残留オーステナイトは、それ自体、延性に富むが、歪誘起変態してさらに延性の向上に寄与する組織であり、延性の向上および強度-延性バランスの向上に寄与する。このような効果を得るためには、残留オーステナイトは、体積率で15%超えとする必要がある。
 一方、残留オーステナイトが体積率で40%を超えて多くなると、強度が低下し、所望の高強度を確保できなくなる。
 このため、残留オーステナイトの体積率は、15%超え40%以下であり、17%以上40%以下が好ましい。
<< Volume ratio of retained austenite: more than 15% and 40% or less >>
Residual austenite itself is rich in ductility, but is a structure that contributes to further improving ductility by strain-induced transformation, and contributes to improving ductility and improving the strength-ductility balance. In order to obtain such an effect, the retained austenite needs to exceed 15% by volume.
On the other hand, if the retained austenite increases in volume ratio exceeding 40%, the strength is lowered and the desired high strength cannot be ensured.
For this reason, the volume ratio of retained austenite is 15% to 40%, preferably 17% to 40%.
 《マルテンサイトの体積率:0%超え30%以下》
 ここでいう「マルテンサイト」とは、フレッシュマルテンサイト、および、焼き戻しマルテンサイトを含むものとする。
 マルテンサイトが、体積率で30%を超えて多くなると、所望の延性および伸びフランジ性を確保できなくなる。
 一方、所望の高強度を確保するためには、マルテンサイトは、体積率で、0%を超え(0%は含まず)、3%以上であることが好ましい。
 このため、マルテンサイトの体積率は、0%超え30%以下であり、3%以上30%以下が好ましい。
<< Volume ratio of martensite: 0% to 30% >>
The “martensite” here includes fresh martensite and tempered martensite.
When martensite exceeds 30% in volume ratio, desired ductility and stretch flangeability cannot be secured.
On the other hand, in order to ensure a desired high strength, martensite is preferably in a volume ratio exceeding 0% (not including 0%) and 3% or more.
For this reason, the volume ratio of martensite is more than 0% and 30% or less, and preferably 3% or more and 30% or less.
 《ポリゴナルフェライトの平均結晶粒径:10.0μm以下》
 ポリゴナルフェライトの平均結晶粒径を10.0μm以下とすることにより、残留オーステナイトおよびマルテンサイトなどの硬質組織の分散を均一にし、伸びフランジ性の向上に寄与する。ポリゴナルフェライトの平均結晶粒径が10.0μmを超えると、残留オーステナイトおよびマルテンサイトの分散が不均一となり、所望の伸びフランジ性が確保できなくなる。ポリゴナルフェライトの平均結晶粒径は、8.0μm以下が好ましい。
 一方、ポリゴナルフェライトの平均結晶粒径の下限は、特に限定されないが、例えば、3.0μm以上である。
<< Average crystal grain size of polygonal ferrite: 10.0 μm or less >>
By setting the average crystal grain size of polygonal ferrite to 10.0 μm or less, the hard austenite and martensite and other hard structures are uniformly dispersed and contribute to improvement of stretch flangeability. When the average crystal grain size of polygonal ferrite exceeds 10.0 μm, the dispersion of retained austenite and martensite becomes non-uniform, and the desired stretch flangeability cannot be secured. The average crystal grain size of polygonal ferrite is preferably 8.0 μm or less.
On the other hand, the lower limit of the average grain size of polygonal ferrite is not particularly limited, but is, for example, 3.0 μm or more.
 《ポリゴナルフェライトのアスペクト比:1.5以上》
 ポリゴナルフェライトのアスペクト比を1.5以上とすることにより、所望量の残留オーステナイトを確保でき、延性の向上および強度-延性バランスの向上に寄与する。さらに、穴広げ試験時に生じたき裂の伸展を抑制し、伸びフランジ性の向上にも寄与する。このため、ポリゴナルフェライトのアスペクト比は、1.5以上であり、2.0以上が好ましい。
 一方、ポリゴナルフェライトのアスペクト比の上限は、特に限定されないが、例えば、4.0以下である。
<< Aspect ratio of polygonal ferrite: 1.5 or more >>
By setting the aspect ratio of polygonal ferrite to 1.5 or more, a desired amount of retained austenite can be secured, which contributes to improvement of ductility and improvement of strength-ductility balance. In addition, it suppresses crack extension during the hole expansion test and contributes to the improvement of stretch flangeability. For this reason, the aspect ratio of polygonal ferrite is 1.5 or more, and preferably 2.0 or more.
On the other hand, the upper limit of the aspect ratio of polygonal ferrite is not particularly limited, but is, for example, 4.0 or less.
 《残留オーステナイトの平均結晶粒径:2.0μm以下》
 残留オーステナイトの結晶粒を微細化することにより、延性が向上する。そのため、良好な延性を確保するためには、残留オーステナイトの平均結晶粒径を2.0μm以下にする必要がある。より良好な延性を確保するために、残留オーステナイトの平均結晶粒径は、1.7μm以下であることが好ましい。
 一方、残留オーステナイトの平均結晶粒径の下限は、特に限定されないが、例えば、0.3μm以上である。
<< Average crystal grain size of retained austenite: 2.0 μm or less >>
By reducing the crystal grains of retained austenite, ductility is improved. Therefore, in order to ensure good ductility, the average crystal grain size of retained austenite needs to be 2.0 μm or less. In order to ensure better ductility, the average crystal grain size of retained austenite is preferably 1.7 μm or less.
On the other hand, the lower limit of the average crystal grain size of retained austenite is not particularly limited, but is, for example, 0.3 μm or more.
 《残留オーステナイトのアスペクト比:2.0以上》
 残留オーステナイトのアスペクト比を2.0以上にすることにより、良好な延性および強度-延性バランスを確保し、さらに、穴広げ試験時に生じたき裂の伸展を抑制し、伸びフランジ性の向上にも寄与する。このため、残留オーステナイトのアスペクト比は、2.0以上であり、2.3以上が好ましい。
 一方、残留オーステナイトのアスペクト比の上限は、特に限定されないが、例えば、5.0以下である。
<< Aspect ratio of retained austenite: 2.0 or more >>
By setting the aspect ratio of retained austenite to 2.0 or more, good ductility and strength-ductility balance are ensured, and further, crack extension during the hole expansion test is suppressed, contributing to improvement of stretch flangeability. To do. For this reason, the aspect ratio of retained austenite is 2.0 or more, and preferably 2.3 or more.
On the other hand, the upper limit of the aspect ratio of retained austenite is not particularly limited, but is, for example, 5.0 or less.
 上記組織においては、さらに、未再結晶フェライト、パーライト、および、セメンタイトなどが生成されてもよい。ただし、体積率で、未再結晶フェライトは10%以下、パーライトは5%以下、セメンタイトは5%以下が好ましい。 In the above structure, non-recrystallized ferrite, pearlite, cementite and the like may be further generated. However, the volume ratio is preferably 10% or less for non-recrystallized ferrite, 5% or less for pearlite, and 5% or less for cementite.
 〈めっき層〉
 上記組成および上記組織を有する本発明の高強度冷延薄鋼板は、耐食性向上のために、その表面に、さらに、めっき層を有していてもよい。めっき層としては、溶融亜鉛めっき層、合金化溶融亜鉛めっき層、または、電気亜鉛めっき層が好ましい。
 溶融亜鉛めっき層、合金化溶融亜鉛めっき層、および、電気亜鉛めっき層としては、特に限定されず、それぞれ、従来公知の溶融亜鉛めっき層、従来公知の合金化溶融亜鉛めっき層、および、従来公知の電気亜鉛めっき層が好適に用いられる。
 電気亜鉛めっき層は、Znに、例えば、Fe、Cr、Ni、Mn、Co、Sn、Pb、または、Moなどの元素をその目的に応じて適宜量添加した亜鉛合金めっき層であってもよい。
<Plating layer>
The high-strength cold-rolled thin steel sheet of the present invention having the above composition and the above structure may further have a plating layer on its surface in order to improve corrosion resistance. As the plating layer, a hot dip galvanized layer, an alloyed hot dip galvanized layer, or an electrogalvanized layer is preferable.
The hot-dip galvanized layer, the alloyed hot-dip galvanized layer, and the electrogalvanized layer are not particularly limited, and are conventionally known hot-dip galvanized layer, conventionally known alloyed hot-dip galvanized layer, and conventionally known, respectively. The electrogalvanized layer is preferably used.
The electrogalvanized layer may be a zinc alloy plated layer obtained by adding an appropriate amount of elements such as Fe, Cr, Ni, Mn, Co, Sn, Pb, or Mo to Zn according to the purpose. .
[高強度冷延薄鋼板の製造方法]
 次に、本発明の高強度冷延薄鋼板の製造方法(以下、単に「本発明の製造方法」ともいう)の好適態様について説明する。
 本発明の製造方法は、概略的には、上記組成を有する鋼素材に、熱間圧延、酸洗、冷間圧延、および、焼鈍を順次施すことにより、上述した本発明の高強度冷延薄鋼板を得る方法である。そして、本発明の製造方法においては、焼鈍を行なう工程が、2つの工程に分かれている。
[Method for producing high-strength cold-rolled thin steel sheet]
