WO2018186335A1 - High strength cold rolled steel sheet and method for producing same - Google Patents

High strength cold rolled steel sheet and method for producing same Download PDF

Info

Publication number
WO2018186335A1
WO2018186335A1 PCT/JP2018/014075 JP2018014075W WO2018186335A1 WO 2018186335 A1 WO2018186335 A1 WO 2018186335A1 JP 2018014075 W JP2018014075 W JP 2018014075W WO 2018186335 A1 WO2018186335 A1 WO 2018186335A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
cold
rolled
hot
Prior art date
Application number
PCT/JP2018/014075
Other languages
French (fr)
Japanese (ja)
Inventor
田中 孝明
勇樹 田路
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018017145A external-priority patent/JP6409991B1/en
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to EP18780802.7A priority Critical patent/EP3591087B1/en
Priority to KR1020197028975A priority patent/KR102274284B1/en
Priority to US16/499,592 priority patent/US11365459B2/en
Priority to CN201880020730.4A priority patent/CN110475892B/en
Publication of WO2018186335A1 publication Critical patent/WO2018186335A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling

Definitions

  • the present invention relates to a high-strength cold-rolled steel sheet and a manufacturing method thereof. More specifically, the present invention relates to a high-strength cold-rolled steel sheet having a high strength of tensile strength (TS): 980 MPa or more suitable for parts of transportation machinery including automobiles, and a method for producing the same.
  • TS tensile strength
  • the steel sheet may be required to have excellent stretch flangeability.
  • the stretch flangeability is evaluated as good when, for example, the average value of the hole expansion ratio obtained by a predetermined hole expansion test is large.
  • the defect rate of the hole expansion test A steel sheet with a high defect rate in the hole expansion test is more likely to be defective even during actual pressing. Such defects are difficult to ignore in mass production and mass production of parts. In order to reduce the defective rate of press molding, a steel sheet having a low defective rate in the hole expansion test is required.
  • the present invention provides a high-strength cold-rolled steel sheet having a tensile strength of 980 MPa or more, excellent in ductility and stretch flangeability, and having a low defect rate in a hole expansion test, and a method for producing the same. For the purpose.
  • the present inventors have intensively studied to achieve the above object. As a result, when a large number of massive retained austenite contained in the steel sheet is exposed on the punched end surface during the punching prior to the hole expansion test, end face cracks are induced and the hole expansion rate is greatly reduced. I found out. Furthermore, the present inventors have found that when acicular retained austenite having a small aspect ratio is present at the Bain group boundary, there is an effect of suppressing the occurrence of the end face cracks. Further, the inventors of the present invention have a high ratio of acicular residual austenite with a small aspect ratio and a steel sheet having a microstructure in which most of the acicular residual austenite with a small aspect ratio exists at the boundary of the Bain group.
  • the failure rate of the spreading test was remarkably small.
  • the inventors have further studied.
  • the heat treatment (annealing process) of the steel sheet was performed twice, and in particular, by optimizing the thermal history in the first annealing process, it was found that the microstructure of the steel sheet can be stably made the above microstructure. .
  • the present inventors have further studied and completed the present invention.
  • the present invention provides the following [1] to [6].
  • the total area ratio of ferrite and bainitic ferrite is 20% or more and 80% or less
  • the area ratio of retained austenite is more than 10% and 40% or less
  • the area ratio of martensite is 0%.
  • the ratio of the remaining austenite that is 50% or less and the aspect ratio is 0.5 or less in the retained austenite is 75% or more in area ratio and the remaining austenite that has the aspect ratio is 0.5 or less.
  • the percentage of those present in-loop boundary is an area ratio of 50% or more, high strength cold rolled steel sheet.
  • the first Danhiyanobe annealed sheets a first stage annealing step of obtaining, the first Danhiyanobe annealed sheets, heated at an annealing temperature T 3 of 700 ° C. or higher 850 ° C. or less, From serial annealing temperature T 3, by cooling to 300 ° C. or higher 500 ° C. or less of the cooling stop temperature T 4, the production of high strength cold rolled steel sheet comprising: a second-stage annealing process of obtaining a second Danhiyanobe annealed sheets, the Method.
  • the present invention it is possible to provide a high-strength cold-rolled steel sheet having a tensile strength of 980 MPa or more, excellent in ductility and stretch flangeability, and having a low defect rate in a hole expansion test, and a method for producing the same.
  • the high-strength cold-rolled steel sheet of the present invention is suitable for structural steel materials such as parts for transportation machinery including automobiles and steel materials for construction.
  • ADVANTAGE OF THE INVENTION According to this invention, the further use expansion
  • the proportion of residual austenite having an aspect ratio of 0.5 or less and the proportion of residual austenite having an aspect ratio of 0.5 or less at the Bain group boundary are the defect rate of the hole expansion test. It is a graph which shows the influence which acts.
  • the high-strength cold-rolled steel sheet of the present invention is, in mass%, C: more than 0.15% and 0.45% or less, Si: 0.50% or more and 2.50% or less, Mn: 1.50% or more and 3.00.
  • the total area ratio of ferrite and bainitic ferrite is 20% or more and 80% or less in the microstructure, the area ratio of retained austenite is more than 10% and 40% or less, and martensite.
  • the area ratio of the site is more than 0% and 50% or less, and the proportion of the retained austenite whose aspect ratio is 0.5 or less is 75% or more in area ratio and the aspect ratio is 0.5 or less. Residual austenite Of the percentage of those present in Bain group boundary is 50% or more in area ratio, a high strength cold rolled steel sheet.
  • strength cold-rolled steel plate of this invention is 5 mm or less, for example.
  • composition which the high-strength cold-rolled steel sheet of this invention has is demonstrated first.
  • the unit of element content in the component composition is “mass%”, but hereinafter, it is simply indicated by “%” unless otherwise specified.
  • C stabilizes austenite, ensures retained austenite with a desired area ratio, contributes effectively to improving ductility, increases the hardness of martensite, and contributes to an increase in strength.
  • C needs to contain more than 0.15%.
  • a large content exceeding 0.45% leads to deterioration of toughness, weldability and delayed fracture resistance, and makes the amount of martensite generated excessively and reduces ductility and stretch flangeability. Therefore, the C content is more than 0.15% and 0.45% or less, preferably 0.18% or more and 0.42% or less, and more preferably 0.20% or more and 0.40% or less.
  • Si suppresses the formation of carbide (cementite) and promotes the concentration of C to austenite, thereby stabilizing austenite and contributing to the improvement of the ductility of the steel sheet.
  • Si dissolved in ferrite improves work hardening ability and contributes to improvement of ductility of ferrite itself. In order to sufficiently obtain such an effect, Si needs to be contained in an amount of 0.50% or more.
  • Si exceeds 2.50% not only the effect of suppressing the formation of carbide (cementite) and stabilizing the retained austenite is saturated, but the amount of Si dissolved in ferrite becomes excessive. Therefore, ductility is reduced.
  • the Si content is 0.50% or more and 2.50% or less, preferably 0.80% or more and 2.30% or less, and more preferably 1.00% or more and 2.10% or less.
  • Mn is an austenite stabilizing element, and contributes to the improvement of ductility by stabilizing austenite, and also promotes the formation of martensite by increasing the hardenability and contributes to increasing the strength of the steel sheet.
  • Mn needs to be contained in an amount of 1.50% or more.
  • content of Mn is 1.50% or more and 3.00% or less, and 1.80% or more and 2.70% or less are preferable.
  • P is a harmful element that segregates at grain boundaries to reduce elongation, induces cracking during processing, and further degrades impact resistance. Therefore, the P content is 0.050% or less. Preferably it is 0.010% or less. However, excessive P removal causes an increase in refining time and cost, and therefore the P content is preferably 0.002% or more.
  • S exists as MnS in the steel, promotes the generation of voids during the punching process, and further decreases the stretch flangeability because it becomes a starting point for the generation of voids during the processing. Therefore, the amount of S is preferably reduced as much as possible, and is 0.0100% or less. Preferably it is 0.0050% or less. However, excessive desulfurization causes an increase in refining time and cost, and therefore the S content is preferably 0.0002% or more.
  • Al is an element that acts as a deoxidizer. In order to obtain such an effect, 0.010% or more of Al is contained. However, when the Al content is excessive, it remains as an Al oxide in the steel sheet, and the Al oxide is agglomerated and easily coarsened, causing the stretch flangeability to deteriorate. Therefore, the Al content is set to 0.100% or less.
  • N exists as AlN in the steel, promotes the generation of coarse voids during the punching process, and further reduces the stretch flangeability because it becomes the starting point for the generation of coarse voids during the machining. For this reason, it is preferable to reduce N amount as much as possible, and N content shall be 0.0100% or less. Preferably it is 0.0060% or less. However, excessive de-N causes an increase in refining time and an increase in cost, so the N content is preferably 0.0005% or more.
  • C and Mn are both elements that contribute to the formation of hard martensite. Even when the content of each element is individually within the above range, 7.5 ⁇ C + Mn is less than 5.0. In some cases, the stretch flangeability tends to be more excellent. This is because C and Mn do not independently determine the properties of martensite but influence each other. When 7.5 ⁇ C + Mn is less than 5.0, the martensite is excessive. It is considered that it is suppressed from becoming hard and stretch flangeability is more excellent. For this reason, it is preferable that C and Mn are mass% and satisfy the following formula (z).
  • C and Mn indicate the content of each element. Although a minimum is not specifically limited, For example, 7.5 * C + Mn has preferable 3.0 or more, and 3.5 or more is more preferable.
  • the above composition is further, if necessary, in mass%, Ti: 0.005% or more and 0.035% or less, Nb: 0.005% or more and 0.035% or less.
  • V 0.005% to 0.035%
  • Mo 0.005% to 0.035%
  • B 0.0003% to 0.0100%
  • Cr 0.05% to 1.00 %
  • Ni 0.05% to 1.00%
  • Cu 0.05% to 1.00%
  • Sb 0.002% to 0.050%
  • Sn 0.002% to 0 .050% or less
  • Ca 0.0005% or more and 0.0050% or less
  • Mg 0.0005% or more and 0.0050% or less
  • REM 0.0005% or more and 0.0050% or less At least one element.
  • Ti forms carbonitrides and increases the strength of the steel by precipitation strengthening action.
  • the content of Ti is preferably 0.005% or more and 0.035% or less, and more preferably 0.005% or more and 0.020% or less.
  • Nb forms carbonitride and increases the strength of the steel by precipitation strengthening action.
  • the Nb content is preferably 0.005% or more in order to effectively exhibit the above-described action.
  • the Nb content is preferably 0.005% or more and 0.035% or less, and more preferably 0.005% or more and 0.030% or less.
  • V (V: 0.005% to 0.035%) V forms carbonitride and increases the strength of the steel by precipitation strengthening action.
  • V content 0.005% or more.
  • the content of V is preferably 0.005% or more and 0.035% or less, and more preferably 0.005% or more and 0.030% or less.
  • Mo 0.005% to 0.035%
  • Mo forms carbonitrides and increases the strength of the steel by precipitation strengthening action.
  • Mo content 0.005% or more.
  • Mo is preferably 0.005% or more and 0.035% or less, and more preferably 0.005% or more and 0.030% or less.
  • B has an effect of enhancing hardenability and promoting the formation of martensite, and thus is useful as a steel strengthening element.
  • the B content is preferably 0.0003% or more.
  • the content of B is preferably 0.0003% or more and 0.0100% or less.
  • Cr 0.05% to 1.00%
  • Cr has a function of enhancing hardenability and promoting martensite formation, and thus is useful as a steel strengthening element.
  • the Cr content is preferably 0.05% or more.
  • the Cr content is preferably 0.05% or more and 1.00% or less.
  • Ni is useful as a steel strengthening element because it has the effect of enhancing hardenability and promoting the formation of martensite.
  • the Ni content is preferably 0.05% or more.
  • the Ni content is preferably 0.05% or more and 1.00% or less.
  • Cu has a function of enhancing hardenability and promoting the formation of martensite, and thus is useful as a steel strengthening element.
  • the Cu content is preferably 0.05% or more.
  • the content of Cu is preferably 0.05% or more and 1.00% or less.
  • Sb has the effect
  • the Sb content is preferably 0.002% or more.
  • the toughness may be reduced. For this reason, the content of Sb is preferably 0.002% or more and 0.050% or less.
  • Sn has an effect of suppressing decarburization of the steel sheet surface layer (region of about several tens of ⁇ m) caused by nitriding and oxidation of the steel sheet surface. Thereby, it can prevent that the production amount of austenite reduces on the steel plate surface, and it is effective for ensuring desired ductility.
  • the Sn content is preferably 0.002% or more.
  • the content of Sn is preferably 0.002% or more and 0.050% or less.
  • Ca (Ca: 0.0005% or more and 0.0050% or less)
  • Ca has the effect
  • the content of Ca is preferably 0.0005% or more and 0.0050% or less.
  • Mg has the effect
  • Mg content 0.0005% or more.
  • the content of Mg is preferably 0.0005% or more and 0.0050% or less.
  • REM 0.0005% or more and 0.0050% or less
  • REM rare earth element
  • the content of REM is preferably 0.0005% or more and 0.0050% or less.
  • Remainder Fe and inevitable impurities In the above composition, the balance other than the above components consists of Fe (remainder Fe) and inevitable impurities.
  • ferrite and bainitic ferrite are soft steel structures and contribute to improving the ductility of the steel sheet. Since carbon does not dissolve so much in these structures, discharging C into the austenite increases the stability of the austenite and contributes to the improvement of ductility. In order to impart the required ductility to the steel sheet, the total area ratio of ferrite and bainitic ferrite is required to be 20% or more. On the other hand, when the sum of the area ratios of ferrite and bainitic ferrite exceeds 80%, it becomes difficult to ensure a tensile strength of 980 MPa or more. For this reason, the sum total of the area ratios of ferrite and bainitic ferrite is 20% or more and 80% or less.
  • the retained austenite is a structure that is rich in ductility per se, but is a structure that contributes to further improving ductility by strain-induced transformation. In order to obtain such an effect, the retained austenite needs to be more than 10% in terms of area ratio. On the other hand, if the retained austenite increases in area ratio exceeding 40%, the stability of the retained austenite is lowered, so that strain-induced transformation occurs early and ductility is lowered. For this reason, the area ratio of retained austenite is more than 10% and 40% or less. In this specification, the volume ratio of retained austenite is calculated by the method described later, and this is treated as the area ratio.
  • the “martensite” here includes fresh martensite and tempered martensite. Martensite is a very hard structure and contributes to increasing the strength of the steel sheet. For the purpose of increasing the strength of the steel sheet, martensite has an area ratio of more than 0% (not including 0%), preferably 3% or more. On the other hand, if the area ratio exceeds 50%, desired ductility and stretch flangeability cannot be ensured. For this reason, the sum total of the area ratio of martensite is more than 0% and 50% or less, and preferably 3% or more and 50% or less.
  • the microstructure of the high-strength cold-rolled steel sheet according to the present invention is not limited to the case where the total area ratio of each of the ferrite and bainitic ferrite, retained austenite, and martensite is 100%. In some cases, the area ratio is 100%.
  • Ratio of retained austenite with an aspect ratio of 0.5 or less: 75% or more in area ratio Residual austenite improves the ductility of the steel sheet, but its contribution to the improvement of ductility differs depending on its shape. Residual austenite having an aspect ratio of 0.5 or less is more stable to processing than the retained austenite having an aspect ratio of more than 0.5, and the effect of improving ductility is great. Residual austenite having a low processing stability and an aspect ratio of more than 0.5 becomes hard martensite at an early stage in the punching prior to the hole expansion test, so that it is easy to form coarse voids around it.
  • the retained austenite having an aspect ratio of 0.5 or less is deformed along the flow of the microstructure, and it is difficult to form voids around the austenite.
  • the ratio of the retained austenite having an aspect ratio of 0.5 or less in the retained austenite is 75% or more in terms of area ratio. If it is. Preferably it is 80% or more. The upper limit of this ratio is not particularly limited, and may be 100%.
  • FIG. 1 is a schematic diagram showing a part of the microstructure of a steel plate (region considered to be generated from one prior austenite grain).
  • the microstructure of the steel sheet shown in FIG. 1 is composed of three Bain groups (B1 to B3). The same Bain group is given the same hatching. Residual austenite is also present in the microstructure of the steel sheet shown in FIG.
  • the retained austenite indicated by the symbol “RA 2 ” exists inside one Bain group B2.
  • the retained austenite indicated by the symbol “RA 1 ” is present at the boundary between the Bain group B1 and another Bain group B3.
  • the retained austenite indicated by the symbol “RA 1 ” corresponds to the retained austenite existing at the Bain group boundary.
  • the proportion of the remaining austenite having an aspect ratio of 0.5 or less at the boundary of the Bain group may be 50% or more in terms of area ratio. Preferably it is 65% or more.
  • the upper limit of this ratio is not particularly limited, and may be 100%. Preferably, it is 95% or less.
  • the high-strength cold-rolled steel sheet of the present invention may further have a plating layer on the surface from the viewpoint of improving corrosion resistance and the like.
  • a hot dip galvanized layer, an alloyed hot dip galvanized layer, or an electrogalvanized layer is preferable.
  • the hot-dip galvanized layer, the alloyed hot-dip galvanized layer, and the electrogalvanized layer are not particularly limited, and are conventionally known hot-dip galvanized layer, conventionally known alloyed hot-dip galvanized layer, and conventionally known, respectively.
  • the electrogalvanized layer is preferably used.
  • the electrogalvanized layer may be a zinc alloy plated layer obtained by adding an appropriate amount of elements such as Fe, Cr, Ni, Mn, Co, Sn, Pb, or Mo to Zn according to the purpose. .
  • the production method of the present invention generally includes the above-described high-strength cold-rolled steel sheet according to the present invention by sequentially subjecting a steel material having the above composition to hot rolling, pickling, cold rolling, and annealing. Is the way to get. And in the manufacturing method of this invention, the process of annealing is divided into two processes.
  • the steel material is not particularly limited as long as it is a steel material having the above composition.
  • the melting method of the steel material is not particularly limited, and a known melting method using a converter or an electric furnace can be employed. From the viewpoint of productivity and the like, it is preferable to form a slab (steel material) by a continuous casting method after melting, but the slab may be formed by a known casting method such as an ingot-bundling rolling method or a thin slab continuous casting method. Good.
  • a hot rolling process is a process of obtaining a hot-rolled sheet by hot-rolling the steel raw material which has the said composition.
  • the hot rolling process is not particularly limited as long as it is a process in which a steel material having the above composition is heated and subjected to hot rolling to obtain a hot rolled sheet having a predetermined size, and a normal hot rolling process is applied. it can.
  • a normal hot rolling process for example, a steel material is heated to a heating temperature of 1100 ° C. or more and 1300 ° C. or less, and hot rolling is performed on the heated steel material at a finish rolling outlet temperature of 850 ° C. or more and 950 ° C. or less.
  • cooling after appropriate rolling (specifically, for example, a temperature range of 450 ° C. or more and 950 ° C. or less is performed at an average cooling rate of 20 ° C./s or more and 100 ° C./s or less).
  • An example is a hot rolling process in which cooling is performed after cooling and winding is performed at a coiling temperature of 400 ° C. or more and 700 ° C. or less to obtain a hot-rolled sheet having a predetermined size and shape.
  • the pickling step is a step of pickling the hot-rolled sheet obtained through the hot rolling step.
  • the pickling step is not particularly limited as long as it can be pickled to such an extent that cold rolling can be performed on the hot-rolled sheet.
  • a conventional pickling step using hydrochloric acid or sulfuric acid can be applied.
  • the cold rolling process is a process of performing cold rolling on the hot-rolled sheet that has undergone the pickling process. More specifically, the cold rolling step is a step of obtaining a cold rolled plate having a predetermined thickness by subjecting the hot rolled plate subjected to pickling to cold rolling with a rolling reduction of 30% or more.
  • ⁇ Cold rolling reduction 30% or more>
  • the rolling reduction of cold rolling is 30% or more.
  • the processing amount is insufficient, and the number of austenite nucleation sites decreases.
  • austenite becomes coarse and non-uniform in the first-stage annealing process of the next process, and the lower bainite transformation in the holding process of the subsequent first-stage annealing process is suppressed, and martensite is generated excessively.
  • the microstructure of the steel sheet after the first stage annealing process cannot be made a microstructure mainly composed of lower bainite.
  • the portion that is martensite after the first stage annealing step tends to generate retained austenite having an aspect ratio of more than 0.5 in the subsequent second stage annealing step.
  • the upper limit of the rolling reduction is determined by the capability of the cold rolling mill, but if the rolling reduction is too high, the rolling load increases and the productivity may decrease. For this reason, the rolling reduction is preferably 70% or less.
  • the number of rolling passes and the rolling reduction per pass are not particularly limited.
  • An annealing process is a process which anneals the cold-rolled sheet obtained through the cold rolling process, and is a process including the 1st stage annealing process and 2nd stage annealing process mentioned later in detail.
  • First stage annealing process the cold-rolled sheet obtained through the cold rolling step is heated at an annealing temperature T 1 of Ac 3 points or more and 950 ° C. or less, and from the annealing temperature T 1 , an average of more than 10 ° C./s at a cooling rate, cooling to cooling stop temperature T 2 less than 250 ° C. or higher 350 ° C., by holding at the cooling stop temperature T 2 10s or more, a step of obtaining a first Danhiyanobe annealed sheets.
  • the purpose of this process is to make the microstructure of the steel sheet at the completion of the first stage annealing process into lower bainite.
  • the portion that is martensite after the first stage annealing step tends to generate retained austenite having an aspect ratio of more than 0.5 in the subsequent second stage annealing step, so that the martensite is excessive in the first stage annealing step.
  • generates it will become difficult to obtain the microstructure of a desired steel plate.
  • the parentheses in the above formula represent the content (unit: mass%) of the element in the parentheses in the steel sheet. When no element is contained, it is calculated as 0.
  • the annealing temperature T 1 is excessively coarsened austenite grains exceeds 950 ° C., since the formation of lower bainite is suppressed in the course retained after cooling, because the martensite excessively generated, the first stage annealing step
  • the microstructure of the later steel sheet cannot be made into a microstructure mainly composed of lower bainite.
  • the portion that is martensite after the first stage annealing step tends to generate retained austenite having an aspect ratio of more than 0.5 in the subsequent second stage annealing step.
  • annealing temperatures T 1 is Ac 3 point or more 950 ° C. or less.
  • Holding time at the annealing temperatures T 1 is not particularly limited, for example, is 10s or 1000s or less.
  • the average cooling rate from the annealing temperature T 1 of to the cooling stop temperature T 2 is 10 ° C. / s greater, preferably 15 ° C. / s or higher.
  • the upper limit of the average cooling rate is not particularly limited, but an excessively large cooling device is required to ensure an excessively high cooling rate. From the viewpoint of production technology and capital investment, the average cooling rate is 50 It is preferably at most ° C / s.
  • the cooling is preferably gas cooling, but can be performed by combining furnace cooling and mist cooling.
  • the cooling stop temperature T 2 is less than 250 ° C. or higher 350 ° C.. More preferably, it is 270 degreeC or more and 340 degrees C or less.
  • the holding time at the cooling stop temperature T 2 is 10s or more.
  • the holding time at the cooling stop temperature T 2 is 10s or more.
  • it is 30 s or more.
  • the upper limit of the holding time at the cooling stop temperature T 2 is not particularly limited, if it is excessively held for a long time, as well as it requires a long production facilities, because the productivity of the steel sheet is remarkably reduced, 1800 s or less Is preferred.
  • the second stage annealing step following step for example it may be cooled to room temperature, subsequently it is subjected to heating and second stage annealing step without cooling.
  • two heating furnaces of a normal continuous annealing facility (CAL) are required in one line. After performing the first stage annealing process by CAL, the second stage annealing process is performed by passing the CAL once again.
  • Second stage annealing process a first Danhiyanobe annealed sheets obtained through the first-stage annealing process, was heated at 700 ° C. or higher 850 ° C. below the annealing temperature T 3 (reheat), from annealing temperature T 3 , by cooling to 300 of the cooling stop ° C. or higher 500 ° C. or less temperature T 4, which is a step of obtaining a second Danhiyanobe annealed sheets.
  • reheat annealing temperature
  • the ratio of the remaining austenite having an aspect ratio of 0.5 or less and the ratio of the remaining austenite having an aspect ratio of 0.5 or less at the Bain group boundary may be set to desired values. It becomes difficult. Therefore, the annealing temperature T 3 is no more than 850 ° C. 700 ° C. or higher, preferably 710 ° C. or higher 830 ° C. or less.
  • Holding time at the annealing temperature T 3 is not particularly limited, for example, is 10s or 1000s or less.
  • the average cooling rate from the annealing temperature T 3 to a cooling stop temperature T 4 is not particularly limited, for example, is 50 ° C. / s or less 5 ° C. / s or higher.
  • cooling stop temperature T 4 300 ° C. or more and 500 ° C. or less
  • the cooling stop temperature T 4 is lower than 300 ° C., enrichment of C into austenite becomes insufficient, a large amount of martensite with retained austenite amount decreases is produced, it can not be obtained microstructure of the desired steel sheet .
  • the cooling stop temperature T 4 is greater than 500 ° C., obtained with ferrite and bainitic ferrite are produced in large quantities, since the pearlite from austenite is generated, the amount of retained austenite is reduced, the microstructure of the desired steel sheet I can't.
  • Holding time at the cooling stop temperature T 4 is not particularly limited, for example, is 10s or 1800s or less.
  • Second Danhiyanobe annealed sheet after holding in the cooling stop temperature T 4 is preferably cooled.
  • This cooling is not particularly limited, and the cooling can be performed to a desired temperature such as room temperature by an arbitrary method such as cooling.
  • the second-stage cold-rolled annealed sheet obtained through the second-stage annealing process becomes the high-strength cold-rolled steel sheet of the present invention.
  • the second-stage cold-rolled annealed plate obtained through the second-stage annealing step may be further subjected to a plating treatment to form a plating layer on the surface thereof.
  • the second-stage cold-rolled annealed plate having a plating layer formed on the surface is the high-strength cold-rolled steel plate of the present invention.
  • hot dip galvanizing treatment hot dip galvanizing treatment and alloying treatment, or electrogalvanizing treatment is preferable.
  • the hot dip galvanizing treatment, the hot dip galvanizing treatment and the alloying treatment, and the electrogalvanizing treatment are not particularly limited, and are conventionally known hot dip galvanizing treatment, conventionally known hot dip galvanizing treatment and alloying treatment, respectively.
  • a conventionally known electrogalvanizing treatment is preferably used.
  • pretreatment such as degreasing and phosphate treatment may be performed prior to the plating treatment.
  • the hot dip galvanizing treatment for example, a conventional continuous hot dip galvanizing line is used to immerse the second stage cold-rolled annealing plate in a hot dip galvanizing bath and form a predetermined amount of hot dip galvanized layer on the surface. It is preferable that When immersed in a hot dip galvanizing bath, the temperature of the second-stage cold-rolled annealed plate is not less than the temperature of the hot dip galvanizing bath temperature ⁇ 50 ° C. and not more than the temperature of the hot dip galvanizing bath temperature + 80 ° C. by reheating or cooling. It is preferable to adjust within the range.
  • the temperature of the hot dip galvanizing bath is preferably 440 ° C. or higher and 500 ° C. or lower.
  • the hot dip galvanizing bath may contain Al, Fe, Mg, Si or the like in addition to pure zinc.
  • the adhesion amount of the hot-dip galvanized layer can be adjusted to a desired adhesion amount by adjusting gas wiping or the like, and is preferably about 45 g / m 2 per side.
  • the plated layer (hot galvanized layer) formed by the hot dip galvanizing process may be an alloyed hot dip galvanized layer by performing a usual alloying process as necessary.
  • the temperature for the alloying treatment is preferably 460 ° C. or more and 600 ° C. or less.
  • adjusting the effective Al concentration in the hot dip galvanizing bath to a range of 0.10% by mass or more and 0.22% by mass or less from the viewpoint of securing a desired plating appearance. preferable.
  • the electrogalvanizing treatment is preferably, for example, a treatment of forming a predetermined amount of electrogalvanized layer on the surface of the second stage cold-rolled annealed plate using a conventional electrogalvanizing line.
  • the adhesion amount of the electrogalvanized layer can be adjusted to a predetermined adhesion amount by adjusting the sheet passing speed or the current value, and is preferably about 30 g / m 2 per side.
  • the obtained cold-rolled sheet was annealed under the conditions shown in Tables 2 to 3 below to obtain a second-stage cold-rolled annealed sheet.
  • the annealing process was a two-stage process consisting of a first stage annealing process and a second stage annealing process. It cooled to room temperature between the 1st stage annealing process and the 2nd stage annealing process. Holding time at the annealing temperature T 1 of the first stage annealing process was 100s.
  • the holding time at the annealing temperature T 3 is 100 s
  • the average cooling rate from the annealing temperature T 3 to the cooling stop temperature T 4 is 20 ° C./s
  • the holding time at the cooling stop temperature T 4 was 250 s.
  • the second-stage cold-rolled annealed sheets were subjected to hot dip galvanizing treatment after the end of annealing, thereby forming a hot dip galvanized layer on the surface to obtain hot dip galvanized steel sheets.
  • the hot dip galvanizing treatment the second-stage cold-rolled annealed plate is reheated to a temperature in the range of 430 ° C. or higher and 480 ° C. or lower as necessary using a continuous hot dip galvanizing line, and a hot dip galvanizing bath (bath temperature) is used. : 470 ° C.), and the amount of adhesion of the plating layer was adjusted to 45 g / m 2 per side.
  • the bath composition was Zn-0.18 mass% Al.
  • the hot dip galvanized steel sheets had a bath composition of Zn-0.14 mass% Al, and after the plating process, an alloying process was performed at 520 ° C. to obtain an alloyed hot dip galvanized steel sheet.
  • the Fe concentration in the plating layer was 9% by mass or more and 12% by mass or less.
  • Another part of the second-stage cold-rolled annealed plate is subjected to an electrogalvanizing treatment after the annealing, and further using an electrogalvanizing line so that the amount of plating is 30 g / m 2 per side. To give an electrogalvanized steel sheet.
  • the second-stage cold-rolled annealed sheet that does not form a plating layer is “CR”
  • the hot-dip galvanized steel sheet is “GI”
  • the galvannealed steel sheet is “GA”
  • the electrogalvanized steel sheet was written as “EG”.
  • a second-stage cold-rolled annealed plate that does not form a plated layer, and a second-stage cold-rolled annealed plate that forms a plated layer hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet, and electrogalvanized steel sheet
  • cold-rolled steel sheet A cold-rolled steel sheet was produced as described above.
  • test piece was collected from the obtained cold-rolled steel sheet and subjected to microstructure observation, measurement of residual austenite area ratio, tensile test, and hole expansion test.
  • the test method was as follows.
  • ⁇ Microstructure observation a specimen for microstructural observation was collected from the cold rolled steel sheet. Next, the collected specimen was polished so that the position corresponding to 1/4 of the plate thickness in the rolling direction cross section (L cross section) was the observation surface. The observation surface is corroded (1% by volume nital liquid corrosion), and then observed using a scanning electron microscope (SEM, magnification: 3000 times) in a visual field range of 30 ⁇ m ⁇ 35 ⁇ m, and imaged. SEM images were obtained. The area ratio of each tissue was determined by image analysis using the obtained SEM image. The area ratio was an average value of 10 fields of view.
  • SEM scanning electron microscope
  • test piece was polished by colloidal silica vibration polishing so that a position corresponding to 1/4 of the plate thickness in the cross section in the rolling direction (L cross section) became the observation surface.
  • the observation surface was a mirror surface.
  • processing transformation phase of the observation surface due to polishing strain was removed by ultra-low acceleration ion milling, and then electron beam backscatter diffraction (EBSD) measurement was performed to obtain local crystal orientation data.
  • EBSD electron beam backscatter diffraction
  • the SEM magnification was 1500 times
  • the step size was 0.04 ⁇ m
  • the measurement area was 40 ⁇ m square
  • WD was 15 mm.
  • Analysis software OIM Analysis 7 was used to analyze the obtained local orientation data. The analysis was performed for three visual fields, and the average value was used.
  • Grain Dilution function (Grain Tolerance Angle: 5 °, Minimum Grain Size: 5, Single Iteration: ON) and Grain CI Standardization Function (Grain Tolerance Angle: 5 °, Grain Tolerance Angle: 5 °, Grain Tolerance Angle: 5 °
  • Grain Tolerance Angle 5 °
  • the clean-up process according to was performed once in order. Thereafter, only measurement points with CI values> 0.1 were used for analysis.
  • the fcc phase data was analyzed using the Area Fraction of the Grain Shape Aspect Ratio chart, and the ratio (area ratio) of retained austenite having an aspect ratio of 0.5 or less was determined from the retained austenite. In the above analysis, Method 2 was used as the grain shape calculation method.
  • the different austenite with the aspect ratio obtained earlier of 0.5 or less is used in a different color.
  • the ratio of those existing at the boundary of the colored region, that is, the Bain group boundary (including the former austenite grain boundary) was obtained as an area ratio.
  • a specimen for X-ray diffraction is taken from the cold-rolled steel sheet, ground and polished so that the position corresponding to 1/4 of the plate thickness becomes the measurement surface, and diffracted X-ray intensity is measured by the X-ray diffraction method. From the volume fraction of retained austenite. CoK ⁇ rays were used as incident X-rays.
  • the volume fraction of retained austenite When calculating the volume fraction of retained austenite, the ⁇ 111 ⁇ , ⁇ 200 ⁇ , ⁇ 220 ⁇ and ⁇ 311 ⁇ faces of the fcc phase (residual austenite) and the ⁇ 110 ⁇ , ⁇ 200 ⁇ and ⁇ 211 ⁇ of the bcc phase The intensity ratio was calculated for all combinations of the integrated intensity of the peak of the surface, the average value was obtained, and the volume fraction of retained austenite was calculated. The volume ratio of austenite thus obtained was defined as the area ratio.
  • ⁇ Tensile test> A JIS No. 5 tensile test piece (JIS Z 2001) having a tensile direction in the direction perpendicular to the rolling direction (C direction) is taken from the cold-rolled steel sheet and subjected to a tensile test in accordance with the provisions of JIS Z 2241. Strength (TS) and elongation (El) were measured.
  • ⁇ Hole expansion test ⁇ A specimen (size: 100 mm ⁇ 100 mm) is taken from the cold rolled steel sheet, and a hole having an initial diameter d 0 : 10 mm ⁇ is formed in the specimen by punching (clearance: 12.5% of the specimen thickness). did. Using these test pieces, a hole expansion test was performed. That is, a conical punch having an apex angle of 60 ° is inserted into a hole having an initial diameter d 0 : 10 mm ⁇ from the punching side at the time of punching, and the hole is expanded and the hole penetrates through the steel plate (test piece). The diameter d (unit: mm) was measured, and the hole expansion ratio ⁇ (unit:%) was calculated by the following formula.
  • Hole expansion ratio ⁇ ⁇ (d ⁇ d 0 ) / d 0 ⁇ ⁇ 100
  • the hole expansion test was performed 100 times for each steel plate, and the average value was defined as the average hole expansion rate ⁇ (unit:%).
  • the average hole expansion ratio ⁇ is also expressed as “average ⁇ ”.
  • a probability that the value of the hole expansion rate ⁇ is a value equal to or less than half of the average hole expansion rate ⁇ was determined, and this was defined as a defective rate (unit:%) of the hole expansion test.
  • FIG. 2 is a graph plotting a part of the results of Tables 4-5. More specifically, FIG. 2 shows the proportion of residual austenite with an aspect ratio of 0.5 or less, and the proportion of residual austenite with an aspect ratio of 0.5 or less that exists at the Bain group boundary. These are graphs which show the influence which it has on the defect rate of a hole expansion test. As can be seen from the graph of FIG. 2, the ratio of residual austenite having an aspect ratio of 0.5 or less is 75% or more, and the residual austenite having an aspect ratio of 0.5 or less is present at the Bain group boundary. Only when the ratio of the objects is 50% or more, a steel sheet having a low defect rate in the hole expansion test is obtained.
  • the cold-rolled steel sheets of the examples of the present invention all have high strength with a tensile strength (TS) of 980 MPa or more, and have good ductility and stretch flanges.
  • TS tensile strength
  • the defect rate of the hole expansion test is small.
  • any of the above characteristics was insufficient.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

