JP4258215B2 - Hot-dip galvanized steel sheet and manufacturing method thereof - Google Patents

Hot-dip galvanized steel sheet and manufacturing method thereof Download PDF

Info

Publication number
JP4258215B2
JP4258215B2 JP2002380660A JP2002380660A JP4258215B2 JP 4258215 B2 JP4258215 B2 JP 4258215B2 JP 2002380660 A JP2002380660 A JP 2002380660A JP 2002380660 A JP2002380660 A JP 2002380660A JP 4258215 B2 JP4258215 B2 JP 4258215B2
Authority
JP
Japan
Prior art keywords
steel sheet
hot
stretch flangeability
secondary work
galvanized steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002380660A
Other languages
Japanese (ja)
Other versions
JP2004211140A (en
Inventor
総人 北野
広志 松田
康伸 長滝
正哉 森田
耕造 原田
俊明 占部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002380660A priority Critical patent/JP4258215B2/en
Publication of JP2004211140A publication Critical patent/JP2004211140A/en
Application granted granted Critical
Publication of JP4258215B2 publication Critical patent/JP4258215B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は伸びフランジ性および耐二次加工脆性に優れた溶融亜鉛めっき鋼板およびその製造方法に関する。
【0002】
【従来の技術】
近年、地球温暖化防止の観点から、自動車、電気、化学メーカー等各種産業界において排出されるCO2ガスの低減化が要求されている。この具体的な取り組みとして、自動車メーカーでは、電気自動車の開発、ガソリン車の車体軽量化が実施され、燃料比率の低減化を進めている。自動車車体の軽量化に対しては、自動車の各種部品に適用されている鋼板の板厚を減肉化することが有効とされている。
【0003】
しかし、板厚低減による軽量化の反面、車体の剛性の低下が懸念される。車体剛性を維持しつつ軽量化するには、高強度鋼板の適用が有望であり、ロッカー、メンバー等の各種自動車構造部品に高強度鋼板の適用が検討されている。その反面、実際の部品に成形する場合、伸び、伸びフランジ性などのプレス成形性の劣化が問題となる。また、高強度化するほど材料自体の靭性が低下するため、成形後の部品の靭性(耐二次加工脆性)の向上が求められる。
【0004】
こうした要求に対し、従来から種々の高強度鋼板が開発されている。例えば、特開平4-173946号公報には、高延性高強度合金化溶融亜鉛めっき鋼板の製造方法が開示されている。この技術は、C:0.06〜0.30%を有するNb添加鋼を、焼鈍時の冷却の際、所定の温度域における冷却速度をMn,Mo,Cr,Si,P含有量の重み付き合計値で規定することにより、伸び、伸びフランジ性の良好な655〜877MPa(66.8〜89.5kg/mm2)の強度を有する鋼板が得られるというものである。
【0005】
特開平6-93340号公報には、伸びフランジ性の優れた高強度合金化溶融亜鉛めっき鋼板の製造方法及び製造設備が開示されている。この技術は、連続焼鈍溶融亜鉛めっき処理の際、加熱から亜鉛めっきに至るまでの冷却と再加熱の温度を制御して、焼き戻しマルテンサイトを得ることにより、伸びフランジ性の良好な519〜794 MPa(53〜81kg/mm2)の強度を有する鋼板が得られるというものである。
【0006】
特開平6-57373号公報には、耐二次加工脆性に優れる高r値高張力冷延鋼板及びその製造方法が開示されている。この技術は、P添加のTi-Nb-B系の鋼で、B含有量をSi,Mn,P含有量の重み付き合計値で定まる所定範囲内に調整した鋼を用いることにより、耐二次加工脆性の良好な368〜502MPa(37.5〜51.2kg/mm2)の強度を有する鋼板が得られるというものである。
【0007】
特開2001-192768号公報には、優れた延性、伸びフランジ性、および耐疲労特性を有する高張力溶融亜鉛めっき鋼板およびその製造方法が開示されている。この技術は、C:0.05〜0.20%、Si:0.3 〜1.8 %、Mn:1.0 〜3.0%、等を含有し、複合組織を有し、フェライトを体積率で30%以上、焼戻マルテンサイトを体積率で20%以上、残留オーステナイトを体積率で2%以上含み、さらに、前記フェライトおよび焼戻マルテンサイトの平均結晶粒径が10μm 以下であることを特徴としている。
【0008】
【特許文献1】
特開平4-173946号公報
【0009】
【特許文献2】
特開平6-93340号公報
【0010】
【特許文献3】
特開平6-57373号公報
【0011】
【特許文献4】
特開2001-192768号公報
【0012】
【発明が解決しようとする課題】
特開平4-173946号公報に開示された技術では、伸びフランジ性の指標である穴拡げ率λは44〜86%の特性値が得られているが、強度が780MPa以上の鋼板においては、λは44〜61%と安定した高い特性値は得られていない。また、この技術では、980MPa以上の強度の溶融亜鉛めっき鋼板が安定して得られていない。
【0013】
一方、特開平6-93340号公報に開示された技術では、強度が780MPa級の鋼板において、85〜86%と良好な穴拡げ率が得られている。しかし、この技術では、連続溶融亜鉛めっきラインにおいて、均熱帯と溶融亜鉛めっき浴槽の間に強制冷却設備および加熱炉を新規に設置しなければならないことから、製造コストが極めて高い。
【0014】
また、この技術でも980MPa以上の強度の溶融亜鉛めっき鋼板が得られていない。更に、上記の従来技術はいずれも高強度鋼板の伸びフランジ性の向上に着眼した技術であり、鋼板の靭性を向上させることは出来ないと考えられる。このため、これらの技術で得られた鋼板では、プレス成形時の部品の靭性(耐二次加工脆性)の劣化が懸念される。
【0015】
一方、持開平6-57373号公報に開示された技術では、500MPa程度までの強度の耐二次加工脆性の良好な鋼板は得られるが、化学成分から見て780MPa以上の強度を有する鋼板を安定して製造することは困難と考えられる。
【0016】
特開2001-192768号公報記載の技術は、耐疲労特性の向上を目的としているが、耐二次加工脆性については全く開示されていない。
【0017】
また、ロッカーなどの自動車の足回り部品に適用される鋼板としては、耐二次加工脆性が良好であるとともに、780MPa以上の強度が要求されているが、鋼板の高強度化に伴い、プレス成形時に結晶粒界への応力集中が大きくなるため、耐二次加工脆性にとってはより厳しい状況となる。従って、上記の従来技術のいずれにおいても、伸びフランジ性、耐二次加工脆性、780MPa以上の引張強度を満足することができないという問題がある。
【0018】
そこで、本発明では、以上の問題を解決し、780MPa以上の引張強度を有し、伸びフランジ性と耐二次加工脆性に優れた溶融亜鉛めっき鋼板およびそれを安定して製造する方法を提供することを目的とする。
【0019】
【課題を解決するための手段】
上記課題は次の発明により解決される。その発明は、化学成分がmass%でC:0.03%〜0.090%、Si≦0.7%、Mn:2.0〜4.0%、P≦0.05%、S≦0.005%、Sol.Al:O.01〜0.1%、N≦0.005%、Ti:0.005〜0.1%、B:0.0002〜0.0040%を含有し、B、Ti、Nが下記不等式を満足し、残部が鉄および不可避的不純物からなり、平均粒径が5μm以下のフェライトと体積率が15〜80%のマルテンサイトを有することを特徴とする伸びフランジ性および耐二次加工脆性に優れた溶融亜鉛めっき鋼板である。
【0020】
0.0002≦B-(11/14)[N-(14/48)Ti]≦0.0030 (1)
ここで、式中の元素記号はそれぞれの元素のmass%を示し、[N-(14/48)Ti]≦0の場合は[N-(14/48)Ti]を0とする。
