JP5440375B2 - Hot-dip galvanized steel sheet and manufacturing method thereof - Google Patents

Hot-dip galvanized steel sheet and manufacturing method thereof Download PDF

Info

Publication number
JP5440375B2
JP5440375B2 JP2010113546A JP2010113546A JP5440375B2 JP 5440375 B2 JP5440375 B2 JP 5440375B2 JP 2010113546 A JP2010113546 A JP 2010113546A JP 2010113546 A JP2010113546 A JP 2010113546A JP 5440375 B2 JP5440375 B2 JP 5440375B2
Authority
JP
Japan
Prior art keywords
less
steel sheet
hot
temperature
dip galvanized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010113546A
Other languages
Japanese (ja)
Other versions
JP2011241429A (en
Inventor
宏太郎 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2010113546A priority Critical patent/JP5440375B2/en
Publication of JP2011241429A publication Critical patent/JP2011241429A/en
Application granted granted Critical
Publication of JP5440375B2 publication Critical patent/JP5440375B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、溶融亜鉛めっき鋼板およびその製造方法に関する。具体的には、本発明は、穴拡げ性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法に関し、特に、自動車の車体のようにプレス成形、その中でも、従来困難であった伸びフランジ成形が必要不可欠となる用途に好適な高強度溶融亜鉛めっき鋼板およびその製造方法に関する。ここで、本発明において、「溶融亜鉛めっき鋼板」には「合金化溶融亜鉛めっき鋼板」が含まれ、「高強度溶融亜鉛めっき鋼板」には「高強度合金化溶融亜鉛めっき鋼板」が含まれる。   The present invention relates to a hot dip galvanized steel sheet and a method for producing the same. Specifically, the present invention relates to a high-strength hot-dip galvanized steel sheet having excellent hole expansibility and a method for producing the same, and in particular, press forming like a car body of an automobile, and among them, stretch flange forming, which has been conventionally difficult, is necessary. The present invention relates to a high-strength hot-dip galvanized steel sheet suitable for indispensable uses and a method for producing the same. Here, in the present invention, “hot-dip galvanized steel sheet” includes “alloyed hot-dip galvanized steel sheet”, and “high-strength hot-dip galvanized steel sheet” includes “high-strength galvanized steel sheet”. .

近年、地球環境保護のために、自動車の燃費向上が求められており、車体の軽量化と乗員の安全性確保のために、引張強度が590MPa以上の鋼板、特に、耐食性を必要とする部品に対して、溶融亜鉛めっき鋼板のニーズが高まっている。   In recent years, in order to protect the global environment, there has been a demand for improving the fuel efficiency of automobiles. To reduce the weight of the vehicle body and ensure the safety of passengers, steel sheets with a tensile strength of 590 MPa or more, especially parts that require corrosion resistance. On the other hand, the needs for hot dip galvanized steel sheets are increasing.

自動車用部品に適用される高強度鋼板において、強度特性だけでなく、プレス成形性や溶接性等、部品成形時に要求される各種施工性が満足されなければならない。自動車部品の成形プロセスにおいて、伸びフランジ成形の使用頻度は極めて高く、それによって、様々な形状の部品が成形されるので、耐伸びフランジ割れ、すなわち、穴拡げ性に優れる高強度鋼板が必要になる。しかし、一般的に、引張強度の上昇に伴い、穴拡げ性は劣化する。この原因は、高強度鋼板は、フェライトを母相としマルテンサイトやベイナイト等の硬質相で強化された組織であり、延性破壊の起点となるマイクロボイドがフェライトと硬質相の異相界面、または、その近傍に発生しやすいことに因る。そこで、高強度鋼板の穴拡げ性改善に対して、多数の研究開発がなされ、それを実現する組織制御方法が確立しつつある。   In a high-strength steel sheet applied to automotive parts, not only strength characteristics but also various workability required at the time of forming parts, such as press formability and weldability, must be satisfied. In the molding process of automobile parts, stretch flange molding is very frequently used, and as a result, parts of various shapes are molded. Therefore, high strength steel plates with excellent resistance to stretch flange cracking, that is, hole expansibility are required. . However, generally, as the tensile strength increases, the hole expandability deteriorates. This is because the high-strength steel sheet is a structure strengthened with a hard phase such as martensite or bainite with ferrite as the parent phase, and the microvoids that are the origin of ductile fracture are the heterogeneous interface between the ferrite and the hard phase, or its This is because it tends to occur in the vicinity. Therefore, many researches and developments have been made to improve the hole expansibility of high-strength steel sheets, and a structure control method for realizing the research is being established.

例えば、非特許文献1は、フェライトとマルテンサイトの複合組織鋼板において、フェライトとマルテンサイトの硬度差(変形応力差)の低下に伴い、穴拡げ性が向上するという知見を開示している。また、非特許文献2は、マルテンサイト等の硬質相そのもの含まない穴拡げ性に優れるフェライト単相鋼板を開示している。   For example, Non-Patent Document 1 discloses the finding that, in a composite steel sheet of ferrite and martensite, the hole expandability is improved as the hardness difference (deformation stress difference) between ferrite and martensite decreases. Non-Patent Document 2 discloses a ferrite single-phase steel sheet excellent in hole expansibility that does not include a hard phase itself such as martensite.

しかし、従来の知見の殆どにおいて、溶融亜鉛めっき鋼板の製造プロセスは考慮されていない。非特許文献1は、焼入れ、焼戻し処理で製造される冷延鋼板に関するものであり、非特許文献2は、析出強化に寄与するTiとMo等のマイクロアロイを一旦固溶させる熱処理で製造される熱延鋼板に関するものであった。   However, most of the conventional knowledge does not consider the manufacturing process of the hot dip galvanized steel sheet. Non-Patent Document 1 relates to a cold-rolled steel sheet manufactured by quenching and tempering processes, and Non-Patent Document 2 is manufactured by a heat treatment that temporarily dissolves microalloys such as Ti and Mo that contribute to precipitation strengthening. It was related to hot-rolled steel sheets.

高強度溶融亜鉛めっき鋼板の製造プロセスにおいて、再結晶焼鈍温度は750〜950℃であり、590MPa以上の引張強度を達成するために必要な量のマイクロアロイを固溶させる条件、具体的には、スラブ加熱温度の下限に相当する1100℃より遥かに低い。   In the manufacturing process of high-strength hot-dip galvanized steel sheet, the recrystallization annealing temperature is 750 to 950 ° C., and the conditions for solid solution of an amount of microalloy necessary to achieve a tensile strength of 590 MPa or more, specifically, It is much lower than 1100 ° C. corresponding to the lower limit of the slab heating temperature.

また、再結晶焼鈍から冷却する場合、約460℃の溶融亜鉛めっき浴に浸漬し、次いで、浸漬後に、500〜600℃まで再加熱するという合金化処理が施される場合がある。すなわち、この製造プロセスにおいて、冷却はベイナイト変態温度域の高温側で一旦中断され、鋼板は恒温に近い状態で熱処理される。したがって、高強度溶融亜鉛めっき鋼板を製造する場合、その鋼板は上部ベイナイトを含む組織になりやすい。上部ベイナイト組織において、粗大なセメンタイトは、ラス境界、パケット境界、ブロック境界、旧オーステナイト粒界に、優先的に析出する。このようにセメンタイトが析出すると、歪が偏在し、セメンタイトそのものが破壊する、または、マイクロボイドがその近傍に発生するようになる。したがって、そのような組織の鋼板は穴拡げ性に劣るということが容易に理解される。さらに、冷却停止から合金化処理までの所要時間は短いので、鋼の一部だけがベイナイトになり、その残部はオーステナイトやマルテンサイトになる。これらのオーステナイトやマルテンサイトは、ベイナイトの部分的な生成によって、C(炭素)が組織間で分配され、それらのC濃度は極めて高くなっているので、極めて硬質な組織である。すなわち、高強度溶融めっき鋼板を製造するための熱処理条件において、セメンタイトや硬いマルテンサイトを含まない穴拡げ性に優れる鋼板を生産することは極めて困難であった。そこで、高強度溶融めっき鋼板の穴拡げ性改善に対して、より高度な組織制御方法が検討された。   Moreover, when cooling from recrystallization annealing, the alloying process of being immersed in the hot dip galvanizing bath of about 460 degreeC and then reheating to 500-600 degreeC after immersion may be given. That is, in this manufacturing process, cooling is temporarily interrupted on the high temperature side of the bainite transformation temperature range, and the steel sheet is heat-treated in a state close to constant temperature. Therefore, when manufacturing a high-strength hot-dip galvanized steel sheet, the steel sheet tends to have a structure including upper bainite. In the upper bainite structure, coarse cementite is preferentially precipitated at the lath boundary, the packet boundary, the block boundary, and the prior austenite grain boundary. When cementite precipitates in this way, strain is unevenly distributed and the cementite itself is destroyed, or microvoids are generated in the vicinity thereof. Therefore, it is easily understood that a steel sheet having such a structure is inferior in hole expansibility. Furthermore, since the time required from the cooling stop to the alloying process is short, only a part of the steel becomes bainite and the remainder becomes austenite or martensite. These austenite and martensite are extremely hard structures because C (carbon) is distributed among the structures due to partial formation of bainite and their C concentration is extremely high. That is, it has been extremely difficult to produce a steel sheet that does not contain cementite or hard martensite and has excellent hole expandability under the heat treatment conditions for producing a high-strength hot-dip galvanized steel sheet. Therefore, a more advanced structure control method has been studied for improving the hole expandability of high-strength hot-dip galvanized steel sheets.

例えば、特許文献1は、鋼板にMnとTiを添加し、再結晶温度以上かつAc点以上で焼鈍し、溶融亜鉛めっき浴に至るまでの間に、Ms点以下に急冷し、部分的、または、全体的に焼戻しマルテンサイトを生成させることによって、590MPa以上の引張強度と80%以上の穴拡げ率を達成した鋼板を開示している。しかし、Ms点以下に冷却することは、通常の溶融亜鉛めっきラインで実現困難であり、それを実現させるために、鋼板を焼鈍する均熱帯とめっき浴の間に、強制冷却装置と加熱炉を新設することが必要になる。さらに、Ms点以下からめっき浴温度まで、鋼板を再加熱するためのエネルギーが追加され、製造コストが極めて高くなる。 For example, Patent Document 1 adds Mn and Ti to a steel sheet, anneals at a recrystallization temperature or higher and at an Ac 1 point or higher, and rapidly cools to a Ms point or lower until reaching a hot dip galvanizing bath. Or the steel plate which achieved the tensile strength of 590 Mpa or more and the hole expansion rate of 80% or more by producing tempered martensite entirely is disclosed. However, cooling below the Ms point is difficult to achieve in a normal hot dip galvanizing line, and in order to achieve this, a forced cooling device and a heating furnace are installed between the soaking zone where the steel sheet is annealed and the plating bath. It is necessary to establish a new one. Furthermore, energy for reheating the steel sheet from the Ms point or lower to the plating bath temperature is added, and the manufacturing cost becomes extremely high.