Provided is a high strength cold rolled steel sheet which has a tensile strength of 980 MPa or more, exhibits excellent ductility and stretch flange characteristics, and has a low defect ratio in a hole enlargement test. This high strength cold rolled steel sheet has a composition which contains, in terms of mass%, more than 0.15% and not more than 0.45% of C, 0.50-2.50% of Si, 1.50-3.00% of Mn, not more than 0.050% of P, not more than 0.0100% of S, 0.010-0.100% of Al and not more than 0.0100% of N, with the remainder comprising Fe and unavoidable impurities, has a total content of ferrite and bainitic ferrite of 20-80%, has a retained austenite content of more than 10% and not more than 40%, has a martensite content of more than 0% and not more than 50%, and is such that the proportion of retained austenite that has an aspect ratio of not more than 0.5 is not less than 75%, and the proportion of retained austenite having an aspect ratio of not more than 0.5 that is present at Bain group boundaries is not less than 50%.

Description

高強度冷延鋼板およびその製造方法High-strength cold-rolled steel sheet and manufacturing method thereof
 本発明は、高強度冷延鋼板およびその製造方法に関する。より詳細には、本発明は、自動車を初めとする輸送機械類の部品に適した、引張強さ(TS):980MPa以上の高強度を有する高強度冷延鋼板およびその製造方法に関する。 The present invention relates to a high-strength cold-rolled steel sheet and a manufacturing method thereof. More specifically, the present invention relates to a high-strength cold-rolled steel sheet having a high strength of tensile strength (TS): 980 MPa or more suitable for parts of transportation machinery including automobiles, and a method for producing the same.
 従来、車体部品等に、高強度冷延鋼板が適用されている(例えば、特許文献1~2)。
 近年、地球環境の保全という観点から、自動車の燃費向上が要望されており、引張強さが980MPa以上である高強度冷延鋼板を適用することが促進されている。
 さらに、最近では、自動車の衝突安全性の向上に対する要求が高まり、衝突時の乗員の安全性確保という観点から、車体の骨格部分等の構造部材用として、引張強さが1180MPa以上である極めて高い強度を有する高強度冷延鋼板の適用も検討されている。
Conventionally, high-strength cold-rolled steel sheets have been applied to body parts and the like (for example, Patent Documents 1 and 2).
In recent years, from the viewpoint of preservation of the global environment, improvement in fuel efficiency of automobiles has been demanded, and application of high-strength cold-rolled steel sheets having a tensile strength of 980 MPa or more has been promoted.
Furthermore, recently, there has been an increasing demand for improving the collision safety of automobiles, and from the viewpoint of ensuring the safety of passengers in the event of a collision, the tensile strength for structural members such as the skeleton part of a vehicle body is extremely high at 1180 MPa or more. Application of high-strength cold-rolled steel sheets having strength has also been studied.
国際公開第2016/132680号International Publication No. 2016/132680 国際公開第2016/021193号International Publication No. 2016/021193
 鋼板が高強度化するにつれ延性が低下する。延性の低い鋼板は、プレス成型時に割れを生じるため、高強度鋼板を自動車部品として加工するためには、高強度としながらも高い延性を兼備する必要がある。 As the steel sheet becomes stronger, the ductility decreases. Since a steel sheet with low ductility is cracked during press molding, it is necessary to combine high ductility with high strength in order to process a high-strength steel sheet as an automobile part.
 また、成型性の指標の1つとして、鋼板には、優れた伸びフランジ性が要求されることがある。伸びフランジ性は、例えば、所定の穴広げ試験により求められる穴広げ率の平均値が大きい場合に、良好であると評価される。 Also, as one of the indexes of formability, the steel sheet may be required to have excellent stretch flangeability. The stretch flangeability is evaluated as good when, for example, the average value of the hole expansion ratio obtained by a predetermined hole expansion test is large.
 ところで、穴広げ率の平均値(平均穴広げ率)が優れる鋼板であっても、試験数を増やしていくと、まれに平均値よりも大幅に低い値が測定されることがある。このように平均値よりも大幅に低い値が測定される確率を、穴広げ試験の不良率とする。
 穴広げ試験の不良率が高い鋼板は、実プレス時にも不良となる確率が高くなる。量産で大量に部品成型を行なう中で、このような不良は無視しがたい。プレス成型の不良率を低減するため、穴広げ試験の不良率が低い鋼板が求められている。
By the way, even if the steel sheet has an excellent average value of the hole expansion rate (average hole expansion rate), when the number of tests is increased, a value significantly lower than the average value may be measured in rare cases. Thus, the probability that a value significantly lower than the average value is measured is defined as the defect rate of the hole expansion test.
A steel sheet with a high defect rate in the hole expansion test is more likely to be defective even during actual pressing. Such defects are difficult to ignore in mass production and mass production of parts. In order to reduce the defective rate of press molding, a steel sheet having a low defective rate in the hole expansion test is required.
 このため、引張強さ980MPa以上の高強度を有し、かつ、優れた延性および伸びフランジ性を兼備し、さらに、穴広げ試験の不良率を低減した鋼板が求められている。
 しかし、従来の冷延鋼板は、上記特性のいずれかが不十分である場合があった。
Therefore, there is a demand for a steel sheet having a high tensile strength of 980 MPa or more, an excellent ductility and stretch flangeability, and a reduced defect rate in the hole expansion test.
However, conventional cold-rolled steel sheets may have any of the above characteristics insufficient.
 そこで、本発明は、980MPa以上の引張強さを有し、かつ、延性および伸びフランジ性に優れ、さらに、穴広げ試験の不良率が低い高強度冷延鋼板、および、その製造方法を提供することを目的とする。 Therefore, the present invention provides a high-strength cold-rolled steel sheet having a tensile strength of 980 MPa or more, excellent in ductility and stretch flangeability, and having a low defect rate in a hole expansion test, and a method for producing the same. For the purpose.
 本発明者らは、上記目的を達成するために鋭意検討を行なった。その結果、鋼板中に含まれるアスペクト比の大きい塊状の残留オーステナイトが、穴広げ試験に先立つ打抜き時に打抜き端面に多数露出した場合に、端面クラックを誘発し、穴広げ率が大幅に低下することを知見した。
 さらに、本発明者らは、アスペクト比の小さい針状の残留オーステナイトがBainグループ境界に存在する場合に、上記端面クラックの発生を抑制する効果があることを知見した。
 また、本発明者らは、アスペクト比の小さい針状の残留オーステナイト分率が高く、かつアスペクト比の小さい針状の残留オーステナイトの多くがBainグループ境界に存在するミクロ組織を有する鋼板においては、穴広げ試験の不良率が顕著に小さいことを知見した。
 本発明者らはさらに検討を重ねた。その結果、鋼板の熱処理(焼鈍工程)を2回行ない、特に1回目の焼鈍工程における熱履歴を適正化することにより、安定的に鋼板のミクロ組織を上記ミクロ組織にできることを知見するに至った。
 本発明らは、上記の知見に基づき、さらに検討を加えた末、本発明を完成させた。
The present inventors have intensively studied to achieve the above object. As a result, when a large number of massive retained austenite contained in the steel sheet is exposed on the punched end surface during the punching prior to the hole expansion test, end face cracks are induced and the hole expansion rate is greatly reduced. I found out.
Furthermore, the present inventors have found that when acicular retained austenite having a small aspect ratio is present at the Bain group boundary, there is an effect of suppressing the occurrence of the end face cracks.
Further, the inventors of the present invention have a high ratio of acicular residual austenite with a small aspect ratio and a steel sheet having a microstructure in which most of the acicular residual austenite with a small aspect ratio exists at the boundary of the Bain group. It was found that the failure rate of the spreading test was remarkably small.
The inventors have further studied. As a result, the heat treatment (annealing process) of the steel sheet was performed twice, and in particular, by optimizing the thermal history in the first annealing process, it was found that the microstructure of the steel sheet can be stably made the above microstructure. .
Based on the above findings, the present inventors have further studied and completed the present invention.
 すなわち、本発明は、以下の[1]~[6]を提供する。
 [1]質量%で、C:0.15%超0.45%以下、Si:0.50%以上2.50%以下、Mn:1.50%以上3.00%以下、P:0.050%以下、S:0.0100%以下、Al:0.010%以上0.100%以下、および、N:0.0100%以下を含み、残部Feおよび不可避的不純物からなる組成を有し、ミクロ組織において、フェライトおよびベイニティックフェライトの面積率の総和が20%以上80%以下であり、残留オーステナイトの面積率が10%超40%以下であり、かつ、マルテンサイトの面積率が0%超50%以下であり、残留オーステナイトのうち、アスペクト比が0.5以下であるものの割合が、面積率で75%以上であり、アスペクト比が0.5以下である残留オーステナイトのうち、Bainグループ境界に存在するものの割合が、面積率で50%以上である、高強度冷延鋼板。
 [2]上記組成が、さらに、質量%で、Ti:0.005%以上0.035%以下、Nb:0.005%以上0.035%以下、V:0.005%以上0.035%以下、Mo:0.005%以上0.035%以下、B:0.0003%以上0.0100%以下、Cr:0.05%以上1.00%以下、Ni:0.05%以上1.00%以下、Cu:0.05%以上1.00%以下、Sb:0.002%以上0.050%以下、Sn:0.002%以上0.050%以下、Ca:0.0005%以上0.0050%以下、Mg:0.0005%以上0.0050%以下、および、REM:0.0005%以上0.0050%以下からなる群から選ばれる少なくとも1種の元素を含む、上記[1]に記載の高強度冷延鋼板。
 [3]上記組成のCおよびMnが、質量%で、下記式(z)を満足する、上記[1]または[2]に記載の高強度冷延鋼板。
 7.5×C+Mn<5.0 ・・・ (z)
 ただし、式(z)中、CおよびMnは、各元素の含有量を示す。
 [4]表面にめっき層を有する、上記[1]~[3]のいずれかに記載の高強度冷延鋼板。
 [5]上記[1]~[4]のいずれかに記載の高強度冷延鋼板を製造する方法であって、上記[1]~[3]のいずれかに記載の組成を有する鋼素材に、熱間圧延を施すことにより、熱延板を得る熱間圧延工程と、上記熱延板に酸洗を施す酸洗工程と、上記酸洗が施された上記熱延板に、圧下率30%以上の冷間圧延を施すことにより、冷延板を得る冷間圧延工程と、上記冷延板を、Ac点以上950℃以下の焼鈍温度Tで加熱し、上記焼鈍温度Tから、10℃/s超の平均冷却速度で、250℃以上350℃未満の冷却停止温度Tまで冷却し、上記冷却停止温度Tで10s以上保持することにより、第1段冷延焼鈍板を得る第1段焼鈍工程と、上記第1段冷延焼鈍板を、700℃以上850℃以下の焼鈍温度Tで加熱し、上記焼鈍温度Tから、300℃以上500℃以下の冷却停止温度Tまで冷却することにより、第2段冷延焼鈍板を得る第2段焼鈍工程と、を備える高強度冷延鋼板の製造方法。
 [6]上記第2段冷延焼鈍板に、溶融亜鉛めっき処理、溶融亜鉛めっき処理および合金化処理、または、電気亜鉛めっき処理を施すめっき工程をさらに備える、上記[5]に記載の高強度冷延鋼板の製造方法。
That is, the present invention provides the following [1] to [6].
[1] By mass%, C: more than 0.15% and 0.45% or less, Si: 0.50% to 2.50%, Mn: 1.50% to 3.00%, P: 0.00. 050% or less, S: 0.0100% or less, Al: 0.010% or more and 0.100% or less, and N: 0.0100% or less, having a composition consisting of the balance Fe and inevitable impurities, In the microstructure, the total area ratio of ferrite and bainitic ferrite is 20% or more and 80% or less, the area ratio of retained austenite is more than 10% and 40% or less, and the area ratio of martensite is 0%. The ratio of the remaining austenite that is 50% or less and the aspect ratio is 0.5 or less in the retained austenite is 75% or more in area ratio and the remaining austenite that has the aspect ratio is 0.5 or less. The percentage of those present in-loop boundary is an area ratio of 50% or more, high strength cold rolled steel sheet.
[2] The above composition is further mass%, Ti: 0.005% to 0.035%, Nb: 0.005% to 0.035%, V: 0.005% to 0.035% Hereinafter, Mo: 0.005% to 0.035%, B: 0.0003% to 0.0100%, Cr: 0.05% to 1.00%, Ni: 0.05% to 1. 00% or less, Cu: 0.05% or more and 1.00% or less, Sb: 0.002% or more and 0.050% or less, Sn: 0.002% or more and 0.050% or less, Ca: 0.0005% or more [50] containing at least one element selected from the group consisting of 0.0050% or less, Mg: 0.0005% or more and 0.0050% or less, and REM: 0.0005% or more and 0.0050% or less. ] The high-strength cold-rolled steel sheet according to any one of the above
[3] The high-strength cold-rolled steel sheet according to [1] or [2], wherein C and Mn of the above composition satisfy the following formula (z) in mass%.
7.5 × C + Mn <5.0 (z)
However, in the formula (z), C and Mn indicate the content of each element.
[4] The high-strength cold-rolled steel sheet according to any one of [1] to [3], which has a plating layer on the surface.
[5] A method for producing the high-strength cold-rolled steel sheet according to any one of [1] to [4], wherein the steel material having the composition according to any one of [1] to [3] is used. The hot rolling step of obtaining a hot-rolled sheet by performing hot rolling, the pickling step of pickling the hot-rolled plate, and the reduction ratio of 30 to the hot-rolled plate subjected to the pickling % Of cold rolling to obtain a cold-rolled sheet, and the cold-rolled sheet is heated at an annealing temperature T 1 of Ac 3 points or more and 950 ° C. or less, and from the annealing temperature T 1 , at 10 ° C. / s than the average cooling rate, cooling to cooling stop temperature T 2 less than 250 ° C. or higher 350 ° C., by holding 10s or above the cooling stop temperature T 2, the first Danhiyanobe annealed sheets a first stage annealing step of obtaining, the first Danhiyanobe annealed sheets, heated at an annealing temperature T 3 of 700 ° C. or higher 850 ° C. or less, From serial annealing temperature T 3, by cooling to 300 ° C. or higher 500 ° C. or less of the cooling stop temperature T 4, the production of high strength cold rolled steel sheet comprising: a second-stage annealing process of obtaining a second Danhiyanobe annealed sheets, the Method.
[6] The high strength according to [5], further including a plating step of subjecting the second-stage cold-rolled annealed plate to a hot dip galvanizing treatment, a hot dip galvanizing treatment and an alloying treatment, or an electrogalvanizing treatment. A method for producing a cold-rolled steel sheet.
 本発明によれば、980MPa以上の引張強さを有し、かつ、延性および伸びフランジ性に優れ、さらに、穴広げ試験の不良率が低い高強度冷延鋼板、および、その製造方法を提供できる。
 本発明の高強度冷延鋼板は、自動車をはじめとする輸送機械類の部品、建築用鋼材などの構造用鋼材に適している。本発明によれば、高強度冷延鋼板のより一層の用途展開が可能となり、産業上格段の効果を奏する。
According to the present invention, it is possible to provide a high-strength cold-rolled steel sheet having a tensile strength of 980 MPa or more, excellent in ductility and stretch flangeability, and having a low defect rate in a hole expansion test, and a method for producing the same. .
The high-strength cold-rolled steel sheet of the present invention is suitable for structural steel materials such as parts for transportation machinery including automobiles and steel materials for construction. ADVANTAGE OF THE INVENTION According to this invention, the further use expansion | deployment of a high-strength cold-rolled steel plate is attained, and there exists a remarkable effect on an industry.
鋼板のミクロ組織の一部(1つの旧オーステナイト粒から生成したと考えられる領域)を示す模式図である。It is a schematic diagram which shows a part (area | region considered to be produced | generated from one prior austenite grain) of the microstructure of a steel plate. 残留オーステナイトのうち、アスペクト比が0.5以下であるものの割合と、アスペクト比が0.5以下である残留オーステナイトのうち、Bainグループ境界に存在するものの割合とが、穴広げ試験の不良率に及ぼす影響を示すグラフである。The proportion of residual austenite having an aspect ratio of 0.5 or less and the proportion of residual austenite having an aspect ratio of 0.5 or less at the Bain group boundary are the defect rate of the hole expansion test. It is a graph which shows the influence which acts.
[高強度冷延鋼板]
 本発明の高強度冷延鋼板は、質量%で、C:0.15%超0.45%以下、Si:0.50%以上2.50%以下、Mn:1.50%以上3.00%以下、P:0.050%以下、S:0.0100%以下、Al:0.010%以上0.100%以下、および、N:0.0100%以下を含み、残部Feおよび不可避的不純物からなる組成を有し、ミクロ組織において、フェライトおよびベイニティックフェライトの面積率の総和が20%以上80%以下であり、残留オーステナイトの面積率が10%超40%以下であり、かつ、マルテンサイトの面積率が0%超50%以下であり、残留オーステナイトのうち、アスペクト比が0.5以下であるものの割合が、面積率で75%以上であり、アスペクト比が0.5以下である残留オーステナイトのうち、Bainグループ境界に存在するものの割合が、面積率で50%以上である、高強度冷延鋼板である。
 なお、本発明の高強度冷延鋼板の板厚は、例えば、5mm以下である。
[High-strength cold-rolled steel sheet]
The high-strength cold-rolled steel sheet of the present invention is, in mass%, C: more than 0.15% and 0.45% or less, Si: 0.50% or more and 2.50% or less, Mn: 1.50% or more and 3.00. %: P: 0.050% or less, S: 0.0100% or less, Al: 0.010% or more and 0.100% or less, and N: 0.0100% or less, and the balance Fe and inevitable impurities The total area ratio of ferrite and bainitic ferrite is 20% or more and 80% or less in the microstructure, the area ratio of retained austenite is more than 10% and 40% or less, and martensite. The area ratio of the site is more than 0% and 50% or less, and the proportion of the retained austenite whose aspect ratio is 0.5 or less is 75% or more in area ratio and the aspect ratio is 0.5 or less. Residual austenite Of the percentage of those present in Bain group boundary is 50% or more in area ratio, a high strength cold rolled steel sheet.
In addition, the plate | board thickness of the high intensity | strength cold-rolled steel plate of this invention is 5 mm or less, for example.
 〈組成〉
 以下では、まず、本発明の高強度冷延鋼板が有する組成(成分組成)について説明する。成分組成における元素の含有量の単位はいずれも「質量%」であるが、以下、特に断らない限り単に「%」で示す。
<composition>
Below, the composition (component composition) which the high-strength cold-rolled steel sheet of this invention has is demonstrated first. The unit of element content in the component composition is “mass%”, but hereinafter, it is simply indicated by “%” unless otherwise specified.
 《C:0.15%超0.45%以下》
 Cは、オーステナイトを安定化させ、所望の面積率の残留オーステナイトを確保し、延性の向上に有効に寄与するとともに、マルテンサイトの硬度を上昇させ、強度の増加に寄与する。このような効果を十分に得るためには、Cは、0.15%超の含有を必要とする。
 一方、0.45%を超える多量の含有は、靭性、溶接性および耐遅れ破壊特性の劣化を招くとともにマルテンサイトの生成量を過剰とし延性および伸びフランジ性を低下させる。
 このため、Cの含有量は、0.15%超0.45%以下であり、0.18%以上0.42%以下が好ましく、0.20%以上0.40%以下がより好ましい。
<< C: more than 0.15% and less than 0.45% >>
C stabilizes austenite, ensures retained austenite with a desired area ratio, contributes effectively to improving ductility, increases the hardness of martensite, and contributes to an increase in strength. In order to sufficiently obtain such an effect, C needs to contain more than 0.15%.
On the other hand, a large content exceeding 0.45% leads to deterioration of toughness, weldability and delayed fracture resistance, and makes the amount of martensite generated excessively and reduces ductility and stretch flangeability.
Therefore, the C content is more than 0.15% and 0.45% or less, preferably 0.18% or more and 0.42% or less, and more preferably 0.20% or more and 0.40% or less.
 《Si:0.50%以上2.50%以下》
 Siは、炭化物(セメンタイト)の生成を抑制し、オーステナイトへのCの濃化を促進することによりオーステナイトを安定化させ、鋼板の延性向上に寄与する。フェライトに固溶したSiは、加工硬化能を向上させ、フェライト自身の延性向上に寄与する。このような効果を十分に得るためには、Siは、0.50%以上の含有を必要とする。