【0021】
また、この発明の溶融亜鉛めっき鋼板において、化学成分としてさらに、mass%で、Mo:0.01〜1.0%、V:0.01〜0.5%、Cr:0.01〜0.5%の内一種以上含有することを特徴とする伸びフランジ性および耐二次加工脆性に優れた溶融亜鉛めっき鋼板とすることもできる。
【0022】
これらの発明の溶融亜鉛めっき鋼板に関する製造方法の発明は、上記の化学成分の鋼を、溶製して鋳造する工程と、この鋳造されたスラブを熱間圧延する工程と、その後、酸洗して冷間圧延する工程と、冷間圧延後Ac3点以上900℃以下の温度に加熱し、下記式を満足する時間t(sec)保持した後、冷却し、溶融亜鉛めっき処理を施す工程とを備えたことを特徴とする伸びフランジ性および耐二次加工脆性に優れた溶融亜鉛めっき鋼板の製造方法である。
【0023】
4×{B-(11/14)[N-(14/48)Ti]}×104+30≦t
≦4×{B-(11/14)[N-(14/48)Ti]}×104+280 (2)
ここで、式中の元素記号はそれぞれの元素のmass%を、tは加熱温度における保持時間(sec)を示し、[N-(14/48)Ti]≦0の場合は[N-(14/48)Ti]を0とする。
【0024】
この発明は、伸びフランジ性および耐二次加工脆性に優れた高強度溶融亜鉛めっき鋼板を得るために、鋭意検討を重ねた結果、見出された知見に基づきなされた。それは、フェライトとマルテンサイトを含む複合組織の高強度鋼板において、伸びフランジ性の低下および耐二次加工脆性の劣化が、プレス成形前のブランキングおよびプレス成形時のフェライト/マルテンサイト界面近傍への応力集中に起因するということである。
【0025】
プレス成形前のブランキングの際は、フェライト/マルテンサイト界面近傍への応力集中によって発生するマイクロボイドに起因して、伸びフランジ性が低下する。プレス成形時には、増大する結晶粒界への応力集中により、靭性(耐二次加工脆性)が劣化する。そこで、フェライトを細粒化するとともに、Bを適正添加して粒界強度を上昇させることにより、マイクロボイドの発生が抑制されて、伸びフランジ性の向上が図れると共に、細粒化と粒界強化により靭性が向上し、耐二次加工脆性の向上が図れるということである。
【0026】
本発明は、780MPa以上の引張強度を有し、伸びフランジ性および耐二次加工脆性に優れた高強度溶融亜鉛めっき鋼板を得るため、上記の要件から構成されている。以下に、本発明の鋼成分の添加理由、成分限定範囲、組織形態および製造条件の限定理由について説明する。
【0027】
(1)鋼成分の範囲
以下、%はmass%を示す。
【0028】
C:0.03%〜0.090%
Cは、鋼の強化に有効な元素であり、0.03%以上の添加量を要する。一方、0.090%を超えてCを添加すると、圧延方向にバンド組織が発達し、プレス成形の際、このバンド組織への応力集中が発生するため靭性が劣化する。このため、C量は0.03%〜0.090%の範囲内とする。
【0029】
Si:≦0.7%
Siは、鋼の強化に有効な元素であり、適宜添加することができる。しかし、Si量が0.7%を超えると、焼鈍時の冷却過程において高温域でのフェライト変態が促進され、フェライト粒が粒成長するため、発明の意図する微細なフェライト粒が得られなくなる。さらに、Si量が0.7%を超えると、溶融亜鉛めっきの密着性が劣化し、不均一なめっき皮膜が形成されるため、深絞り成形の際、鋼板表層への応力集中が大きくなり、成形後の耐二次加工脆性にとって好ましくない。このため、Si量は0.7%以下とする。なお、Si量を0.3%未満とすると、耐二次加工脆性が更に向上する。従って、Si量を0.3%未満とすることが好ましい。
【0030】
Mn:2.0〜4.0%
Mnは、鋼の強化に有効な元素であり、2.0%以上の添加量を要する。一方、Mnの添加量が4.0%を超えると、スラブの鋳造の際、Mnの偏析が発生しやすくなる。圧延、溶融亜鉛めっき処理後、鋼板にはこの偏析に起因したバンド組織が発達するため、伸びフランジ性が著しく劣化する。このため、Mn量は2.0〜4.0%の範囲内とする。
【0031】
P:≦0.05%
Pは、鋼の強化に有効な元素であり、適宜添加することができる。しかし、Pの添加量が0.05%を超えると、鋳造時のPの偏析に起因した不均一組織が発達しやすくなり、延性が劣化する。従って、Pの添加量を0.05%以下とする。
【0032】
S:≦0.005%
Sは、鋼中に過剰に存在すると、MnSが多量に形成されるため、鋼板の伸びおよび伸びフランジ性に好ましくない。特にS量が0.005%を超えると、この悪影響が懸念される。このため、S量を0.005%以下とする。
【0033】
sol.Al:0.01〜0.1%
Alは鋼の脱酸のために、0.01%以上必要である。しかし、Alの添加量が0.1%を超えると、鋼中に酸化物等のAl系介在物が多くなり、延性が著しく劣化する。このため、Al量は0.01〜0.1%の範囲内とする。
【0034】
N:≦0.005%
Nは、鋼中に過剰に存在すると、スラブの鋳造の際、表面に割れが発生しやすくなる。特に、N量が0.005%を超えると、この悪影響が顕著となる。このため、N量は0.005%以下とする。
【0035】
B:0.0002〜0.0040%
Bは、固溶状態で存在することにより、焼鈍時にオーステナイト粒界に偏析してオーステナイトを細粒化し、オーステナイトから変態するフェライトの細粒化に極めて有効である。また、Bは、オーステナイトからのマルテンサイト変態の促進にも極めて有効な元素であり、これらの効果を得るため0.0002%以上添加する必要がある。しかし、Bの添加量が0.0040%を超えると、これらの効果は飽和するばかりか、めっき表面外観が劣化する。このため、B量は0.0002〜0.0040%の範囲内とする。
【0036】
Ti:0.005〜0.1%
Tiは、Nを析出固定することによりBがBNとなるのを防止して、Bを固溶状態に保つことにより、上記Bの効果、即ちフェライトの細粒化およびマルテンサイト変態の促進に、大きく寄与する。このように固溶Bを確保するには、Tiを0.005%以上添加する必要がある。一方、Tiの添加量が0.1%を超えると、めっき表面外観が劣化する。このため、Ti量は0.005〜0.1%の範囲内とする。
【0037】
固溶B量 B*=B-(11/14)[N-(14/48)Ti]:0.0002〜0.0030%
BおよびTiによる上記の効果を得るには、固溶B量を適正に制御する必要がある。固溶B量の指標としては、B量から析出固定されていないNの当量(11/14)[N-(14/48)Ti]を差し引いた量:
B*=B-(11/14)[N-(14/48)Ti]
を用いる。この量B*が0.0002%未満では所望の微細組織が得られない。一方、この量が0.0030%を超えると、これらの効果は飽和するばかりか、めっき表面外観が劣化する。このため、固溶B量 B*は0.0002〜0.0030%の範囲内とする。なお、[N-(14/48)Ti]の値が、負(TiのN当量>N)となる場合は0とする。この場合、B*=Bとなり、固溶B量はB添加量に等しくなる。
【0038】
本発明では、さらに必要に応じてMo,V,Crを次の範囲で添加することができる。
【0040】
Mo:0.01〜1.0%
Moは、鋼の焼入性を向上させる元素であり、鋼の強化に有効である。Moの強化能を得るためには、0.01%以上の添加を必要とする。一方、Moの添加量が1.0%を超えると、めっき表面外観が劣化する。このため、Moを添加する場合は0.01〜1.0%の範囲内とする。
【0041】
V:添加する場合0.01〜0.5%
Vは、鋼の焼入性を向上させる元素であり、鋼の強化に有効である。Vの強化能を得るためには、0.01%以上の添加を必要とする。一方、Vの添加量が0.5%を超えると、効果は飽和する。このため、Vを添加する場合は0.01〜0.5%の範囲内とする。
【0042】
Cr:添加する場合0.01〜0.5%
Crは、Mo,V等と同様、鋼の焼入性を向上させる元素であり、鋼の強化に有効である。この効果を得るためには、0.01%以上のCrの添加を必要とする。一方、Crの添加量が0.5%を超えると、強化能は飽和する。このため、Crを添加する場合は0.01〜0.5%の範囲内とする。
【0043】
上記の鋼成分以外の化学成分については、過剰に添加しなければ、本発明の効果を損なうことはない。例えば、W,Niは0.5%以下であれば、本発明の目的とする特性に悪影響を及ぼさない
【0044】
(2)鋼板の組織形態
自動車の車体の軽量化の目的から、高強度鋼板の適用に対して、張出し性、伸びフランジ性等のプレス成形性が求められている。張出し性には、n値、伸びなどの素材特性が要求されることから、フェライト、マルテンサイト主体の複合組織鋼板が望ましい。
【0045】