Next, a preferred embodiment of the method for producing a high-strength cold-rolled thin steel sheet of the present invention (hereinafter also simply referred to as “the production method of the present invention”) will be described.
The manufacturing method of the present invention generally includes the above-described high-strength cold-rolled thin film of the present invention by sequentially performing hot rolling, pickling, cold rolling, and annealing on a steel material having the above composition. It is a method of obtaining a steel plate. And in the manufacturing method of this invention, the process of annealing is divided into two processes.
 〈鋼素材〉
 鋼素材は、上記組成を有する鋼素材であれば、特に限定されず、例えば、転炉等を用いた常用の溶製方法により、上記組成を有する溶鋼を溶製し、常用の連続鋳造法により得られた所定寸法のスラブなどが好適に挙げられる。造塊-分塊圧延により鋼片(鋼素材)を製造してもよい。
<Steel material>
The steel material is not particularly limited as long as it is a steel material having the above composition. For example, the steel material having the above composition is melted by a conventional melting method using a converter or the like, and a continuous casting method is used. The obtained slab having a predetermined dimension is preferably used. A steel piece (steel material) may be manufactured by ingot-bundling rolling.
 〈熱間圧延工程〉
 熱間圧延工程は、上記組成を有する鋼素材に、熱間圧延を施すことにより、熱延板を得る工程である。
 熱間圧延工程は、上記組成を有する鋼素材を加熱し、熱間圧延を施して、所定寸法の熱延板が得られる工程であれば、特に限定されず、常用の熱間圧延工程を適用できる。
 常用の熱間圧延工程としては、例えば、鋼素材を、1100℃以上1250℃以下の加熱温度に加熱し、加熱した鋼素材に、850℃以上950℃以下の熱間圧延出側温度で熱間圧延を施し、熱間圧延が終了した後、適正な圧延後冷却(具体的には、例えば、450℃以上950℃以下の温度域を、40℃/s以上100℃/s以下の平均冷却速度で冷却する、圧延後冷却)を施して、450℃以上650℃以下の巻取温度で巻き取り、所定寸法形状の熱延板とする、熱間圧延工程を例示できる。
<Hot rolling process>
A hot rolling process is a process of obtaining a hot-rolled sheet by hot-rolling the steel raw material which has the said composition.
The hot rolling process is not particularly limited as long as it is a process in which a steel material having the above composition is heated and subjected to hot rolling to obtain a hot rolled sheet having a predetermined size, and a normal hot rolling process is applied. it can.
As a normal hot rolling process, for example, a steel material is heated to a heating temperature of 1100 ° C. or more and 1250 ° C. or less, and the heated steel material is hot rolled at a hot rolling outlet temperature of 850 ° C. or more and 950 ° C. or less. After rolling and hot rolling is completed, an appropriate post-rolling cooling (specifically, for example, an average cooling rate of 40 ° C./s to 100 ° C./s in a temperature range of 450 ° C. to 950 ° C.) In the hot rolling step, the steel sheet is wound at a coiling temperature of 450 ° C. or higher and 650 ° C. or lower to obtain a hot-rolled sheet having a predetermined size and shape.
 〈酸洗工程〉
 酸洗工程は、熱間圧延工程を経て得られた熱延板に、酸洗を施す工程である。
 酸洗工程は、熱延板に冷間圧延を施すことができる程度に酸洗できる工程であれば、特に限定されず、例えば塩酸または硫酸等を使用する常用の酸洗工程を適用できる。
<Pickling process>
The pickling step is a step of pickling the hot-rolled sheet obtained through the hot rolling step.
The pickling step is not particularly limited as long as it can be pickled to such an extent that cold rolling can be performed on the hot-rolled sheet. For example, a conventional pickling step using hydrochloric acid or sulfuric acid can be applied.
 〈冷間圧延工程〉
 冷間圧延工程は、酸洗工程を経た熱延板に、冷間圧延を施す工程である。より詳細には、冷間圧延工程は、酸洗が施された熱延板に、圧下率30%以上の冷間圧延を施すことにより、所定板厚の薄冷延板を得る工程である。
<Cold rolling process>
The cold rolling process is a process of performing cold rolling on the hot-rolled sheet that has undergone the pickling process. More specifically, the cold rolling step is a step of obtaining a thin cold rolled plate having a predetermined thickness by subjecting the hot rolled plate subjected to pickling to cold rolling with a rolling reduction of 30% or more.
 《冷間圧延の圧下率:30%以上》
 冷間圧延の圧下率は、30%以上とする。圧下率が30%未満では、加工量が不足し、次工程の焼鈍工程において、加工されたフェライトの再結晶が十分に達成できない。
 一方、圧下率の上限は、冷間圧延機の能力で決定されるが、圧下率が高すぎると、圧延荷重が高くなり、生産性が低下する場合がある。このため、圧下率は、70%以下が好ましい。
 圧延パスの回数およびパス毎の圧下率は、特に限定されない。
<Cold rolling reduction: 30% or more>
The rolling reduction of cold rolling is 30% or more. When the rolling reduction is less than 30%, the processing amount is insufficient, and recrystallization of the processed ferrite cannot be sufficiently achieved in the subsequent annealing step.
On the other hand, the upper limit of the rolling reduction is determined by the capability of the cold rolling mill, but if the rolling reduction is too high, the rolling load increases and the productivity may decrease. For this reason, the rolling reduction is preferably 70% or less.
The number of rolling passes and the rolling reduction per pass are not particularly limited.
 〈焼鈍工程〉
 焼鈍工程は、冷間圧延工程を経て得られた薄冷延板に焼鈍を施す工程であり、より詳細には、後述する第1段焼鈍工程および第2段焼鈍工程を含む工程である。
<Annealing process>
An annealing process is a process which anneals the thin cold-rolled sheet obtained through the cold rolling process, and is a process including the 1st stage annealing process and 2nd stage annealing process mentioned later in detail.
 《第1段焼鈍工程》
 第1段焼鈍工程は、薄冷延板を、800℃以上950℃以下の焼鈍温度Tで加熱し、焼鈍温度Tから、5℃/s以上の平均冷却速度で、500℃以下の冷却停止温度Tまで冷却することにより、マルテンサイトとベイナイトとの合計が体積率で80%以上である組織を有する第1段冷延焼鈍板を得る工程である。
<< First stage annealing process >>
The first stage annealing process, a thin cold-rolled sheet is heated at an annealing temperature T 1 of the 800 ° C. or higher 950 ° C. or less, from the annealing temperatures T 1, at 5 ° C. / s or more average cooling rate, cooling below 500 ℃ by cooling to stop temperature T 2, which is a step of obtaining a first Danhiyanobe annealed sheets having tissue total of martensite and bainite is not less than 80% by volume.
 (焼鈍温度T:800℃以上950℃以下)
 焼鈍温度Tが800℃未満であると、焼鈍時にフェライトの生成量が多くなりすぎて、所望のマルテンサイトとベイナイトとの合計量を確保できなくなる。
 一方、焼鈍温度Tが950℃を超えると、オーステナイト粒が過度に粗大化し、第2段焼鈍工程においてフェライトの生成が抑制されるため、第2段焼鈍工程を経て得られる第2段冷延焼鈍板で、マルテンサイトが過度に生成する。
 このため、焼鈍温度Tは、800℃以上950℃以下である。
(Annealing temperature T 1 : 800 ° C. or higher and 950 ° C. or lower)
When the annealing temperature T 1 is less than 800 ° C., too much amount of generated ferrite during annealing, it can not be secured on the total amount of the desired martensite and bainite.
On the other hand, when it exceeds annealing temperature T 1 is 950 ° C., and the austenite grains are excessively coarsened, since the formation of ferrite is suppressed in the second stage annealing process, a second Danhiyanobe obtained through the second-stage annealing process Martensite is excessively generated in the annealed plate.
Thus, annealing temperatures T 1 is 800 ° C. or higher 950 ° C. or less.
 焼鈍温度Tでの保持時間は、特に限定されず、例えば、10s以上900s以下である。 Holding time at the annealing temperatures T 1 is not particularly limited, for example, is 10s or 900s or less.
 (平均冷却速度:5℃/s以上)
 焼鈍温度Tから冷却停止温度Tまでの平均冷却速度が5℃/s未満であると、冷却中にフェライトおよびパーライトが生成し、所望量のマルテンサイトおよびベイナイトを確保することが困難となる。
 平均冷却速度の上限は特に限定されないが、過度に速い冷却速度を確保するためには、過大な冷却装置を必要とし、生産技術および設備投資等の観点から、平均冷却速度は、50℃/s以下が好ましい。
 冷却は、ガス冷却とすることが好ましいが、炉冷およびミスト冷却などを組み合わせて行なうこともできる。
(Average cooling rate: 5 ° C / s or more)