また、特許文献2は、鋼板にTiやNbを積極的に添加し、単相域(オーステナイト単相温度域)直上で焼鈍し、酸洗し、500℃以上A点以下で熱処理した後に溶融亜鉛めっき処理し、硬質なマルテンサイトやオーステナイトを分解し、複合組織を構成する第二相をベイナイト、または焼戻しマルテンサイト主体にすることによって、590MPa以上の引張強度を有し、優れた穴拡げ性の鋼板を開示している。しかし、実質的に、二回の焼鈍工程が必要となるので、製造コストが高くなる。さらに、二回目の熱処理温度は通常の焼鈍温度より著しく低く、それを実現させるために、ラインの生産性が阻害される。 Patent Document 2 discloses that Ti and Nb are positively added to a steel sheet, annealed immediately above a single-phase region (austenite single-phase temperature region), pickled, heat treated at 500 ° C. or higher and A 1 point or lower and then melted. By galvanizing, decomposing hard martensite and austenite, and making the second phase constituting the composite structure mainly composed of bainite or tempered martensite, it has a tensile strength of 590 MPa or more and excellent hole expansibility The steel plate is disclosed. However, since the annealing process of 2 times is required substantially, manufacturing cost becomes high. Furthermore, the second heat treatment temperature is significantly lower than the normal annealing temperature, and in order to realize this, the productivity of the line is hindered.

一方、特許文献3は、鋼板にSiやMnを積極的に添加し、鋳造条件を最適化し、偏析を低減し、組織を均質化することによって、590MPa以上の引張強度を有し、優れた穴拡げ性の鋼板を開示している。しかし、所望の凝固速度は、スラブの厚みを200〜300mmとする通常の薄板用連続鋳造設備で実現されず、それを実現させるために、スラブの厚みを30〜70mmとする薄スラブ連続鋳造方法の適用が必要になるので、製造コストが極めて高くなる。   On the other hand, Patent Document 3 has a tensile strength of 590 MPa or more by actively adding Si or Mn to a steel sheet, optimizing casting conditions, reducing segregation, and homogenizing the structure, and has excellent holes. An expansible steel sheet is disclosed. However, the desired solidification rate is not realized by a normal thin plate continuous casting facility in which the slab thickness is 200 to 300 mm, and in order to realize this, the thin slab continuous casting method in which the slab thickness is 30 to 70 mm. Therefore, the manufacturing cost becomes extremely high.

以上、特許文献1から3に開示された技術は、590MPa以上の引張強度と優れた穴拡げ性を両立する組織が実現されるために、大幅な設備改造や長大、特別な製造工程を必要とするので、現実的な手法でない。したがって、化学組成や加工熱処理の組み合わせをより工夫し、通常の製造工程で所望の鋼板が生産される組織制御方法を検討しなければならない。   As described above, the techniques disclosed in Patent Documents 1 to 3 require significant equipment remodeling, lengthy, and special manufacturing processes in order to realize a structure that achieves both a tensile strength of 590 MPa or more and excellent hole expandability. Therefore, it is not a realistic method. Therefore, it is necessary to devise a combination of chemical composition and thermomechanical treatment, and to examine a structure control method for producing a desired steel sheet in a normal manufacturing process.

前述したように、硬質な組織が混在する場合には穴拡げ性が劣化するので、硬質な組織を含まない単相組織の創製という究極的な方法が検討された。
特許文献4は、鋼板にTiとMoを積極的に添加し、熱延の巻取り温度条件を最適化し、組織を微細な炭窒化物で強化されたフェライト単相にすることによって、590MPa以上の引張強度を有し、優れた穴拡げ性の鋼板を開示している。しかし、Tiを添加した鋼を冷間圧延すると、その再結晶温度が著しく上昇する。したがって、再結晶する温度において、炭窒化物が不安定となり、引張強度の焼鈍温度依存性が大きくなるだけでなく、引張強度の高めることそのものが困難になる。
As described above, since the hole expansibility deteriorates when a hard structure is mixed, an ultimate method of creating a single-phase structure that does not include a hard structure has been studied.
In Patent Document 4, Ti and Mo are positively added to a steel sheet, the coiling temperature condition of hot rolling is optimized, and the structure is made to be a ferrite single phase reinforced with fine carbonitride, so that it is 590 MPa or more. A steel sheet having tensile strength and excellent hole expansibility is disclosed. However, when the steel to which Ti is added is cold-rolled, the recrystallization temperature rises remarkably. Therefore, the carbonitride becomes unstable at the recrystallization temperature, and not only does the tensile temperature dependence of the annealing strength increase, but it also becomes difficult to increase the tensile strength itself.

また、特許文献5は、鋼板にMnとMoを積極的に添加し、焼鈍温度条件を最適化し、組織をマルテンサイト単相にすることによって、900MPa以上の引張強度を有し、優れた穴拡げ性の鋼板を開示している。しかし、組織をマルテンサイト単相にすると、延性が著しく劣化し、様々な成形不良が起こりやすくなる。したがって、そのような組織の鋼板はプレス成形に適さない。さらに、高価なMoを多量に添加するので、製造コストが極めて高くなる。   Patent Document 5 has a tensile strength of 900 MPa or more and excellent hole expansion by actively adding Mn and Mo to a steel sheet, optimizing the annealing temperature condition, and making the structure a martensite single phase. Steel sheet is disclosed. However, when the structure is a martensite single phase, the ductility is remarkably deteriorated and various molding defects are likely to occur. Therefore, a steel sheet having such a structure is not suitable for press forming. Furthermore, since a large amount of expensive Mo is added, the manufacturing cost becomes extremely high.

一方、特許文献6は、鋼板にNbとMoを積極的に添加し、焼鈍条件と焼鈍後の冷却停止条件を最適化し、ベイナイト変態を促進させ、ベイナイトまたはベイニティックフェライト組織の面積率を高めることによって、590MPa以上の引張強度を有し、優れた穴拡げ性の鋼板を開示している。しかし、前述したように、ベイナイトの場合、ラス境界等に析出する粗大セメンタイト、ベイニティックフェライトの場合、C濃度の高いマルテンサイトやオーステナイトが不可避的に生成する。したがって、ベイナイトの変態速度に影響するめっき浴温度や合金化処理温度を厳密に制御しなければ、穴拡げ性が劣化する。合金化処理温度を430℃以上580℃以下とするような広範囲の温度制御において、良好な穴拡げ性を安定して確保することは困難であり、そのような技術は量産に適さない。以上、特許文献4から6に開示された技術も、単相組織、または、それに準ずるベイナイト組織の溶融亜鉛めっき鋼板を創製することは容易でないので、現実的な手法でない。   On the other hand, Patent Document 6 actively adds Nb and Mo to a steel sheet, optimizes annealing conditions and cooling stop conditions after annealing, promotes bainite transformation, and increases the area ratio of bainite or bainitic ferrite structure. Accordingly, a steel sheet having a tensile strength of 590 MPa or more and excellent hole expansibility is disclosed. However, as described above, in the case of bainite, martensite and austenite having a high C concentration are inevitably generated in the case of coarse cementite and bainitic ferrite precipitated at the lath boundary or the like. Therefore, unless the plating bath temperature and the alloying treatment temperature that affect the transformation rate of bainite are strictly controlled, the hole expandability deteriorates. In a wide range of temperature control in which the alloying treatment temperature is set to 430 ° C. or higher and 580 ° C. or lower, it is difficult to stably ensure good hole expansibility, and such a technique is not suitable for mass production. As described above, the techniques disclosed in Patent Documents 4 to 6 are not realistic methods because it is not easy to create a hot-dip galvanized steel sheet having a single-phase structure or a bainite structure equivalent thereto.

一方、マイクロアロイのTiやNbの添加によって、組織の微細化やフェライトの著しい強化が発現するので、それらの最適量、さらに、他元素や製造方法との組み合わせまでも最適化する方法が検討された。   On the other hand, the addition of microalloys such as Ti and Nb manifests a refinement of the structure and a significant strengthening of ferrite. Therefore, methods for optimizing the optimum amount of these elements, and even combinations with other elements and manufacturing methods have been studied. It was.

特許文献7は、鋼板にTiとSiを添加し、熱間圧延温度や焼鈍温度条件を最適化し、再結晶させたフェライトを微細析出物で強化し、複合組織を構成する隣接組織間の硬度差を小さくすることによって、590MPa以上の引張強度を有し、優れた穴拡げ性の鋼板を開示している。しかし、Tiを添加した鋼を二相域(フェライトとオーステナイトの二相共存温度域)で焼鈍すると、引張強度の焼鈍温度依存性が大きくなる。すなわち、所望の強度特性を安定して確保することが困難になり、そのような技術は量産に適さない。   Patent Document 7 adds Ti and Si to a steel sheet, optimizes the hot rolling temperature and annealing temperature conditions, reinforces the recrystallized ferrite with fine precipitates, and the hardness difference between adjacent structures constituting the composite structure The steel sheet having a tensile strength of 590 MPa or more and excellent hole expansibility is disclosed. However, if the steel to which Ti is added is annealed in a two-phase region (two-phase coexistence temperature range of ferrite and austenite), the dependency of tensile strength on the annealing temperature increases. That is, it becomes difficult to stably secure desired strength characteristics, and such a technique is not suitable for mass production.

また、特許文献8は、鋼板にTiを積極的に添加するだけでなく、C量、Mn量とTi量の比率を制御し、焼鈍温度を最適化し、複合組織を構成する第二相をベイナイト主体とすることによって、590MPa以上の引張強度を有し、優れた穴拡げ性の鋼板を開示している。さらに、焼鈍温度条件は単相域も含むので、引張強度の焼鈍温度依存性の小さな鋼板を量産できると期待される。しかし、前述したように、ベイナイトやマルテンサイトを積極的に利用した複合組織鋼板において、焼鈍した後の冷却以降の組織変化は著しく、その温度履歴によって、穴拡げ性が著しく劣化する。特に、鋼板のMn含有量が3.0%以下の場合、鋼の一部だけがベイナイトとなる傾向が強いので、めっき浴温度や合金化処理温度までも含めた冷却以降の全温度履歴を厳密に制御しなければ、穴拡げ性が劣化する。すなわち、良好な穴拡げ性を安定して確保することが困難であり、そのような技術は量産に適さない。   Patent Document 8 not only positively adds Ti to the steel sheet, but also controls the ratio of C amount, Mn amount and Ti amount, optimizes the annealing temperature, and the second phase constituting the composite structure is bainite. A steel sheet having a tensile strength of 590 MPa or more and excellent hole expansibility is disclosed. Furthermore, since the annealing temperature condition includes a single-phase region, it is expected that a steel plate having a small dependence of the tensile strength on the annealing temperature can be mass-produced. However, as described above, in a composite structure steel plate that positively uses bainite or martensite, the structure change after cooling after annealing is remarkable, and the hole expandability is significantly deteriorated by the temperature history. In particular, when the Mn content of the steel sheet is 3.0% or less, since only a part of the steel tends to be bainite, the entire temperature history after cooling including the plating bath temperature and alloying temperature is strictly observed. If not controlled, the hole expandability deteriorates. That is, it is difficult to stably ensure good hole expansibility, and such a technique is not suitable for mass production.