しかし、この鋼板の場合、プレス成形前のブランキングの際、フェライトと硬質のマルテンサイトの界面近傍への応力集中によりマイクロボイドが多く発生するため、伸びフランジ性の低下が懸念されている。また、鋼の高強度化に伴い、素材自体の靭性が低下するため、プレス成形後の部品の靭性(耐二次加工脆性)の劣化が懸念される。このため、高強度材を実部品へ適用する際には、耐二次加工脆性の向上が重要となる。
【0046】
そこで本発明では、フェライト、マルテンサイトを含有する780MPa以上の高強度鋼板において、伸びフランジ性とともに、プレス成形後の耐二次加工脆性を向上させるための組織因子を検討した。この結果、フェライトを平均粒径5μm以下に細粒化するとともに、粒界強度を上昇させるBを適量化することにより、フェライト相と硬質のマルテンサイト相の界面の脆化に対する抵抗が増大し、伸びフランジ性および耐二次加工脆性の向上が可能であることが明らかとなった。
【0047】
具体的な数値は、フェライト粒径とB量を種々に変化させた鋼板を用いて、60゜円錐ポンチによる穴拡げ試験、および深絞り成形材の縦割れ試験を実施して求めた。用いた鋼板は、mass%でC:0.035〜0.075%、Si:0.02〜0.25%、Mn:2.0〜3.0%、P:0.01〜0.03%、S:0.001〜0.003%、sol.Al:0.02〜0.05%、N:0.0020〜0.0035%、Ti:0.01〜0.06%、B:0.0000(無添加)〜0.0040%の化学成分を有し、TSが800〜860MPa、フェライトの平均粒径が2〜15μm、マルテンサイト体積率が27〜42%である溶融亜鉛めっき鋼板(板厚:1.4mm)である。
【0048】
この鋼板を用いて、JFS TlOOl(日本鉄鋼連盟規格)に準拠した穴拡げ試験により、伸びフランジ性の指標である穴拡げ率λを測定した。また、この鋼板から、図1に示すように、120mmφのブランクを採取し、絞り比1.6(75mmφ)でカップに成形した後、カップ高さ27mmにトリムし、縦割れ試験用サンプルを作製した。このカップを用いて、冷媒中でカップの開口試験を実施し、カップの側壁部に縦割れ破壊が発生しない最低温度Tcを測定した。
【0049】
穴拡げ試験結果および縦割れ試験結果を、フェライトの平均粒径dF、固溶B量の指標であるB*=B-(11/14)(N-(14/48)Ti)で整理して、図2に示す。フェライトの平均粒径dFが大きくなるほど、穴拡げ率λは低く、縦割れ臨界温度Tcは高くなり、dFが5μmを超えると(図中の△または●)、λは40〜66%(図中の△)、20〜38%(図中の●)と低くなり、伸びフランジ性は劣化する。
【0050】
またこの図2で、Tcは-10〜-40℃(図中の△)、0〜30℃(図中の●)と高く、耐二次加工脆性が劣化する。また、B*=B-(11/14)(N-(14/48)Ti)が0%の場合には、dFが3μmと小さくても(図中の△)、伸びフランジ性、耐二次加工脆性ともに劣化している。これらの結果は、いずれも穴拡げ試験前の穴打抜き時、および縦割れ試験前の深絞り成形時に、フェライト/マルテンサイトの界面への応力集中が大きいことに起因した特性劣化と考えられる。
【0051】
一方、dFが5μm以下であり、B*=B-(11/14)(N-(14/48)Ti)が0.0002〜0.0030%の場合(図中○)の場合には、λは65〜86%と高く、Tcは-70〜-90℃と低いことから、良好な伸びフランジ性と耐二次加工脆性が得られている。また、B-(11/14)(N-(14/48)Ti)が0.0030%を超える場合(図中の×)は、良好な伸びフランジ性と耐二次加工脆性が得られるものの、めっき表面外観が劣化している。
【0052】
このように、フェライトとマルテンサイトを有する780MPa以上の引張強度の溶融亜鉛めっき鋼板において、伸びフランジ性と耐二次加工脆性を向上させるには、フェライトを平均粒径で5μm以下に細粒化し、更に、粒界強度を上昇させるB量を適量化することが必要であることが明らかとなった。
【0053】
本発明の溶融亜鉛めっき鋼板は、優れた伸びフランジ性と耐二次加工脆性を意図しており、上記(1)のように化学成分を調整し、また、上記(2)のようにフェライトを細粒化した鋼板であり、以下の方法にて製造することができる。
【0054】
(3)鋼板の製造方法
上記(1)で述べた化学成分の鋼を溶製し、鋳造した後、熱間圧延を施す。鋼の溶製、鋳造は特に限定はなく、成分偏析等、特に組織が不均一でなければよい。また、熱間圧延は鋳造後、直ちに開始してもよいし、或いは一旦冷却し、加熱してから行なってもよい。粗圧延した後、仕上圧延を行ない、コイルに巻き取る。板厚方向の組織の均一化を図るためから、
仕上圧延はAr3点以上とし、コイル巻取温度は700℃未満とするのが好ましい。
【0055】
次に、得られた熱延板を酸洗し、冷間圧延した後、連続溶融亜鉛めっき処理を施す。冷間圧延率は特に限定する必要はない。焼鈍時の加熱は、固溶Bの粒界偏析によりオーステナイトを微細化し、これより変態するフェライトを平均粒径5μm以下に細粒化するため、適正制御する必要がある。つまり、加熱温度は、オーステナイト単相域であるAc3点以上とし、また、オーステナイトの粗大化を抑制するため、加熱温度の上限は900℃以下とする。また、オーステナイト粒界へのBの偏析を促進させるためには、加熱温度における保持時間を固溶B量により適正制御しなければならないことが明らかとなった。
【0056】
具体的な数値は、加熱時の保持時間を変化させて焼鈍した鋼板を用いて、組織観察、穴拡げ試験、縦割れ試験を実施して求めた。組織観察では、走査型電子顕微鏡を用いて、圧延方向に平行で板面に垂直な断面において、無作為に抽出した200個分のフェライトの平均粒径とマルテンサイトの体積率を測定した。また、穴拡げ試験、縦割れ試験は上記と同様の方法にて実施した。
【0057】
用いた鋼板は、mass%でC:0.045〜0.070%、Si:0.1〜0.25%、Mn:2.0〜3.0%、P:0.01〜0.03%、S:0.001〜0.003%、sol.Al:0.02〜0.05%、N:0.0020〜0.0040%、Ti:0.01〜0.06%、B:0.0007〜0.0030%、Nb:0.02〜0.04%の化学成分を有する冷延板(板厚:1.4mm)を、加熱温度850℃、加熱時間50〜600secにて焼鈍した溶融亜鉛めっき鋼板で、TSが810〜870MPaである。
【0058】
穴拡げ試験結果、縦割れ試験結果、組織観察結果を、加熱時間、固溶B量の指標 B*=B-(11/14)(N-(14/48)Ti)で整理して、図3に示す。なお、組織観察結果では、マルテンサイト体積率は30〜40%である。
【0059】
図3に示すように、加熱時間t(sec)が長くなるほど、また、B*が少ないほど、フェライトの平均粒径が増大している。これより、平均粒径5μm以下の微細フェライトを得るには、加熱時間tとB*=B-(11/14)[N-(14/48)Ti]で規定される最適条件が存在することが明らかとなった。すなわち、加熱時間t(sec)が4B*×104+30(sec)以上かつ4B*×104+280以下の場合には(図中の○)、フェライトは平均粒径で2〜5μmまで微細化し、λは65〜80%と高く、Tcは-70〜-90℃と低くなり、良好な伸びフランジ性と耐二次加工脆性が得られている。
【0060】
一方、加熱時間tが4B*×104+280(sec)を超えると(図中の□または×)、フェライト平均粒径が6〜9μm(□)、10〜16μm(×)と増大する。これに伴い、穴拡げ率λは前者(□)が42〜55%、後者(×)が20〜35%と低下し、伸びフランジ性は劣化するとともに、縦割れ臨界温度Tcは、前者(□)が-10〜-40℃、後者(×)が10〜40℃と高くなり、良好な耐二次加工脆性は得られない。また、加熱時間が4B*×104+30未満の場合には(図中の△)、未再結晶組織が残留しており、λは10〜20%と低く、Tcは0〜30℃と高くなり、伸びフランジ性、耐二次加工脆性ともに好ましくない。
【0061】
続いて、加熱後の冷却条件、その後の溶融亜鉛めっき浴への浸漬条件は、特に限定する必要はなく、亜鉛めっき処理をした後、必要に応じてめっき層に合金化処理を施してもよい。
【0062】
以上の製造工程を経て、本発明の意図する伸びフランジ性と耐二次加工脆性に優れた高強度溶融亜鉛めっき鋼板を製造することができる。また、このようにして得られた鋼板に電気めっきなどの表面処理を施しても所望の鋼板特性を損なうことはない。
【0063】
【実施例】
表1に示す成分の鋼(鋼番1〜4、6〜8:本発明鋼、鋼番9〜13:比較鋼)を実験室にて溶製、鋳造して、板厚60mmのスラブを作製した。このスラブを板厚30mmまで分塊圧延した後、大気炉で1270℃×1hrの加熱処理を施し、熱間圧延に供した。仕上圧延は860℃で実施し、550℃×1hrの巻取相当の熱処理を施して、板厚4mmの熱延板を作製した。
【0064】
【表1】