If the average cooling rate from the annealing temperature T 1 of to the cooling stop temperature T 2 is less than 5 ° C. / s, ferrite and pearlite generates during cooling, it is difficult to ensure a desired amount of martensite and bainite .
The upper limit of the average cooling rate is not particularly limited, but an excessively large cooling device is required to ensure an excessively high cooling rate, and the average cooling rate is 50 ° C./s from the viewpoint of production technology and capital investment. The following is preferred.
The cooling is preferably gas cooling, but may be performed in combination with furnace cooling and mist cooling.
 (冷却停止温度T:500℃以下)
 冷却後の組織において、マルテンサイトとベイナイトとの合計を体積率で80%以上とするために、冷却停止温度Tを500℃以下の温度域の温度とする。冷却停止温度Tは、300℃以上480℃以下が好ましい。
 冷却停止後は、引き続き、第2段焼鈍工程に移行してもよい。冷却停止後、放冷し、一旦室温まで冷却した後に、第2段焼鈍工程に移行してもよい。
(Cooling stop temperature T 2 : 500 ° C. or less)
In tissue after cooling, to 80% or more by volume of the total of martensite and bainite, the cooling stop temperature T 2 and the temperature of the temperature range below 500 ℃. Cooling stop temperature T 2 is preferably 300 ° C. or higher 480 ° C. or less.
After the cooling is stopped, the second-stage annealing process may be continued. After cooling is stopped, it is allowed to cool, and after cooling to room temperature, it may be shifted to the second stage annealing step.
 (マルテンサイトとベイナイトとの体積率の合計:80%以上)
 第1段焼鈍工程を経て得られる第1段冷延焼鈍板の組織において、マルテンサイトとベイナイトとの合計が体積率で80%未満であると、第2段焼鈍工程を経て得られる第2段冷延焼鈍板において、所望の残留オーステナイトを確保することが困難となるうえ、所望の形状(アスペクト比)を有するポリゴナルフェライトを確保することが困難となる。
 ここで言う「ベイナイト」とは、上部ベイナイトおよび下部ベイナイトを含むものとする。
(Total volume ratio of martensite and bainite: 80% or more)
In the structure of the first stage cold-rolled annealed sheet obtained through the first stage annealing step, the second stage obtained through the second stage annealing step when the sum of martensite and bainite is less than 80% in volume ratio. In a cold-rolled annealed sheet, it becomes difficult to secure desired retained austenite and it is difficult to secure polygonal ferrite having a desired shape (aspect ratio).
Here, “bainite” includes upper bainite and lower bainite.
 《第2段焼鈍工程》
 第2段焼鈍工程は、第1段焼鈍工程を経て得られた第1段冷延焼鈍板を、700℃以上850℃以下の焼鈍温度Tで、10s以上900s以下保持し、焼鈍温度Tから、5℃/s以上50℃/s以下の平均冷却速度で、200℃以上500℃以下の冷却停止温度Tまで冷却し、冷却停止温度Tで、10s以上1800s以下保持することにより、第2段冷延焼鈍板を得る工程である。
<< Second stage annealing process >>
The second stage annealing process, a first Danhiyanobe annealed sheets obtained through the first-stage annealing process, at 700 ° C. or higher 850 ° C. below the annealing temperature T 3, and held 10s or 900s or less, the annealing temperature T 3 from an average cooling rate of 50 ° C. / s or less 5 ° C. / s or more, cooled to 200 of the cooling stop ° C. or higher 500 ° C. or less temperature T 4, the cooling stop temperature T 4, by holding 10s or 1800s or less, This is a step of obtaining a second-stage cold-rolled annealed plate.
 (焼鈍温度T:700℃以上850℃以下)
 焼鈍温度Tが700℃未満であると、焼鈍時に十分な量のオーステナイトを確保できず、最終的に所望量の残留オーステナイトおよびベイニティックフェライトが確保できなくなる。
 一方、焼鈍温度Tが850℃を超えると、オーステナイト単相域となるため、最終的に、所望量の残留オーステナイトが生成できないうえ、所望のアスペクト比を有する残留オーステナイト、ならびに、所望のアスペクト比および平均結晶粒径を有するポリゴナルフェライトを確保することが困難となり、さらに、マルテンサイトが過度に生成する。
 このため、焼鈍温度Tは、700℃以上850℃以下であり、720℃以上830℃以下が好ましい。
(Annealing temperature T 3: 700 ℃ more than 850 ℃ or less)
When the annealing temperature T 3 is lower than 700 ° C., can not be secured a sufficient amount of austenite during annealing, final desired amount of retained austenite and bainitic ferrite can not be secured.
On the other hand, if the annealing temperature T 3 is higher than 850 ° C., since the austenite single-phase region, and finally, after that can not be generated residual austenite desired amount, residual austenite with a desired aspect ratio, and a desired aspect ratio In addition, it becomes difficult to secure polygonal ferrite having an average crystal grain size, and martensite is excessively generated.
Therefore, the annealing temperature T 3 is at 700 ° C. or higher 850 ° C. or less, preferably 720 ° C. or higher 830 ° C. or less.
 (焼鈍温度Tでの保持時間:10s以上900s以下)
 焼鈍温度Tでの保持時間が、10s未満であると、焼鈍時に十分な量のオーステナイトを確保できず、最終的に所望量の残留オーステナイトおよびベイニティックフェライトが確保できなくなる。
 一方、焼鈍温度Tでの保持時間が900sを超えて長時間となると、結晶粒の粗大化が生じ、最終的に所望量の残留オーステナイトを生成できなくなる。
 このため、焼鈍温度Tでの保持時間は、10s以上900s以下である。
(Retention time at the annealing temperature T 3: 10s or 900s or less)
Holding time at the annealing temperature T 3 is less than 10s, can not be ensured a sufficient amount of austenite during annealing, final desired amount of retained austenite and bainitic ferrite can not be secured.
On the other hand, the holding time at the annealing temperature T 3 is when it comes to long beyond 900s, resulting grain coarsening, eventually no longer able to generate residual austenite desired amount.
Therefore, the holding time at the annealing temperature T 3 is 10s or 900s or less.
 (平均冷却速度:5℃/s以上50℃/s以下)
 焼鈍温度Tから冷却停止温度Tまでの平均冷却速度が5℃/s未満であると、冷却中に多量のポリゴナルフェライトおよびパーライトが生成するとともに、所望量のベイニティックフェライトが確保できなくなる。
 一方、焼鈍温度Tから冷却停止温度Tまでの平均冷却速度が50℃/sを超えると、マルテンサイトなどの低温変態組織が過度に生成する。
 このため、焼鈍温度Tから冷却停止温度Tまでの平均冷却速度は、5℃/以上50℃/s以下である。
 冷却は、ガス冷却が好ましいが、炉冷およびミスト冷却などを組み合わせて行なうこともできる。
(Average cooling rate: 5 ° C / s or more and 50 ° C / s or less)
If the average cooling rate from the annealing temperature T 3 to a cooling stop temperature T 4 is lower than 5 ° C. / s, and generates a large amount of polygonal ferrite and pearlite during cooling, it can be ensured desired amount of bainitic ferrite Disappear.
On the other hand, if the average cooling rate from the annealing temperature T 3 to a cooling stop temperature T 4 is greater than 50 ° C. / s, the low temperature transformation structure such as martensite is generated excessively.
Therefore, the average cooling rate from the annealing temperature T 3 to a cooling stop temperature T 4 is 50 ° C. / s or less 5 ° C. / or.
The cooling is preferably gas cooling, but can be performed by combining furnace cooling and mist cooling.
 (冷却停止温度T:200℃以上500℃以下)
 冷却停止温度Tが200℃未満であると、冷却停止後の保持中に、多量のマルテンサイトが生成し、所望の組織(残留オーステナイトの体積率およびアスペクト比)を確保できなくなる。
 一方、冷却停止温度Tが500℃を超えると、冷却停止後の保持中に、多量のポリゴナルフェライトおよびパーライトが生成するため、所望の組織を確保できなくなる。具体的には、ポリゴナルフェライトについて、体積率が過剰となる一方で、アスペクト比が過少となる。また、ベイニティックフェライトの体積率が過少となる。さらに、残留オーステナイトの体積率およびアスペクト比が過少となる。
 このため、冷却停止温度Tは、200℃以上500℃以下である。
(Cooling stop temperature T 4 : 200 ° C. or more and 500 ° C. or less)
If the cooling stop temperature T 4 is lower than 200 ° C., during retention after cooling down, a large amount of martensite is produced, it can not be ensured the desired tissue (volume ratio and aspect ratio of retained austenite).
On the other hand, the cooling stop temperature T 4 is more than 500 ° C., during retention after cooling down, to generate a large amount of polygonal ferrite and pearlite, it can not be ensured the desired tissue. Specifically, for polygonal ferrite, the volume ratio is excessive, while the aspect ratio is excessive. Moreover, the volume fraction of bainitic ferrite becomes too small. Furthermore, the volume fraction and aspect ratio of retained austenite are too small.