さらに、特許文献9は、鋼板にTi、NbとBを添加し、熱間圧延温度や焼鈍温度を最適化し、複合組織を構成するオーステナイト低温変態相の結晶粒径を大きくすることによって、590MPa以上の引張強度を有し、優れた穴拡げ性の鋼板を開示している。さらに、焼鈍温度条件が単相域を含み、鋼板のMn含有量が3.0%を超える範囲(Mn量:1.4%以上3.5%以下)も含むので、鋼板の引張強度や穴拡げ性が焼鈍温度だけでなく、冷却以降の温度履歴の影響も受けにくく、量産に適する技術と期待される。しかし、鋼板のMn含有量が3.0%を超える範囲であっても、後述するように、鋼板の[Ti]+[Nb]/2値([Ti]は鋼中の含有Ti質量%、[Nb]は鋼中の含有質量%)が0.14%以下の場合、焼鈍後の冷却停止から合金化処理にかけての組織変化が著しく、その温度履歴によって、非常に硬質な組織が形成され、穴拡げ性が著しく変化する。したがって、焼鈍し、冷却した後に、450℃以上600℃以下で10秒以上120秒以下保持するだけで、良好な穴拡げ性を安定して確保することは不可能である。   Further, Patent Literature 9 adds Ti, Nb, and B to a steel sheet, optimizes the hot rolling temperature and annealing temperature, and increases the crystal grain size of the austenite low-temperature transformation phase constituting the composite structure. A steel sheet having excellent tensile strength and hole expansibility is disclosed. Furthermore, since the annealing temperature condition includes a single-phase region and the Mn content of the steel sheet exceeds 3.0% (Mn content: 1.4% to 3.5%), the tensile strength and hole of the steel sheet Expandability is not only affected by the annealing temperature but also the temperature history after cooling, and is expected to be a technology suitable for mass production. However, even if the Mn content of the steel sheet exceeds 3.0%, as will be described later, [Ti] + [Nb] / 2 value of the steel sheet ([Ti] is the Ti content% contained in the steel, When [Nb] is contained in steel by 0.14% or less, the structural change from the cooling stop after annealing to the alloying treatment is remarkable, and a very hard structure is formed by the temperature history, Hole expandability changes significantly. Therefore, after annealing and cooling, it is impossible to stably ensure good hole expansibility only by holding at 450 to 600 ° C. for 10 to 120 seconds.

特開平6−93340号公報Japanese Patent Laid-Open No. 6-93340 特開2004−211126号公報Japanese Patent Laid-Open No. 2004-211126 特開2007−70649号公報JP 2007-70649 A 特開2002−322540号公報JP 2002-322540 A 特開2004−315882号公報JP 2004-315882 A 特開2003−193190号公報JP 2003-193190 A 特開2002−69574号公報JP 2002-69574 A 特開2005−220417号公報JP 2005-220417 A 特開2007−9317号公報JP 2007-9317 A

ISIJ International,44(2004),No.3,p.603−609ISIJ International, 44 (2004), no. 3, p. 603-609 ISIJ International,44(2004),No.11,p.1945−1951ISIJ International, 44 (2004), no. 11, p. 1945-1951

本発明の課題は、前述したように、従来の技術で製造することが困難であった、引張強度が590MPa以上、好ましくは780MPa以上の穴拡げ性に優れる溶融亜鉛めっき鋼板及びその製造方法を提供することである。本発明の鋼板においては、穴拡げ性(後述する穴拡げ率)の目標値は50%以上である。   As described above, the subject of the present invention is to provide a hot dip galvanized steel sheet that has been difficult to manufacture by conventional techniques and has excellent hole expansibility with a tensile strength of 590 MPa or more, preferably 780 MPa or more, and a method for producing the same. It is to be. In the steel plate of the present invention, the target value of hole expandability (hole expansion rate described later) is 50% or more.

本発明は、穴拡げ性を劣化させる粗大なセメンタイト、C濃度の高いマルテンサイトやオーステナイトで構成される硬質組織の生成を抑制できるように、従来の鋼板に比べて、より多量のMnを鋼に添加し、さらに、C量、Ti量やNb量を特定の範囲に制御し、その化学組成に対する最適な製造条件を見出すことによって、引張強度が590MPa以上の穴拡げ性に優れる溶融亜鉛めっき鋼板を得ることができるという知見に基づく。さらに、本発明は、溶融亜鉛めっきラインの設備改造や長大な製造工程を必要とすることなく、所望の性能を有する鋼板が製造されるので、量産に適する技術である。従来の技術において、そのような鋼板を安定して製造することは困難であった。   In the present invention, a larger amount of Mn is added to the steel than the conventional steel plate so that the formation of a hard structure composed of coarse cementite that deteriorates hole expansibility, martensite and austenite with high C concentration can be suppressed. In addition, by controlling the C amount, Ti amount and Nb amount to a specific range and finding the optimum production conditions for the chemical composition, a hot dip galvanized steel sheet having a tensile strength of 590 MPa or more and excellent hole expansibility Based on the knowledge that it can be obtained. Furthermore, the present invention is a technique suitable for mass production because a steel sheet having a desired performance is manufactured without requiring remodeling of a hot dip galvanizing line or a long manufacturing process. In the prior art, it has been difficult to stably manufacture such a steel plate.

本発明は、鋼板の表面に溶融亜鉛めっき層を備える溶融亜鉛めっき鋼板において、この鋼板は、C:0.045%以上0.075%以下(本明細書においては特に断りがない限り組成に関する「%」は「質量%」を意味するものとする)、Si:0.001%以上0.2%以下、Mn:.0%超え4.5%以下、P:0.1%以下、S:0.01%以下、sol.Al:0.001%以上0.2%以下、N:0.01%以下、O:0.01%以下を含有し、さらに、TiおよびNbの1種または2種を下記不等式を満たす範囲で含有し、残部Feおよび不純物からなる化学組成を有することを特徴とする、引張強度が780MPa以上でありJFST1001に規定する方法で測定された穴拡げ率が76%以上である溶融亜鉛めっき鋼板である。 The present invention provides a hot-dip galvanized steel sheet comprising a hot-dip galvanizing layer on the surface of the steel sheet, the steel sheet, C: 0.0 45% or more 0.075% or less (on the composition unless otherwise stated in this specification “%” Means “mass%”), Si: 0.001% to 0.2%, Mn: 3 . 0% more than 4.5% or less, P: 0.1% or less, S: 0.01% or less, sol. Al: 0.001% or more and 0.2% or less, N: 0.01% or less, O: 0.01% or less, and within a range satisfying the following inequality with one or two of Ti and Nb A hot-dip galvanized steel sheet having a tensile strength of 780 MPa or more and a hole expansion ratio of 76% or more measured by the method defined in JFST1001, characterized by containing a chemical composition comprising Fe and impurities .

0.1≦Ti+Nb/2≦0.30
ここで、上記式中のTiおよびNbはそれぞれTiおよびNbの含有量(単位:質量%)を意味する。
0.1 8 ≦ Ti + Nb / 2 ≦ 0.30
Here, Ti and Nb in the above formula mean the contents of Ti and Nb (unit: mass%), respectively.

この本発明に係る溶融亜鉛めっき鋼板では、化学組成が、質量%で、Cr:0.1%以下、Mo:0.1%以下、Cu:0.1%以下、Ni:0.1%以下およびV:0.1%以下からなる群から選ばれた1種または2種以上をさらに含有することが好ましい。
この本発明に係る溶融亜鉛めっき鋼板では、化学組成が、質量%で、Ca:0.01%以下、Mg:0.01%以下、REM:0.01%以下、Zr:0.01%以下およびBi:0.01%以下からなる群から選ばれた1種または2種以上をさらに含有することが好ましい。
In the hot dip galvanized steel sheet according to the present invention, the chemical composition is mass%, Cr: 0.1% or less, Mo: 0.1% or less, Cu: 0.1% or less, Ni: 0.1% or less. And V: It is preferable to further contain one or more selected from the group consisting of 0.1% or less.
In the hot-dip galvanized steel sheet according to the present invention, the chemical composition is mass%, Ca: 0.01% or less, Mg: 0.01% or less, REM: 0.01% or less, Zr: 0.01% or less. And Bi: It is preferable to further contain one or more selected from the group consisting of 0.01% or less.

この本発明に係る溶融亜鉛めっき鋼板では、化学組成が、質量%で、B:0.002%以下をさらに含有することが好ましい。
この本発明に係る溶融亜鉛めっき鋼板では、面積率で、残留オーステナイトを2.0%以下含有する鋼組織であることが好ましい。
In the hot-dip galvanized steel sheet according to the present invention, the chemical composition preferably further contains B: 0.002% or less in terms of mass%.
The hot dip galvanized steel sheet according to the present invention preferably has a steel structure containing 2.0% or less of retained austenite in terms of area ratio.

別の観点から、本発明は、下記工程(A)〜(C)を備えることを特徴とする前述の溶融亜鉛めっき鋼板の製造方法である。
(A)前述した本発明に係る溶融亜鉛めっき鋼板の化学組成を有する鋼材に、圧延開始温度を1100℃以上1300℃以下、巻取温度:530℃以上600℃以下の熱間圧延を施して熱延鋼板とする熱間圧延工程;
(B)前記熱延鋼板に、冷間圧延を施して冷延鋼板とする冷間圧延工程;および
(C)前記冷延鋼板に、Ac点以上950℃以下の温度域に90秒間以下保持する再結晶焼鈍を施し、その後に、[亜鉛めっき浴温度−20℃]以上[亜鉛めっき浴温度+100℃]以下の温度域まで冷却し、次いで、前記温度域にめっき浴浸漬時を含めて500秒間以下保持する連続溶融亜鉛めっき工程。
From another viewpoint, the present invention is the above-described method for producing a hot-dip galvanized steel sheet, comprising the following steps (A) to (C).
(A) The steel material having the chemical composition of the hot-dip galvanized steel sheet according to the present invention described above is subjected to hot rolling at a rolling start temperature of 1100 ° C. or higher and 1300 ° C. or lower, and a coiling temperature: 530 ° C. or higher and 600 ° C. or lower. Hot rolling process to make a rolled steel sheet;
(B) a cold rolling process in which the hot-rolled steel sheet is cold-rolled to obtain a cold-rolled steel sheet; and (C) the cold-rolled steel sheet is held for 90 seconds or less in a temperature range of Ac 3 to 950 ° C. And then cooled to a temperature range of [Zinc plating bath temperature −20 ° C.] or more and [Zinc plating bath temperature + 100 ° C.] or less, and then the temperature range including the time of immersion in the plating bath is 500. Continuous hot dip galvanizing process that holds for less than a second.

さらに、別の観点から、本発明は、前述した本発明に係る製造方法により得られた溶融亜鉛めっき鋼板に、430℃以上600℃以下の温度域で合金化処理を施すことを特徴とする溶融亜鉛めっき鋼板の製造方法である。   Furthermore, from another point of view, the present invention is characterized by subjecting the hot dip galvanized steel sheet obtained by the manufacturing method according to the present invention to an alloying treatment in a temperature range of 430 ° C. to 600 ° C. It is a manufacturing method of a galvanized steel sheet.

本発明によって、引張強度が590MPa以上の穴拡げ性に優れる溶融亜鉛めっき鋼板を量産することが可能になる。本発明に係る溶融亜鉛めっき鋼板は、産業上、特に、自動車分野において、広範に使用することが可能である。   According to the present invention, it is possible to mass-produce hot dip galvanized steel sheets having a tensile strength of 590 MPa or more and excellent hole expansibility. The hot-dip galvanized steel sheet according to the present invention can be used widely in industry, particularly in the automobile field.