Figure 0004258215
【0065】
次に、熱延板を酸洗し、板厚1.2mmまで冷間圧延した後、焼鈍および溶融亜鉛めっき処理に供した。加熱は850℃×200secとし、この後、平均冷却速度-5℃/sで冷却し、460℃の溶融亜鉛めっき浴中に浸漬した後、550℃で合金化処理を施した。続いて、得られた溶融亜鉛めっき鋼板に伸長率0.7%の調質圧延を施し、引張試験、組織観察、穴拡げ試験、縦割れ試験、めっき表面外観の評価を実施した。
【0066】
引張試験は、JIS Z2241(日本工業規格)に準拠した方法にて実施した。組織観察は、走査型電子顕微鏡を用いて、圧延方向に平行で板面に垂直な断面において、無作為に抽出した200個分のフェライトの平均粒径とマルテンサイトの体積率を測定した。穴拡げ試験は、JFS TlOOl(日本鉄鋼連盟規格)に準拠した方法にて実施し、穴拡げ率λにより、伸びフランジ性を評価した。縦割れ試験は、図1に示すカップ成形材の開口試験にて実施し、縦割れ臨界温度Tcにより、耐二次加工脆性を評価した。
【0067】
また、めっき表面外観は、幅×長さが100mm×1500mmの範囲で、めっき表面を目視にて評価し、不めっき、点状およびすじ状の欠陥が認められた場合には、表面劣化(×)と判定した。これらの特性を評価した結果を表2に示す。
【0068】
【表2】
Figure 0004258215
【0069】
表2に示すように、本発明例No.1〜4、6〜8(鋼番1〜4、6〜8)はいずれも本発明成分範囲にあり、TSが790〜1012MPa、フェライトの平均粒径が2〜5μm、マルテンサイト体積率が25〜62%であり、780MPa以上の高い引張強度と平均粒径5μm以下の細粒組織を有する。
【0070】
引張強度が780MPa級の本発明例No.1〜4、No.7、8では、縦割れ限界温度1tは−75〜−110℃と低く、穴拡げ率λは65〜82%と高いことから、良好な伸びフランジ性と耐二次加工脆性が得られている。また、いずれもめっき表面性状は良好である。引張強度が980MPa級の本発明例No.では、Tcは−50℃と低く、λは45%と高いことから、伸びフランジ性、耐二次加工脆性ともに良好な特性が得られており、また、めっき表面性状も良好である。
【0071】
一方、比較例No.9〜13(鋼番9〜13)はいずれも本発明の範囲外にあり、引張強度、伸びフランジ性、耐二次加工脆性、めっき表面性状を満足しない。比較例No.9は、TSが814MPaと780MPa以上の強度が得られているが、λが40%と低く、Tcが-40℃と高いため、伸びフランジ性、耐二次加工脆性は好ましくない。引張強度が980MPa級の比較例No.10では、λが10%と低く、Tcが-5℃と高くなり、伸びフランジ性、耐二次加工脆性は好ましくない。
【0072】
比較例No.11、13は、TSがそれぞれ818、833MPaと所望の引張強度が得られているが、フェライトの平均粒径はいずれも8μmと大きく、λが42%、34%と低く、Tcが-15℃、0℃と高くなり、いずれも伸びフランジ性と耐二次加工脆性は劣化している。また、比較例No.11はめっき表面にすじ状欠陥が認められ、表面性状が好ましくない。比較例No.12はTSが670MPaであり、所望の引張強度が得られていない。
【0073】
【発明の効果】
本発明によれば、鋼の化学成分を規定するとともに、B、Ti、Nで規定される成分量に応じて、焼鈍時の加熱時間を制御することにより、溶融亜鉛めっき処理後の鋼板組織を微細なフェライトとマルテンサイトを主体とする複合組織としている。このように、鋼の化学成分と製造条件を規定することにより、780MPa以上の強度を有する伸びフランジ性と耐二次加工脆性に優れた溶融亜鉛めっき鋼板を、安定して製造することが可能となり、厳しい伸びフランジ成形と低温での強靭性の求められる自動車の構造部品等へ適用できることから、自動車業界における利用価値は大きい。
【図面の簡単な説明】
【図1】鋼板の耐二次加工脆性の評価方法を示す図。
【図2】材質に及ぼすフェライトの平均粒径dFおよび固溶B量 B*の 影響を示す図。( B*=B-(11/14)[N-(14/48)Ti] )
【図3】材質に及ぼす加熱時間tおよび固溶B量 B*の 影響を示す図。( B*=B-(11/14)[N-(14/48)Ti] )[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hot-dip galvanized steel sheet excellent in stretch flangeability and secondary work brittleness resistance and a method for producing the same.
[0002]
[Prior art]
In recent years, from the viewpoint of global warming prevention, CO emissions from various industries such as automobiles, electricity and chemical manufacturers2There is a demand for gas reduction. As specific measures, automakers have been developing electric vehicles and reducing the weight of gasoline-powered vehicles to reduce the fuel ratio. For reducing the weight of an automobile body, it is effective to reduce the thickness of the steel sheet applied to various parts of the automobile.
[0003]
However, while the weight is reduced by reducing the plate thickness, there is a concern about a decrease in the rigidity of the vehicle body. Application of high-strength steel sheets is promising in order to reduce weight while maintaining vehicle body rigidity, and application of high-strength steel sheets to various automotive structural parts such as lockers and members is being studied. On the other hand, when forming into an actual part, deterioration of press formability such as elongation and stretch flangeability becomes a problem. Further, since the toughness of the material itself decreases as the strength increases, it is required to improve the toughness (secondary work brittleness resistance) of the molded part.
[0004]
Various high-strength steel sheets have been developed in response to such demands. For example, Japanese Patent Laid-Open No. 4-173946 discloses a method for producing a high ductility, high-strength galvannealed steel sheet. In this technology, when cooling Nb-added steel with C: 0.06 to 0.30% during annealing, the cooling rate in a specified temperature range is defined by the weighted total value of Mn, Mo, Cr, Si, P content 655 ~ 877MPa (66.8 ~ 89.5kg / mm) with good elongation and stretch flangeability2) Is obtained.
[0005]
Japanese Unexamined Patent Publication No. 6-93340 discloses a manufacturing method and manufacturing equipment for a high-strength galvannealed steel sheet having excellent stretch flangeability. In this technique, during the continuous annealing hot dip galvanizing process, the temperature from the heating to the galvanization is controlled and the temperature of reheating is controlled to obtain tempered martensite. MPa (53-81kg / mm2) Is obtained.
[0006]
Japanese Patent Application Laid-Open No. 6-57373 discloses a high r-value high-tensile cold-rolled steel sheet having excellent secondary work brittleness resistance and a method for producing the same. This technology is a P-added Ti-Nb-B steel with a B content that is adjusted within a predetermined range determined by the weighted sum of Si, Mn, and P content. 368-502MPa (37.5-51.2kg / mm) with good processing brittleness2) Is obtained.
[0007]
Japanese Patent Application Laid-Open No. 2001-192768 discloses a high-tensile hot-dip galvanized steel sheet having excellent ductility, stretch flangeability, and fatigue resistance and a method for producing the same. This technology contains C: 0.05-0.20%, Si: 0.3-1.8%, Mn: 1.0-3.0%, etc., has a composite structure, ferrite 30% or more by volume, tempered martensite It is characterized in that it contains 20% or more by volume, 2% or more of retained austenite by volume, and the average crystal grain size of the ferrite and tempered martensite is 10 μm or less.
[0008]
[Patent Document 1]
Japanese Unexamined Patent Publication No. 4-173946
[0009]
[Patent Document 2]
JP-A-6-93340
[0010]
[Patent Document 3]
JP-A-6-57373
[0011]
[Patent Document 4]
Japanese Patent Laid-Open No. 2001-192768
[0012]
[Problems to be solved by the invention]
In the technique disclosed in Japanese Patent Laid-Open No. 4-173946, a hole expansion ratio λ, which is an index of stretch flangeability, has a characteristic value of 44 to 86%. However, in a steel sheet having a strength of 780 MPa or more, λ A stable high characteristic value of 44 to 61% has not been obtained. Moreover, with this technique, a hot dip galvanized steel sheet having a strength of 980 MPa or more has not been stably obtained.
[0013]
On the other hand, with the technique disclosed in Japanese Patent Laid-Open No. 6-93340, a good hole expansion rate of 85 to 86% is obtained in a steel plate having a strength of 780 MPa. However, in this technique, a forced cooling facility and a heating furnace must be newly installed between the soaking zone and the hot dip galvanizing bath in the continuous hot dip galvanizing line, and thus the manufacturing cost is extremely high.
[0014]
Further, even with this technique, a hot dip galvanized steel sheet having a strength of 980 MPa or more has not been obtained. Furthermore, any of the above prior arts is a technique focused on improving the stretch flangeability of a high-strength steel sheet, and it is considered that the toughness of the steel sheet cannot be improved. For this reason, in the steel plate obtained by these techniques, there is a concern about deterioration of toughness (secondary work brittleness resistance) of parts during press forming.
[0015]
On the other hand, with the technology disclosed in Japanese Laid-Open Patent Application No. 6-57373, a steel plate having a secondary work brittleness resistance of up to about 500 MPa can be obtained, but a steel plate having a strength of 780 MPa or more in terms of chemical composition can be stabilized. Thus, it is considered difficult to manufacture.
[0016]
The technique described in Japanese Patent Application Laid-Open No. 2001-192768 aims to improve fatigue resistance, but does not disclose secondary work brittleness resistance at all.
[0017]
In addition, as steel plates applied to undercar parts of automobiles such as lockers, secondary work brittleness resistance is good and strength of 780 MPa or more is required. Occasionally, the stress concentration at the grain boundary becomes large, which makes the situation more severe for secondary work embrittlement resistance. Therefore, none of the above prior arts has a problem that stretch flangeability, secondary work brittleness resistance, and tensile strength of 780 MPa or more cannot be satisfied.
[0018]
Accordingly, the present invention provides a hot dip galvanized steel sheet that solves the above problems, has a tensile strength of 780 MPa or more, is excellent in stretch flangeability and secondary work brittleness resistance, and a method for stably manufacturing the same. For the purpose.
[0019]
[Means for Solving the Problems]
  The above problems are solved by the following invention. The invention has a chemical composition of mass% and C: 0.03% to0.090%, Si ≦ 0.7%, Mn: 2.0 to 4.0%, P ≦ 0.05%, S ≦ 0.005%, Sol. Al: O. 01 to 0.1%, N ≦ 0.005%, Ti: 0.005 to 0.1%, B: 0.0002 to 0.0040%, B, Ti and N satisfy the following inequality The balance is composed of iron and unavoidable impurities, and has ferrite with an average particle diameter of 5 μm or less and martensite with a volume ratio of 15 to 80%, and has excellent stretch flangeability and secondary work brittleness resistance. It is a galvanized steel sheet.
[0020]
0.0002 ≦ B- (11/14) [N- (14/48) Ti] ≦ 0.0030 (1)
Here, the element symbol in the formula indicates mass% of each element, and when [N- (14/48) Ti] ≦ 0, [N- (14/48) Ti] is set to 0.
[0021]
  Moreover, in the hot dip galvanized steel sheet of the present invention, as a chemical component, further, mass%so,Stretch flangeability and secondary resistance characterized by containing at least one of Mo: 0.01-1.0%, V: 0.01-0.5%, Cr: 0.01-0.5% A hot-dip galvanized steel sheet having excellent work brittleness can also be obtained.
[0022]
The invention of the manufacturing method relating to the hot dip galvanized steel sheet of these inventions includes a step of melting and casting the steel of the above chemical components, a step of hot rolling the cast slab, and then pickling. And cold rolling and heating to a temperature of Ac3 point or more and 900 ° C or less after cold rolling, holding the time t (sec) satisfying the following formula, cooling, and subjecting to hot dip galvanizing treatment It is a method for producing a hot-dip galvanized steel sheet having excellent stretch flangeability and secondary work brittleness resistance.
[0023]
4 x {B- (11/14) [N- (14/48) Ti]} x 10Four+ 30 ≦ t
≦ 4 × {B- (11/14) [N- (14/48) Ti]} × 10Four+280 (2)
Here, the element symbol in the formula indicates mass% of each element, t indicates the holding time (sec) at the heating temperature, and when [N- (14/48) Ti] ≦ 0, [N- (14 / 48) Ti] is set to 0.
[0024]
The present invention has been made based on the findings found as a result of intensive studies in order to obtain a high-strength hot-dip galvanized steel sheet excellent in stretch flangeability and secondary work brittleness resistance. In high-strength steel sheets with a composite structure containing ferrite and martensite, the decrease in stretch flangeability and deterioration in secondary work brittleness are caused by blanking before press forming and the vicinity of the ferrite / martensite interface during press forming. This is due to stress concentration.
[0025]
At the time of blanking before press molding, stretch flangeability deteriorates due to microvoids generated by stress concentration near the ferrite / martensite interface. During press molding, toughness (secondary work brittleness resistance) deteriorates due to increasing stress concentration on the grain boundaries. Therefore, by finely pulverizing ferrite and adding B appropriately to increase the grain boundary strength, the generation of microvoids is suppressed, and the stretch flangeability can be improved. This means that the toughness is improved and the secondary work brittleness resistance can be improved.