 一方、Siが2.50%を超えると、炭化物(セメンタイト)の生成を抑制し、残留オーステナイトの安定化に寄与する効果は飽和するだけでなく、フェライト中に固溶するSi量が過度となるため延性が低下する。
 このため、Siの含有量は、0.50%以上2.50%以下であり、0.80%以上2.30%以下が好ましく、1.00%以上2.10%以下がより好ましい。
<< Si: 0.50% or more and 2.50% or less >>
Si suppresses the formation of carbide (cementite) and promotes the concentration of C to austenite, thereby stabilizing austenite and contributing to the improvement of the ductility of the steel sheet. Si dissolved in ferrite improves work hardening ability and contributes to improvement of ductility of ferrite itself. In order to sufficiently obtain such an effect, Si needs to be contained in an amount of 0.50% or more.
On the other hand, if Si exceeds 2.50%, not only the effect of suppressing the formation of carbide (cementite) and stabilizing the retained austenite is saturated, but the amount of Si dissolved in ferrite becomes excessive. Therefore, ductility is reduced.
For this reason, the Si content is 0.50% or more and 2.50% or less, preferably 0.80% or more and 2.30% or less, and more preferably 1.00% or more and 2.10% or less.
 《Mn:1.50%以上3.00%以下》
 Mnは、オーステナイト安定化元素であり、オーステナイトを安定化させることによって延性の向上に寄与するとともに、焼入れ性を高めることによりマルテンサイトの生成を促進し鋼板の高強度化に寄与する。このような効果を十分に得るために、Mnは、1.50%以上の含有を必要とする。
 一方、Mnが3.00%を超えると、マルテンサイトが過剰に生成して延性および伸びフランジ性を劣化させる。
 このため、Mnの含有量は、1.50%以上3.00%以下であり、1.80%以上2.70%以下が好ましい。
<< Mn: 1.50% to 3.00% >>
Mn is an austenite stabilizing element, and contributes to the improvement of ductility by stabilizing austenite, and also promotes the formation of martensite by increasing the hardenability and contributes to increasing the strength of the steel sheet. In order to sufficiently obtain such an effect, Mn needs to be contained in an amount of 1.50% or more.
On the other hand, if Mn exceeds 3.00%, martensite is excessively generated and ductility and stretch flangeability are deteriorated.
For this reason, content of Mn is 1.50% or more and 3.00% or less, and 1.80% or more and 2.70% or less are preferable.
 《P:0.050%以下》
 Pは、粒界に偏析して伸びを低下させ、加工時に割れを誘発し、さらには耐衝撃性を劣化させる有害な元素である。したがって、P含有量を0.050%以下とする。好ましくは0.010%以下である。
 ただし、過度の脱Pは、精錬時間の増加およびコストの上昇などを招くため、P含有量は、0.002%以上とすることが好ましい。
<< P: 0.050% or less >>
P is a harmful element that segregates at grain boundaries to reduce elongation, induces cracking during processing, and further degrades impact resistance. Therefore, the P content is 0.050% or less. Preferably it is 0.010% or less.
However, excessive P removal causes an increase in refining time and cost, and therefore the P content is preferably 0.002% or more.
 《S:0.0100%以下》
 Sは、鋼中にMnSとして存在して打抜き加工時にボイドの発生を助長し、さらには、加工中にもボイドの発生の起点となるために伸びフランジ性を低下させる。そのため、S量は、極力低減することが好ましく、0.0100%以下とする。好ましくは0.0050%以下である。
 ただし、過度の脱Sは、精錬時間の増加およびコストの上昇などを招くため、S含有量は、0.0002%以上とすることが好ましい。
<< S: 0.0100% or less >>
S exists as MnS in the steel, promotes the generation of voids during the punching process, and further decreases the stretch flangeability because it becomes a starting point for the generation of voids during the processing. Therefore, the amount of S is preferably reduced as much as possible, and is 0.0100% or less. Preferably it is 0.0050% or less.
However, excessive desulfurization causes an increase in refining time and cost, and therefore the S content is preferably 0.0002% or more.
 《Al:0.010%以上0.100%以下》
 Alは、脱酸剤として作用する元素である。このような効果を得るためには、Alを0.010%以上含有させる。
 しかしながら、Al含有量が過剰になると、鋼板中にAl酸化物として残存し、Al酸化物が凝集して粗大化し易くなり、伸びフランジ性を劣化させる原因となる。したがって、Al含有量を0.100%以下とする。
<< Al: 0.010% or more and 0.100% or less >>
Al is an element that acts as a deoxidizer. In order to obtain such an effect, 0.010% or more of Al is contained.
However, when the Al content is excessive, it remains as an Al oxide in the steel sheet, and the Al oxide is agglomerated and easily coarsened, causing the stretch flangeability to deteriorate. Therefore, the Al content is set to 0.100% or less.
 《N:0.0100%以下》
 Nは、鋼中にAlNとして存在して打抜き加工時に粗大なボイドの発生を助長し、さらには、加工中にも粗大なボイドの発生の起点となるために伸びフランジ性を低下させる。このため、N量は、極力低減することが好ましく、N含有量を0.0100%以下とする。好ましくは0.0060%以下である。
 ただし、過度の脱Nは、精錬時間の増加およびコストの上昇を招くため、N含有量は、0.0005%以上とすることが好ましい。
<< N: 0.0100% or less >>
N exists as AlN in the steel, promotes the generation of coarse voids during the punching process, and further reduces the stretch flangeability because it becomes the starting point for the generation of coarse voids during the machining. For this reason, it is preferable to reduce N amount as much as possible, and N content shall be 0.0100% or less. Preferably it is 0.0060% or less.
However, excessive de-N causes an increase in refining time and an increase in cost, so the N content is preferably 0.0005% or more.
 《7.5×C+Mn》
 CおよびMnはいずれも硬質なマルテンサイトの形成に寄与する元素であるが、個々の元素の含有量がそれぞれ単独に上記範囲内である場合においても、7.5×C+Mnが5.0未満の場合には伸びフランジ性がより優れる傾向がある。これは、CやMnがそれぞれ単独にマルテンサイトの性質を決定するのではなく、相互に影響をおよぼし合うためであり、7.5×C+Mnが5.0未満の場合にはマルテンサイトが過度に硬質になることが抑制され、伸びフランジ性がより優れると考えられる。
 このため、CおよびMnは、質量%で、下記式(z)を満足することが好ましい。
 7.5×C+Mn<5.0 ・・・ (z)
 ただし、式(z)中、CおよびMnは、各元素の含有量を示す。
 下限は特に限定されないが、例えば、7.5×C+Mnは、3.0以上が好ましく、3.5以上がより好ましい。
<< 7.5 × C + Mn >>
C and Mn are both elements that contribute to the formation of hard martensite. Even when the content of each element is individually within the above range, 7.5 × C + Mn is less than 5.0. In some cases, the stretch flangeability tends to be more excellent. This is because C and Mn do not independently determine the properties of martensite but influence each other. When 7.5 × C + Mn is less than 5.0, the martensite is excessive. It is considered that it is suppressed from becoming hard and stretch flangeability is more excellent.
For this reason, it is preferable that C and Mn are mass% and satisfy the following formula (z).
7.5 × C + Mn <5.0 (z)
However, in the formula (z), C and Mn indicate the content of each element.
Although a minimum is not specifically limited, For example, 7.5 * C + Mn has preferable 3.0 or more, and 3.5 or more is more preferable.
 《その他の成分(元素)》
 本発明の高強度冷延鋼板において、上記組成は、必要に応じて、さらに、質量%で、Ti:0.005%以上0.035%以下、Nb:0.005%以上0.035%以下、V:0.005%以上0.035%以下、Mo:0.005%以上0.035%以下、B:0.0003%以上0.0100%以下、Cr:0.05%以上1.00%以下、Ni:0.05%以上1.00%以下、Cu:0.05%以上1.00%以下、Sb:0.002%以上0.050%以下、Sn:0.002%以上0.050%以下、Ca:0.0005%以上0.0050%以下、Mg:0.0005%以上0.0050%以下、および、REM:0.0005%以上0.0050%以下からなる群から選ばれる少なくとも1種の元素を含むことができる。
<Other components (elements)>
In the high-strength cold-rolled steel sheet of the present invention, the above composition is further, if necessary, in mass%, Ti: 0.005% or more and 0.035% or less, Nb: 0.005% or more and 0.035% or less. V: 0.005% to 0.035%, Mo: 0.005% to 0.035%, B: 0.0003% to 0.0100%, Cr: 0.05% to 1.00 %: Ni: 0.05% to 1.00%, Cu: 0.05% to 1.00%, Sb: 0.002% to 0.050%, Sn: 0.002% to 0 .050% or less, Ca: 0.0005% or more and 0.0050% or less, Mg: 0.0005% or more and 0.0050% or less, and REM: 0.0005% or more and 0.0050% or less At least one element.
 (Ti:0.005%以上0.035%以下)
 Tiは、炭窒化物を形成し、析出強化作用により鋼の強度を上昇させる。Tiを添加する場合、上記作用を有効に発揮させるために、Ti含有量を0.005%以上にすることが好ましい。一方、Tiが過剰であると、析出物が過度に生成し、延性が低下する場合がある。
 このため、Tiの含有量は、0.005%以上0.035%以下が好ましく、0.005%以上0.020%以下がより好ましい。
(Ti: 0.005% to 0.035%)
Ti forms carbonitrides and increases the strength of the steel by precipitation strengthening action. When adding Ti, in order to exhibit the said effect | action effectively, it is preferable to make Ti content 0.005% or more. On the other hand, if Ti is excessive, precipitates may be generated excessively and ductility may be reduced.
For this reason, the content of Ti is preferably 0.005% or more and 0.035% or less, and more preferably 0.005% or more and 0.020% or less.
 (Nb:0.005%以上0.035%以下)
 Nbは、炭窒化物を形成し、析出強化作用により鋼の強度を上昇させる。Nbを添加する場合、上記作用を有効に発揮させるために、Nb含有量を0.005%以上にすることが好ましい。一方、Nbが過剰であると、析出物が過度に生成し、延性が低下する場合がある。
 このため、Nbの含有量は、0.005%以上0.035%以下が好ましく、0.005%以上0.030%以下がより好ましい。
(Nb: 0.005% or more and 0.035% or less)
Nb forms carbonitride and increases the strength of the steel by precipitation strengthening action. When Nb is added, the Nb content is preferably 0.005% or more in order to effectively exhibit the above-described action. On the other hand, if Nb is excessive, precipitates may be generated excessively and ductility may be reduced.
For this reason, the Nb content is preferably 0.005% or more and 0.035% or less, and more preferably 0.005% or more and 0.030% or less.
 (V:0.005%以上0.035%以下)
 Vは、炭窒化物を形成し、析出強化作用により鋼の強度を上昇させる。Vを添加する場合、上記作用を有効に発揮させるために、V含有量を0.005%以上にすることが好ましい。一方、Vが過剰であると、析出物が過度に生成し、延性が低下する場合がある。
 このため、Vの含有量は、0.005%以上0.035%以下が好ましく、0.005%以上0.030%以下がより好ましい。
(V: 0.005% to 0.035%)
V forms carbonitride and increases the strength of the steel by precipitation strengthening action. When adding V, in order to exhibit the said effect | action effectively, it is preferable to make V content 0.005% or more. On the other hand, if V is excessive, precipitates may be generated excessively and ductility may be reduced.
For this reason, the content of V is preferably 0.005% or more and 0.035% or less, and more preferably 0.005% or more and 0.030% or less.
 (Mo:0.005%以上0.035%以下)
 Moは、炭窒化物を形成し、析出強化作用により鋼の強度を上昇させる。Moを添加する場合、上記作用を有効に発揮させるために、Mo含有量を0.005%以上にすることが好ましい。一方、Moが過剰であると、析出物が過度に生成し、延性が低下する場合がある。
 このため、Moの含有量は、0.005%以上0.035%以下が好ましく、0.005%以上0.030%以下がより好ましい。
(Mo: 0.005% to 0.035%)
Mo forms carbonitrides and increases the strength of the steel by precipitation strengthening action. When adding Mo, in order to exhibit the said effect | action effectively, it is preferable to make Mo content 0.005% or more. On the other hand, if Mo is excessive, precipitates may be generated excessively and ductility may be reduced.
For this reason, the content of Mo is preferably 0.005% or more and 0.035% or less, and more preferably 0.005% or more and 0.030% or less.
 (B:0.0003%以上0.0100%以下)
 Bは、焼入れ性を高め、マルテンサイトの生成を促進する作用を有するため、鋼の強化元素として有用である。上記作用を有効に発揮させるために、B含有量を0.0003%以上にすることが好ましい。一方、Bが過剰であると、マルテンサイトが過剰に生成し、延性が低下する場合がある。
 このため、Bの含有量は、0.0003%以上0.0100%以下が好ましい。
(B: 0.0003% or more and 0.0100% or less)
B has an effect of enhancing hardenability and promoting the formation of martensite, and thus is useful as a steel strengthening element. In order to effectively exhibit the above action, the B content is preferably 0.0003% or more. On the other hand, if B is excessive, martensite may be generated excessively and ductility may be reduced.
For this reason, the content of B is preferably 0.0003% or more and 0.0100% or less.
 (Cr:0.05%以上1.00%以下)
 Crは、焼入れ性を高め、マルテンサイトの生成を促進する作用を有するため、鋼の強化元素として有用である。上記作用を有効に発揮させるために、Cr含有量を0.05%以上にすることが好ましい。一方、Crが過剰であると、マルテンサイトが過剰に生成し、延性が低下する場合がある。
 このため、Crの含有量は、0.05%以上1.00%以下が好ましい。
(Cr: 0.05% to 1.00%)
Cr has a function of enhancing hardenability and promoting martensite formation, and thus is useful as a steel strengthening element. In order to effectively exhibit the above action, the Cr content is preferably 0.05% or more. On the other hand, if Cr is excessive, martensite may be generated excessively and ductility may be reduced.
For this reason, the Cr content is preferably 0.05% or more and 1.00% or less.
 (Ni:0.05%以上1.00%以下)
 Niは、焼入れ性を高め、マルテンサイトの生成を促進する作用を有するため、鋼の強化元素として有用である。上記作用を有効に発揮させるために、Ni含有量を0.05%以上にすることが好ましい。一方、Niが過剰であると、マルテンサイトが過剰に生成し、延性が低下する場合がある。
 このため、Niの含有量は、0.05%以上1.00%以下が好ましい。
(Ni: 0.05% or more and 1.00% or less)
Ni is useful as a steel strengthening element because it has the effect of enhancing hardenability and promoting the formation of martensite. In order to effectively exhibit the above action, the Ni content is preferably 0.05% or more. On the other hand, if Ni is excessive, martensite is generated excessively and ductility may be reduced.
For this reason, the Ni content is preferably 0.05% or more and 1.00% or less.
 (Cu:0.05%以上1.00%以下)
 Cuは、焼入れ性を高め、マルテンサイトの生成を促進する作用を有するため、鋼の強化元素として有用である。上記作用を有効に発揮させるために、Cu含有量を0.05%以上にすることが好ましい。一方、Cuが過剰であると、マルテンサイトが過剰に生成し、延性が低下する場合がある。
 このため、Cuの含有量は、0.05%以上1.00%以下が好ましい。
(Cu: 0.05% or more and 1.00% or less)
Cu has a function of enhancing hardenability and promoting the formation of martensite, and thus is useful as a steel strengthening element. In order to effectively exhibit the above action, the Cu content is preferably 0.05% or more. On the other hand, if Cu is excessive, martensite may be generated excessively and ductility may be reduced.
For this reason, the content of Cu is preferably 0.05% or more and 1.00% or less.
 (Sb:0.002%以上0.050%以下)
 Sbは、鋼板表面の窒化および酸化によって生じる、鋼板表層(数十μm程度の領域)の脱炭を抑制する作用を有する。これにより、鋼板表面においてオーステナイトの生成量が減少するのを防止でき、所望の延性の確保に有効である。上記作用を有効に発揮させるために、Sb含有量を0.002%以上にすることが好ましい。一方、Sbが過剰であると、靱性の低下を招く場合がある。
 このため、Sbの含有量は、0.002%以上0.050%以下が好ましい。
(Sb: 0.002% to 0.050%)
Sb has the effect | action which suppresses the decarburization of the steel plate surface layer (area | region of about several tens of micrometers) produced by nitriding and oxidation of the steel plate surface. Thereby, it can prevent that the production amount of austenite reduces on the steel plate surface, and it is effective for ensuring desired ductility. In order to effectively exhibit the above action, the Sb content is preferably 0.002% or more. On the other hand, if Sb is excessive, the toughness may be reduced.
For this reason, the content of Sb is preferably 0.002% or more and 0.050% or less.
 (Sn:0.002%以上0.050%以下)
 Snは、鋼板表面の窒化および酸化によって生じる、鋼板表層(数十μm程度の領域)の脱炭を抑制する作用を有する。これにより、鋼板表面においてオーステナイトの生成量が減少するのを防止でき、所望の延性の確保に有効である。上記作用を有効に発揮させるために、Sn含有量を0.002%以上にすることが好ましい。一方、Snが過剰であると、靱性の低下を招く場合がある。
 このため、Snの含有量は、0.002%以上0.050%以下が好ましい。
(Sn: 0.002% to 0.050%)
Sn has an effect of suppressing decarburization of the steel sheet surface layer (region of about several tens of μm) caused by nitriding and oxidation of the steel sheet surface. Thereby, it can prevent that the production amount of austenite reduces on the steel plate surface, and it is effective for ensuring desired ductility. In order to effectively exhibit the above action, the Sn content is preferably 0.002% or more. On the other hand, if Sn is excessive, the toughness may be reduced.
For this reason, the content of Sn is preferably 0.002% or more and 0.050% or less.
 (Ca:0.0005%以上0.0050%以下)
 Caは、硫化物系介在物の形態を制御する作用を有し、局部延性の低下抑制に有効である。Caを添加する場合、上記効果を得るために、Ca含有量を0.0005%以上にすることが好ましい。一方、Ca含有量が過剰であると、その効果が飽和する場合がある。
 このため、Caの含有量は、0.0005%以上0.0050%以下が好ましい。
(Ca: 0.0005% or more and 0.0050% or less)
Ca has the effect | action which controls the form of a sulfide type inclusion, and is effective in suppression of the fall of local ductility. When adding Ca, in order to acquire the said effect, it is preferable to make Ca content 0.0005% or more. On the other hand, if the Ca content is excessive, the effect may be saturated.
For this reason, the content of Ca is preferably 0.0005% or more and 0.0050% or less.
 (Mg:0.0005%以上0.0050%以下)
 Mgは、硫化物系介在物の形態を制御する作用を有し、局部延性の低下抑制に有効である。Mgを添加する場合、上記効果を得るために、Mg含有量を0.0005%以上にすることが好ましい。一方、Mg含有量が過剰であると、その効果が飽和する場合がある。
 このため、Mgの含有量は、0.0005%以上0.0050%以下が好ましい。
(Mg: 0.0005% or more and 0.0050% or less)
Mg has the effect | action which controls the form of a sulfide type inclusion, and is effective in suppression of a local ductility fall. When adding Mg, in order to acquire the said effect, it is preferable to make Mg content 0.0005% or more. On the other hand, if the Mg content is excessive, the effect may be saturated.
For this reason, the content of Mg is preferably 0.0005% or more and 0.0050% or less.
 (REM:0.0005%以上0.0050%以下)
 REM(希土類元素)は、硫化物系介在物の形態を制御する作用を有し、局部延性の低下抑制に有効である。REMを添加する場合、上記効果を得るために、REM含有量を0.0005%以上にすることが好ましい。一方、REM含有量が過剰であると、その効果が飽和する場合がある。
 このため、REMの含有量は、0.0005%以上0.0050%以下が好ましい。
(REM: 0.0005% or more and 0.0050% or less)
REM (rare earth element) has an action of controlling the form of sulfide inclusions, and is effective in suppressing a decrease in local ductility. When adding REM, in order to acquire the said effect, it is preferable to make REM content 0.0005% or more. On the other hand, if the REM content is excessive, the effect may be saturated.
For this reason, the content of REM is preferably 0.0005% or more and 0.0050% or less.
 《残部Feおよび不可避的不純物》
 上記組成において、上記成分以外の残部は、Fe(残部Fe)および不可避的不純物からなる。
<< Remainder Fe and inevitable impurities >>
In the above composition, the balance other than the above components consists of Fe (remainder Fe) and inevitable impurities.
 〈鋼板のミクロ組織〉
 次に、本発明の高強度冷延鋼板におけるミクロ組織について説明する。
<Microstructure of steel sheet>
Next, the microstructure in the high-strength cold-rolled steel sheet of the present invention will be described.
 《フェライト+ベイニティックフェライトの面積率の総和:20%以上80%以下》
 フェライトおよびベイニティックフェライトは、軟質な鋼組織であり鋼板の延性の向上に寄与する。これらの組織には炭素があまり固溶しないため、オーステナイト中にCを排出することにより、オーステナイトの安定性を上昇させ、延性の向上に寄与する。
 鋼板に必要な延性を付与するためには、フェライトおよびベイニティックフェライトの面積率の総和として20%以上が必要である。