本発明に係る溶融亜鉛めっき鋼板の化学組成を前述のように規定した理由を説明する。
(C:0.02%以上0.075%以下)
Cは強度向上に寄与する元素であり、鋼板の引張強度を590MPa以上にするために、0.02%以上含有させる。好ましくは0.035%以上、さらに好ましくは0.045%以上である。しかし、0.075%を超えてCを含有させると、硬質組織が混在しやすくなり、穴拡げ性が劣化する。このため、C含有量は0.075%以下とする。好ましくは、0.065%以下である。このようにC量を制御することによって、Mn、Ti、Nb等の高価な合金元素の添加量を抑えることができ、製造コストを下げることが可能になる。
The reason why the chemical composition of the hot dip galvanized steel sheet according to the present invention is defined as described above will be described.
(C: 0.02% to 0.075%)
C is an element contributing to strength improvement, and is contained in an amount of 0.02% or more in order to make the tensile strength of the steel plate 590 MPa or more. Preferably it is 0.035% or more, More preferably, it is 0.045% or more. However, when C is contained exceeding 0.075%, the hard structure is likely to be mixed, and the hole expandability is deteriorated. For this reason, C content shall be 0.075% or less. Preferably, it is 0.065% or less. By controlling the amount of C in this way, the amount of expensive alloy elements such as Mn, Ti, Nb, etc. added can be suppressed, and the manufacturing cost can be reduced.

(Si:0.001%以上0.2%以下)
Siは強度向上に寄与する元素であり、本発明において、0.001%以上含有させる。しかし、0.2%を超えてSiを含有させると、鋼板に不めっき部が発生し、耐食性が劣化する。このため、Si含有量は、0.001%以上0.2%以下とする。なお、好ましくは、Si含有量は0.05%以上0.15%以下であり、このようにSi量を制御することによって、めっきの密着性が向上し、プレス成形によるパウダリングやフレーキング発生を防止することが可能になる。
(Si: 0.001% to 0.2%)
Si is an element contributing to strength improvement, and in the present invention, Si is contained in an amount of 0.001% or more. However, when Si is contained exceeding 0.2%, a non-plating part will generate | occur | produce in a steel plate and corrosion resistance will deteriorate. For this reason, Si content shall be 0.001% or more and 0.2% or less. Preferably, the Si content is 0.05% or more and 0.15% or less. By controlling the Si amount in this way, the adhesion of plating is improved, and powdering and flaking occur due to press molding. Can be prevented.

(Mn:2.0%以上4.5%以下)
Mnはベイナイト変態を遅らせ、さらに、C量、Ti量やNb量のバランスによって、粗大なセメンタイトや硬質組織の生成を抑制できるだけでなく、強度向上に著しく寄与する元素であり、鋼板の引張強度を590MPa以上にするために、2.0%以上含有させる。好ましくは3.0%超である。しかし、4.5%を超えてMnを含有させると、転炉における精錬、鋳造が著しく困難になるだけでなく、溶接性が劣化する。このため、Mn含有量は4.5%以下とする。
(Mn: 2.0% to 4.5%)
Mn delays the bainite transformation, and further suppresses the formation of coarse cementite and hard structure by the balance of C content, Ti content and Nb content, and is an element that contributes significantly to improving the strength. In order to make it 590 MPa or more, it is made to contain 2.0% or more. Preferably it is more than 3.0%. However, when Mn is contained exceeding 4.5%, not only refining and casting in a converter become extremely difficult, but also weldability deteriorates. For this reason, Mn content shall be 4.5% or less.

(P:0.1%以下)
Pは不純物として含有される元素であるが、強度向上に寄与する元素でもあるので、積極的に含有させてもよい。しかし、0.1%を超えてPを含有させると、溶接性が著しく劣化する。このため、P含有量は0.1%以下とする。なお、好ましくは、P含有量は0.005%以上0.025%以下であり、このようにP量を制御することによって、より確実に鋼板を強化することとパウダリング等のめっき不良を防止することが可能になる。
(P: 0.1% or less)
P is an element contained as an impurity, but may also be positively incorporated because it is also an element contributing to strength improvement. However, when P is contained exceeding 0.1%, the weldability is remarkably deteriorated. Therefore, the P content is 0.1% or less. Preferably, the P content is 0.005% or more and 0.025% or less. By controlling the P content in this way, the steel sheet can be strengthened more reliably and plating defects such as powdering can be prevented. It becomes possible to do.

(S:0.01%以下)
Sは不純物として不可避的に含有され、穴拡げ性を著しく劣化させる元素である。このため、S含有量は0.01%以下とする。なお、その含有量が低いほど、穴広げ性は向上し、好ましくは、0.005%以下である。さらに好ましくは、0.0015%以下である。
(S: 0.01% or less)
S is an element that is unavoidably contained as an impurity and significantly deteriorates the hole expansibility. For this reason, S content shall be 0.01% or less. In addition, as the content is lower, the hole expanding property is improved, and is preferably 0.005% or less. More preferably, it is 0.0015% or less.

(sol.Al:0.001%以上0.2%以下)
Alは鋼を脱酸して、Ti等の炭窒化物形成元素の歩留まりを向上させる元素である。Ti系、Nb系、またはTi−Nb複合系の酸化物の生成を抑制するために、sol.Al含有量は0.001%以上とする。好ましくは0.02%以上である。しかし、0.2%を超えてsol.Alを含有させると、鋼板に不めっき部が発生し、耐食性が劣化する。このため、sol.Al含有量は、0.2%以下とする。好ましくは0.1%以下である。
(Sol.Al: 0.001% to 0.2%)
Al is an element that deoxidizes steel and improves the yield of carbonitride-forming elements such as Ti. In order to suppress the formation of Ti-based, Nb-based, or Ti—Nb composite-based oxides, sol. The Al content is 0.001% or more. Preferably it is 0.02% or more. However, the sol. When Al is contained, a non-plated portion is generated in the steel sheet, and the corrosion resistance is deteriorated. For this reason, sol. The Al content is 0.2% or less. Preferably it is 0.1% or less.

(N:0.01%以下)
Nは不純物として不可避的に含有され、穴拡げ性を著しく劣化させる元素である。このため、N含有量は0.01%以下とする。なお、その含有量が低いほど、穴広げ性は向上し、好ましくは、0.005%以下である。さらに好ましくは、0.003%以下である。
(N: 0.01% or less)
N is an element that is unavoidably contained as an impurity and significantly deteriorates the hole expandability. For this reason, N content shall be 0.01% or less. In addition, as the content is lower, the hole expanding property is improved, and is preferably 0.005% or less. More preferably, it is 0.003% or less.

(O:0.01%以下)
Oは不純物として不可避的に含有され、穴拡げ性を著しく劣化させる元素である。このため、O含有量は0.01%以下とする。なお、その含有量が低いほど、穴広げ性は向上し、好ましくは、0.005%以下である。さらに好ましくは、0.002%以下である。
(O: 0.01% or less)
O is unavoidably contained as an impurity, and is an element that significantly deteriorates hole expansibility. For this reason, the O content is set to 0.01% or less. In addition, as the content is lower, the hole expanding property is improved, and is preferably 0.005% or less. More preferably, it is 0.002% or less.

(TiとNb:0.14%≦Ti+Nb/2≦0.30%)
TiとNbは微細な炭化物、窒化物、または炭窒化物を形成させ、強度向上に著しく寄与する元素である。また、前述したように、C量とMn量をバランスさせ、さらに、後述するような焼鈍条件を組み合わせることによって、粗大なセメンタイトや硬質組織が生成し難くなり、引張強度が590MPa以上でありながら、優れた穴拡げ性も達成される。このような効果を発現させるために、少なくとも、TiとNbの1種または2種を含有させ、Ti+Nb/2の値(ただし、TiおよびNbはそれぞれTiおよびNbの含有量(単位:質量%))で0.14以上含有させる。しかし、Ti+Nb/2の値で0.3を超えてTi、Nbの1種または2種を含有させても、前記効果が飽和し、製造コストが高くなるだけである。このため、Ti+Nb/2の値は0.14以上0.3以下とする。なお、Ti+Nb/2の値で0.18以上含有させると、残留オーステナイトの面積率が2.0%以下である鋼組織を得ることが容易になり、良好な穴拡げ性をさらに安定して確保することが可能となる。
(Ti and Nb: 0.14% ≦ Ti + Nb / 2 ≦ 0.30%)
Ti and Nb are elements that form fine carbides, nitrides, or carbonitrides and contribute significantly to improving the strength. In addition, as described above, by balancing the amount of C and the amount of Mn, and further combining annealing conditions as described later, coarse cementite and hard structure become difficult to generate, while the tensile strength is 590 MPa or more, Excellent hole expandability is also achieved. In order to express such an effect, at least one or two of Ti and Nb are contained, and the value of Ti + Nb / 2 (where Ti and Nb are the contents of Ti and Nb, respectively (unit: mass%)) ) 0.14 or more. However, if the Ti + Nb / 2 value exceeds 0.3 and one or two of Ti and Nb are contained, the effect is saturated and the manufacturing cost only increases. For this reason, the value of Ti + Nb / 2 is set to 0.14 or more and 0.3 or less. When Ti + Nb / 2 is contained in an amount of 0.18 or more, it becomes easy to obtain a steel structure having an area ratio of retained austenite of 2.0% or less, and a good hole expansibility is secured more stably. It becomes possible to do.

(Cr:0.1%以下、Mo:0.1%以下、Cu:0.1%以下、Ni:0.1%以下およびV:0.1%以下からなる群から選ばれた1種または2種以上)
Cr、Mo、Cu、NiおよびVは、いずれも、強度向上に寄与する元素であり、必要に応じて含有させることができる任意元素である。しかし、0.1%を超えてそれぞれを含有させても、前記効果が飽和し、製造コストが高くなるだけである。このため、Cr、Mo、Cu、NiおよびVの1種または2種以上を前記の量で含有することが好ましい。なお、より確実に前記効果を得るために、いずれかの元素を0.01%以上含有させることが好ましい。
(Cr: 0.1% or less, Mo: 0.1% or less, Cu: 0.1% or less, Ni: 0.1% or less, and V: 0.1% or less, or one selected from the group consisting of 2 types or more)
Cr, Mo, Cu, Ni and V are all elements that contribute to strength improvement, and are optional elements that can be contained as necessary. However, even if each content exceeds 0.1%, the effect is saturated and the manufacturing cost is increased. For this reason, it is preferable to contain 1 type (s) or 2 or more types of Cr, Mo, Cu, Ni, and V by the said quantity. In addition, in order to acquire the said effect more reliably, it is preferable to contain any element 0.01% or more.

(Ca:0.01%以下、Mg:0.01%以下、REM:0.01%以下、Zr:0.01%以下およびBi:0.01%以下からなる群から選ばれた1種または2種以上)
Ca、Mg、REM、ZrおよびBiは、いずれも、穴拡げ性を向上させる元素であり、必要に応じて含有させることができる任意元素である。しかし、0.01%を超えてそれぞれを含有させると、表面性状が劣化する。このため、Ca、Mg、REM、ZrおよびBiの1種または2種以上を前記の量で含有することが好ましい。なお、より確実に前記効果を得るために、いずれかの元素を0.0005%以上含有させることが好ましい。
(Ca: 0.01% or less, Mg: 0.01% or less, REM: 0.01% or less, Zr: 0.01% or less, and Bi: 0.01% or less, or one selected from the group consisting of 2 types or more)
Ca, Mg, REM, Zr, and Bi are all elements that improve hole expansibility and are optional elements that can be included as necessary. However, if each content exceeds 0.01%, the surface properties deteriorate. For this reason, it is preferable to contain 1 type (s) or 2 or more types of Ca, Mg, REM, Zr, and Bi with the said quantity. In addition, in order to acquire the said effect more reliably, it is preferable to contain any element 0.0005% or more.