[0026]
The present invention is composed of the above requirements in order to obtain a high-strength hot-dip galvanized steel sheet having a tensile strength of 780 MPa or more and excellent in stretch flangeability and secondary work brittleness resistance. Below, the reason for the addition of the steel component of the present invention, the component limitation range, the structure form, and the manufacturing condition will be described.
[0027]
(1) Range of steel components
Hereinafter,% shows mass%.
[0028]
  C: 0.03% to0.090%
  C is an element effective for strengthening steel and requires an addition amount of 0.03% or more. on the other hand,Over 0.090%When C is added, a band structure develops in the rolling direction, and stress concentration occurs in the band structure during press forming, so that toughness deteriorates. For this reason, C amount is 0.03% ~0.090%Within the range.
[0029]
Si: ≦ 0.7%
Si is an element effective for strengthening steel, and can be added as appropriate. However, if the Si content exceeds 0.7%, ferrite transformation in a high temperature region is promoted in the cooling process during annealing, and ferrite grains grow, so that fine ferrite grains intended by the invention cannot be obtained. Furthermore, if the Si content exceeds 0.7%, the adhesiveness of hot dip galvanizing deteriorates and a non-uniform plating film is formed. Therefore, during deep drawing, stress concentration on the steel sheet surface layer increases, This is not preferable for the secondary work embrittlement resistance. For this reason, the Si content is 0.7% or less. If the Si content is less than 0.3%, the secondary work brittleness resistance is further improved. Accordingly, the Si content is preferably less than 0.3%.
[0030]
Mn: 2.0-4.0%
Mn is an element effective for strengthening steel and requires an addition amount of 2.0% or more. On the other hand, if the amount of Mn added exceeds 4.0%, segregation of Mn tends to occur during slab casting. After rolling and hot dip galvanizing treatment, the band structure due to this segregation develops in the steel sheet, so that the stretch flangeability is remarkably deteriorated. For this reason, the amount of Mn shall be in the range of 2.0 to 4.0%.
[0031]
P: ≦ 0.05%
P is an element effective for strengthening steel and can be appropriately added. However, if the amount of P exceeds 0.05%, a non-uniform structure due to P segregation during casting tends to develop and ductility deteriorates. Therefore, the addition amount of P is set to 0.05% or less.
[0032]
S: ≦ 0.005%
If S is excessively present in the steel, a large amount of MnS is formed, which is not preferable for the elongation and flangeability of the steel sheet. In particular, when the amount of S exceeds 0.005%, this adverse effect is a concern. Therefore, the S content is 0.005% or less.
[0033]
sol.Al:0.01-0.1%
Al needs to be 0.01% or more for deoxidation of steel. However, if the amount of Al added exceeds 0.1%, the amount of Al-based inclusions such as oxides increases in the steel, and the ductility deteriorates significantly. For this reason, the amount of Al is within a range of 0.01 to 0.1%.
[0034]
N: ≦ 0.005%
If N is excessively present in the steel, cracks are likely to occur on the surface during casting of the slab. In particular, when the N content exceeds 0.005%, this adverse effect becomes significant. Therefore, the N content is 0.005% or less.
[0035]
B: 0.0002-0.0040%
Since B exists in a solid solution state, it segregates at the austenite grain boundary during annealing to refine austenite, and is extremely effective for refining ferrite transformed from austenite. B is an element that is extremely effective in promoting martensitic transformation from austenite. To obtain these effects, B must be added in an amount of 0.0002% or more. However, when the addition amount of B exceeds 0.0040%, these effects are not only saturated, but the appearance of the plating surface is deteriorated. For this reason, the amount of B is in the range of 0.0002 to 0.0040%.
[0036]
Ti: 0.005-0.1%
Ti prevents B from becoming BN by precipitating and fixing N, and by maintaining B in a solid solution state, the effect of the above B, that is, to promote ferrite refinement and martensite transformation, A big contribution. Thus, in order to secure the solid solution B, it is necessary to add 0.005% or more of Ti. On the other hand, when the addition amount of Ti exceeds 0.1%, the appearance of the plating surface deteriorates. For this reason, Ti amount shall be in the range of 0.005 to 0.1%.
[0037]
Solid B amount B*= B- (11/14) [N- (14/48) Ti]: 0.0002 ~ 0.0030%
In order to obtain the above-described effects due to B and Ti, it is necessary to appropriately control the amount of dissolved B. As an indicator of the amount of dissolved B, the amount obtained by subtracting the equivalent (11/14) [N- (14/48) Ti] of N not precipitated and fixed from the amount of B:
B*= B- (11/14) [N- (14/48) Ti]
Is used. This amount B*If it is less than 0.0002%, a desired fine structure cannot be obtained. On the other hand, if this amount exceeds 0.0030%, these effects are saturated and the plating surface appearance is deteriorated. For this reason, solute B amount B*Is in the range of 0.0002 to 0.0030%. In addition, when the value of [N- (14/48) Ti] is negative (N equivalent of Ti> N), it is set to 0. In this case, B*= B, and the amount of solute B is equal to the amount of B added.
[0038]
  In the present invention, if necessary,,Mo, V, and Cr can be added in the following ranges.
[0040]
Mo: 0.01-1.0%
Mo is an element that improves the hardenability of steel and is effective in strengthening steel. In order to obtain Mo strengthening ability, addition of 0.01% or more is required. On the other hand, when the addition amount of Mo exceeds 1.0%, the appearance of the plating surface deteriorates. For this reason, when adding Mo, it is set as 0.01 to 1.0% of range.
[0041]
V: 0.01 to 0.5% when added
V is an element that improves the hardenability of steel and is effective for strengthening steel. In order to obtain the strengthening ability of V, addition of 0.01% or more is required. On the other hand, when the added amount of V exceeds 0.5%, the effect is saturated. For this reason, when adding V, it is set as 0.01 to 0.5% of range.
[0042]
Cr: 0.01 to 0.5% when added
Cr, like Mo and V, is an element that improves the hardenability of steel and is effective in strengthening steel. In order to obtain this effect, it is necessary to add 0.01% or more of Cr. On the other hand, when the added amount of Cr exceeds 0.5%, the strengthening ability is saturated. For this reason, when adding Cr, it is set as 0.01 to 0.5% of range.
[0043]
About chemical components other than said steel component, unless it adds excessively, the effect of this invention will not be impaired. For example, if W and Ni are 0.5% or less, the target characteristics of the present invention are not adversely affected..
[0044]
(2) Structure of steel sheet
For the purpose of reducing the weight of automobile bodies, press formability such as stretchability and stretch flangeability is required for the application of high-strength steel sheets. Since the material properties such as n value and elongation are required for the stretchability, a composite structure steel plate mainly composed of ferrite and martensite is desirable.
[0045]
However, in the case of this steel sheet, when blanking before press forming, a lot of micro voids are generated due to stress concentration near the interface between ferrite and hard martensite, and there is a concern that the stretch flangeability is deteriorated. Moreover, since the toughness of the raw material itself decreases as the strength of the steel increases, there is a concern that the toughness (secondary work brittleness resistance) of the parts after press molding may deteriorate. For this reason, when applying a high-strength material to an actual part, it is important to improve secondary work brittleness resistance.
[0046]
Therefore, in the present invention, in a high-strength steel sheet of 780 MPa or more containing ferrite and martensite, a structure factor for improving secondary work brittleness resistance after press forming as well as stretch flangeability was examined. As a result, the resistance to embrittlement of the interface between the ferrite phase and the hard martensite phase is increased by refining the ferrite to an average particle size of 5 μm or less and by making an appropriate amount of B that increases the grain boundary strength. It was revealed that stretch flangeability and secondary work brittleness can be improved.
[0047]
Specific numerical values were obtained by carrying out a hole expansion test using a 60 ° conical punch and a vertical cracking test of a deep-drawn formed material, using steel sheets having various ferrite grain sizes and B contents. The steel plates used were mass% C: 0.035-0.075%, Si: 0.02-0.25%, Mn: 2.0-3.0%, P: 0.01-0.03%, S: 0.001-0.003%, sol.Al: 0.02-0.05 %, N: 0.0020 to 0.0035%, Ti: 0.01 to 0.06%, B: 0.0000 (no additive) to 0.0040%, TS is 800 to 860MPa, ferrite average particle size is 2 to 15μm, marten It is a hot-dip galvanized steel sheet (sheet thickness: 1.4 mm) having a site volume ratio of 27 to 42%.
[0048]
Using this steel plate, the hole expansion ratio λ, which is an index of stretch flangeability, was measured by a hole expansion test in accordance with JFS TlOOl (Japan Iron and Steel Federation standard). Further, as shown in FIG. 1, a 120 mmφ blank was collected from this steel plate, formed into a cup with a drawing ratio of 1.6 (75 mmφ), and then trimmed to a cup height of 27 mm to prepare a sample for a vertical crack test. Using this cup, a cup opening test was carried out in a refrigerant, and the minimum temperature Tc at which vertical crack fracture did not occur in the side wall of the cup was measured.
[0049]
The results of the hole expansion test and the vertical crack testF, B which is an indicator of the amount of dissolved B*= B- (11/14) (N- (14/48) Ti) is shown in FIG. Average particle diameter of ferrite dFIs larger, the hole expansion ratio λ is lower, the critical temperature Tc of the vertical crack is higher, and dFWhen the thickness exceeds 5 μm (Δ or ● in the figure), λ decreases to 40 to 66% (Δ in the figure) and 20 to 38% (● in the figure), and stretch flangeability deteriorates.
[0050]
In FIG. 2, Tc is as high as −10 to −40 ° C. (Δ in the figure) and 0 to 30 ° C. (● in the figure), and the secondary work brittleness resistance deteriorates. B*= B- (11/14) (N- (14/48) Ti) is 0%, dFEven when the thickness is as small as 3 μm (Δ in the figure), both stretch flangeability and secondary work brittleness are degraded. These results are considered to be characteristic deterioration due to large stress concentration at the ferrite / martensite interface at the time of punching before the hole expansion test and at the time of deep drawing before the vertical crack test.
[0051]
While dFIs 5 μm or less and B*= B- (11/14) (N- (14/48) Ti) is 0.0002 to 0.0030% (○ in the figure), λ is as high as 65 to 86% and Tc is -70 to- Since it is as low as 90 ° C, good stretch flangeability and secondary work brittleness resistance are obtained. Also, when B- (11/14) (N- (14/48) Ti) exceeds 0.0030% (× in the figure), good stretch flangeability and secondary work brittleness resistance can be obtained. The surface appearance is degraded.