 一方で、フェライトおよびベイニティックフェライトの面積率の総和が80%を超えると、980MPa以上の引張強さを確保することが困難になる。
 このため、フェライトおよびベイニティックフェライトの面積率の総和は、20%以上80%以下である。
<< Total area ratio of ferrite + bainitic ferrite: 20% to 80% >>
Ferrite and bainitic ferrite are soft steel structures and contribute to improving the ductility of the steel sheet. Since carbon does not dissolve so much in these structures, discharging C into the austenite increases the stability of the austenite and contributes to the improvement of ductility.
In order to impart the required ductility to the steel sheet, the total area ratio of ferrite and bainitic ferrite is required to be 20% or more.
On the other hand, when the sum of the area ratios of ferrite and bainitic ferrite exceeds 80%, it becomes difficult to ensure a tensile strength of 980 MPa or more.
For this reason, the sum total of the area ratios of ferrite and bainitic ferrite is 20% or more and 80% or less.
 《残留オーステナイトの面積率:10%超40%以下》
 残留オーステナイトは、それ自体、延性に富む組織であるが、歪誘起変態してさらに延性の向上に寄与する組織である。このような効果を得るためには、残留オーステナイトは、面積率で10%超とする必要がある。
 一方、残留オーステナイトが面積率で40%を超えて多くなると、残留オーステナイトの安定性が低下するため、歪誘起変態が早期に起こるようになるため、延性が低下する。
 このため、残留オーステナイトの面積率は、10%超40%以下である。
 本明細書においては、後述する方法により残留オーステナイトの体積率を算出し、これを面積率として扱うものとする。
<< Area ratio of retained austenite: more than 10% and 40% or less >>
The retained austenite is a structure that is rich in ductility per se, but is a structure that contributes to further improving ductility by strain-induced transformation. In order to obtain such an effect, the retained austenite needs to be more than 10% in terms of area ratio.
On the other hand, if the retained austenite increases in area ratio exceeding 40%, the stability of the retained austenite is lowered, so that strain-induced transformation occurs early and ductility is lowered.
For this reason, the area ratio of retained austenite is more than 10% and 40% or less.
In this specification, the volume ratio of retained austenite is calculated by the method described later, and this is treated as the area ratio.
 《マルテンサイトの面積率:0%超50%以下》
 ここでいう「マルテンサイト」とは、フレッシュマルテンサイト、および、焼戻しマルテンサイトを含むものとする。
 マルテンサイトは、非常に硬質な組織であり、鋼板の高強度化に寄与する。鋼板を高強度化する目的で、マルテンサイトは、面積率で、0%超(0%は含まず)とし、3%以上が好ましい。
 一方で、面積率で50%を超えて含有すると、所望の延性および伸びフランジ性を確保できなくなる。
 このため、マルテンサイトの面積率の総和は、0%超50%以下であり、3%以上50%以下が好ましい。
 本発明の高強度冷延鋼板のミクロ組織は、上記のフェライトおよびベイニティックフェライト、残留オーステナイト、ならびに、マルテンサイトのそれぞれの面積率の合計が100%となる場合のほか、上記の他にパーライト等の面積率を入れて100%となる場合もある。
《Martensite area ratio: more than 0% and less than 50%》
The “martensite” here includes fresh martensite and tempered martensite.
Martensite is a very hard structure and contributes to increasing the strength of the steel sheet. For the purpose of increasing the strength of the steel sheet, martensite has an area ratio of more than 0% (not including 0%), preferably 3% or more.
On the other hand, if the area ratio exceeds 50%, desired ductility and stretch flangeability cannot be ensured.
For this reason, the sum total of the area ratio of martensite is more than 0% and 50% or less, and preferably 3% or more and 50% or less.
The microstructure of the high-strength cold-rolled steel sheet according to the present invention is not limited to the case where the total area ratio of each of the ferrite and bainitic ferrite, retained austenite, and martensite is 100%. In some cases, the area ratio is 100%.
 《残留オーステナイトのうち、アスペクト比が0.5以下であるものの割合:面積率で75%以上》
 残留オーステナイトは鋼板の延性を向上させるが、その形状により延性向上への寄与が異なる。アスペクト比が0.5以下である残留オーステナイトは、アスペクト比が0.5超である残留オーステナイトと比較して、より加工に対して安定であり、延性向上効果が大きい。
 加工安定性の低い、アスペクト比が0.5超である残留オーステナイトは、穴広げ試験に先立つ抜き打ちにおいて、早期に硬質なマルテンサイトとなるため、周囲に粗大なボイドを形成しやすい。特に、打ち抜き端面に多数露出した場合に、端面クラックを誘発し、穴広げ試験不良の原因となり、穴広げ試験の不良率を増加させる。
 一方、アスペクト比が0.5以下である残留オーステナイトは、ミクロ組織の流れに沿うように変形し、周囲にボイドを形成しにくい。
 所望の延性を確保するとともに、穴広げ試験の不良率を十分に低減するためには、残留オーステナイトのうち、アスペクト比が0.5以下である残留オーステナイトの割合が、面積率で、75%以上であればよい。好ましくは80%以上である。
 この割合の上限は、特に限定されず、100%であってもよい。
<< Ratio of retained austenite with an aspect ratio of 0.5 or less: 75% or more in area ratio >>
Residual austenite improves the ductility of the steel sheet, but its contribution to the improvement of ductility differs depending on its shape. Residual austenite having an aspect ratio of 0.5 or less is more stable to processing than the retained austenite having an aspect ratio of more than 0.5, and the effect of improving ductility is great.
Residual austenite having a low processing stability and an aspect ratio of more than 0.5 becomes hard martensite at an early stage in the punching prior to the hole expansion test, so that it is easy to form coarse voids around it. In particular, when a large number of punched end faces are exposed, end face cracks are induced, causing a hole expanding test failure and increasing the failure rate of the hole expanding test.
On the other hand, the retained austenite having an aspect ratio of 0.5 or less is deformed along the flow of the microstructure, and it is difficult to form voids around the austenite.
In order to ensure the desired ductility and sufficiently reduce the defect rate of the hole expansion test, the ratio of the retained austenite having an aspect ratio of 0.5 or less in the retained austenite is 75% or more in terms of area ratio. If it is. Preferably it is 80% or more.
The upper limit of this ratio is not particularly limited, and may be 100%.
 《アスペクト比が0.5以下である残留オーステナイトのうち、Bainグループ境界に存在するものの割合:面積率で50%以上》
 まず、Bainグループ境界に存在する残留オーステナイトについて説明する。
<< Ratio of residual austenite having an aspect ratio of 0.5 or less at the Bain group boundary: 50% or more in area ratio >>
First, the retained austenite present at the Bain group boundary will be described.
 マルテンサイトやベイナイトにおいては、1つの旧オーステナイト粒からKurdjumov-Sachs(K-S)関係をもった24のバリアントが生成し得る。1つの旧オーステナイト粒から生じるバリアントは、3つのBainグループに区分される(例えば、『宮本吾郎、外3名、「鉄鋼のマルテンサイト/ベイナイト変態における結晶学的拘束」、日本金属学会誌、公益社団法人日本金属学会、2015年7月、第79巻、第7号、p.339-347』を参照)。
 本発明の高強度冷延鋼板は、後述するように複数回の焼鈍工程を経て得られるため、鋼板のミクロ組織はオーステナイト単相から変態したマルテンサイトやベイナイトとは異なるが、bcc相と判別される部分について上記と同様のグループ分けを行なうことができる。
 図1は、鋼板のミクロ組織の一部(1つの旧オーステナイト粒から生成したと考えられる領域)を示す模式図である。図1に示す鋼板のミクロ組織は、3つのBainグループ(B1~B3)から構成されている。同一のBainグループは、同じハッチングが付されている。
 図1に示す鋼板のミクロ組織中には、残留オーステナイトも存在している。符号「RA」で示す残留オーステナイトは、1つのBainグループB2の内部に存在している。これに対して、符号「RA」で示す残留オーステナイトは、BainグループB1と、これとは別のBainグループB3との境界に存在している。
 符号「RA」で示す残留オーステナイトが、Bainグループ境界に存在する残留オーステナイトに該当する。
In martensite and bainite, 24 variants having Kurdjumov-Sachs (KS) relationship can be generated from one prior austenite grain. Variants arising from one old austenite grain are divided into three Bain groups (for example, “Shiroro Miyamoto, three others,“ Crystallographic restraint in martensite / bainite transformation of steel ”, Journal of the Japan Institute of Metals, Public Interest (Refer to the Japan Institute of Metals, July 2015, Vol. 79, No. 7, pp. 339-347)).
Since the high-strength cold-rolled steel sheet of the present invention is obtained through a plurality of annealing steps as will be described later, the microstructure of the steel sheet is different from martensite and bainite transformed from the austenite single phase, but is distinguished from the bcc phase. The same grouping as described above can be performed for the portion to be processed.
FIG. 1 is a schematic diagram showing a part of the microstructure of a steel plate (region considered to be generated from one prior austenite grain). The microstructure of the steel sheet shown in FIG. 1 is composed of three Bain groups (B1 to B3). The same Bain group is given the same hatching.
Residual austenite is also present in the microstructure of the steel sheet shown in FIG. The retained austenite indicated by the symbol “RA 2 ” exists inside one Bain group B2. On the other hand, the retained austenite indicated by the symbol “RA 1 ” is present at the boundary between the Bain group B1 and another Bain group B3.
The retained austenite indicated by the symbol “RA 1 ” corresponds to the retained austenite existing at the Bain group boundary.
 アスペクト比が0.5以下である残留オーステナイトがBainグループ境界に存在すると、アスペクト比が0.5超の残留オーステナイトが存在する場合においても、これに起因する打ち抜き端面クラックの発生が抑制され、穴広げ試験の不良率が大幅に小さくなる。
 この理由は必ずしも明らかではないが、本発明者らは、次のように考えている。すなわち、方位差が大きく応力が集中しやすいBainグループ境界に対し、それを覆うようにアスペクト比が0.5以下である残留オーステナイトが存在することにより、残留オーステナイトの変形や加工誘起マルテンサイト変態により集中した応力を緩和できる。その結果、近傍に存在するアスペクト比が0.5超である残留オーステナイトの周囲の応力集中が軽減し、ボイドやクラックの発生を抑制する。
 穴広げ試験の不良率を十分に低減するためには、アスペクト比が0.5以下である残留オーステナイトのうち、Bainグループ境界に存在するものの割合が、面積率で50%以上であればよく、好ましくは65%以上である。
 この割合の上限は、特に限定されず、100%であってもよい。好ましくは、95%以下である。
When residual austenite with an aspect ratio of 0.5 or less is present at the boundary of the Bain group, even when residual austenite with an aspect ratio exceeding 0.5 is present, the occurrence of punched end face cracks due to this is suppressed, The defective rate of the spreading test is greatly reduced.
Although this reason is not necessarily clear, the present inventors consider as follows. That is, with respect to the Bain group boundary where the orientation difference is large and stress is easily concentrated, the residual austenite having an aspect ratio of 0.5 or less exists so as to cover the boundary, thereby causing deformation of the retained austenite or work-induced martensite transformation. It can relieve concentrated stress. As a result, stress concentration around the retained austenite having an aspect ratio of more than 0.5 in the vicinity is reduced, and generation of voids and cracks is suppressed.
In order to sufficiently reduce the defect rate of the hole expansion test, the proportion of the remaining austenite having an aspect ratio of 0.5 or less at the boundary of the Bain group may be 50% or more in terms of area ratio. Preferably it is 65% or more.
The upper limit of this ratio is not particularly limited, and may be 100%. Preferably, it is 95% or less.
 〈めっき層〉
 本発明の高強度冷延鋼板は、耐食性などを向上させる観点から、その表面に、さらに、めっき層を有していてもよい。めっき層としては、溶融亜鉛めっき層、合金化溶融亜鉛めっき層、または、電気亜鉛めっき層が好ましい。
 溶融亜鉛めっき層、合金化溶融亜鉛めっき層、および、電気亜鉛めっき層としては、特に限定されず、それぞれ、従来公知の溶融亜鉛めっき層、従来公知の合金化溶融亜鉛めっき層、および、従来公知の電気亜鉛めっき層が好適に用いられる。
 電気亜鉛めっき層は、Znに、例えば、Fe、Cr、Ni、Mn、Co、Sn、Pb、または、Moなどの元素をその目的に応じて適宜量添加した亜鉛合金めっき層であってもよい。
<Plating layer>
The high-strength cold-rolled steel sheet of the present invention may further have a plating layer on the surface from the viewpoint of improving corrosion resistance and the like. As the plating layer, a hot dip galvanized layer, an alloyed hot dip galvanized layer, or an electrogalvanized layer is preferable.
The hot-dip galvanized layer, the alloyed hot-dip galvanized layer, and the electrogalvanized layer are not particularly limited, and are conventionally known hot-dip galvanized layer, conventionally known alloyed hot-dip galvanized layer, and conventionally known, respectively. The electrogalvanized layer is preferably used.
The electrogalvanized layer may be a zinc alloy plated layer obtained by adding an appropriate amount of elements such as Fe, Cr, Ni, Mn, Co, Sn, Pb, or Mo to Zn according to the purpose. .
[高強度冷延鋼板の製造方法]
 次に、本発明の高強度冷延鋼板の製造方法(以下、単に「本発明の製造方法」ともいう)の好適態様を説明する。
 本発明の製造方法は、概略的には、上記組成を有する鋼素材に、熱間圧延、酸洗、冷間圧延、および、焼鈍を順次施すことにより、上述した本発明の高強度冷延鋼板を得る方法である。そして、本発明の製造方法においては、焼鈍を行なう工程が、2つの工程に分かれている。
[Method for producing high-strength cold-rolled steel sheet]
Next, a preferred embodiment of the method for producing a high-strength cold-rolled steel sheet of the present invention (hereinafter also simply referred to as “the production method of the present invention”) will be described.
The production method of the present invention generally includes the above-described high-strength cold-rolled steel sheet according to the present invention by sequentially subjecting a steel material having the above composition to hot rolling, pickling, cold rolling, and annealing. Is the way to get. And in the manufacturing method of this invention, the process of annealing is divided into two processes.
 〈鋼素材〉
 鋼素材は、上記組成を有する鋼素材であれば、特に限定されない。
 鋼素材の溶製方法は、特に限定されず、転炉または電気炉等を用いた公知の溶製方法を採用できる。生産性等の問題から、溶製後に、連続鋳造法によりスラブ(鋼素材)とすることが好ましいが、造塊-分塊圧延法または薄スラブ連鋳法等の公知の鋳造方法によりスラブとしてもよい。
<Steel material>
The steel material is not particularly limited as long as it is a steel material having the above composition.
The melting method of the steel material is not particularly limited, and a known melting method using a converter or an electric furnace can be employed. From the viewpoint of productivity and the like, it is preferable to form a slab (steel material) by a continuous casting method after melting, but the slab may be formed by a known casting method such as an ingot-bundling rolling method or a thin slab continuous casting method. Good.
 〈熱間圧延工程〉
 熱間圧延工程は、上記組成を有する鋼素材に、熱間圧延を施すことにより、熱延板を得る工程である。
 熱間圧延工程は、上記組成を有する鋼素材を加熱し、熱間圧延を施して、所定寸法の熱延板が得られる工程であれば、特に限定されず、常用の熱間圧延工程を適用できる。
 常用の熱間圧延工程としては、例えば、鋼素材を、1100℃以上1300℃以下の加熱温度に加熱し、加熱した鋼素材に、850℃以上950℃以下の仕上圧延出側温度で熱間圧延を施し、熱間圧延が終了した後、適正な圧延後冷却(具体的には、例えば、450℃以上950℃以下の温度域を、20℃/s以上100℃/s以下の平均冷却速度で冷却する、圧延後冷却)を施して、400℃以上700℃以下の巻取温度で巻き取り、所定寸法形状の熱延板とする、熱間圧延工程を例示できる。
<Hot rolling process>
A hot rolling process is a process of obtaining a hot-rolled sheet by hot-rolling the steel raw material which has the said composition.
The hot rolling process is not particularly limited as long as it is a process in which a steel material having the above composition is heated and subjected to hot rolling to obtain a hot rolled sheet having a predetermined size, and a normal hot rolling process is applied. it can.
As a normal hot rolling process, for example, a steel material is heated to a heating temperature of 1100 ° C. or more and 1300 ° C. or less, and hot rolling is performed on the heated steel material at a finish rolling outlet temperature of 850 ° C. or more and 950 ° C. or less. After the hot rolling is finished, cooling after appropriate rolling (specifically, for example, a temperature range of 450 ° C. or more and 950 ° C. or less is performed at an average cooling rate of 20 ° C./s or more and 100 ° C./s or less). An example is a hot rolling process in which cooling is performed after cooling and winding is performed at a coiling temperature of 400 ° C. or more and 700 ° C. or less to obtain a hot-rolled sheet having a predetermined size and shape.
 〈酸洗工程〉
 酸洗工程は、熱間圧延工程を経て得られた熱延板に、酸洗を施す工程である。
 酸洗工程は、熱延板に冷間圧延を施すことができる程度に酸洗できる工程であれば、特に限定されず、例えば塩酸または硫酸等を使用する常用の酸洗工程を適用できる。
<Pickling process>
The pickling step is a step of pickling the hot-rolled sheet obtained through the hot rolling step.
The pickling step is not particularly limited as long as it can be pickled to such an extent that cold rolling can be performed on the hot-rolled sheet. For example, a conventional pickling step using hydrochloric acid or sulfuric acid can be applied.
 〈冷間圧延工程〉
 冷間圧延工程は、酸洗工程を経た熱延板に、冷間圧延を施す工程である。より詳細には、冷間圧延工程は、酸洗が施された熱延板に、圧下率30%以上の冷間圧延を施すことにより、所定板厚の冷延板を得る工程である。
<Cold rolling process>
The cold rolling process is a process of performing cold rolling on the hot-rolled sheet that has undergone the pickling process. More specifically, the cold rolling step is a step of obtaining a cold rolled plate having a predetermined thickness by subjecting the hot rolled plate subjected to pickling to cold rolling with a rolling reduction of 30% or more.
 《冷間圧延の圧下率:30%以上》
 冷間圧延の圧下率は、30%以上とする。圧下率が30%未満では、加工量が不足し、オーステナイトの核生成サイトが少なくなる。このため、次工程の第1段焼鈍工程においてオーステナイトが粗大で不均一となり、続く第1段焼鈍工程の保持過程における下部ベイナイト変態が抑制されて、マルテンサイトが過剰に生成する。その結果、第1段焼鈍工程後の鋼板のミクロ組織を、下部ベイナイトを主体とするミクロ組織にすることができない。第1段焼鈍工程後にマルテンサイトである部分は、続く第2段焼鈍工程において、アスペクト比が0.5超の残留オーステナイトを生成しやすい。
 一方、圧下率の上限は、冷間圧延機の能力で決定されるが、圧下率が高すぎると、圧延荷重が高くなり、生産性が低下する場合がある。このため、圧下率は、70%以下が好ましい。
 圧延パスの回数およびパス毎の圧下率は、特に限定されない。
<Cold rolling reduction: 30% or more>
The rolling reduction of cold rolling is 30% or more. When the rolling reduction is less than 30%, the processing amount is insufficient, and the number of austenite nucleation sites decreases. For this reason, austenite becomes coarse and non-uniform in the first-stage annealing process of the next process, and the lower bainite transformation in the holding process of the subsequent first-stage annealing process is suppressed, and martensite is generated excessively. As a result, the microstructure of the steel sheet after the first stage annealing process cannot be made a microstructure mainly composed of lower bainite. The portion that is martensite after the first stage annealing step tends to generate retained austenite having an aspect ratio of more than 0.5 in the subsequent second stage annealing step.
On the other hand, the upper limit of the rolling reduction is determined by the capability of the cold rolling mill, but if the rolling reduction is too high, the rolling load increases and the productivity may decrease. For this reason, the rolling reduction is preferably 70% or less.