(B:0.002%以下)
Bは強度向上に寄与する元素であり、必要に応じて含有させることができる任意元素である。ただし、0.002%を超えてBを含有させても、前記効果が飽和する。このため、B含有量は0.002%以下とすることが好ましい。なお、より確実に前記効果を得るために、0.0002%以上含有させることが好ましい。
(B: 0.002% or less)
B is an element that contributes to strength improvement, and is an optional element that can be contained as necessary. However, even if it contains B exceeding 0.002%, the said effect is saturated. For this reason, it is preferable that B content shall be 0.002% or less. In addition, in order to acquire the said effect more reliably, it is preferable to make it contain 0.0002% or more.

(残留オーステナイトの面積率:2.0%以下)
次に、本発明に係る溶融亜鉛めっき鋼板の好適な鋼組織を説明する。
前述した化学組成の本発明に係る溶融亜鉛めっき鋼板は、フェライト、ベイニティックフェライトおよびベイナイトを主相とする組織であり、マルテンサイトおよび残留オーステナイトは極力含有しないことが好ましい。その中でも、オーステナイトは、加工誘起変態によって、最も硬質な組織になる。したがって、切断加工、または打抜き加工した残留オーステナイトを含む鋼板を伸びフランジ成形した場合、穴拡げ性が著しく劣化する。このため、面積率で評価した分率で、残留オーステナイトが2.0%以下(0%の場合も含む)であることが好ましい。そして、マルテンサイトおよび残留オーステナイトの合計面積率は30%以下とすることが好ましい。なお、本発明に係る溶融亜鉛めっき鋼板においては、フェライト、ベイニティックフェライトおよびベイナイトを明確に区別することが困難であるので、各々の面積率を規定することは困難である。フェライト、ベイニティックフェライトおよびベイナイトの合計面積率は70%以上とすることが好ましい。
(Area ratio of retained austenite: 2.0% or less)
Next, a suitable steel structure of the hot dip galvanized steel sheet according to the present invention will be described.
The hot-dip galvanized steel sheet according to the present invention having the above-described chemical composition has a structure mainly composed of ferrite, bainitic ferrite and bainite, and preferably contains no martensite and retained austenite as much as possible. Among them, austenite becomes the hardest structure due to processing-induced transformation. Therefore, when a steel plate containing retained austenite that has been cut or punched is stretched and flange-formed, the hole expandability is significantly deteriorated. For this reason, it is preferable that the retained austenite is 2.0% or less (including the case of 0%) in the fraction evaluated by the area ratio. The total area ratio of martensite and retained austenite is preferably 30% or less. In the hot dip galvanized steel sheet according to the present invention, it is difficult to clearly distinguish between ferrite, bainitic ferrite and bainite, so it is difficult to define each area ratio. The total area ratio of ferrite, bainitic ferrite and bainite is preferably 70% or more.

次に、本発明に係る溶融亜鉛めっき鋼板の好適な製造方法を説明する。
前述した化学組成を有する溶鋼を、転炉や電気炉等の公知の溶製方法で溶製し、連続鋳造法でスラブ等の鋼素材とすることが好ましい。なお、連続鋳造法に代えて、造塊法、薄スラブ鋳造法等で鋳造してもよい。この鋼素材に、熱間圧延を施し、熱延鋼板とする。熱間圧延は、鋳造された鋼素材を室温まで冷却せず、温片のまま加熱炉に装入し、加熱した後に圧延する直送圧延、または、わずかに保熱した後に直ちに圧延する直接圧延するか、あるいは、一旦、鋼素材を冷却した後に再加熱し、圧延してもよい。
Next, the suitable manufacturing method of the hot dip galvanized steel plate concerning this invention is demonstrated.
It is preferable that the molten steel having the above-described chemical composition is melted by a known melting method such as a converter or an electric furnace, and is made into a steel material such as a slab by a continuous casting method. In place of the continuous casting method, casting may be performed by an ingot casting method, a thin slab casting method, or the like. This steel material is hot-rolled to obtain a hot-rolled steel sheet. Hot rolling does not cool the cast steel material to room temperature, inserts it into a heating furnace in the form of a hot piece, direct feed rolling to roll after heating, or direct rolling to roll immediately after holding a little heat Alternatively, the steel material may be once cooled and then reheated and rolled.

(熱間圧延の開始温度:1100℃以上1300℃以下)
TiとNb等の微細析出物の分散によって、本発明に係る溶融亜鉛めっき鋼板の引張強度は高められる。したがって、鋼板の引張強度を590MPa以上にするために、熱間圧延する前に、TiやNbを一旦固溶させる必要がある。このため、熱間圧延する前の加熱温度は1100℃以上とする。しかし、1300℃を超えて加熱すると、鋼素材の内部酸化が促進され、表面性状が著しく劣化する。このため、鋼素材の加熱温度は1100℃以上1300℃以下とする。換言すれば、熱間圧延の開始温度は1100℃以上1300℃以下である。熱間圧延の開始温度は、好ましくは1200℃以上1270℃以下であり、このように温度を制限することによって、より確実に前記効果を得ることが可能になる。また、熱間圧延を開始するまでに、鋼素材を1200℃以上の温度域に30分間以上保持することが好ましい。このように鋼素材を高温に保持することによって、Mnの凝固偏析に起因する不均一組織が解消され、穴拡げ性が向上する。しかし、180分間を超えて保持しても、前記効果が飽和し、製造コストが高くなるだけであるので、180分間以下とすることが好ましい。
(Starting temperature of hot rolling: 1100 ° C or higher and 1300 ° C or lower)
The tensile strength of the hot dip galvanized steel sheet according to the present invention is increased by the dispersion of fine precipitates such as Ti and Nb. Therefore, in order to make the tensile strength of the steel plate 590 MPa or more, it is necessary to once dissolve Ti and Nb before hot rolling. For this reason, the heating temperature before hot rolling shall be 1100 degreeC or more. However, if it heats exceeding 1300 degreeC, the internal oxidation of a steel raw material will be accelerated | stimulated and surface properties will deteriorate remarkably. For this reason, the heating temperature of a steel raw material shall be 1100 degreeC or more and 1300 degrees C or less. In other words, the hot rolling start temperature is 1100 ° C. or higher and 1300 ° C. or lower. The starting temperature of hot rolling is preferably 1200 ° C. or higher and 1270 ° C. or lower, and the effect can be obtained more reliably by limiting the temperature in this way. Moreover, it is preferable to hold | maintain a steel raw material in the temperature range of 1200 degreeC or more for 30 minutes or more before starting hot rolling. By holding the steel material at a high temperature in this way, the non-uniform structure due to solidification segregation of Mn is eliminated, and the hole expandability is improved. However, even if it is kept for more than 180 minutes, the above effect is saturated and the manufacturing cost only becomes high, so it is preferable to keep it for 180 minutes or less.

(仕上げ圧延温度:800℃以上1000℃以下)
熱間圧延時の変形抵抗を小さくし、操業をより容易にするために、仕上げ圧延温度を800℃以上とすることが好ましい。しかし、1000℃を超えて仕上げ圧延すると、スケール疵が発生しやすくなり、表面性状が著しく劣化する。このため、仕上げ圧延温度を800℃以上1000℃以下とすることが好ましい。さらに好ましくは、850℃以上950℃以下である。
(Finishing rolling temperature: 800 ° C or higher and 1000 ° C or lower)
In order to reduce the deformation resistance during hot rolling and make the operation easier, the finish rolling temperature is preferably set to 800 ° C. or higher. However, when finish rolling is performed at a temperature exceeding 1000 ° C., scale wrinkles are easily generated, and the surface properties are significantly deteriorated. For this reason, it is preferable that finish rolling temperature shall be 800 degreeC or more and 1000 degrees C or less. More preferably, it is 850 degreeC or more and 950 degrees C or less.

(熱延巻取り温度:530℃以上600℃以下)
本発明に係る溶融亜鉛めっき鋼板はMnならびにTiおよび/またはNbを多量に含有する。これらは易酸化元素であるので、鋼板表面およびその近傍は巻取り過程において酸化しやすい。したがって、鋼板の酸化を抑制し、良好な表面性状を確保するために、熱延巻取り温度を600℃以下とする。一方、これらの元素は熱延鋼板の強度を高める作用を有する。特に、530℃未満で巻取ると、硬質なベイナイトやマルテンサイトが生成し、その後に、冷間圧延することが困難になる。さらに、鋼板の板厚精度が劣化する。このため、熱延巻取り温度を530℃以上600℃以下とする。好ましくは、540℃以上590℃以下である。
なお、熱間圧延工程において、特性変動を抑制するために、粗圧延の後に、仕上げ圧延する前の粗バーに誘導加熱等を施すことによって、粗バー全長の温度均一化を図ることが好ましい。
(Hot rolled coiling temperature: 530 ° C or higher and 600 ° C or lower)
The hot dip galvanized steel sheet according to the present invention contains a large amount of Mn and Ti and / or Nb. Since these are easily oxidizable elements, the steel plate surface and its vicinity are easily oxidized in the winding process. Therefore, in order to suppress oxidation of the steel sheet and ensure good surface properties, the hot rolling coiling temperature is set to 600 ° C. or lower. On the other hand, these elements have the effect of increasing the strength of the hot-rolled steel sheet. In particular, when it is wound at a temperature lower than 530 ° C., hard bainite and martensite are generated, and thereafter it is difficult to cold-roll. Furthermore, the plate thickness accuracy of the steel plate deteriorates. For this reason, a hot rolling coiling temperature shall be 530 degreeC or more and 600 degrees C or less. Preferably, it is 540 degreeC or more and 590 degrees C or less.
In the hot rolling process, in order to suppress fluctuations in characteristics, it is preferable to achieve uniform temperature of the entire length of the rough bar by performing induction heating or the like on the rough bar before the finish rolling after the rough rolling.

前記熱間圧延工程により得られた熱延鋼板は、酸洗等の常法によって、脱スケール処理を施し、その後に、冷間圧延が施し、冷延鋼板とする。この場合、熱間圧延および冷間圧延における総圧下率を95%以上とすることが好ましい。ここで、総圧下率は次式で算出される。
総圧下率(%)={1−(冷延鋼板の板厚)/(熱間圧延に供するスラブの板厚)}×100
The hot-rolled steel sheet obtained by the hot rolling process is descaled by a conventional method such as pickling, and then cold-rolled to obtain a cold-rolled steel sheet. In this case, the total rolling reduction in hot rolling and cold rolling is preferably 95% or more. Here, the total rolling reduction is calculated by the following equation.
Total rolling reduction (%) = {1− (thickness of cold-rolled steel sheet) / (thickness of slab used for hot rolling)} × 100

総圧下率を大きくすると、板厚方向に分布するMn偏析帯が薄くなり、穴拡げ性が向上する。なお、連続焼鈍後の鋼組織を均一にするために、冷間圧延の総圧下率を30%以上とすることが好ましい。また、鋼板の平坦性を確保するために、酸洗の前もしくは後に、圧下率5%以下の圧延を施し、形状を修正することが好ましい。また、このような軽度の圧延を酸洗の前に施すことによって、酸洗性が向上し、表面濃化元素の除去が促進され、表面性状が向上する。   When the total rolling reduction is increased, the Mn segregation band distributed in the plate thickness direction becomes thin, and the hole expandability is improved. In addition, in order to make the steel structure after continuous annealing uniform, it is preferable that the total rolling reduction of cold rolling is 30% or more. In order to ensure the flatness of the steel sheet, it is preferable to correct the shape by rolling at a reduction rate of 5% or less before or after pickling. Moreover, by performing such mild rolling before pickling, pickling performance is improved, removal of surface concentrating elements is promoted, and surface properties are improved.