Therefore, the cooling stop temperature T 4 is 200 ° C. or higher 500 ° C. or less.
 (冷却停止温度Tでの保持時間:10s以上1800s以下)
 冷却停止温度Tでの保持時間が10s未満であると、オーステナイトへのC濃化のための時間が不十分であり、最終的に所望量の残留オーステナイトを確保することが困難となり、また、所望のアスペクト比を有する残留オーステナイトが得られない。
 一方、1800sを超える長時間滞留させても、残留オーステナイトの増加は少ないうえ、一部の残留オーステナイトが、フェライトとセメンタイトとに分解し、所望量の残留オーステナイトを確保することが困難となる。
 このため、冷却停止温度Tでの保持時間は、10s以上1800s以下である。
 ここで「保持」とは、等温保持以外に、冷却停止温度Tの温度域での徐冷または加熱も含むものとする。
(Cooling stop temperature T retention time in the 4: 10s or 1800s or less)
If the holding time at the cooling stop temperature T 4 is less than 10s, it is insufficient time for the concentration of C into austenite, and finally it is difficult to secure a retained austenite desired amount, also, Residual austenite having the desired aspect ratio cannot be obtained.
On the other hand, even if retained for longer than 1800 s, the increase in retained austenite is small, and part of retained austenite decomposes into ferrite and cementite, making it difficult to secure a desired amount of retained austenite.
Therefore, the holding time at the cooling stop temperature T 4 is 10s or 1800s or less.
Here, "holding", in addition to isothermal hold, the category includes slow cooling or heating in the temperature range of the cooling stop temperature T 4.
 冷却停止温度Tでの保持後における第2段冷延焼鈍板は、冷却する。この冷却は、特に限定されず、放冷等の任意の方法で、室温等の所望の温度まで冷却することができる。 Second Danhiyanobe annealed sheet after holding in the cooling stop temperature T 4 cools. This cooling is not particularly limited, and the cooling can be performed to a desired temperature such as room temperature by an arbitrary method such as cooling.
 後述するめっき工程を行なわない場合、第2段焼鈍工程を経て得られる第2段冷延焼鈍板が、本発明の高強度冷延薄鋼板となる。
 以下では、第2段冷延焼鈍板を、「冷延薄鋼板」と呼ぶ場合がある。
When the plating process described later is not performed, the second-stage cold-rolled annealed sheet obtained through the second-stage annealing process becomes the high-strength cold-rolled thin steel sheet of the present invention.
Hereinafter, the second-stage cold-rolled annealed sheet may be referred to as “cold-rolled thin steel sheet”.
 〈めっき工程〉
 第2段焼鈍工程を経て得られる第2段冷延焼鈍板(冷延薄鋼板)に、さらに、めっき処理を施して、その表面にめっき層を形成してもよい。この場合、表面にめっき層が形成された第2段冷延焼鈍板が、本発明の高強度冷延薄鋼板となる。
<Plating process>
The second-stage cold-rolled annealed plate (cold-rolled thin steel plate) obtained through the second-stage annealing step may be further subjected to a plating treatment to form a plating layer on the surface thereof. In this case, the second-stage cold-rolled annealed plate having a plating layer formed on the surface is the high-strength cold-rolled thin steel plate of the present invention.
 めっき処理としては、溶融亜鉛めっき処理、溶融亜鉛めっき処理および合金化処理、または、電気亜鉛めっき処理が好ましい。溶融亜鉛めっき処理、溶融亜鉛めっき処理および合金化処理、ならびに、電気亜鉛めっき処理としては、特に限定されず、それぞれ、従来公知の溶融亜鉛めっき処理、従来公知の溶融亜鉛めっき処理および合金化処理、ならびに、従来公知の電気亜鉛めっき処理が好適に用いられる。
 めっき処理の前には、脱脂およびリン酸塩処理等の前処理を施してもよい。
As the plating treatment, hot dip galvanizing treatment, hot dip galvanizing treatment and alloying treatment, or electrogalvanizing treatment is preferable. The hot dip galvanizing treatment, the hot dip galvanizing treatment and the alloying treatment, and the electrogalvanizing treatment are not particularly limited, and are conventionally known hot dip galvanizing treatment, conventionally known hot dip galvanizing treatment and alloying treatment, respectively. In addition, a conventionally known electrogalvanizing treatment is preferably used.
Prior to the plating treatment, pretreatment such as degreasing and phosphate treatment may be performed.
 溶融亜鉛めっき処理としては、例えば、常用の連続溶融亜鉛めっきラインを用いて、第2段冷延焼鈍板を、溶融亜鉛めっき浴に浸漬し、表面に所定量の溶融亜鉛めっき層を形成する処理であることが好ましい。
 溶融亜鉛めっき浴に浸漬する際には、再加熱または冷却により、第2段冷延焼鈍板の温度を、溶融亜鉛めっき浴温度-50℃の温度以上、溶融亜鉛めっき浴温度+80℃の温度以下の範囲内に調整することが好ましい。
 溶融亜鉛めっき浴の温度は、440℃以上が好ましく、500℃以下がより好ましい。
 溶融亜鉛めっき浴には、純亜鉛に加えて、Al、Fe、MgまたはSi等を含有させてもよい。
 溶融亜鉛めっき層の付着量は、ガスワイピング等を調整して所望の付着量とすることができ、片面あたり45g/m程度とすることが好ましい。
As the hot dip galvanizing treatment, for example, a conventional continuous hot dip galvanizing line is used to immerse the second stage cold-rolled annealing plate in a hot dip galvanizing bath and form a predetermined amount of hot dip galvanized layer on the surface. It is preferable that
When immersed in a hot dip galvanizing bath, the temperature of the second-stage cold-rolled annealed plate is not less than the temperature of the hot dip galvanizing bath temperature −50 ° C. and not more than the temperature of the hot dip galvanizing bath temperature + 80 ° C. by reheating or cooling. It is preferable to adjust within the range.
The temperature of the hot dip galvanizing bath is preferably 440 ° C or higher, and more preferably 500 ° C or lower.
The hot dip galvanizing bath may contain Al, Fe, Mg, Si or the like in addition to pure zinc.
The adhesion amount of the hot-dip galvanized layer can be adjusted to a desired adhesion amount by adjusting gas wiping or the like, and is preferably about 45 g / m 2 per side.
 溶融亜鉛めっき処理により形成されためっき層(溶融亜鉛めっき層)は、必要に応じて、常用の合金化処理を施すことにより、合金化溶融亜鉛めっき層としてもよい。
 合金化処理の温度は、460℃以上600℃以下が好ましい。
 合金化溶融亜鉛めっき層とする場合、溶融亜鉛めっき浴中の有効Al濃度を、0.10質量%以上0.22質量%以下の範囲に調整することが、所望のめっき外観を確保する観点から好ましい。
The plated layer (hot galvanized layer) formed by the hot dip galvanizing process may be an alloyed hot dip galvanized layer by performing a usual alloying process as necessary.
The temperature for the alloying treatment is preferably 460 ° C. or more and 600 ° C. or less.
In the case of an alloyed hot dip galvanized layer, adjusting the effective Al concentration in the hot dip galvanizing bath to a range of 0.10% by mass or more and 0.22% by mass or less from the viewpoint of securing a desired plating appearance. preferable.
 電気亜鉛めっき処理としては、例えば、常用の電気亜鉛めっきラインを用いて、第2段冷延焼鈍板の表面に、所定量の電気亜鉛めっき層を形成する処理であることが好ましい。
 電気亜鉛めっき層の付着量は、通板速度または電流値等を調整して所定の付着量とすることができ、片面あたり30g/m程度とすることが好ましい。
The electrogalvanizing treatment is preferably, for example, a treatment of forming a predetermined amount of electrogalvanized layer on the surface of the second stage cold-rolled annealed plate using a conventional electrogalvanizing line.
The adhesion amount of the electrogalvanized layer can be adjusted to a predetermined adhesion amount by adjusting the sheet passing speed or the current value, and is preferably about 30 g / m 2 per side.
 以下に、実施例を挙げて本発明を具体的に説明する。ただし、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to these.
 〈冷延薄鋼板の製造〉
 下記表1に示す組成の溶鋼を、転炉で溶製し、連続鋳造法により、鋼素材であるスラブ(肉厚:230mm)を得た。得られたスラブに、熱間圧延を施すことにより、熱延板を得た。得られた熱延板に、塩酸を使用した酸洗を施し、次いで、下記表2に示す圧下率で冷間圧延を施し、薄冷延板(板厚:1.4mm)を得た。
 得られた薄冷延板に、下記表2に示す条件で焼鈍を施し、第2段冷延焼鈍板(冷延薄鋼板)を得た。焼鈍工程は、第1段焼鈍工程と第2段焼鈍工程とからなる2段階の工程とした。第1段焼鈍工程における焼鈍温度Tでの保持時間は100sとした。第1段焼鈍工程の終了後に、第1段冷延焼鈍板から、組織観察用の試験片を採取し、組織を観察した。
<Manufacture of cold rolled steel sheet>