The number of rolling passes and the rolling reduction per pass are not particularly limited.
 〈焼鈍工程〉
 焼鈍工程は、冷間圧延工程を経て得られた冷延板に焼鈍を施す工程であり、より詳細には、後述する第1段焼鈍工程および第2段焼鈍工程を含む工程である。
<Annealing process>
An annealing process is a process which anneals the cold-rolled sheet obtained through the cold rolling process, and is a process including the 1st stage annealing process and 2nd stage annealing process mentioned later in detail.
 《第1段焼鈍工程》
 第1段焼鈍工程は、冷間圧延工程を経て得られた冷延板を、Ac点以上950℃以下の焼鈍温度Tで加熱し、焼鈍温度Tから、10℃/s超の平均冷却速度で、250℃以上350℃未満の冷却停止温度Tまで冷却し、冷却停止温度Tで10s以上保持することにより、第1段冷延焼鈍板を得る工程である。
 この工程の目的は、第1段焼鈍工程完了時の鋼板のミクロ組織を下部ベイナイトにすることである。特に、第1段焼鈍工程後にマルテンサイトである部分は、続く第2段焼鈍工程において、アスペクト比が0.5超の残留オーステナイトを生成しやすいため、第1段焼鈍工程においてマルテンサイトが過剰に生成した場合は、所望の鋼板のミクロ組織を得ることが困難となる。
 製造条件を上記範囲に制御することにより、下部ベイナイトを主体とするミクロ組織を有する鋼板が得られ、第2段焼鈍工程後の鋼板のミクロ組織を所望のミクロ組織にすることができる。
<< First stage annealing process >>
In the first stage annealing step, the cold-rolled sheet obtained through the cold rolling step is heated at an annealing temperature T 1 of Ac 3 points or more and 950 ° C. or less, and from the annealing temperature T 1 , an average of more than 10 ° C./s at a cooling rate, cooling to cooling stop temperature T 2 less than 250 ° C. or higher 350 ° C., by holding at the cooling stop temperature T 2 10s or more, a step of obtaining a first Danhiyanobe annealed sheets.
The purpose of this process is to make the microstructure of the steel sheet at the completion of the first stage annealing process into lower bainite. In particular, the portion that is martensite after the first stage annealing step tends to generate retained austenite having an aspect ratio of more than 0.5 in the subsequent second stage annealing step, so that the martensite is excessive in the first stage annealing step. When it produces | generates, it will become difficult to obtain the microstructure of a desired steel plate.
By controlling the production conditions within the above range, a steel sheet having a microstructure mainly composed of lower bainite can be obtained, and the microstructure of the steel sheet after the second stage annealing step can be changed to a desired microstructure.
 (Ac点)
 Ac点(単位:℃)は、以下に示すAndrewsらの式より求めることができる。
 Ac=910-203[C]1/2+45[Si]-30[Mn]-20[Cu]-15[Ni]+11[Cr]+32[Mo]+104[V]+400[Ti]+460[Al]
 上記式中の括弧は、鋼板中における括弧内の元素の含有量(単位:質量%)を表す。元素を含有しない場合は、0として計算する。
(Ac 3 points)
Ac 3 points (unit: ° C.) can be obtained from the following formula of Andrews et al.
Ac 3 = 910-203 [C] 1/2 +45 [Si] -30 [Mn] -20 [Cu] -15 [Ni] +11 [Cr] +32 [Mo] +104 [V] +400 [Ti] +460 [Al ]
The parentheses in the above formula represent the content (unit: mass%) of the element in the parentheses in the steel sheet. When no element is contained, it is calculated as 0.
 (焼鈍温度T:Ac点以上950℃以下)
 焼鈍温度TがAc点未満であると、焼鈍中にフェライトが残存してしまい、続く冷却過程において焼鈍中に残存したフェライトを核にフェライトが成長してしまう。これにより、Cがオーステナイト中に分配するため、後の保持過程において下部ベイナイト変態が抑制されて、マルテンサイトが過剰に生成し、第1段焼鈍工程後の鋼板のミクロ組織を、下部ベイナイトを主体とするミクロ組織にすることができない。
 一方、焼鈍温度Tが950℃を超えるとオーステナイト粒が過度に粗大化し、冷却後の保持過程における下部ベイナイトの生成が抑制されるため、マルテンサイトが過剰に生成するため、第1段焼鈍工程後の鋼板のミクロ組織を、下部ベイナイトを主体とするミクロ組織にすることができない。
 第1段焼鈍工程後にマルテンサイトである部分は、続く第2段焼鈍工程において、アスペクト比が0.5超の残留オーステナイトを生成しやすい。
 このため、焼鈍温度Tは、Ac点以上950℃以下である。
(Annealing temperature T 1 : Ac 3 points or more and 950 ° C. or less)
When the annealing temperature T 1 is is Ac less than 3 points, ferrite will remain in the annealing, ferrite ferrite remaining in the annealing in the subsequent cooling process the nucleus will grow. Thereby, since C distributes in austenite, lower bainite transformation is suppressed in the subsequent holding process, martensite is excessively generated, and the microstructure of the steel sheet after the first stage annealing process is mainly composed of lower bainite. It cannot be made into a microstructure.
On the other hand, the annealing temperature T 1 is excessively coarsened austenite grains exceeds 950 ° C., since the formation of lower bainite is suppressed in the course retained after cooling, because the martensite excessively generated, the first stage annealing step The microstructure of the later steel sheet cannot be made into a microstructure mainly composed of lower bainite.
The portion that is martensite after the first stage annealing step tends to generate retained austenite having an aspect ratio of more than 0.5 in the subsequent second stage annealing step.
Thus, annealing temperatures T 1 is Ac 3 point or more 950 ° C. or less.
 焼鈍温度Tでの保持時間は、特に限定されず、例えば、10s以上1000s以下である。 Holding time at the annealing temperatures T 1 is not particularly limited, for example, is 10s or 1000s or less.
 (焼鈍温度Tから冷却停止温度Tまでの平均冷却速度:10℃/s超)
 焼鈍温度Tから冷却停止温度Tまでの平均冷却速度が10℃/s以下であると、冷却中にフェライトが生成する。これにより、Cがオーステナイト中に分配するため、後の保持過程において下部ベイナイト変態が抑制されて、マルテンサイトが過剰に生成し、第1段焼鈍工程後の鋼板のミクロ組織を、下部ベイナイトを主体とするミクロ組織にすることができない。第1段焼鈍工程後にマルテンサイトである部分は、続く第2段焼鈍工程において、アスペクト比が0.5超の残留オーステナイトを生成しやすい。
 このため、焼鈍温度Tから冷却停止温度Tまでの平均冷却速度は、10℃/s超であり、好ましくは15℃/s以上である。
 平均冷却速度の上限は、特に限定されないが、過度に速い冷却速度を確保するためには、過大な冷却装置が必要となるから、生産技術および設備投資等の観点から、平均冷却速度は、50℃/s以下が好ましい。
 冷却は、ガス冷却が好ましいが、炉冷およびミスト冷却などを組み合わせて行なうこともできる。
(Average cooling rate from the annealing temperature T 1 of to the cooling stop temperature T 2: 10 ℃ / s greater)
If the average cooling rate from the annealing temperature T 1 of to the cooling stop temperature T 2 is less than 10 ° C. / s, ferrite is formed during cooling. Thereby, since C distributes in austenite, lower bainite transformation is suppressed in the subsequent holding process, martensite is excessively generated, and the microstructure of the steel sheet after the first stage annealing process is mainly composed of lower bainite. It cannot be made into a microstructure. The portion that is martensite after the first stage annealing step tends to generate retained austenite having an aspect ratio of more than 0.5 in the subsequent second stage annealing step.
Therefore, the average cooling rate from the annealing temperature T 1 of to the cooling stop temperature T 2 is 10 ° C. / s greater, preferably 15 ° C. / s or higher.
The upper limit of the average cooling rate is not particularly limited, but an excessively large cooling device is required to ensure an excessively high cooling rate. From the viewpoint of production technology and capital investment, the average cooling rate is 50 It is preferably at most ° C / s.
The cooling is preferably gas cooling, but can be performed by combining furnace cooling and mist cooling.
 (冷却停止温度T:250℃以上350℃未満)
 冷却停止温度Tが250℃未満では、鋼板のミクロ組織にマルテンサイトが過剰に生成する。第1段焼鈍工程後にマルテンサイトである部分は、続く第2段焼鈍工程において、アスペクト比が0.5超の残留オーステナイトを生成しやすい。
 一方、冷却停止温度Tが350℃以上では、下部ベイナイトの代わりに上部ベイナイトが生成する。上部ベイナイトは下部ベイナイトに比較して同一Bainグループサイズが顕著に粗大であるために、続く第2段焼鈍工程後に同一Bainグループの内部にアスペクト比が0.5以下の残留オーステナイトを多数生成し、第2段焼鈍工程後の鋼板のミクロ組織が所望のミクロ組織とならない。
 このため、冷却停止温度Tは、250℃以上350℃未満である。より好ましくは、270℃以上340℃以下である。
(Cooling stop temperature T 2 : 250 ° C. or higher and lower than 350 ° C.)
Cooling the stop temperature T 2 is less than 250 ° C., martensite microstructure of the steel sheet is excessively formed. The portion that is martensite after the first stage annealing step tends to generate retained austenite having an aspect ratio of more than 0.5 in the subsequent second stage annealing step.
On the other hand, at the cooling stop temperature T 2 is 350 ° C. or more, the upper bainite is generated instead of lower bainite. The upper bainite is significantly coarser in the same Bain group size than the lower bainite. Therefore, a large number of retained austenite having an aspect ratio of 0.5 or less is generated in the same Bain group after the subsequent second stage annealing step. The microstructure of the steel sheet after the second stage annealing step does not become the desired microstructure.
Therefore, the cooling stop temperature T 2 is less than 250 ° C. or higher 350 ° C.. More preferably, it is 270 degreeC or more and 340 degrees C or less.
 (冷却停止温度Tでの保持時間:10s以上)
 冷却停止温度Tでの保持時間が10s(秒)未満では、下部ベイナイト変態が十分に完了しない。このため、マルテンサイトが過剰に生成してしまい、続く第2段焼鈍工程において所望のミクロ組織が得られない。第1段焼鈍工程後にマルテンサイトである部分は、続く第2段焼鈍工程において、アスペクト比が0.5超の残留オーステナイトを生成しやすい。
 このため、冷却停止温度Tでの保持時間は、10s以上である。好ましくは30s以上である。
 冷却停止温度Tでの保持時間の上限は、特に限定されないが、過度に長時間保持した場合には、長大な生産設備が必要であるとともに、鋼板の生産性が著しく低下するため、1800s以下が好ましい。
(Retention time in the cooling stop temperature T 2: 10s or more)
Is less than the holding time at the cooling stop temperature T 2 is 10s (seconds), no lower bainite transformation is completed sufficiently. For this reason, martensite is excessively generated, and a desired microstructure cannot be obtained in the subsequent second stage annealing step. The portion that is martensite after the first stage annealing step tends to generate retained austenite having an aspect ratio of more than 0.5 in the subsequent second stage annealing step.
Therefore, the holding time at the cooling stop temperature T 2 is 10s or more. Preferably it is 30 s or more.
The upper limit of the holding time at the cooling stop temperature T 2 is not particularly limited, if it is excessively held for a long time, as well as it requires a long production facilities, because the productivity of the steel sheet is remarkably reduced, 1800 s or less Is preferred.
 冷却停止温度Tでの保持後、次工程の第2段焼鈍工程までは、例えば室温まで冷却してもよいし、冷却を行なわず引き続き加熱し第2段焼鈍工程を行なってもよい。第1段焼鈍工程から第2段焼鈍工程の間で室温まで冷却しないで連続で行なうには、1つのラインに通常の連続焼鈍設備(CAL)の加熱炉が2機必要であるため、実際にはCALで第1段焼鈍工程を実施した後、もう1度CALを通板して第2段焼鈍工程を実施する。 After holding in the cooling stop temperature T 2, until the second stage annealing step following step, for example it may be cooled to room temperature, subsequently it is subjected to heating and second stage annealing step without cooling. In order to perform continuously without cooling to room temperature between the first stage annealing process and the second stage annealing process, two heating furnaces of a normal continuous annealing facility (CAL) are required in one line. After performing the first stage annealing process by CAL, the second stage annealing process is performed by passing the CAL once again.
 《第2段焼鈍工程》
 第2段焼鈍工程は、第1段焼鈍工程を経て得られた第1段冷延焼鈍板を、700℃以上850℃以下の焼鈍温度Tで加熱(再加熱)し、焼鈍温度Tから、300℃以上500℃以下の冷却停止温度Tまで冷却することにより、第2段冷延焼鈍板を得る工程である。
<< Second stage annealing process >>
The second stage annealing process, a first Danhiyanobe annealed sheets obtained through the first-stage annealing process, was heated at 700 ° C. or higher 850 ° C. below the annealing temperature T 3 (reheat), from annealing temperature T 3 , by cooling to 300 of the cooling stop ° C. or higher 500 ° C. or less temperature T 4, which is a step of obtaining a second Danhiyanobe annealed sheets.
 (焼鈍温度T:700℃以上850℃以下)
 焼鈍温度Tが700℃未満であると、焼鈍時に十分な量のオーステナイトが生成しないため、第2段焼鈍工程後の鋼板のミクロ組織に所望量の残留オーステナイトを確保できず、フェライトが過剰となる。
 一方、焼鈍温度Tが850℃を超えると、オーステナイトが過度に生成し、第2段焼鈍前のミクロ組織制御の効果が初期化されてしまう。このため、アスペクト比が0.5以下である残留オーステナイトの割合、および、アスペクト比が0.5以下である残留オーステナイトのうち、Bainグループ境界に存在するものの割合を、所望の値とすることが困難となる。
 このため、焼鈍温度Tは、700℃以上850℃以下であり、710℃以上830℃以下が好ましい。
(Annealing temperature T 3: 700 ℃ more than 850 ℃ or less)
When the annealing temperature T 3 is lower than 700 ° C., since no generating a sufficient amount of austenite during annealing, can not be secured retained austenite desired amount the microstructure of the steel sheet after the second stage annealing step, the ferrite is excessive Become.
On the other hand, if the annealing temperature T 3 is higher than 850 ° C., austenite excessively generated, effects of the second stage annealing before microstructure control from being initialized. For this reason, the ratio of the remaining austenite having an aspect ratio of 0.5 or less and the ratio of the remaining austenite having an aspect ratio of 0.5 or less at the Bain group boundary may be set to desired values. It becomes difficult.
Therefore, the annealing temperature T 3 is no more than 850 ° C. 700 ° C. or higher, preferably 710 ° C. or higher 830 ° C. or less.
 焼鈍温度Tでの保持時間は、特に限定されず、例えば、10s以上1000s以下である。
 焼鈍温度Tから冷却停止温度Tまでの平均冷却速度は、特に限定されず、例えば、5℃/s以上50℃/s以下である。
Holding time at the annealing temperature T 3 is not particularly limited, for example, is 10s or 1000s or less.
The average cooling rate from the annealing temperature T 3 to a cooling stop temperature T 4 is not particularly limited, for example, is 50 ° C. / s or less 5 ° C. / s or higher.
 (冷却停止温度T:300℃以上500℃以下)
 冷却停止温度Tが300℃未満であると、オーステナイトへのCの濃化が不十分となり、残留オーステナイト量が減少するとともに多量のマルテンサイトが生成し、所望の鋼板のミクロ組織が得られない。
 一方、冷却停止温度Tが500℃を超えると、フェライトやベイニティックフェライトが多量に生成するとともに、オーステナイトからパーライトが生成するため、残留オーステナイト量が減少し、所望の鋼板のミクロ組織が得られない。
(Cooling stop temperature T 4 : 300 ° C. or more and 500 ° C. or less)
If the cooling stop temperature T 4 is lower than 300 ° C., enrichment of C into austenite becomes insufficient, a large amount of martensite with retained austenite amount decreases is produced, it can not be obtained microstructure of the desired steel sheet .
On the other hand, if the cooling stop temperature T 4 is greater than 500 ° C., obtained with ferrite and bainitic ferrite are produced in large quantities, since the pearlite from austenite is generated, the amount of retained austenite is reduced, the microstructure of the desired steel sheet I can't.
 冷却停止温度Tでの保持時間は、特に限定されず、例えば、10s以上1800s以下である。 Holding time at the cooling stop temperature T 4 is not particularly limited, for example, is 10s or 1800s or less.
 冷却停止温度Tでの保持後における第2段冷延焼鈍板は、冷却することが好ましい。この冷却は、特に限定されず、放冷等の任意の方法で、室温等の所望の温度まで冷却することができる。 Second Danhiyanobe annealed sheet after holding in the cooling stop temperature T 4 is preferably cooled. This cooling is not particularly limited, and the cooling can be performed to a desired temperature such as room temperature by an arbitrary method such as cooling.
 後述するめっき工程を行なわない場合、第2段焼鈍工程を経て得られる第2段冷延焼鈍板が、本発明の高強度冷延鋼板となる。 When the plating process described later is not performed, the second-stage cold-rolled annealed sheet obtained through the second-stage annealing process becomes the high-strength cold-rolled steel sheet of the present invention.
 〈めっき工程〉
 第2段焼鈍工程を経て得られる第2段冷延焼鈍板に、さらに、めっき処理を施して、その表面にめっき層を形成してもよい。この場合、表面にめっき層が形成された第2段冷延焼鈍板が、本発明の高強度冷延鋼板となる。
<Plating process>
The second-stage cold-rolled annealed plate obtained through the second-stage annealing step may be further subjected to a plating treatment to form a plating layer on the surface thereof. In this case, the second-stage cold-rolled annealed plate having a plating layer formed on the surface is the high-strength cold-rolled steel plate of the present invention.
 めっき処理としては、溶融亜鉛めっき処理、溶融亜鉛めっき処理および合金化処理、または、電気亜鉛めっき処理が好ましい。溶融亜鉛めっき処理、溶融亜鉛めっき処理および合金化処理、ならびに、電気亜鉛めっき処理としては、特に限定されず、それぞれ、従来公知の溶融亜鉛めっき処理、従来公知の溶融亜鉛めっき処理および合金化処理、ならびに、従来公知の電気亜鉛めっき処理が好適に用いられる。
 めっき処理の前には、脱脂およびリン酸塩処理等の前処理を施してもよい。
As the plating treatment, hot dip galvanizing treatment, hot dip galvanizing treatment and alloying treatment, or electrogalvanizing treatment is preferable. The hot dip galvanizing treatment, the hot dip galvanizing treatment and the alloying treatment, and the electrogalvanizing treatment are not particularly limited, and are conventionally known hot dip galvanizing treatment, conventionally known hot dip galvanizing treatment and alloying treatment, respectively. In addition, a conventionally known electrogalvanizing treatment is preferably used.
Prior to the plating treatment, pretreatment such as degreasing and phosphate treatment may be performed.
 溶融亜鉛めっき処理としては、例えば、常用の連続溶融亜鉛めっきラインを用いて、第2段冷延焼鈍板を、溶融亜鉛めっき浴に浸漬し、表面に所定量の溶融亜鉛めっき層を形成する処理であることが好ましい。
 溶融亜鉛めっき浴に浸漬する際には、再加熱または冷却により、第2段冷延焼鈍板の温度を、溶融亜鉛めっき浴温度-50℃の温度以上、溶融亜鉛めっき浴温度+80℃の温度以下の範囲内に調整することが好ましい。
 溶融亜鉛めっき浴の温度は、440℃以上500℃以下が好ましい。
 溶融亜鉛めっき浴には、純亜鉛に加えて、Al、Fe、MgまたはSi等を含有させてもよい。
 溶融亜鉛めっき層の付着量は、ガスワイピング等を調整して所望の付着量とすることができ、片面あたり45g/m程度とすることが好ましい。
As the hot dip galvanizing treatment, for example, a conventional continuous hot dip galvanizing line is used to immerse the second stage cold-rolled annealing plate in a hot dip galvanizing bath and form a predetermined amount of hot dip galvanized layer on the surface. It is preferable that
When immersed in a hot dip galvanizing bath, the temperature of the second-stage cold-rolled annealed plate is not less than the temperature of the hot dip galvanizing bath temperature −50 ° C. and not more than the temperature of the hot dip galvanizing bath temperature + 80 ° C. by reheating or cooling. It is preferable to adjust within the range.
The temperature of the hot dip galvanizing bath is preferably 440 ° C. or higher and 500 ° C. or lower.
The hot dip galvanizing bath may contain Al, Fe, Mg, Si or the like in addition to pure zinc.
The adhesion amount of the hot-dip galvanized layer can be adjusted to a desired adhesion amount by adjusting gas wiping or the like, and is preferably about 45 g / m 2 per side.