前記熱間圧延工程および冷間圧延工程により得られた冷延鋼板は、Ac3点以上950℃以下の温度域で再結晶焼鈍を施し、その後に、[亜鉛めっき浴温度−20℃]以上[亜鉛めっき浴温度+100℃]以下の温度域まで冷却し、次いで、前記温度域にめっき浴浸漬時を含めて500秒間以下保持する連続溶融亜鉛めっき処理を施し、溶融亜鉛めっき鋼板とすることが好ましい。また、亜鉛めっき浴に浸漬した後に、430℃以上600℃以下の温度域で合金化処理を施し、合金化溶融亜鉛めっき鋼板とすることが好ましい。それらの鋼板は、連続溶融亜鉛めっきラインで、焼鈍熱処理、溶融亜鉛めっき処理、合金化処理され、製造されることが好ましい。 The cold-rolled steel sheet obtained by the hot rolling process and the cold rolling process is subjected to recrystallization annealing in a temperature range of Ac 3 points or more and 950 ° C. or less, and then [zinc plating bath temperature −20 ° C.] or more [ It is preferable to cool to a temperature range of galvanizing bath temperature + 100 ° C. or lower, and then to perform a continuous hot dip galvanizing treatment for 500 seconds or less including the time of plating bath immersion in the temperature range to obtain a hot dip galvanized steel sheet. . Moreover, after immersing in a galvanizing bath, it is preferable to perform an alloying process in a temperature range of 430 ° C. or higher and 600 ° C. or lower to obtain an alloyed hot-dip galvanized steel sheet. These steel plates are preferably manufactured by annealing, hot dip galvanizing and alloying in a continuous hot dip galvanizing line.

(再結晶焼鈍温度:Ac点以上950℃以下の温度域に90秒間以下保持)
前述したように、多量のTiやNbを含有する鋼板を二相域で焼鈍すると、未再結晶のフェライトが残存し、引張強度の焼鈍温度依存性が大きくなるだけでなく、曲げ性が著しく劣化する。このため、焼鈍温度はAc点以上とする。しかし、950℃を超えて焼鈍すると、焼鈍炉が急速に損傷し、その補修が必要となり、生産性が劣化する。このため、再結晶焼鈍温度はAc点以上950℃以下とする。
(Recrystallization annealing temperature: Ac maintained for 3 seconds or more and 950 ° C. or less for 90 seconds or less)
As described above, when a steel sheet containing a large amount of Ti or Nb is annealed in the two-phase region, non-recrystallized ferrite remains, and not only the annealing temperature dependency on the tensile strength increases, but also the bendability deteriorates significantly. To do. For this reason, annealing temperature shall be Ac 3 points or more. However, if the annealing temperature exceeds 950 ° C., the annealing furnace is rapidly damaged, and its repair is required, and the productivity is deteriorated. For this reason, recrystallization annealing temperature shall be Ac 3 points or more and 950 degrees C or less.

Ac点以上950℃以下の温度域に保持する時間は90秒間以下とする。Ac点以上950℃以下の温度域に保持する時間が90秒間超では、粒界およびその近傍の析出物が粗大化し、靭性の劣化が著しくなる場合がある。上記の温度域保持に時間の下限は特に限定されないが、10秒間以上とすることが好ましい。このように焼鈍時間までを制御することによって、良好な穴拡げ性を安定して確保することが可能になる。 The time for holding in the temperature range of Ac 3 points or more and 950 ° C. or less is 90 seconds or less. If the time for which the temperature is maintained in the temperature range of Ac 3 points or more and 950 ° C. or less exceeds 90 seconds, the grain boundary and the precipitates in the vicinity thereof become coarse, and the deterioration of toughness may be remarkable. Although the lower limit of time is not specifically limited for said temperature range holding | maintenance, It is preferable to set it as 10 seconds or more. By controlling the annealing time in this way, it is possible to stably ensure good hole expansibility.

また、めっきの濡れ性や合金化処理性を向上させるために、焼鈍中の露点を−40℃以上とすることが好ましい。
再結晶焼鈍した後に、鋼板は亜鉛めっき浴に浸漬する過程で冷却される。この場合、平均冷却速度はその最高到達温度から700℃までを1℃/秒以上50℃/秒以下とし、次いで、700℃から冷却停止温度までを3℃/秒以上50℃/秒以下とすることが好ましい。700℃までを1℃/秒以上50℃/秒以下で冷却することによって、フェライト、ベイニティックフェライトおよびベイナイトの面積率ならびにマルテンサイトおよび残留オーステナイトの面積率を容易に調整することが可能になる。一方、700℃から冷却停止温度までを3℃/秒以上で冷却することによって、強度低下に繋がるパーライト変態を抑制することが可能になる。また、冷却停止温度までを50℃/秒超で冷却する場合、連続溶融亜鉛めっき設備の大幅な改造を必要とし、製造コストが著しく高まるので、50℃/秒以下とすることが好ましい。
Moreover, in order to improve the wettability and alloying processability of plating, it is preferable that the dew point during annealing is −40 ° C. or higher.
After recrystallization annealing, the steel sheet is cooled in the process of being immersed in a galvanizing bath. In this case, the average cooling rate is from 1 ° C./second to 50 ° C./second from the highest temperature to 700 ° C., and then from 3 ° C./second to 50 ° C./second from 700 ° C. to the cooling stop temperature. It is preferable. By cooling to 700 ° C. at 1 ° C./second or more and 50 ° C./second or less, it becomes possible to easily adjust the area ratio of ferrite, bainitic ferrite and bainite and the area ratio of martensite and retained austenite. . On the other hand, by cooling from 700 ° C. to the cooling stop temperature at 3 ° C./second or more, it becomes possible to suppress pearlite transformation leading to strength reduction. Further, when cooling to the cooling stop temperature at more than 50 ° C./second, it is necessary to significantly modify the continuous hot dip galvanizing equipment and the manufacturing cost is remarkably increased.

(冷却停止温度:[亜鉛めっき浴温度−20℃]以上[亜鉛めっき浴温度+100℃]以下)
めっき浴浸入時の抜熱を小さくし、操業を容易にするために、冷却停止温度は[亜鉛めっき浴温度−20℃]以上とする。しかし、[亜鉛めっき浴温度+100℃]を超えて鋼板の冷却を停止すると、めっき浴の温度変化が著しくなり、操業が困難になる。このため、冷却停止温度は[亜鉛めっき浴温度−20℃]以上[亜鉛めっき浴温度+100℃]以下とする。溶融亜鉛めっき処理は、410℃以上490℃以下の溶融亜鉛めっき浴中に焼鈍した鋼板を浸漬する常法に従う。
(Cooling stop temperature: [Zinc plating bath temperature −20 ° C.] or more and [Zinc plating bath temperature + 100 ° C.] or less)
The cooling stop temperature is set to [zinc plating bath temperature −20 ° C.] or higher in order to reduce the heat removal upon entering the plating bath and facilitate the operation. However, if the cooling of the steel sheet is stopped exceeding [zinc plating bath temperature + 100 ° C.], the temperature change of the plating bath becomes remarkable, and the operation becomes difficult. For this reason, the cooling stop temperature is set to [zinc plating bath temperature −20 ° C.] or more and [zinc plating bath temperature + 100 ° C.] or less. The hot dip galvanizing treatment follows a conventional method of immersing the annealed steel sheet in a hot dip galvanizing bath at 410 ° C. or higher and 490 ° C. or lower.

([亜鉛めっき浴温度−20℃]以上[亜鉛めっき浴温度+100℃]以下の保持時間:500秒間以下、ただし、めっき浸漬時も含める。)
フェライトやベイニティックフェライトの軟化を抑制し、所望の引張強度を確保するために、[亜鉛めっき浴温度−20℃]以上[亜鉛めっき浴温度+100℃]以下の保持時間は、めっき浸漬時も含め、500秒間以下とする。なお、好ましくは、保持時間は10秒間以上であり、このような保持時間を付与することによって、鋼板のめっき付着量が調整され、良好な耐食性を安定して確保することが可能になる。
(Holding time of [zinc plating bath temperature −20 ° C.] or more and [zinc plating bath temperature + 100 ° C.] or less: 500 seconds or less, but also includes plating immersion.)
In order to suppress softening of ferrite and bainitic ferrite and to secure a desired tensile strength, the holding time of [zinc plating bath temperature −20 ° C.] or more and [zinc plating bath temperature + 100 ° C.] or less is also maintained during plating immersion. Including 500 seconds or less. Preferably, the holding time is 10 seconds or longer. By giving such a holding time, the coating amount of the steel sheet can be adjusted, and good corrosion resistance can be secured stably.

(合金化処理温度:430℃以上600℃以下)
合金化処理を施す場合、合金化未処理の発生を抑制し、耐食性を向上させるために、めっき浴浸漬後の合金化処理温度は430℃以上とする。しかし、600℃を超えて合金化処理すると、フェライトやベイニティックフェライトが軟化し、引張強度が著しく低下する。このため、合金化処理温度は430℃以上600℃以下とする。なお、好ましくは、合金化処理温度は500℃以上560℃以下であり、このように温度を制御することによって、合金化度(めっき層のFe含有量)を8質量%以上13質量%以下とし、めっきの密着性を向上させることが容易になる。一方、合金化処理温度を[亜鉛めっき浴温度+40℃]以上にすると、オーステナイトが分解し、面積率で、残留オーステナイトを2.0%以下含有する鋼組織が得られやすくなり、良好な穴拡げ性が安定して確保することが容易となる。このため、合金化処理温度を430〜600℃かつ[亜鉛めっき浴温度+40℃]以上にすることが好ましい。
降伏点伸びの発生を抑制するだけでなく、プレス時の焼付けやかじりを防止するために、連続溶融亜鉛めっき処理後に、伸び率0.05%以上1%以下で調質圧延することが好ましい。
(Alloying temperature: 430 ° C or higher and 600 ° C or lower)
When the alloying treatment is performed, the alloying treatment temperature after immersion in the plating bath is set to 430 ° C. or more in order to suppress the occurrence of unalloyed treatment and improve the corrosion resistance. However, when alloying is performed at a temperature exceeding 600 ° C., ferrite and bainitic ferrite are softened, and the tensile strength is remarkably lowered. For this reason, the alloying treatment temperature is set to 430 ° C. or more and 600 ° C. or less. Preferably, the alloying treatment temperature is 500 ° C. or more and 560 ° C. or less, and the degree of alloying (Fe content of the plating layer) is 8 mass% or more and 13 mass% or less by controlling the temperature in this way. It becomes easy to improve the adhesion of plating. On the other hand, when the alloying treatment temperature is set to [zinc plating bath temperature + 40 ° C.] or higher, austenite is decomposed, and it becomes easy to obtain a steel structure containing 2.0% or less of retained austenite by area ratio, and good hole expansion. It becomes easy to ensure stability stably. For this reason, it is preferable to make alloying processing temperature into 430-600 degreeC and [zinc plating bath temperature +40 degreeC] or more.
In order not only to suppress the occurrence of yield point elongation, but also to prevent seizure and galling during pressing, it is preferable to perform temper rolling at an elongation of 0.05% or more and 1% or less after continuous hot dip galvanizing treatment.