Molten steel having the composition shown in Table 1 below was melted in a converter, and a slab (thickness: 230 mm) as a steel material was obtained by a continuous casting method. A hot-rolled sheet was obtained by subjecting the obtained slab to hot rolling. The obtained hot-rolled sheet was pickled using hydrochloric acid, and then cold-rolled at the rolling reduction shown in Table 2 below to obtain a thin cold-rolled sheet (sheet thickness: 1.4 mm).
The obtained thin cold-rolled sheet was annealed under the conditions shown in Table 2 below to obtain a second-stage cold-rolled annealed sheet (cold-rolled thin steel sheet). The annealing process was a two-stage process consisting of a first stage annealing process and a second stage annealing process. Holding time at the annealing temperature T 1 of the first stage annealing process was 100s. After the first stage annealing step, a specimen for observing the structure was collected from the first stage cold-rolled annealed sheet, and the structure was observed.
 一部の第2段冷延焼鈍板(冷延薄鋼板)については、焼鈍の終了後に、さらに、溶融亜鉛めっき処理を施すことにより、表面に溶融亜鉛めっき層を形成し、溶融亜鉛めっき薄鋼板とした。
 溶融亜鉛めっき処理においては、連続溶融亜鉛めっきラインを用いて、第2段冷延焼鈍板(冷延薄鋼板)を、必要に応じて430℃以上480℃以下の範囲の温度に再加熱し、溶融亜鉛めっき浴(浴温:470℃)に浸漬した。めっき層の付着量が片面あたり45g/mとなるように調整した。浴組成はZn-0.18質量%Alとした。
 このとき、一部の溶融亜鉛めっき薄鋼板においては、浴組成をZn-0.14質量%Alとし、めっき処理後、520℃で合金化処理を施して、合金化溶融亜鉛めっき薄鋼板とした。
 めっき層中のFe濃度は、9質量%以上12質量%以下とした。
 一部の第2段冷延焼鈍板(冷延薄鋼板)については、焼鈍の終了後に、さらに、電気亜鉛めっきラインを用いて、めっき付着量が片面あたり30g/mとなるように、電気亜鉛めっき処理を施し、電気亜鉛めっき薄鋼板とした。
For some second-stage cold-rolled annealed plates (cold-rolled thin steel plates), a hot-dip galvanized layer is formed on the surface of the hot-dip galvanized thin steel plate after the annealing has been completed. It was.
In the hot dip galvanizing process, using a continuous hot dip galvanizing line, the second-stage cold-rolled annealed plate (cold-rolled thin steel plate) is reheated to a temperature in the range of 430 ° C. or higher and 480 ° C. or lower as necessary. It was immersed in a hot dip galvanizing bath (bath temperature: 470 ° C.). It adjusted so that the adhesion amount of a plating layer might be 45 g / m < 2 > per single side | surface. The bath composition was Zn-0.18 mass% Al.
At this time, in some hot-dip galvanized steel sheets, the bath composition was Zn-0.14 mass% Al, and after the plating treatment, alloying treatment was performed at 520 ° C. to obtain an alloyed hot-dip galvanized thin steel sheet. .
The Fe concentration in the plating layer was 9% by mass or more and 12% by mass or less.
For some second-stage cold-rolled annealed plates (cold-rolled thin steel plates), an electric galvanizing line is used after the annealing, so that the amount of plating is 30 g / m 2 per side. A galvanizing treatment was performed to obtain an electrogalvanized sheet steel.
 下記表3においては、めっき層を形成しない第2段冷延焼鈍板(冷延薄鋼板)を「CR」、溶融亜鉛めっき薄鋼板を「GI」、合金化溶融亜鉛めっき薄鋼板を「GA」、電気亜鉛めっき薄鋼板を「EG」と表記した。 In Table 3 below, the second-stage cold-rolled annealed sheet (cold-rolled sheet steel) that does not form a plating layer is “CR”, the hot-dip galvanized sheet steel is “GI”, and the galvannealed sheet steel is “GA”. The electrogalvanized sheet steel was denoted as “EG”.
 〈評価〉
 得られた冷延薄鋼板(溶融亜鉛めっき薄鋼板、合金化溶融亜鉛めっき薄鋼板、および、電気亜鉛めっき薄鋼板を含む)から、試験片を採取し、組織観察および引張試験を行なった。試験方法は、次のとおりとした。
<Evaluation>
From the obtained cold-rolled thin steel sheet (including hot-dip galvanized thin steel sheet, alloyed hot-dip galvanized thin steel sheet, and electrogalvanized thin steel sheet), specimens were collected and subjected to structure observation and tensile tests. The test method was as follows.
 《組織観察》
 まず、第1段冷延焼鈍板と、第2段冷延焼鈍板(冷延薄鋼板)またはめっき層が形成された第2段冷延焼鈍板(冷延薄鋼板)とから、組織観察用の試験片を採取した。
 次いで、採取した試験片を、圧延方向断面(L断面)で板厚の1/4に相当する位置が観察面となるように、研磨した。研磨した試験片を、3体積%ナイタール液を用いて腐食させた。その後、走査型電子顕微鏡(SEM)(倍率:2000倍)を用いて、試験片の組織を、40μm×40μmの範囲の視野で各10視野以上観察し、撮像してSEM画像を得た。
 得られたSEM画像を用いて、画像解析により、各組織の分率(面積率)を求めた。求めた値を体積率として扱い、各組織の分率とした。画像解析には、解析ソフトとして、Media Cybernetics社の「Image-Pro」(商品名)を使用した。
 SEM画像では、ポリゴナルフェライトは灰色、マルテンサイトおよび残留オーステナイトは白色を呈するため、その色調から各組織を判断した。
 フェライト中に残留オーステナイトおよびセメンタイトが微細な線状または点状に観察される組織を、ベイナイトとした。
 白色を呈する組織の体積率から、別途求めた残留オーステナイトの体積率を差し引き、マルテンサイトの体積率とした。
 得られたSEM画像を用いて、画像解析により、各ポリゴナルフェライトの長径および短径を求め、求めた長径および短径から面積を算出し、算出した面積から円相当直径を算出し、それらの値を算術平均して、ポリゴナルフェライトの平均結晶粒径とした。
 求めた長径および短径から、各ポリゴナルフェライトのアスペクト比を算出し、得られた値を算術平均して、ポリゴナルフェライトのアスペクト比(平均)とした。
<< Organizational observation >>
First, from the first-stage cold-rolled annealed plate and the second-stage cold-rolled annealed plate (cold-rolled thin steel plate) or the second-stage cold-rolled annealed plate (cold-rolled thin steel plate) on which the plating layer is formed, for structure observation The test piece was collected.
Next, the collected specimen was polished so that the position corresponding to 1/4 of the plate thickness in the rolling direction cross section (L cross section) was the observation surface. The polished specimen was corroded using 3% by volume nital solution. Then, using the scanning electron microscope (SEM) (magnification: 2000 times), the structure | tissue of the test piece was observed in the visual field of the range of 40 micrometers x 40 micrometers, respectively, and it imaged and obtained the SEM image.
Using the obtained SEM image, the fraction (area ratio) of each tissue was determined by image analysis. The obtained value was treated as a volume fraction and used as a fraction of each tissue. For image analysis, “Image-Pro” (trade name) manufactured by Media Cybernetics was used as analysis software.
In the SEM image, polygonal ferrite is gray, martensite and retained austenite are white, so each structure was judged from the color tone.
A structure in which retained austenite and cementite are observed in fine lines or dots in ferrite is bainite.
The volume ratio of the retained austenite obtained separately was subtracted from the volume ratio of the structure exhibiting white to obtain the volume ratio of martensite.
Using the obtained SEM image, the major axis and minor axis of each polygonal ferrite were determined by image analysis, the area was calculated from the determined major axis and minor axis, and the equivalent circle diameter was calculated from the calculated area. The values were arithmetically averaged to obtain the average crystal grain size of polygonal ferrite.
From the obtained major axis and minor axis, the aspect ratio of each polygonal ferrite was calculated, and the obtained values were arithmetically averaged to obtain the polygonal ferrite aspect ratio (average).
 第2段冷延焼鈍板(冷延薄鋼板)またはめっき層が形成された第2段冷延焼鈍板(冷延薄鋼板)から、透過電子顕微鏡観察用の試験片を採取した。採取した試験片について、板厚の1/4に相当する位置が観察位置となるように、研削および研磨(機械研磨および電解研磨)を行ない、薄膜試料を得た。
 得られた薄膜試料について、透過型電子顕微鏡(TEM)(倍率:15000倍)を用いて組織を観察し、3μm×3μmの範囲の視野で20視野以上撮像して、TEM画像を得た。
 得られたTEM画像を用いて、画像解析により、ベイニティックフェライトの体積率と、残留オーステナイトの平均結晶粒径およびアスペクト比(平均)とを求めた。
 残留オーステナイトの平均結晶粒径は、各残留オーステナイトの面積を求め、求めた面積から円相当直径を算出し、得られた値を算術平均して、残留オーステナイトの平均結晶粒径とした。
 得られたTEM画像を用いて、画像解析により、各残留オーステナイトの長径および短径を求め、各残留オーステナイトのアスペクト比を算出し、得られた値を算術平均し、残留オーステナイトのアスペクト比(平均)とした。
 TEM画像の画像解析には、SEM画像の画像解析と同様に、解析ソフトとしてMedia Cybernetics社の「Image-Pro」(商品名)を使用した。