 溶融亜鉛めっき処理により形成されためっき層(溶融亜鉛めっき層)は、必要に応じて、常用の合金化処理を施すことにより、合金化溶融亜鉛めっき層としてもよい。
 合金化処理の温度は、460℃以上600℃以下が好ましい。
 合金化溶融亜鉛めっき層とする場合、溶融亜鉛めっき浴中の有効Al濃度を、0.10質量%以上0.22質量%以下の範囲に調整することが、所望のめっき外観を確保する観点から好ましい。
The plated layer (hot galvanized layer) formed by the hot dip galvanizing process may be an alloyed hot dip galvanized layer by performing a usual alloying process as necessary.
The temperature for the alloying treatment is preferably 460 ° C. or more and 600 ° C. or less.
In the case of an alloyed hot dip galvanized layer, adjusting the effective Al concentration in the hot dip galvanizing bath to a range of 0.10% by mass or more and 0.22% by mass or less from the viewpoint of securing a desired plating appearance. preferable.
 電気亜鉛めっき処理としては、例えば、常用の電気亜鉛めっきラインを用いて、第2段冷延焼鈍板の表面に、所定量の電気亜鉛めっき層を形成する処理であることが好ましい。
 電気亜鉛めっき層の付着量は、通板速度または電流値等を調整して所定の付着量とすることができ、片面あたり30g/m程度とすることが好ましい。
The electrogalvanizing treatment is preferably, for example, a treatment of forming a predetermined amount of electrogalvanized layer on the surface of the second stage cold-rolled annealed plate using a conventional electrogalvanizing line.
The adhesion amount of the electrogalvanized layer can be adjusted to a predetermined adhesion amount by adjusting the sheet passing speed or the current value, and is preferably about 30 g / m 2 per side.
 以下に、実施例を挙げて本発明を具体的に説明する。ただし、本発明はこれらに限定されない。 Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to these.
 〈冷延鋼板の製造〉
 下記表1に示す組成の溶鋼を、通常公知の手法により溶製し、連続鋳造して肉厚300mmのスラブ(鋼素材)とした。得られたスラブに、熱間圧延を施すことにより、熱延板を得た。得られた熱延板に、通常公知の手法により酸洗を施し、次いで、下記表2~表3に示す圧下率で冷間圧延を施し、冷延板(板厚:1.4mm)を得た。
<Manufacture of cold-rolled steel sheet>
Molten steel having the composition shown in Table 1 below was melted by a generally known method and continuously cast to obtain a slab (steel material) having a thickness of 300 mm. A hot-rolled sheet was obtained by subjecting the obtained slab to hot rolling. The obtained hot-rolled sheet is pickled by a generally known method, and then cold-rolled at the rolling reduction shown in Tables 2 to 3 below to obtain a cold-rolled sheet (sheet thickness: 1.4 mm). It was.
 得られた冷延板に、下記表2~表3に示す条件で焼鈍を施し、第2段冷延焼鈍板を得た。
 焼鈍工程は、第1段焼鈍工程と第2段焼鈍工程とからなる2段階の工程とした。
 第1段焼鈍工程と第2段焼鈍工程の間で室温まで冷却した。
 第1段焼鈍工程における焼鈍温度Tでの保持時間は100sとした。
 第2段焼鈍工程における、焼鈍温度Tでの保持時間は100sとし、焼鈍温度Tから冷却停止温度Tへの平均冷却速度は20℃/sとし、冷却停止温度Tでの保持時間は250sとした。
The obtained cold-rolled sheet was annealed under the conditions shown in Tables 2 to 3 below to obtain a second-stage cold-rolled annealed sheet.
The annealing process was a two-stage process consisting of a first stage annealing process and a second stage annealing process.
It cooled to room temperature between the 1st stage annealing process and the 2nd stage annealing process.
Holding time at the annealing temperature T 1 of the first stage annealing process was 100s.
In the second stage annealing step, the holding time at the annealing temperature T 3 is 100 s, the average cooling rate from the annealing temperature T 3 to the cooling stop temperature T 4 is 20 ° C./s, and the holding time at the cooling stop temperature T 4 Was 250 s.
 一部の第2段冷延焼鈍板については、焼鈍の終了後、さらに、溶融亜鉛めっき処理を施すことにより、表面に溶融亜鉛めっき層を形成し、溶融亜鉛めっき鋼板とした。
 溶融亜鉛めっき処理は、第2段冷延焼鈍板を、連続溶融亜鉛めっきラインを用いて、必要に応じて430℃以上480℃以下の範囲の温度に再加熱し、溶融亜鉛めっき浴(浴温:470℃)に浸漬し、めっき層の付着量が片面あたり45g/mとなるように調整した。浴組成はZn-0.18質量%Alとした。
 このとき、一部の溶融亜鉛めっき鋼板においては、浴組成をZn-0.14質量%Alとし、めっき処理後、520℃で合金化処理を施し、合金化溶融亜鉛めっき鋼板とした。
 めっき層中のFe濃度は、9質量%以上12質量%以下とした。
 別の一部の第2段冷延焼鈍板については、焼鈍の終了後、さらに、電気亜鉛めっきラインを用いて、めっき付着量が片面あたり30g/mとなるように、電気亜鉛めっき処理を施し、電気亜鉛めっき鋼板とした。
Some of the second-stage cold-rolled annealed sheets were subjected to hot dip galvanizing treatment after the end of annealing, thereby forming a hot dip galvanized layer on the surface to obtain hot dip galvanized steel sheets.
In the hot dip galvanizing treatment, the second-stage cold-rolled annealed plate is reheated to a temperature in the range of 430 ° C. or higher and 480 ° C. or lower as necessary using a continuous hot dip galvanizing line, and a hot dip galvanizing bath (bath temperature) is used. : 470 ° C.), and the amount of adhesion of the plating layer was adjusted to 45 g / m 2 per side. The bath composition was Zn-0.18 mass% Al.
At this time, some of the hot dip galvanized steel sheets had a bath composition of Zn-0.14 mass% Al, and after the plating process, an alloying process was performed at 520 ° C. to obtain an alloyed hot dip galvanized steel sheet.
The Fe concentration in the plating layer was 9% by mass or more and 12% by mass or less.
Another part of the second-stage cold-rolled annealed plate is subjected to an electrogalvanizing treatment after the annealing, and further using an electrogalvanizing line so that the amount of plating is 30 g / m 2 per side. To give an electrogalvanized steel sheet.
 下記表4~表5においては、めっき層を形成しない第2段冷延焼鈍板を「CR」、溶融亜鉛めっき鋼板を「GI」、合金化溶融亜鉛めっき鋼板を「GA」、電気亜鉛めっき鋼板を「EG」と表記した。
 以下、めっき層を形成しない第2段冷延焼鈍板、および、めっき層を形成した第2段冷延焼鈍板(溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板、および、電気亜鉛めっき鋼板)を、まとめて、「冷延鋼板」と呼ぶ。
 以上のようにして、冷延鋼板を製造した。
In Tables 4 to 5 below, the second-stage cold-rolled annealed sheet that does not form a plating layer is “CR”, the hot-dip galvanized steel sheet is “GI”, the galvannealed steel sheet is “GA”, and the electrogalvanized steel sheet Was written as “EG”.
Hereinafter, a second-stage cold-rolled annealed plate that does not form a plated layer, and a second-stage cold-rolled annealed plate that forms a plated layer (hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet, and electrogalvanized steel sheet) These are collectively referred to as “cold rolled steel sheet”.
A cold-rolled steel sheet was produced as described above.
 〈評価〉
 得られた冷延鋼板から、試験片を採取し、ミクロ組織観察、残留オーステナイト面積率の測定、引張試験、および、穴広げ試験を行なった。試験方法は、次のとおりとした。
<Evaluation>
A test piece was collected from the obtained cold-rolled steel sheet and subjected to microstructure observation, measurement of residual austenite area ratio, tensile test, and hole expansion test. The test method was as follows.
 《ミクロ組織観察》
 まず、冷延鋼板から、ミクロ組織観察用の試験片を採取した。
 次いで、採取した試験片を、圧延方向断面(L断面)で板厚の1/4に相当する位置が観察面となるように、研磨した。観察面を、腐食(1体積%ナイタール液腐食)させてから、走査型電子顕微鏡(SEM、倍率:3000倍)を用いて、30μm×35μmの視野範囲で10視野の観察を行ない、撮像してSEM画像を得た。
 得られたSEM画像を用いて、画像解析により、各組織の面積率を求めた。面積率は、10視野の平均値とした。SEM画像において、フェライトおよびベイニティックフェライトは灰色、マルテンサイトおよび残留オーステナイトは白色を呈するため、その色調から、各組織を判断した。フェライトとベイニティックフェライトとを正確に区別することは難しいが、ここではこれらの組織の総和が重要であるため、特に各組織を区別せず、フェライトおよびベイニティックフェライトの総和の面積率を求めた。
 白色を呈する組織の面積率から、別途X線回折により求めた残留オーステナイトの面積率を差し引き、マルテンサイトの面積率とした。X線回折により求めたオーステナイトの体積率は、面積率と等しいものとして扱った。
<< Microstructure observation >>
First, a specimen for microstructural observation was collected from the cold rolled steel sheet.
Next, the collected specimen was polished so that the position corresponding to 1/4 of the plate thickness in the rolling direction cross section (L cross section) was the observation surface. The observation surface is corroded (1% by volume nital liquid corrosion), and then observed using a scanning electron microscope (SEM, magnification: 3000 times) in a visual field range of 30 μm × 35 μm, and imaged. SEM images were obtained.
The area ratio of each tissue was determined by image analysis using the obtained SEM image. The area ratio was an average value of 10 fields of view. In the SEM image, since ferrite and bainitic ferrite are gray, martensite and residual austenite are white, each structure was judged from the color tone. Although it is difficult to accurately distinguish between ferrite and bainitic ferrite, the sum of these structures is important here, so the area ratio of the sum of ferrite and bainitic ferrite is not particularly distinguished. Asked.
The area ratio of retained austenite separately obtained by X-ray diffraction was subtracted from the area ratio of the white-colored structure to obtain the martensite area ratio. The volume ratio of austenite obtained by X-ray diffraction was treated as being equal to the area ratio.
 さらに、試験片を、圧延方向断面(L断面)で板厚の1/4に相当する位置が観察面となるように、コロイダルシリカ振動研磨により研磨した。観察面は鏡面とした。次いで、極低加速イオンミリングにより、研磨歪による観察面の加工変態相を除去した後、電子線後方散乱回折(EBSD)測定を実施し、局所結晶方位データを得た。このとき、SEM倍率は1500倍、ステップサイズは0.04μm、測定領域は40μm平方、WDは15mmとした。解析ソフト:OIM Analysis 7を用いて、得られた局所方位データの解析を行なった。解析は、3視野について行ない、その平均値を用いた。 Furthermore, the test piece was polished by colloidal silica vibration polishing so that a position corresponding to 1/4 of the plate thickness in the cross section in the rolling direction (L cross section) became the observation surface. The observation surface was a mirror surface. Next, the processing transformation phase of the observation surface due to polishing strain was removed by ultra-low acceleration ion milling, and then electron beam backscatter diffraction (EBSD) measurement was performed to obtain local crystal orientation data. At this time, the SEM magnification was 1500 times, the step size was 0.04 μm, the measurement area was 40 μm square, and the WD was 15 mm. Analysis software: OIM Analysis 7 was used to analyze the obtained local orientation data. The analysis was performed for three visual fields, and the average value was used.
 データ解析に先立ち、解析ソフトのGrain Dilation機能(Grain Tolerance Angle:5°、Minimum Grain Size:5、Single Iteration:ON)、および、Grain CI Standarization機能(Grain Tolerance Angle:5°、Minimum Grain Size:5)によるクリーンアップ処理を順に1回ずつ施した。その後、CI値>0.1の測定点のみを用いて解析に使用した。
 fcc相のデータについて、Grain Shape Aspect RatioチャートのArea Fractionを用いて解析を行ない、残留オーステナイトのうち、アスペクト比が0.5以下である残留オーステナイトの割合(面積率)を求めた。以上の解析において、Grain shape calculation methodは、Method 2を用いた。
 さらに、bcc相のデータについて、ハイライト機能を用いて、同一Bainグループに属する領域を同じ色で着色した後、先に求めたアスペクト比が0.5以下である残留オーステナイトのうち、異なる色で着色された領域の境界、すなわち、Bainグループ境界(旧オーステナイト粒界を含む)に存在するものの割合を、面積率で求めた。
Prior to data analysis, Grain Dilution function (Grain Tolerance Angle: 5 °, Minimum Grain Size: 5, Single Iteration: ON) and Grain CI Standardization Function (Grain Tolerance Angle: 5 °, Grain Tolerance Angle: 5 °, Grain Tolerance Angle: 5 ° The clean-up process according to) was performed once in order. Thereafter, only measurement points with CI values> 0.1 were used for analysis.
The fcc phase data was analyzed using the Area Fraction of the Grain Shape Aspect Ratio chart, and the ratio (area ratio) of retained austenite having an aspect ratio of 0.5 or less was determined from the retained austenite. In the above analysis, Method 2 was used as the grain shape calculation method.
Further, for the data of the bcc phase, after highlighting the region belonging to the same Bain group with the same color using the highlight function, the different austenite with the aspect ratio obtained earlier of 0.5 or less is used in a different color. The ratio of those existing at the boundary of the colored region, that is, the Bain group boundary (including the former austenite grain boundary) was obtained as an area ratio.
 《残留オーステナイト面積率の測定》
 冷延鋼板から、X線回折用の試験片を採取し、板厚の1/4に相当する位置が測定面となるように、研削および研磨を行ない、X線回折法により、回折X線強度から残留オーステナイトの体積率を求めた。入射X線は、CoKα線を用いた。
 残留オーステナイトの体積率の計算に際しては、fcc相(残留オーステナイト)の{111}、{200}、{220}および{311}面、ならびに、bcc相の{110}、{200}および{211}面のピークの積分強度の全ての組み合わせについて強度比を計算し、それらの平均値を求め、残留オーステナイトの体積率を算出した。
 このようにして求めたオーステナイトの体積率を、面積率とした。
<Measurement of residual austenite area ratio>
A specimen for X-ray diffraction is taken from the cold-rolled steel sheet, ground and polished so that the position corresponding to 1/4 of the plate thickness becomes the measurement surface, and diffracted X-ray intensity is measured by the X-ray diffraction method. From the volume fraction of retained austenite. CoKα rays were used as incident X-rays.
When calculating the volume fraction of retained austenite, the {111}, {200}, {220} and {311} faces of the fcc phase (residual austenite) and the {110}, {200} and {211} of the bcc phase The intensity ratio was calculated for all combinations of the integrated intensity of the peak of the surface, the average value was obtained, and the volume fraction of retained austenite was calculated.
The volume ratio of austenite thus obtained was defined as the area ratio.
 《引張試験》
 冷延鋼板から、圧延方向に対して垂直な方向(C方向)を引張方向とするJIS5号引張試験片(JIS Z 2001)を採取し、JIS Z 2241の規定に準拠した引張試験を行ない、引張強さ(TS)および伸び(El)を測定した。
<Tensile test>
A JIS No. 5 tensile test piece (JIS Z 2001) having a tensile direction in the direction perpendicular to the rolling direction (C direction) is taken from the cold-rolled steel sheet and subjected to a tensile test in accordance with the provisions of JIS Z 2241. Strength (TS) and elongation (El) were measured.
 (強度)
 TSが980MPa以上である場合を、高強度と評価した。
(Strength)
The case where TS was 980 MPa or more was evaluated as high strength.
 (延性)
 TSが980MPa以上1180MPa未満であるときはElが25%以上の場合、TSが1180MPa以上であるときはElが18%以上の場合、高延性(延性が良好である)と評価した。
(Ductility)
When TS is 980 MPa or more and less than 1180 MPa, El is 25% or more, and when TS is 1180 MPa or more, El is 18% or more, it was evaluated as high ductility (good ductility).
 《穴広げ試験》
 冷延鋼板から、試験片(大きさ:100mm×100mm)を採取し、試験片に、初期直径d:10mmφの穴を、打抜き加工(クリアランス:試験片板厚の12.5%)により形成した。これら試験片を用いて、穴広げ試験を実施した。すなわち、初期直径d:10mmφの穴に、打ち抜き時のポンチ側から、頂角:60°の円錐ポンチを挿入し、この穴を押し広げ、亀裂が鋼板(試験片)を貫通したときの穴の径d(単位:mm)を測定し、次式により穴広げ率λ(単位:%)を算出した。
 穴広げ率λ={(d-d)/d}×100
 穴広げ試験は、各鋼板について100回ずつ実施し、その平均値を、平均穴広げ率λ(単位:%)とした。平均穴広げ率λは、以下、「平均λ」とも表記する。
 さらに、穴広げ率λの値が、平均穴広げ率λの半分以下の値となる確率を求め、これを、穴広げ試験の不良率(単位:%)とした。
《Hole expansion test》
A specimen (size: 100 mm × 100 mm) is taken from the cold rolled steel sheet, and a hole having an initial diameter d 0 : 10 mmφ is formed in the specimen by punching (clearance: 12.5% of the specimen thickness). did. Using these test pieces, a hole expansion test was performed. That is, a conical punch having an apex angle of 60 ° is inserted into a hole having an initial diameter d 0 : 10 mmφ from the punching side at the time of punching, and the hole is expanded and the hole penetrates through the steel plate (test piece). The diameter d (unit: mm) was measured, and the hole expansion ratio λ (unit:%) was calculated by the following formula.
Hole expansion ratio λ = {(d−d 0 ) / d 0 } × 100
The hole expansion test was performed 100 times for each steel plate, and the average value was defined as the average hole expansion rate λ (unit:%). Hereinafter, the average hole expansion ratio λ is also expressed as “average λ”.
Further, a probability that the value of the hole expansion rate λ is a value equal to or less than half of the average hole expansion rate λ was determined, and this was defined as a defective rate (unit:%) of the hole expansion test.
 (伸びフランジ性)
 TSが980MPa以上1180MPa未満であるときは平均λが20%以上の場合、TSが1180MPa以上であるときは平均λが15%以上の場合、伸びフランジ性が良好であると評価した。
(Stretch flangeability)
When TS was 980 MPa or more and less than 1180 MPa, the average λ was 20% or more. When TS was 1180 MPa or more, the average λ was 15% or more.
 (穴広げ試験の不良率)
 穴広げ試験の不良率が4%以下である場合を、穴広げ試験の不良率が低いと評価した。
(Defect rate of hole expansion test)
When the defect rate of the hole expansion test was 4% or less, it was evaluated that the defect rate of the hole expansion test was low.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 図2は、表4~表5の結果の一部をプロットしたグラフである。より詳細には、図2は、残留オーステナイトのうち、アスペクト比が0.5以下であるものの割合と、アスペクト比が0.5以下である残留オーステナイトのうち、Bainグループ境界に存在するものの割合とが、穴広げ試験の不良率に及ぼす影響を示すグラフである。
 図2のグラフから分かるように、アスペクト比が0.5以下である残留オーステナイトの割合が75%以上であり、かつ、アスペクト比が0.5以下である残留オーステナイトのうちBainグループ境界に存在するものの割合が50%以上である場合においてのみ、穴広げ試験の不良率が低い鋼板が得られている。
FIG. 2 is a graph plotting a part of the results of Tables 4-5. More specifically, FIG. 2 shows the proportion of residual austenite with an aspect ratio of 0.5 or less, and the proportion of residual austenite with an aspect ratio of 0.5 or less that exists at the Bain group boundary. These are graphs which show the influence which it has on the defect rate of a hole expansion test.
As can be seen from the graph of FIG. 2, the ratio of residual austenite having an aspect ratio of 0.5 or less is 75% or more, and the residual austenite having an aspect ratio of 0.5 or less is present at the Bain group boundary. Only when the ratio of the objects is 50% or more, a steel sheet having a low defect rate in the hole expansion test is obtained.
 表1~表5および図2から明らかなように、本発明例の冷延鋼板は、いずれも、引張強さ(TS)が980MPa以上の高強度を有し、かつ、良好な延性および伸びフランジ性を兼備し、さらに、穴広げ試験の不良率が小さい。
 これに対して、比較例においては、上記特性のいずれかが不十分であった。
As is apparent from Tables 1 to 5 and FIG. 2, the cold-rolled steel sheets of the examples of the present invention all have high strength with a tensile strength (TS) of 980 MPa or more, and have good ductility and stretch flanges. In addition, the defect rate of the hole expansion test is small.
On the other hand, in the comparative example, any of the above characteristics was insufficient.
 B1、B2、B3:Bainグループ
 RA、RA:残留オーステナイト
B1, B2, B3: Bain group RA 1, RA 2: residual austenite