[0052]
Thus, in the hot-dip galvanized steel sheet with a tensile strength of 780 MPa or more having ferrite and martensite, in order to improve stretch flangeability and secondary work brittleness resistance, the ferrite is refined to an average grain size of 5 μm or less, Furthermore, it became clear that it is necessary to adjust the amount of B that increases the grain boundary strength.
[0053]
The hot dip galvanized steel sheet of the present invention is intended to have excellent stretch flangeability and secondary work brittleness resistance. The chemical composition is adjusted as described in (1) above, and ferrite is added as described in (2) above. It is a refined steel sheet and can be produced by the following method.
[0054]
(3) Steel plate manufacturing method
The steel having the chemical components described in (1) above is melted and cast, and then hot-rolled. There are no particular limitations on the melting and casting of steel, and it is sufficient that the structure is not particularly uneven, such as component segregation. Hot rolling may be started immediately after casting, or may be performed after cooling and heating. After rough rolling, finish rolling is performed and the product is wound on a coil. In order to make the structure uniform in the thickness direction,
Finish rolling is ArThreeThe coil winding temperature is preferably less than 700 ° C.
[0055]
Next, the obtained hot-rolled sheet is pickled, cold-rolled, and then subjected to continuous hot dip galvanizing treatment. The cold rolling rate need not be particularly limited. The heating during annealing needs to be appropriately controlled in order to refine the austenite by grain boundary segregation of the solute B and refine the transformed ferrite to an average grain size of 5 μm or less. In other words, the heating temperature is an austenite single phase region.ThreeIn order to suppress the austenite coarsening, the upper limit of the heating temperature is 900 ° C. or lower. It was also found that in order to promote the segregation of B at the austenite grain boundaries, the holding time at the heating temperature must be appropriately controlled by the amount of dissolved B.
[0056]
Specific numerical values were obtained by carrying out a structure observation, a hole expansion test, and a vertical cracking test using a steel sheet annealed by changing the holding time during heating. In the structure observation, an average particle diameter of 200 randomly extracted ferrites and a volume ratio of martensite were measured using a scanning electron microscope in a cross section parallel to the rolling direction and perpendicular to the plate surface. Moreover, the hole expansion test and the vertical crack test were carried out in the same manner as described above.
[0057]
The steel plates used were mass% C: 0.045-0.070%, Si: 0.1-0.25%, Mn: 2.0-3.0%, P: 0.01-0.03%, S: 0.001-0.003%, sol.Al: 0.02-0.05 %, N: 0.0020 to 0.0040%, Ti: 0.01 to 0.06%, B: 0.0007 to 0.0030%, Nb: 0.02 to 0.04%, cold-rolled sheet (thickness: 1.4mm), heating temperature 850 ° C A hot dip galvanized steel sheet annealed at a heating time of 50 to 600 sec, with a TS of 810 to 870 MPa.
[0058]
Hole expansion test result, longitudinal crack test result, structure observation result, heating time, solid solution B amount index B*= B- (11/14) (N- (14/48) Ti) is shown in FIG. In addition, in the structure observation result, the martensite volume fraction is 30 to 40%.
[0059]
As shown in FIG. 3, the longer the heating time t (sec),*The smaller the is, the greater the average particle size of the ferrite. From this, in order to obtain fine ferrite with an average particle size of 5 μm or less, heating time t and B*= B- (11/14) [N- (14/48) Ti] revealed that there exists an optimum condition. That is, the heating time t (sec) is 4B*× 10Four+30 (sec) or more and 4B*× 10FourIn the case of +280 or less (○ in the figure), the ferrite is refined to an average particle size of 2 to 5 μm, λ is as high as 65 to 80%, and Tc is as low as −70 to −90 ° C. Stretch flangeability and secondary work brittleness resistance are obtained.
[0060]
On the other hand, the heating time t is 4B*× 10FourIf it exceeds +280 (sec) (□ or x in the figure), the average ferrite particle diameter increases to 6-9 μm (□) and 10-16 μm (×). As a result, the hole expansion ratio λ decreases from 42 to 55% in the former (□) and from 20 to 35% in the latter (×), and the stretch flangeability deteriorates. ) Becomes as high as −10 to −40 ° C. and the latter (×) becomes as high as 10 to 40 ° C., and good secondary work brittleness resistance cannot be obtained. Also, the heating time is 4B*× 10FourWhen it is less than +30 (△ in the figure), an unrecrystallized structure remains, λ is as low as 10 to 20%, Tc is as high as 0 to 30 ° C, stretch flangeability, secondary resistance Both processing brittleness is not preferable.
[0061]
Subsequently, the cooling conditions after heating and the subsequent immersion conditions in the hot dip galvanizing bath are not particularly limited, and after the galvanizing treatment, the plating layer may be subjected to an alloying treatment as necessary. .
[0062]
Through the above manufacturing process, a high-strength hot-dip galvanized steel sheet excellent in stretch flangeability and secondary work brittleness resistance intended by the present invention can be manufactured. Further, even if the steel plate obtained in this way is subjected to a surface treatment such as electroplating, the desired steel plate characteristics are not impaired.
[0063]
【Example】
  Steels with the components shown in Table 1 (steel numbers1-4, 6-8: Steel of the present invention, steel numbers 9 to 13: comparative steel) were melted and cast in a laboratory to produce a slab having a thickness of 60 mm. After this slab was subjected to mass rolling to a plate thickness of 30 mm, it was subjected to heat treatment at 1270 ° C. × 1 hr in an atmospheric furnace and subjected to hot rolling. Finish rolling was performed at 860 ° C., and a heat treatment equivalent to winding at 550 ° C. × 1 hr was performed to produce a hot rolled sheet having a thickness of 4 mm.
[0064]
[Table 1]
Figure 0004258215
[0065]
Next, the hot-rolled sheet was pickled, cold-rolled to a sheet thickness of 1.2 mm, and then subjected to annealing and hot dip galvanizing treatment. Heating was performed at 850 ° C. × 200 sec. Thereafter, cooling was performed at an average cooling rate of −5 ° C./s, immersion in a hot dip galvanizing bath at 460 ° C., and alloying was performed at 550 ° C. Subsequently, the obtained hot-dip galvanized steel sheet was subjected to temper rolling with an elongation rate of 0.7%, and a tensile test, a structure observation, a hole expansion test, a vertical crack test, and an evaluation of the plating surface appearance were performed.
[0066]
The tensile test was performed by a method based on JIS Z2241 (Japanese Industrial Standard). In the structure observation, the average particle diameter of 200 ferrites randomly extracted and the volume ratio of martensite were measured in a cross section parallel to the rolling direction and perpendicular to the plate surface using a scanning electron microscope. The hole expansion test was performed by a method based on JFS TlOOl (Japan Iron and Steel Federation standard), and the stretch flangeability was evaluated by the hole expansion ratio λ. The longitudinal cracking test was conducted by the opening test of the cup molding shown in FIG. 1, and the secondary work brittleness resistance was evaluated by the longitudinal cracking critical temperature Tc.
[0067]
In addition, the appearance of the plating surface was evaluated by visually evaluating the plating surface within the range of width x length of 100 mm x 1500 mm, and surface defects (x ). The results of evaluating these characteristics are shown in Table 2.
[0068]
[Table 2]
Figure 0004258215
[0069]
  As shown in Table 2, Example No. of the present invention.1-4, 6-8(Steel number1-4, 6-8) Are in the component range of the present invention, TS is 790 to 1012 MPa, ferrite average particle size is 2 to 5 μm, martensite volume fraction is 25 to 62%, high tensile strength of 780 MPa or more and average particle size of 5 μm. It has the following fine grain structure.
[0070]
  Invention Example No. with a tensile strength of 780 MPa class. 1-4, no. 7 and 8, since the longitudinal crack limit temperature 1t is as low as −75 to −110 ° C. and the hole expansion ratio λ is as high as 65 to 82%, good stretch flangeability and secondary work brittleness resistance are obtained. . Moreover, the plating surface property is favorable in any case. Invention Example No. with a tensile strength of 980 MPa class.6Since Tc is as low as −50 ° C. and λ is as high as 45%, good properties are obtained in both stretch flangeability and secondary work brittleness resistance, and the plating surface properties are also good.
[0071]
On the other hand, Comparative Examples Nos. 9 to 13 (steel numbers 9 to 13) are all outside the scope of the present invention, and do not satisfy the tensile strength, stretch flangeability, secondary work brittleness, and plating surface properties. Comparative Example No. 9 has strengths of TS of 814 MPa and 780 MPa or higher, but λ is as low as 40% and Tc is as high as −40 ° C., so stretch flangeability and secondary work brittleness resistance are not preferred. . In Comparative Example No. 10 having a tensile strength of 980 MPa class, λ is as low as 10%, Tc is as high as −5 ° C., and stretch flangeability and secondary work brittleness resistance are not preferable.
[0072]
In Comparative Examples No. 11 and 13, the desired tensile strength was obtained with TS of 818 and 833 MPa, respectively, but the average grain diameter of ferrite was as large as 8 μm, λ was as low as 42% and 34%, and Tc However, the stretch flangeability and secondary work brittleness have deteriorated. In Comparative Example No. 11, streaky defects were observed on the plating surface, and the surface properties were not preferable. In Comparative Example No. 12, TS is 670 MPa, and a desired tensile strength is not obtained.
[0073]
【The invention's effect】
According to the present invention, the chemical composition of steel is specified, and the steel sheet structure after hot dip galvanizing treatment is controlled by controlling the heating time during annealing according to the amount of components specified by B, Ti, and N. The composite structure is mainly composed of fine ferrite and martensite. In this way, by specifying the chemical composition and production conditions of steel, it becomes possible to stably produce hot-dip galvanized steel sheets with strength of 780 MPa or more and excellent in stretch flangeability and secondary work brittleness resistance. Since it can be applied to structural parts of automobiles that require severe stretch flange molding and toughness at low temperatures, the utility value in the automobile industry is great.
[Brief description of the drawings]
FIG. 1 is a view showing a method for evaluating secondary work brittleness resistance of a steel sheet.
[Fig. 2] Average particle diameter d of ferrite affecting materialFAnd solid solution B amount B*The figure which shows the influence of. (B*= B- (11/14) [N- (14/48) Ti])
[Fig. 3] Heating time t and solid solution B amount B affecting material*The figure which shows the influence of. (B*= B- (11/14) [N- (14/48) Ti])