Test specimens for observation with a transmission electron microscope were collected from the second-stage cold-rolled annealed plate (cold-rolled thin steel plate) or the second-stage cold-rolled annealed plate (cold-rolled thin steel plate) on which the plating layer was formed. The collected specimen was ground and polished (mechanical polishing and electrolytic polishing) so that a position corresponding to 1/4 of the plate thickness was an observation position, and a thin film sample was obtained.
About the obtained thin film sample, the structure | tissue was observed using the transmission electron microscope (TEM) (magnification: 15000 times), and 20 or more visual fields were imaged in the visual field of the range of 3 micrometers x 3 micrometers, and the TEM image was obtained.
Using the obtained TEM image, the volume fraction of bainitic ferrite and the average crystal grain size and aspect ratio (average) of retained austenite were determined by image analysis.
The average crystal grain size of retained austenite was obtained by calculating the area of each retained austenite, calculating the equivalent circle diameter from the determined area, and arithmetically averaging the obtained values to obtain the average crystal grain size of retained austenite.
Using the obtained TEM image, the major axis and the minor axis of each retained austenite are obtained by image analysis, the aspect ratio of each retained austenite is calculated, the obtained value is arithmetically averaged, and the aspect ratio of the retained austenite (average) ).
In the image analysis of the TEM image, “Image-Pro” (trade name) of Media Cybernetics was used as the analysis software in the same manner as the image analysis of the SEM image.
 第1段冷延焼鈍板と、第2段冷延焼鈍板(冷延薄鋼板)またはめっき層が形成された第2段冷延焼鈍板(冷延薄鋼板)とから、X線回折用の試験片を採取した。採取した試験片について、板厚の1/4に相当する位置が測定面となるように、研削および研磨を行なった。研削および研磨を行なった試験片について、X線回折法により、回折X線強度から残留オーステナイトの体積率を求めた。入射X線は、CoKα線を用いた。
 残留オーステナイトの体積率の計算に際しては、オーステナイトの{111}、{200}、{220}および{311}面、ならびに、フェライトの{110}、{200}および{211}面のピークの積分強度の全ての組み合わせについて強度比を計算した。それらの平均値を求め、残留オーステナイトの体積率を算出した。
From the first-stage cold-rolled annealed plate and the second-stage cold-rolled annealed plate (cold-rolled thin steel plate) or the second-stage cold-rolled annealed plate (cold-rolled thin steel plate) on which the plating layer is formed, Test specimens were collected. The collected specimen was ground and polished so that the position corresponding to 1/4 of the plate thickness was the measurement surface. About the test piece which grind | polished and grind | polished, the volume ratio of the retained austenite was calculated | required from the diffraction X-ray intensity | strength by the X ray diffraction method. CoKα rays were used as incident X-rays.
In calculating the volume fraction of retained austenite, the integrated intensity of the peaks of the {111}, {200}, {220} and {311} faces of austenite and the {110}, {200} and {211} faces of ferrite The intensity ratio was calculated for all the combinations. The average value thereof was obtained, and the volume fraction of retained austenite was calculated.
 《引張試験》
 第2段冷延焼鈍板(冷延薄鋼板)またはめっき層が形成された第2段冷延焼鈍板(冷延薄鋼板)から、引張方向が圧延方向と垂直な方向(C方向)となるように、JIS 5号引張試験片を採取し、JIS Z 2241(2011)の規定に準拠して、引張試験を実施し、引張強さ(TS)および破断伸び(El)を求め、さらに、強度-延性バランス(TS×El)を算出した。結果を、下記表3に示す。
<Tensile test>
From the second-stage cold-rolled annealed plate (cold-rolled thin steel plate) or the second-stage cold-rolled annealed plate (cold-rolled thin steel plate) on which the plating layer is formed, the tensile direction becomes the direction (C direction) perpendicular to the rolling direction. Thus, a JIS No. 5 tensile test piece was sampled, and a tensile test was carried out in accordance with the provisions of JIS Z 2241 (2011) to determine the tensile strength (TS) and elongation at break (El). -The ductility balance (TS x El) was calculated. The results are shown in Table 3 below.
 (強度)
 TSが980MPa以上であれば、高強度であると評価できる。
(Strength)
If TS is 980 MPa or more, it can be evaluated as high strength.
 (延性)
 TSが980MPa以上1180MPa未満の場合はElが25%以上、TSが1180MPa以上の場合はElが20%以上であれば、高延性であると評価できる。
(Ductility)
When TS is 980 MPa or more and less than 1180 MPa, El is 25% or more. When TS is 1180 MPa or more, if El is 20% or more, high ductility can be evaluated.
 (強度-延性バランス)
 TSが980MPa以上1180MPa未満の場合はTS×Elが24500MPa・%以上、TSが1180MPa以上の場合はTS×Elが23600MPa・%以上であれば、強度-延性バランスが良好であると評価できる。
(Strength-ductility balance)
When TS is 980 MPa or more and less than 1180 MPa, TS × El is 24500 MPa ·% or more, and when TS is 1180 MPa or more, if TS × El is 23600 MPa ·% or more, it can be evaluated that the strength-ductility balance is good.
 《穴広げ試験》
 第2段冷延焼鈍板(冷延薄鋼板)またはめっき層が形成された第2段冷延焼鈍板(冷延薄鋼板)から、100mmW×100mmLサイズの試験片を採取した。採取した試験片に、JIS Z 2256(2010)の規定に準拠して、クリアランス12.5%にて、10mmφの穴を打ち抜いた。その後、60°の円錐ポンチを上昇させることにより穴を広げた。その際に、き裂が板厚方向を貫通したところで円錐ポンチの上昇を止めた。き裂貫通後の穴径と試験前の穴径とから穴広げ率λ[%]を求めた。結果を下記表3に示す。
《Hole expansion test》
A test piece having a size of 100 mmW × 100 mmL was taken from a second-stage cold-rolled annealed plate (cold-rolled thin steel plate) or a second-stage cold-rolled annealed plate (cold-rolled thin steel plate) on which a plating layer was formed. A 10 mmφ hole was punched into the collected test piece with a clearance of 12.5% in accordance with the provisions of JIS Z 2256 (2010). The hole was then widened by raising the 60 ° conical punch. At that time, the rise of the conical punch was stopped when the crack penetrated the plate thickness direction. The hole expansion ratio λ [%] was determined from the hole diameter after the crack penetration and the hole diameter before the test. The results are shown in Table 3 below.
 (伸びフランジ性)
 TSが980MPa以上1180MPa未満の場合はλが30%以上、TSが1180MPa以上の場合はλが20%以上であれば、伸びフランジ性が良好(高伸びフランジ性)であると評価できる。
(Stretch flangeability)
When TS is 980 MPa or more and less than 1180 MPa, λ is 30% or more. When TS is 1180 MPa or more, if λ is 20% or more, it can be evaluated that the stretch flangeability is good (high stretch flangeability).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 上記表1~表3において、下線部は、本発明の範囲外を示す。
 本発明例の冷延薄鋼板(めっき層が形成された冷延薄鋼板も含む)は、いずれも、高強度であって、かつ、高延性で、強度-延性バランスに優れるうえ、さらに、伸びフランジ性も良好であった。
 これに対して、比較例の冷延薄鋼板(めっき層が形成された冷延薄鋼板も含む)は、強度が不十分であるか、強度が十分であっても、延性および/または伸びフランジ性が不十分であった。
In Tables 1 to 3, the underlined portion indicates outside the scope of the present invention.
Each of the cold-rolled thin steel sheets (including the cold-rolled thin steel sheet on which the plating layer is formed) of the present invention has high strength, high ductility, excellent strength-ductility balance, and elongation. Flangeability was also good.
On the other hand, the cold-rolled thin steel sheet of the comparative example (including the cold-rolled thin steel sheet on which the plating layer is formed) has ductility and / or stretch flange even if the strength is insufficient or the strength is sufficient. Sex was insufficient.