Claims (6)

  1.  質量%で、
     C:0.15%超0.45%以下、
     Si:0.50%以上2.50%以下、
     Mn:1.50%以上3.00%以下、
     P:0.050%以下、
     S:0.0100%以下、
     Al:0.010%以上0.100%以下、および、
     N:0.0100%以下を含み、残部Feおよび不可避的不純物からなる組成を有し、
     ミクロ組織において、フェライトおよびベイニティックフェライトの面積率の総和が20%以上80%以下であり、残留オーステナイトの面積率が10%超40%以下であり、かつ、マルテンサイトの面積率が0%超50%以下であり、
     残留オーステナイトのうち、アスペクト比が0.5以下であるものの割合が、面積率で75%以上であり、
     アスペクト比が0.5以下である残留オーステナイトのうち、Bainグループ境界に存在するものの割合が、面積率で50%以上である、高強度冷延鋼板。
    % By mass
    C: more than 0.15% and 0.45% or less,
    Si: 0.50% or more and 2.50% or less,
    Mn: 1.50% or more and 3.00% or less,
    P: 0.050% or less,
    S: 0.0100% or less,
    Al: 0.010% or more and 0.100% or less, and
    N: including 0.0100% or less, having a composition consisting of the balance Fe and inevitable impurities,
    In the microstructure, the total area ratio of ferrite and bainitic ferrite is 20% or more and 80% or less, the area ratio of retained austenite is more than 10% and 40% or less, and the area ratio of martensite is 0%. Less than 50%,
    Of the retained austenite, the proportion of those having an aspect ratio of 0.5 or less is 75% or more in area ratio,
    A high-strength cold-rolled steel sheet having an area ratio of 50% or more of the retained austenite having an aspect ratio of 0.5 or less and existing at the boundary of the Bain group.
  2.  前記組成が、さらに、質量%で、
     Ti:0.005%以上0.035%以下、
     Nb:0.005%以上0.035%以下、
     V:0.005%以上0.035%以下、
     Mo:0.005%以上0.035%以下、
     B:0.0003%以上0.0100%以下、
     Cr:0.05%以上1.00%以下、
     Ni:0.05%以上1.00%以下、
     Cu:0.05%以上1.00%以下、
     Sb:0.002%以上0.050%以下、
     Sn:0.002%以上0.050%以下、
     Ca:0.0005%以上0.0050%以下、
     Mg:0.0005%以上0.0050%以下、および、
     REM:0.0005%以上0.0050%以下からなる群から選ばれる少なくとも1種の元素を含む、請求項1に記載の高強度冷延鋼板。
    The composition is further in mass%,
    Ti: 0.005% or more and 0.035% or less,
    Nb: 0.005% or more and 0.035% or less,
    V: 0.005% or more and 0.035% or less,
    Mo: 0.005% or more and 0.035% or less,
    B: 0.0003% or more and 0.0100% or less,
    Cr: 0.05% or more and 1.00% or less,
    Ni: 0.05% or more and 1.00% or less,
    Cu: 0.05% or more and 1.00% or less,
    Sb: 0.002% or more and 0.050% or less,
    Sn: 0.002% to 0.050%,
    Ca: 0.0005% or more and 0.0050% or less,
    Mg: 0.0005% or more and 0.0050% or less, and
    The high-strength cold-rolled steel sheet according to claim 1, comprising at least one element selected from the group consisting of REM: 0.0005% to 0.0050%.
  3.  前記組成のCおよびMnが、質量%で、下記式(z)を満足する、請求項1または2に記載の高強度冷延鋼板。
     7.5×C+Mn<5.0 ・・・ (z)
     ただし、式(z)中、CおよびMnは、各元素の含有量を示す。
    The high-strength cold-rolled steel sheet according to claim 1 or 2, wherein C and Mn of the composition satisfy the following formula (z) in mass%.
    7.5 × C + Mn <5.0 (z)
    However, in the formula (z), C and Mn indicate the content of each element.
  4.  表面にめっき層を有する、請求項1~3のいずれか1項に記載の高強度冷延鋼板。 The high-strength cold-rolled steel sheet according to any one of claims 1 to 3, which has a plating layer on the surface.
  5.  請求項1~4のいずれか1項に記載の高強度冷延鋼板を製造する方法であって、
     請求項1~3のいずれか1項に記載の組成を有する鋼素材に、熱間圧延を施すことにより、熱延板を得る熱間圧延工程と、
     前記熱延板に酸洗を施す酸洗工程と、
     前記酸洗が施された前記熱延板に、圧下率30%以上の冷間圧延を施すことにより、冷延板を得る冷間圧延工程と、
     前記冷延板を、Ac点以上950℃以下の焼鈍温度Tで加熱し、前記焼鈍温度Tから、10℃/s超の平均冷却速度で、250℃以上350℃未満の冷却停止温度Tまで冷却し、前記冷却停止温度Tで10s以上保持することにより、第1段冷延焼鈍板を得る第1段焼鈍工程と、
     前記第1段冷延焼鈍板を、700℃以上850℃以下の焼鈍温度Tで加熱し、前記焼鈍温度Tから、300℃以上500℃以下の冷却停止温度Tまで冷却することにより、第2段冷延焼鈍板を得る第2段焼鈍工程と、
    を備える高強度冷延鋼板の製造方法。
    A method for producing the high-strength cold-rolled steel sheet according to any one of claims 1 to 4,
    A hot rolling step for obtaining a hot-rolled sheet by hot rolling the steel material having the composition according to any one of claims 1 to 3,
    Pickling step of pickling the hot-rolled sheet;
    A cold rolling step of obtaining a cold-rolled sheet by subjecting the hot-rolled sheet subjected to the pickling to cold rolling with a rolling reduction of 30% or more;
    The cold-rolled sheet is heated at an annealing temperature T 1 of Ac 3 points or more and 950 ° C. or less, and a cooling stop temperature of 250 ° C. or more and less than 350 ° C. at an average cooling rate of more than 10 ° C./s from the annealing temperature T 1. It cooled to T 2, by holding in the cooling stop temperature T 2 10s or more, and the first stage annealing step of obtaining a first Danhiyanobe annealed sheets,
    By heating the first-stage cold-rolled annealing plate at an annealing temperature T 3 of 700 ° C. or higher and 850 ° C. or lower, and cooling from the annealing temperature T 3 to a cooling stop temperature T 4 of 300 ° C. or higher and 500 ° C. or lower, A second-stage annealing step to obtain a second-stage cold-rolled annealing plate;
    A method for producing a high-strength cold-rolled steel sheet.
  6.  前記第2段冷延焼鈍板に、溶融亜鉛めっき処理、溶融亜鉛めっき処理および合金化処理、または、電気亜鉛めっき処理を施すめっき工程をさらに備える、請求項5に記載の高強度冷延鋼板の製造方法。 The high-strength cold-rolled steel sheet according to claim 5, further comprising a plating step of subjecting the second-stage cold-rolled annealed plate to hot-dip galvanizing treatment, hot-dip galvanizing treatment and alloying treatment, or electrogalvanizing treatment. Production method.
PCT/JP2018/014075 2017-04-05 2018-04-02 High strength cold rolled steel sheet and method for producing same WO2018186335A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18780802.7A EP3591087B1 (en) 2017-04-05 2018-04-02 High strength cold rolled steel sheet and method for producing same
KR1020197028975A KR102274284B1 (en) 2017-04-05 2018-04-02 High-strength cold-rolled steel sheet and manufacturing method thereof
US16/499,592 US11365459B2 (en) 2017-04-05 2018-04-02 High strength cold rolled steel sheet and method of producing same
CN201880020730.4A CN110475892B (en) 2017-04-05 2018-04-02 High-strength cold-rolled steel sheet and method for producing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017075154 2017-04-05
JP2017-075154 2017-04-05
JP2018017145A JP6409991B1 (en) 2017-04-05 2018-02-02 High-strength cold-rolled steel sheet and manufacturing method thereof
JP2018-017145 2018-02-02