また、めっきの濡れ性や合金化処理性を向上させるために、焼鈍前の鋼板に、Ni、Cu、CoおよびFeの1種または2種以上で構成されるめっきを施してもよい。
前記製造方法により、引張強度が590MPa以上の穴拡げ性に優れる溶融亜鉛めっき鋼板を製造することができる。
Moreover, in order to improve the wettability and alloying processability of plating, the steel plate before annealing may be plated with one or more of Ni, Cu, Co, and Fe.
By the said manufacturing method, the hot dip galvanized steel plate which is excellent in the hole expansibility whose tensile strength is 590 Mpa or more can be manufactured.

このように、鋼の化学組成を工夫し、熱間圧延と冷間圧延後の連続焼鈍、溶融亜鉛めっき、合金化処理条件を最適化することによって、引張強度が590MPa以上の穴拡げ性に優れる溶融亜鉛めっき鋼板およびその製造方法が提供される。穴拡げ性について、JFST1001に規定の方法で測定した穴拡げ率(HER)が50%以上の場合、穴拡げ性が良好である。HERの値が80%以上の場合、穴拡げ性はより良好である。   Thus, by devising the chemical composition of steel and optimizing the conditions for continuous annealing after hot rolling and cold rolling, hot dip galvanizing, and alloying treatment, the tensile strength is excellent in hole expansibility of 590 MPa or more. A hot-dip galvanized steel sheet and a method for producing the same are provided. About hole expansibility, when the hole expansion ratio (HER) measured by the method prescribed | regulated to JFST1001 is 50% or more, hole expansibility is favorable. When the HER value is 80% or more, the hole expandability is better.

本発明を、実施例を参照しながらより具体的に説明する。
表1に示す化学組成を有する鋼を転炉で溶製し、連続鋳造によって、245mm厚のスラブを鋳造した。
The present invention will be described more specifically with reference to examples.
Steel having the chemical composition shown in Table 1 was melted in a converter, and a 245 mm thick slab was cast by continuous casting.

なお、表1に示すAcは、文献値や実験値を回帰分析し、以下の式より求めた。
Ac=910−203×(C1/2)−15.2×Ni+44.7×Si+104×V+31.5×Mo−30×Mn−11×Cr−20×Cu+700×P+400×Al+400×Ti
Ac 3 shown in Table 1 was obtained by regression analysis of literature values and experimental values, and was obtained from the following equation.
Ac 3 = 910-203 × (C 1/2 ) −15.2 × Ni + 44.7 × Si + 104 × V + 31.5 × Mo-30 × Mn-11 × Cr-20 × Cu + 700 × P + 400 × Al + 400 × Ti

Figure 0005440375
Figure 0005440375

得られたスラブを表2に示す条件にて熱間圧延し、2.6mm厚の熱延鋼板を製板した。得られた熱延鋼板を酸洗し、冷間圧延し、1.2mm厚の冷延鋼板を製板した。   The obtained slab was hot rolled under the conditions shown in Table 2 to produce a 2.6 mm thick hot rolled steel sheet. The obtained hot-rolled steel sheet was pickled and cold-rolled to produce a 1.2 mm-thick cold-rolled steel sheet.

Figure 0005440375
Figure 0005440375

得られた冷延鋼板を700℃まで10℃/秒の昇温速度で加熱し、700℃から最高到達温度となる表3に示す焼鈍温度まで3℃/秒の昇温速度で加熱し、その温度で表3に示す時間保持し、焼鈍した。焼鈍温度から冷却停止温度まで8℃/秒の平均冷却速度で冷却し、さらに、溶融亜鉛めっき処理中の熱履歴を模擬するために、冷却停止温度で表3に示す時間保持し、想定めっき浴温である460℃まで5秒かけて冷却し、その温度で10秒保持し、室温まで10℃/秒の冷却速度で冷却し、焼鈍冷延鋼板を作製した。また、合金化処理中の熱履歴を模擬する場合、460℃で10秒保持した後に、さらに、表3に示す合金化処理温度まで5秒かけて加熱し、その温度で表2に示す時間保持し、室温まで10℃/秒の冷却速度で冷却し、焼鈍冷延鋼板を作製した。なお、冷却停止温度の保持時間は、冷却停止温度での保持時間、めっき浴温まで冷却する時間、めっき浴温度に保持する時間の合計である。   The obtained cold-rolled steel sheet was heated to 700 ° C. at a heating rate of 10 ° C./second, heated from 700 ° C. to the annealing temperature shown in Table 3, which was the highest temperature, at a heating rate of 3 ° C./second, The temperature was maintained for the time shown in Table 3 and annealed. Cooling is performed at an average cooling rate of 8 ° C./second from the annealing temperature to the cooling stop temperature. Further, in order to simulate the thermal history during the hot dip galvanizing process, the cooling stop temperature is maintained for the time shown in Table 3, and an assumed plating bath It cooled to 460 degreeC which is temperature over 5 second, it hold | maintained at the temperature for 10 second, it cooled at the cooling rate of 10 degreeC / second to room temperature, and produced the annealed cold rolled steel plate. Further, when simulating the heat history during the alloying treatment, after holding at 460 ° C. for 10 seconds, further heating to the alloying treatment temperature shown in Table 3 over 5 seconds, and holding at that temperature for the time shown in Table 2 Then, it was cooled to room temperature at a cooling rate of 10 ° C./second to produce an annealed cold rolled steel sheet. The holding time of the cooling stop temperature is the total of the holding time at the cooling stop temperature, the time for cooling to the plating bath temperature, and the time for holding at the plating bath temperature.

本例で作製した焼鈍冷延鋼板は、溶融亜鉛めっきが施されていないが、溶融亜鉛めっき鋼板と同じ熱履歴を受けているので、鋼板の機械的性質は、同じ熱履歴を有する溶融亜鉛めっき鋼板と実質的に同一である。   The annealed cold-rolled steel sheet produced in this example is not hot-dip galvanized, but receives the same thermal history as the hot-dip galvanized steel sheet, so the mechanical properties of the steel sheet are hot-dip galvanized with the same thermal history. It is substantially the same as a steel plate.

Figure 0005440375
Figure 0005440375

得られた焼鈍冷延鋼板について、光学顕微鏡または電子顕微鏡、さらにはX線回折法で組織を解析するとともに、引張試験、穴拡げ試験し、その機械特性を評価した。その結果を表4に示す。   The obtained annealed cold-rolled steel sheet was analyzed for structure with an optical microscope or an electron microscope, and further with an X-ray diffraction method, and subjected to a tensile test and a hole expansion test to evaluate its mechanical properties. The results are shown in Table 4.

[試験方法]
(フェライト、ベイニティックフェライトおよびベイナイトの合計の面積率)
各焼鈍冷延鋼板から圧延方向および圧延直角方向に試験片を採取し、圧延方向の断面組織および圧延直角方向の断面組織を光学顕微鏡または電子顕微鏡で撮影し、画像解析によりフェライト、ベイニティックフェライトおよびベイナイトの合計の面積率を測定した。求めた面積率を表4において面積率1の欄に示した。
[Test method]
(Total area ratio of ferrite, bainitic ferrite and bainite)
Test specimens were taken from each annealed cold rolled steel sheet in the rolling direction and the perpendicular direction of rolling, and the cross-sectional structure in the rolling direction and the cross-sectional structure in the direction perpendicular to the rolling were photographed with an optical microscope or electron microscope, and ferrite and bainitic ferrite were analyzed by image analysis. And the total area ratio of bainite was measured. The obtained area ratio is shown in the area 1 area column in Table 4.

(残留オーステナイトの面積率)
各焼鈍冷延鋼板に板厚の1/4だけ減厚するための化学研磨を施し、化学研磨後の表面にX線回折を施し、得られたプロファイルを解析し、残留オーステナイトの面積率を算出した。求めた面積率を表4において面積率2の欄に示した。
(Area ratio of retained austenite)
Each annealed cold-rolled steel sheet is subjected to chemical polishing to reduce the thickness by ¼, X-ray diffraction is applied to the surface after chemical polishing, the obtained profile is analyzed, and the area ratio of residual austenite is calculated. did. The obtained area ratio is shown in the area ratio 2 column in Table 4.

(機械的性質)
圧延方向に直角方向からJIS5号引張試験片を採取し、引張強度を測定した。JFST1001に規定の方法によって、穴拡げ率を測定した。
(mechanical nature)
A JIS No. 5 tensile specimen was taken from the direction perpendicular to the rolling direction, and the tensile strength was measured. The hole expansion rate was measured by the method prescribed in JFST1001.

なお、表1〜4において下線を付された数値は、その数値により示される含有量、製造条件、または機械特性が本発明の範囲外であることを示している。   In addition, the numerical value underlined in Tables 1-4 has shown that content, manufacturing conditions, or a mechanical characteristic shown by the numerical value is outside the scope of the present invention.

Figure 0005440375
Figure 0005440375

表4における供試材No.1、3〜5、8〜11、13、14および16〜18は、本発明の条件を全て満足する本発明例の鋼板であり、供試材No.2、6、7、12、15、19および20は本発明の条件の少なくとも一つを満足しない比較例の鋼板である。
供試材No.1、3〜5、8〜11、13、14および16〜18の本発明例の鋼板は、引張強度が590MPa以上の穴拡げ性に優れた高強度鋼板である。
Sample No. in Table 4 Nos. 1, 3 to 5, 8 to 11, 13, 14 and 16 to 18 are steel plates of examples of the present invention that satisfy all the conditions of the present invention. 2, 6, 7, 12, 15, 19, and 20 are comparative steel plates that do not satisfy at least one of the conditions of the present invention.
Specimen No. The steel plates of the present invention examples of 1, 3 to 5, 8 to 11, 13, 14 and 16 to 18 are high strength steel plates excellent in hole expansibility with a tensile strength of 590 MPa or more.

これに対して、比較例の鋼板No.2、7と15は化学組成が本発明の範囲から外れており、所望の強度が得られない。鋼板No.6、19と20は製造条件が本発明の範囲から外れており、所望の強度が得られない。鋼板No.12は化学組成が本発明の範囲から外れており、穴広げ性が悪い。   On the other hand, steel plate No. of the comparative example. 2, 7 and 15 are out of the scope of the present invention, and the desired strength cannot be obtained. Steel plate No. 6, 19 and 20 are out of the scope of the present invention, and the desired strength cannot be obtained. Steel plate No. No. 12 has a chemical composition that is out of the scope of the present invention, and has poor hole expandability.

本発明例の鋼板うち、残留オーステナイトの面積率が2.0%以下である鋼板No.1、3、5、8、9、11、13、14および16〜18は、引張強度が590MPa以上であり、穴広げ率が80%以上の好ましい鋼板となった。   Among the steel plates of the present invention example, steel plate No. 1 having an area ratio of retained austenite of 2.0% or less. 1, 3, 5, 8, 9, 11, 13, 14 and 16 to 18 were preferable steel sheets having a tensile strength of 590 MPa or more and a hole expansion ratio of 80% or more.