Claims (5)

  1.  質量%で、C:0.15%超え0.45%以下、Si:0.50%以上2.50%以下、Mn:1.50%以上3.50%以下、P:0.001%以上0.050%以下、S:0.0100%以下、N:0.0100%以下、および、Al:0.010%以上1.00%以下を含み、残部Feおよび不可避的不純物からなる組成と、
     体積率で、10%以上70%以下のポリゴナルフェライト、5%以上40%以下のベイニティックフェライト、15%超え40%以下の残留オーステナイト、および、0%超え30%以下のマルテンサイトを有する組織と、を有し、
     前記ポリゴナルフェライトの平均結晶粒径が10.0μm以下で、かつ、前記ポリゴナルフェライトのアスペクト比が1.5以上であり、
     前記残留オーステナイトの平均結晶粒径が2.0μm以下で、かつ、前記残留オーステナイトのアスペクト比が2.0以上である、高強度冷延薄鋼板。
    In mass%, C: more than 0.15% and not more than 0.45%, Si: 0.50% to 2.50%, Mn: 1.50% to 3.50%, P: 0.001% or more 0.055% or less, S: 0.0100% or less, N: 0.0100% or less, and Al: 0.010% or more and 1.00% or less, and the balance Fe and inevitable impurities,
    10% to 70% polygonal ferrite, 5% to 40% bainitic ferrite, 15% to 40% residual austenite, and 0% to 30% martensite An organization, and
    The average grain size of the polygonal ferrite is 10.0 μm or less, and the aspect ratio of the polygonal ferrite is 1.5 or more,
    A high-strength cold-rolled steel sheet having an average crystal grain size of the retained austenite of 2.0 µm or less and an aspect ratio of the retained austenite of 2.0 or more.
  2.  前記組成が、さらに、質量%で、Ti:0.005%以上0.030%以下、Nb:0.005%以上0.030%以下、B:0.0001%以上0.0050%以下、Cr:0.05%以上0.20%以下、Cu:0.05%以上0.20%以下、Sb:0.002%以上0.050%以下、Sn:0.002%以上0.050%以下、Ta:0.001%以上0.100%以下、Ca:0.0005%以上0.0050%以下、Mg:0.0005%以上0.0050%以下、および、REM:0.0005%以上0.0050%以下からなる群から選ばれる少なくとも1種の元素を含む、請求項1に記載の高強度冷延薄鋼板。 The composition is further, in mass%, Ti: 0.005% to 0.030%, Nb: 0.005% to 0.030%, B: 0.0001% to 0.0050%, Cr : 0.05% to 0.20%, Cu: 0.05% to 0.20%, Sb: 0.002% to 0.050%, Sn: 0.002% to 0.050% Ta: 0.001% or more and 0.100% or less, Ca: 0.0005% or more and 0.0050% or less, Mg: 0.0005% or more and 0.0050% or less, and REM: 0.0005% or more and 0 The high-strength cold-rolled thin steel sheet according to claim 1, comprising at least one element selected from the group consisting of .0050% or less.
  3.  表面に、溶融亜鉛めっき層、合金化溶融亜鉛めっき層、または、電気亜鉛めっき層を有する、請求項1または2に記載の高強度冷延薄鋼板。 The high-strength cold-rolled thin steel sheet according to claim 1 or 2, wherein the surface has a hot-dip galvanized layer, an alloyed hot-dip galvanized layer, or an electrogalvanized layer.
  4.  請求項1~3のいずれか1項に記載の高強度冷延薄鋼板を製造する方法であって、
     請求項1または2に記載の組成を有する鋼素材に、熱間圧延を施すことにより、熱延板を得る熱間圧延工程と、
     前記熱延板に酸洗処理を施す酸洗工程と、
     前記酸洗処理が施された前記熱延板に、圧下率30%以上の冷間圧延を施すことにより、薄冷延板を得る冷間圧延工程と、
     前記薄冷延板を、800℃以上950℃以下の焼鈍温度Tで加熱し、前記焼鈍温度Tから、5℃/s以上の平均冷却速度で、500℃以下の冷却停止温度Tまで冷却することにより、マルテンサイトとベイナイトとの合計が体積率で80%以上である組織を有する第1段冷延焼鈍板を得る第1段焼鈍工程と、
     前記第1段冷延焼鈍板を、700℃以上850℃以下の焼鈍温度Tで、10s以上900s以下保持し、前記焼鈍温度Tから、5℃/s以上50℃/s以下の平均冷却速度で、200℃以上500℃以下の冷却停止温度Tまで冷却し、前記冷却停止温度Tで、10s以上1800s以下保持することにより、第2段冷延焼鈍板を得る第2段焼鈍工程と、を備える高強度冷延薄鋼板の製造方法。
    A method for producing the high-strength cold-rolled thin steel sheet according to any one of claims 1 to 3,
    A hot rolling step for obtaining a hot-rolled sheet by subjecting the steel material having the composition according to claim 1 or 2 to hot rolling,
    A pickling step of subjecting the hot-rolled sheet to a pickling treatment;
    A cold rolling step of obtaining a thin cold-rolled sheet by subjecting the hot-rolled sheet subjected to the pickling treatment to cold rolling with a rolling reduction of 30% or more;
    The thin cold-rolled sheet is heated at an annealing temperature T 1 of 800 ° C. or more and 950 ° C. or less, and from the annealing temperature T 1 to a cooling stop temperature T 2 of 500 ° C. or less at an average cooling rate of 5 ° C./s or more. A first-stage annealing step of obtaining a first-stage cold-rolled annealed sheet having a structure in which the sum of martensite and bainite is 80% or more by volume, by cooling;
    Said first Danhiyanobe annealed sheets at 700 ° C. or higher 850 ° C. below the annealing temperature T 3, and held 10s or 900s or less, wherein the annealing temperature T 3, 5 ℃ / s or higher 50 ° C. / s or less in average cooling at a rate, and cooled to 200 ° C. or higher 500 ° C. or less of the cooling stop temperature T 4, the at cooling stop temperature T 4, by holding 10s or 1800s or less, the second-stage annealing process of obtaining a second Danhiyanobe annealed sheets And a method for producing a high-strength cold-rolled thin steel sheet.
  5.  前記第2段冷延焼鈍板に、溶融亜鉛めっき処理、溶融亜鉛めっき処理および合金化処理、または、電気亜鉛めっき処理を施すめっき工程をさらに備える、請求項4に記載の高強度冷延薄鋼板の製造方法。 5. The high-strength cold-rolled steel sheet according to claim 4, further comprising a plating step of subjecting the second stage cold-rolled annealed plate to a hot-dip galvanizing treatment, a hot-dip galvanizing treatment and an alloying treatment, or an electrogalvanizing treatment. Manufacturing method.
PCT/JP2017/040219 2016-11-10 2017-11-08 High-strength cold-rolled thin steel sheet and method for producing high-strength cold-rolled thin steel sheet WO2018088421A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018512636A JP6597889B2 (en) 2016-11-10 2017-11-08 High strength cold-rolled steel sheet and method for producing high-strength cold-rolled steel sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-219501 2016-11-10
JP2016219501 2016-11-10