Publications (1)

Publication Number Publication Date
WO2018186335A1 true WO2018186335A1 (en) 2018-10-11

Family

ID=63713035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014075 WO2018186335A1 (en) 2017-04-05 2018-04-02 High strength cold rolled steel sheet and method for producing same

Country Status (2)

Country Link
CN (1) CN110475892B (en)
WO (1) WO2018186335A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113227428A (en) * 2018-12-26 2021-08-06 杰富意钢铁株式会社 High-strength hot-dip galvanized steel sheet and method for producing same
CN115362275A (en) * 2020-03-31 2022-11-18 杰富意钢铁株式会社 Steel sheet, component and method for producing same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230059951A1 (en) * 2020-01-14 2023-02-23 Nippon Steel Corporation Steel sheet and manufacturing method thereof
KR20230016218A (en) * 2020-07-20 2023-02-01 아르셀러미탈 Heat-treated cold-rolled steel sheet and its manufacturing method
CN112795852A (en) * 2020-11-23 2021-05-14 唐山钢铁集团有限责任公司 1200 MPa-grade high-hole-expansion-performance cold-rolled galvanized strip steel and production method thereof
CN115710673B (en) * 2022-11-07 2023-07-14 鞍钢股份有限公司 High-reaming cold-rolled DH1180 steel and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004292891A (en) * 2003-03-27 2004-10-21 Jfe Steel Kk High tensile strength hot dip galvanized steel sheet having excellent fatigue property and hole expansibility, and its production method
WO2012053044A1 (en) * 2010-10-18 2012-04-26 住友金属工業株式会社 Hot-rolled steel sheet, cold-rolled steel sheet, and plated steel sheet each having exellent uniform ductility and local ductility in high-speed deformation
WO2015151419A1 (en) * 2014-03-31 2015-10-08 Jfeスチール株式会社 High-strength cold rolled steel sheet having high yield ratio, and production method therefor
WO2016021193A1 (en) 2014-08-07 2016-02-11 Jfeスチール株式会社 High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet
WO2016132680A1 (en) 2015-02-17 2016-08-25 Jfeスチール株式会社 High-strength, cold-rolled, thin steel sheet and method for manufacturing same
WO2016136810A1 (en) * 2015-02-24 2016-09-01 新日鐵住金株式会社 Cold-rolled steel sheet and method for manufacturing same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004292891A (en) * 2003-03-27 2004-10-21 Jfe Steel Kk High tensile strength hot dip galvanized steel sheet having excellent fatigue property and hole expansibility, and its production method
WO2012053044A1 (en) * 2010-10-18 2012-04-26 住友金属工業株式会社 Hot-rolled steel sheet, cold-rolled steel sheet, and plated steel sheet each having exellent uniform ductility and local ductility in high-speed deformation
WO2015151419A1 (en) * 2014-03-31 2015-10-08 Jfeスチール株式会社 High-strength cold rolled steel sheet having high yield ratio, and production method therefor
WO2016021193A1 (en) 2014-08-07 2016-02-11 Jfeスチール株式会社 High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet
WO2016132680A1 (en) 2015-02-17 2016-08-25 Jfeスチール株式会社 High-strength, cold-rolled, thin steel sheet and method for manufacturing same
WO2016136810A1 (en) * 2015-02-24 2016-09-01 新日鐵住金株式会社 Cold-rolled steel sheet and method for manufacturing same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GORO MIYAMOTO: "Crystallographic restriction in martensite and bainite transformations in steels", JOURNAL OF THE JAPAN INSTITUTE OF METALS AND MATERIALS, THE JAPAN INSTITUTE OF METALS AND MATERIALS, vol. 79, no. 7, 2015, pages 339 - 347

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113227428A (en) * 2018-12-26 2021-08-06 杰富意钢铁株式会社 High-strength hot-dip galvanized steel sheet and method for producing same
US11390932B2 (en) 2018-12-26 2022-07-19 Jfe Steel Corporation High-strength hot-dip galvanized steel sheet and method for producing the same
CN113227428B (en) * 2018-12-26 2022-12-27 杰富意钢铁株式会社 High-strength hot-dip galvanized steel sheet and method for producing same
CN115362275A (en) * 2020-03-31 2022-11-18 杰富意钢铁株式会社 Steel sheet, component and method for producing same
CN115362275B (en) * 2020-03-31 2024-03-01 杰富意钢铁株式会社 Steel sheet, component, and method for manufacturing same

Also Published As

Publication number Publication date
CN110475892A (en) 2019-11-19
CN110475892B (en) 2022-01-14

Similar Documents

Publication Publication Date Title
JP6597811B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP5447741B1 (en) Steel plate, plated steel plate, and manufacturing method thereof
JP6791371B2 (en) High-strength cold-rolled steel sheet and its manufacturing method
WO2018186335A1 (en) High strength cold rolled steel sheet and method for producing same
JP6597889B2 (en) High strength cold-rolled steel sheet and method for producing high-strength cold-rolled steel sheet
JP6750772B1 (en) Hot-dip galvanized steel sheet and method for producing the same
KR102418275B1 (en) High-strength cold-rolled steel sheet and method for manufacturing same
JP6628682B2 (en) High-strength stainless steel sheet excellent in workability and method for producing the same
JP2022510873A (en) Cold-rolled heat-treated steel sheet and its manufacturing method
JPWO2021079756A1 (en) High-strength steel plate and its manufacturing method
JP6750771B1 (en) Hot-dip galvanized steel sheet and method for producing the same
JP6409991B1 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP6930682B1 (en) High-strength steel plate and its manufacturing method
WO2021079753A1 (en) High-strength steel sheet and method for manufacturing same
JP7006849B1 (en) Steel sheets, members and their manufacturing methods
JP7020594B2 (en) Steel sheets, members and their manufacturing methods
JP6525125B1 (en) High strength cold rolled steel sheet and method of manufacturing the same
JP7006848B1 (en) Steel sheets, members and their manufacturing methods
JP7107464B1 (en) High-strength steel plate and its manufacturing method
WO2020195279A1 (en) Steel sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18780802

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197028975

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018780802

Country of ref document: EP

Effective date: 20190930