Claims (3)

化学成分がmass%でC:0.03%〜0.090%、Si≦0.7%、Mn:2.0〜4.0%、P≦0.05%、S≦0.005%、Sol.Al:O.01〜0.1%、N≦0.005%、Ti:0.005〜0.1%、B:0.0002〜0.0040%を含有し、B、Ti、Nが下記不等式を満足し、残部が鉄および不可避的不純物からなり、平均粒径が5μm以下のフェライトと体積率が15〜80%のマルテンサイトを有することを特徴とする伸びフランジ性および耐二次加工脆性に優れた溶融亜鉛めっき鋼板。
0.0002≦B−(11/14)[N−(14/48)Ti]≦0.0030
ここで、式中の元素記号はそれぞれの元素のmass%を示し、[N−(14/48)Ti]≦0の場合は[N−(14/48)Ti]を0とする。
When the chemical composition is mass%, C: 0.03% to 0.090% , Si ≦ 0.7%, Mn: 2.0 to 4.0%, P ≦ 0.05%, S ≦ 0.005%, Sol. Al: O. 01 to 0.1%, N ≦ 0.005%, Ti: 0.005 to 0.1%, B: 0.0002 to 0.0040%, B, Ti and N satisfy the following inequality The balance is composed of iron and unavoidable impurities, and has ferrite with an average particle diameter of 5 μm or less and martensite with a volume ratio of 15 to 80%, and has excellent stretch flangeability and secondary work brittleness resistance. Galvanized steel sheet.
0.0002 ≦ B− (11/14) [N− (14/48) Ti] ≦ 0.0030
Here, the element symbol in the formula indicates mass% of each element, and when [N- (14/48) Ti] ≦ 0, [N- (14/48) Ti] is set to 0.
請求項1記載の溶融亜鉛めっき鋼板において、化学成分としてさらに、mass%で、Mo:0.01〜1.0%、V:0.01〜0.5%、Cr:0.01〜0.5%の内一種以上含有することを特徴とする伸びフランジ性および耐二次加工脆性に優れた溶融亜鉛めっき鋼板。The hot dip galvanized steel sheet according to claim 1, wherein the chemical component further includes mass% , Mo: 0.01 to 1.0%, V: 0.01 to 0.5%, Cr: 0.01 to 0.00. A hot-dip galvanized steel sheet excellent in stretch flangeability and secondary work brittleness resistance, characterized by containing at least one of 5%. 請求項1又は請求項2記載の化学成分の鋼を、溶製して鋳造する工程と、この鋳造されたスラブを熱間圧延する工程と、その後、酸洗して冷間圧延する工程と、冷間圧延後Ac点以上900℃以下の温度に加熱し、下記不等式を満足する時間t(sec)保持した後、冷却し、溶融亜鉛めっき処理を施す工程とを備えたことを特徴とする伸びフランジ性および耐二次加工脆性に優れた溶融亜鉛めっき鋼板の製造方法。
4×{B−(11/14)[N−(14/48)Ti]}×10+30≦t≦4×{B−(11/14)[N−(14/48)Ti]}×10+280
ここで、式中の元素記号はそれぞれの元素のmass%を、tは加熱温度における保持時間(sec)を示し、[N−(14/48)Ti]≦0の場合は[N−(14/48)Ti]を0とする。
The step of melting and casting the steel of chemical composition according to claim 1 or claim 2, the step of hot rolling the cast slab, and then the step of pickling and cold rolling, After cold rolling, it is heated to a temperature of Ac 3 points or more and 900 ° C. or less, held for a time t (sec) satisfying the following inequality, then cooled, and subjected to a hot dip galvanizing process. A method for producing a hot-dip galvanized steel sheet having excellent stretch flangeability and secondary work brittleness resistance.
4 × {B− (11/14) [N− (14/48) Ti]} × 10 4 + 30 ≦ t ≦ 4 × {B− (11/14) [N− (14/48) Ti]} × 10 4 +280
Here, the element symbol in the formula indicates mass% of each element, t indicates the holding time (sec) at the heating temperature, and when [N− (14/48) Ti] ≦ 0, [N− (14 / 48) Ti] is set to 0.
JP2002380660A 2002-12-27 2002-12-27 Hot-dip galvanized steel sheet and manufacturing method thereof Expired - Fee Related JP4258215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002380660A JP4258215B2 (en) 2002-12-27 2002-12-27 Hot-dip galvanized steel sheet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002380660A JP4258215B2 (en) 2002-12-27 2002-12-27 Hot-dip galvanized steel sheet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004211140A JP2004211140A (en) 2004-07-29
JP4258215B2 true JP4258215B2 (en) 2009-04-30