また、本発明例の鋼板うち、C量とMn量が好ましい範囲である鋼板No.1、3、4、8、10、11、13、14、16および17は、引張強度が780MPa以上の穴拡げ性に優れた好ましい鋼板となった。   Moreover, among the steel plates of the present invention, the steel plate No. 1 in which the C amount and the Mn amount are in the preferred ranges. 1, 3, 4, 8, 10, 11, 13, 14, 16 and 17 became preferable steel plates excellent in hole expansibility having a tensile strength of 780 MPa or more.

Claims (7)

鋼板の表面に溶融亜鉛めっき層を備える溶融亜鉛めっき鋼板において、前記鋼板は、質量%で、C:0.045%以上0.075%以下、Si:0.001%以上0.2%以下、Mn:.0%超え4.5%以下、P:0.1%以下、S:0.01%以下、sol.Al:0.001%以上0.2%以下、N:0.01%以下、O:0.01%以下を含有し、さらに、TiおよびNbの1種または2種を下記不等式を満たす範囲で含有し、残部Feおよび不純物からなる化学組成を有することを特徴とする、引張強度が780MPa以上でありJFST1001に規定の方法で測定した穴拡げ率が76%以上である溶融亜鉛めっき鋼板。
0.1≦Ti+Nb/2≦0.3
ここで、上記式中のTiおよびNbはそれぞれTiおよびNbの含有量(単位:質量%)を意味する。
In galvanized steel sheet on the surface of the steel sheet comprising a hot-dip galvanizing layer, wherein the steel sheet contains, by mass%, C: 0.0 45% or more 0.075% or less, Si: 0.001% to 0.2% or less , Mn: 3 . 0% more than 4.5% or less, P: 0.1% or less, S: 0.01% or less, sol. Al: 0.001% or more and 0.2% or less, N: 0.01% or less, O: 0.01% or less, and within a range satisfying the following inequality with one or two of Ti and Nb A hot-dip galvanized steel sheet having a tensile strength of 780 MPa or more and a hole expansion ratio of 76% or more measured by a method prescribed in JFST1001, characterized by containing a chemical composition comprising Fe and impurities .
0.1 8 ≦ Ti + Nb / 2 ≦ 0.3
Here, Ti and Nb in the above formula mean the contents of Ti and Nb (unit: mass%), respectively.
前記化学組成が、質量%で、Cr:0.1%以下、Mo:0.1%以下、Cu:0.1%以下、Ni:0.1%以下およびV:0.1%以下からなる群から選ばれた1種または2種以上をさらに含有する、請求項1に記載の溶融亜鉛めっき鋼板。   The chemical composition is, in mass%, Cr: 0.1% or less, Mo: 0.1% or less, Cu: 0.1% or less, Ni: 0.1% or less, and V: 0.1% or less. The hot-dip galvanized steel sheet according to claim 1, further comprising one or more selected from the group. 前記化学組成が、質量%で、Ca:0.01%以下、Mg:0.01%以下、REM:0.01%以下、Zr:0.01%以下およびBi:0.01%以下からなる群から選ばれた1種または2種以上をさらに含有する、請求項1または請求項2に記載の溶融亜鉛めっき鋼板。   The chemical composition is, in mass%, Ca: 0.01% or less, Mg: 0.01% or less, REM: 0.01% or less, Zr: 0.01% or less, and Bi: 0.01% or less. The hot dip galvanized steel sheet according to claim 1 or 2, further comprising one or more selected from the group. 前記化学組成が、質量%で、B:0.002%以下をさらに含有する、請求項1から請求項3までのいずれか1項に記載の溶融亜鉛めっき鋼板。   The hot dip galvanized steel sheet according to any one of claims 1 to 3, wherein the chemical composition further contains, by mass%, B: 0.002% or less. 残留オーステナイトの面積率が2.0%以下である鋼組織を有する、請求項1から4までのいずれか1項に記載の溶融亜鉛めっき鋼板。   The hot-dip galvanized steel sheet according to any one of claims 1 to 4, having a steel structure in which the area ratio of retained austenite is 2.0% or less. 下記工程(A)〜(C)を備えることを特徴とする請求項1から5までのいずれか1項に記載の溶融亜鉛めっき鋼板の製造方法:
(A)請求項1から4までのいずれか1項に記載の化学組成を有する鋼材に、圧延開始温度:1100℃以上1300℃以下、巻取温度:530℃以上600℃以下の熱間圧延を施して熱延鋼板とする熱間圧延工程;
(B)前記熱延鋼板に、冷間圧延を施して冷延鋼板とする冷間圧延工程;および
(C)前記冷延鋼板に、Ac点以上950℃以下の温度域に90秒間以下保持する再結晶焼鈍を施し、その後に、[亜鉛めっき浴温度−20℃]以上[亜鉛めっき浴温度+100℃]以下の温度域まで冷却し、次いで、前記温度域にめっき浴浸漬時を含めて500秒間以下保持する連続溶融亜鉛めっき工程。
The method for producing a hot-dip galvanized steel sheet according to any one of claims 1 to 5, comprising the following steps (A) to (C):
(A) Hot rolling at a rolling start temperature of 1100 ° C. or higher and 1300 ° C. or lower and a winding temperature of 530 ° C. or higher and 600 ° C. or lower is applied to the steel material having the chemical composition according to any one of claims 1 to 4. Hot rolling process to give hot-rolled steel sheet;
(B) a cold rolling process in which the hot-rolled steel sheet is cold-rolled to obtain a cold-rolled steel sheet; and (C) the cold-rolled steel sheet is held for 90 seconds or less in a temperature range of Ac 3 to 950 ° C. And then cooled to a temperature range of [Zinc plating bath temperature −20 ° C.] or more and [Zinc plating bath temperature + 100 ° C.] or less, and then the temperature range including the time of immersion in the plating bath is 500. Continuous hot dip galvanizing process that holds for less than a second.
請求項6に記載の製造方法により得られた溶融亜鉛めっき鋼板に、430℃以上600℃以下の温度域で合金化処理を施すことを特徴とする溶融亜鉛めっき鋼板の製造方法。   A method for producing a hot-dip galvanized steel sheet, comprising subjecting the hot-dip galvanized steel sheet obtained by the production method according to claim 6 to an alloying treatment in a temperature range of 430 ° C to 600 ° C.
JP2010113546A 2010-05-17 2010-05-17 Hot-dip galvanized steel sheet and manufacturing method thereof Active JP5440375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010113546A JP5440375B2 (en) 2010-05-17 2010-05-17 Hot-dip galvanized steel sheet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010113546A JP5440375B2 (en) 2010-05-17 2010-05-17 Hot-dip galvanized steel sheet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011241429A JP2011241429A (en) 2011-12-01
JP5440375B2 true JP5440375B2 (en) 2014-03-12

Family

ID=45408397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010113546A Active JP5440375B2 (en) 2010-05-17 2010-05-17 Hot-dip galvanized steel sheet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5440375B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109072380A (en) * 2016-04-19 2018-12-21 杰富意钢铁株式会社 Steel plate, coated steel sheet and their manufacturing method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6111522B2 (en) * 2012-03-02 2017-04-12 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5962544B2 (en) * 2012-10-11 2016-08-03 Jfeスチール株式会社 Method for producing high-strength hot-dip galvanized steel sheet and high-strength hot-dip galvanized steel sheet
EP3214193B1 (en) 2014-10-30 2019-03-06 JFE Steel Corporation High-strength steel sheet, high-strength hot-dip galvanized steel sheet, high-strength hot-dip aluminum-coated steel sheet, and high-strength electrogalvanized steel sheet, and methods for manufacturing same
JP6210184B1 (en) * 2016-04-19 2017-10-11 Jfeスチール株式会社 Steel sheet, plated steel sheet, and manufacturing method thereof
US11117348B2 (en) 2017-03-10 2021-09-14 Jfe Steel Corporation High-strength hot-rolled coated steel sheet

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4577100B2 (en) * 2005-06-07 2010-11-10 住友金属工業株式会社 High tensile hot dip galvanized steel sheet and manufacturing method
JP4924203B2 (en) * 2007-05-24 2012-04-25 住友金属工業株式会社 High-strength galvannealed steel sheet and method for producing the same
JP5071173B2 (en) * 2008-03-11 2012-11-14 住友金属工業株式会社 Hot-dip galvanized steel sheet and manufacturing method thereof
JP5240037B2 (en) * 2009-04-20 2013-07-17 新日鐵住金株式会社 Steel sheet and manufacturing method thereof
JP5440370B2 (en) * 2010-05-12 2014-03-12 新日鐵住金株式会社 Alloyed hot-dip galvanized steel sheet and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109072380A (en) * 2016-04-19 2018-12-21 杰富意钢铁株式会社 Steel plate, coated steel sheet and their manufacturing method
CN109072380B (en) * 2016-04-19 2020-08-14 杰富意钢铁株式会社 Steel sheet, plated steel sheet, and method for producing same

Also Published As

Publication number Publication date
JP2011241429A (en) 2011-12-01

Similar Documents

Publication Publication Date Title
CA2742671C (en) High-strength cold-rolled steel sheet having excellent formability, high-strength galvanized steel sheet, and methods for manufacturing the same
JP4964494B2 (en) High-strength steel sheet excellent in hole expansibility and formability and method for producing the same
JP5493986B2 (en) High-strength steel sheet and high-strength hot-dip galvanized steel sheet excellent in workability and methods for producing them
JP5949253B2 (en) Hot dip galvanized steel sheet and its manufacturing method
JP5088023B2 (en) High-strength cold-rolled steel sheet with excellent workability and method for producing the same
CN110073026B (en) High-strength cold-rolled steel sheet and hot-dip galvanized steel sheet having excellent yield strength, ductility and hole expansibility, and methods for producing same
JP3858146B2 (en) Manufacturing method of high-strength cold-rolled steel sheet and high-strength hot-dip galvanized steel sheet
JP5257981B2 (en) Manufacturing method of high-strength hot-dip galvanized steel sheet with excellent press formability
WO2013114850A1 (en) Hot-dip galvanized steel sheet and production method therefor
JP5765116B2 (en) High-strength hot-dip galvanized steel sheet excellent in deep drawability and stretch flangeability and method for producing the same
JP2009185355A (en) High strength cold-rolled steel sheet having excellent workability and collision resistance and its production method
JP5440375B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JP5835624B2 (en) Steel sheet for hot pressing, surface-treated steel sheet, and production method thereof
JP4407449B2 (en) High strength steel plate and manufacturing method thereof
JP4752522B2 (en) Manufacturing method of high strength cold-rolled steel sheet for deep drawing
JP4924203B2 (en) High-strength galvannealed steel sheet and method for producing the same
JP4265152B2 (en) High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same
JP4265153B2 (en) High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same
JP2002129241A (en) Method for manufacturing high tensile hot-dip galvanized steel sheet having excellent ductility
JP5397141B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP2009235532A (en) High strength steel sheet having excellent deep drawability, and method for producing the same
JP5141232B2 (en) High-strength hot-dip galvanized steel sheet with excellent formability and manufacturing method thereof
JP5870825B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP2007077495A (en) High strength cold rolled steel sheet, and method for producing the same
JP3870868B2 (en) Composite structure type high-tensile cold-rolled steel sheet excellent in stretch flangeability, strength-ductility balance and strain age hardening characteristics, and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131025

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20131025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131202

R151 Written notification of patent or utility model registration

Ref document number: 5440375

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350