Publications (1)

Publication Number Publication Date
WO2018088421A1 true WO2018088421A1 (en) 2018-05-17

Family

ID=62109803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040219 WO2018088421A1 (en) 2016-11-10 2017-11-08 High-strength cold-rolled thin steel sheet and method for producing high-strength cold-rolled thin steel sheet

Country Status (2)

Country Link
JP (1) JP6597889B2 (en)
WO (1) WO2018088421A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110093491A (en) * 2019-05-17 2019-08-06 中冶赛迪工程技术股份有限公司 A kind of cold-rolled galvanized duplex steel and its manufacturing method
WO2020174805A1 (en) * 2019-02-25 2020-09-03 Jfeスチール株式会社 High-strength steel sheet and method for manufacturing same
WO2022019209A1 (en) * 2020-07-20 2022-01-27 日本製鉄株式会社 Steel sheet and method for producing same
CN114945694A (en) * 2020-01-14 2022-08-26 日本制铁株式会社 Steel sheet and method for producing same
CN115151673A (en) * 2020-02-28 2022-10-04 杰富意钢铁株式会社 Steel sheet, member, and method for producing same
CN115362279A (en) * 2020-03-31 2022-11-18 杰富意钢铁株式会社 Steel sheet, component and method for producing same
CN115362275A (en) * 2020-03-31 2022-11-18 杰富意钢铁株式会社 Steel sheet, component and method for producing same
EP4166685A4 (en) * 2020-06-11 2023-11-22 Baoshan Iron & Steel Co., Ltd. Ultra-high-strength steel having excellent plasticity and method for manufacturing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013051238A1 (en) * 2011-10-04 2013-04-11 Jfeスチール株式会社 High-strength steel sheet and method for manufacturing same
WO2016132680A1 (en) * 2015-02-17 2016-08-25 Jfeスチール株式会社 High-strength, cold-rolled, thin steel sheet and method for manufacturing same
WO2016136810A1 (en) * 2015-02-24 2016-09-01 新日鐵住金株式会社 Cold-rolled steel sheet and method for manufacturing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013051238A1 (en) * 2011-10-04 2013-04-11 Jfeスチール株式会社 High-strength steel sheet and method for manufacturing same
WO2016132680A1 (en) * 2015-02-17 2016-08-25 Jfeスチール株式会社 High-strength, cold-rolled, thin steel sheet and method for manufacturing same
WO2016136810A1 (en) * 2015-02-24 2016-09-01 新日鐵住金株式会社 Cold-rolled steel sheet and method for manufacturing same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020174805A1 (en) * 2019-02-25 2020-09-03 Jfeスチール株式会社 High-strength steel sheet and method for manufacturing same
JP6809647B1 (en) * 2019-02-25 2021-01-06 Jfeスチール株式会社 High-strength steel sheet and its manufacturing method
CN110093491A (en) * 2019-05-17 2019-08-06 中冶赛迪工程技术股份有限公司 A kind of cold-rolled galvanized duplex steel and its manufacturing method
CN114945694A (en) * 2020-01-14 2022-08-26 日本制铁株式会社 Steel sheet and method for producing same
CN115151673A (en) * 2020-02-28 2022-10-04 杰富意钢铁株式会社 Steel sheet, member, and method for producing same
CN115151673B (en) * 2020-02-28 2024-04-19 杰富意钢铁株式会社 Steel sheet, member, and method for producing same
CN115362279B (en) * 2020-03-31 2024-03-01 杰富意钢铁株式会社 Steel sheet, component, and method for manufacturing same
CN115362279A (en) * 2020-03-31 2022-11-18 杰富意钢铁株式会社 Steel sheet, component and method for producing same
CN115362275A (en) * 2020-03-31 2022-11-18 杰富意钢铁株式会社 Steel sheet, component and method for producing same
CN115362275B (en) * 2020-03-31 2024-03-01 杰富意钢铁株式会社 Steel sheet, component, and method for manufacturing same
EP4166685A4 (en) * 2020-06-11 2023-11-22 Baoshan Iron & Steel Co., Ltd. Ultra-high-strength steel having excellent plasticity and method for manufacturing same
WO2022019209A1 (en) * 2020-07-20 2022-01-27 日本製鉄株式会社 Steel sheet and method for producing same
JP7417165B2 (en) 2020-07-20 2024-01-18 日本製鉄株式会社 Steel plate and its manufacturing method

Also Published As

Publication number Publication date
JP6597889B2 (en) 2019-10-30
JPWO2018088421A1 (en) 2018-11-29

Similar Documents

Publication Publication Date Title
JP6237900B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP6597889B2 (en) High strength cold-rolled steel sheet and method for producing high-strength cold-rolled steel sheet
EP3476963B1 (en) High-strength cold rolled steel sheet and method for producing the same
JP5983895B2 (en) High strength steel plate and method for producing the same, and method for producing high strength galvanized steel plate
JP6525114B1 (en) High strength galvanized steel sheet and method of manufacturing the same
JP5018935B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
JP6503584B2 (en) Method of manufacturing hot rolled steel sheet, method of manufacturing cold rolled full hard steel sheet, and method of manufacturing heat treated sheet
EP3543364B1 (en) High-strength steel sheet and method for producing same
EP3447160A1 (en) Steel plate, plated steel plate, and production method therefor
CN111511945B (en) High-strength cold-rolled steel sheet and method for producing same
WO2016021193A1 (en) High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet
JP6669319B1 (en) High strength hot rolled steel sheet and method for producing the same
CN111527223B (en) High-strength cold-rolled steel sheet and method for producing same
WO2018186335A1 (en) High strength cold rolled steel sheet and method for producing same
JP2018178248A (en) High strength cold rolled steel sheet and method for producing the same
JP4696870B2 (en) High strength steel plate and manufacturing method thereof
WO2020148948A1 (en) High-strength hot-dip galvanized steel sheet and method for manufacturing same
JP2013237877A (en) High yield ratio type high strength steel sheet, high yield ratio type high strength cold rolled steel sheet, high yield ratio type high strength galvanized steel sheet, high yield ratio type high strength hot dip galvanized steel sheet, high yield ratio type high strength hot dip galvannealed steel sheet, method for producing high yield ratio type high strength cold rolled steel sheet, method for producing high yield ratio type high strength hot dip galvanized steel sheet and method for producing high yield ratio type high strength hot dip galvannealed steel sheet
KR102274284B1 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
EP3543365B1 (en) High-strength steel sheet and method for producing same
JP6525125B1 (en) High strength cold rolled steel sheet and method of manufacturing the same
WO2021070639A1 (en) High-strength steel sheet, impact absorbing member, and method for manufacturing high-strength steel sheet
JP2018003115A (en) High strength steel sheet and manufacturing method therefor
CN115210398B (en) Steel sheet, member, and method for producing same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018512636

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17869981

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17869981

Country of ref document: EP

Kind code of ref document: A1