Family

ID=32816816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002380660A Expired - Fee Related JP4258215B2 (en) 2002-12-27 2002-12-27 Hot-dip galvanized steel sheet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4258215B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5194878B2 (en) 2007-04-13 2013-05-08 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet excellent in workability and weldability and method for producing the same
KR100896988B1 (en) 2007-08-16 2009-05-14 한국원자력연구원 High-Cr Ferritic/Martensitic Steels having improved neutron irradiation stability containing an enriched boron-11 for the in-core component materials in the Gen-? fission reactor and the fusion reactor
JP5364993B2 (en) * 2007-11-13 2013-12-11 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
JP4924730B2 (en) 2009-04-28 2012-04-25 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet excellent in workability, weldability and fatigue characteristics and method for producing the same
CN104254630B (en) * 2012-02-22 2017-03-15 新日铁住金株式会社 Cold-rolled steel sheet and its manufacture method
JP5860333B2 (en) * 2012-03-30 2016-02-16 株式会社神戸製鋼所 High yield ratio high strength cold-rolled steel sheet with excellent workability
EP3054025B1 (en) * 2013-12-18 2018-02-21 JFE Steel Corporation High-strength galvanized steel sheet and method for manufacturing the same
JP6292353B2 (en) 2016-03-31 2018-03-14 Jfeスチール株式会社 Thin steel plate and plated steel plate, method for producing thin steel plate, and method for producing plated steel plate

Also Published As

Publication number Publication date
JP2004211140A (en) 2004-07-29

Similar Documents

Publication Publication Date Title
US20210292862A1 (en) High-strength cold rolled steel sheet with low material non-uniformity and excellent formability, hot dipped galvanized steel sheet, and manufacturing method therefor
JP4730056B2 (en) Manufacturing method of high-strength cold-rolled steel sheet with excellent stretch flange formability
CN109072380B (en) Steel sheet, plated steel sheet, and method for producing same
JP6474415B2 (en) Steel sheet for hot press-formed product having excellent bendability and ultra-high strength, hot press-formed product using the same, and manufacturing method thereof
US8999085B2 (en) High manganese steel strips with excellent coatability and superior surface property, coated steel strips using steel strips and method for manufacturing the steel strips
JP3858146B2 (en) Manufacturing method of high-strength cold-rolled steel sheet and high-strength hot-dip galvanized steel sheet
JP5088023B2 (en) High-strength cold-rolled steel sheet with excellent workability and method for producing the same
US9598755B2 (en) High strength galvanized steel sheet having excellent deep drawability and stretch flangeability and method for manufacturing the same
KR20110110367A (en) High-strength hot-dip galvanized steel sheet having excellent formability and method for producing same
CN108779536B (en) Steel sheet, plated steel sheet, and method for producing same
JP4696870B2 (en) High strength steel plate and manufacturing method thereof
JP6696208B2 (en) High strength steel sheet manufacturing method
JP2009035818A (en) High-strength hot dip galvanized steel sheet having excellent press formability, and production method therefor
US20230295762A1 (en) Hot-pressed member and method for producing the same
JP4407449B2 (en) High strength steel plate and manufacturing method thereof
JP4211520B2 (en) High strength and high ductility galvanized steel sheet with excellent aging resistance and method for producing the same
JP5440375B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JP5251207B2 (en) High strength steel plate with excellent deep drawability and method for producing the same
JP4258215B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JP2007077495A (en) High strength cold rolled steel sheet, and method for producing the same
JP4370795B2 (en) Method for producing hot-dip galvanized steel sheet
JP4858004B2 (en) High-strength steel sheet with excellent ductility and deep drawability and method for producing the same
JP3840855B2 (en) High-strength thin steel sheet with excellent secondary work brittleness resistance and formability and method for producing the same
JP2005206920A (en) High-tensile-strength hot-dip galvanized hot-rolled steel sheet with low yield ratio and composite structure superior in extension flange, and manufacturing method therefor
JP5655436B2 (en) High-strength steel sheet excellent in deep drawability and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050928

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080328

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080910

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4258215

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees