JP2002129241A - Method for manufacturing high tensile hot-dip galvanized steel sheet having excellent ductility - Google Patents

Method for manufacturing high tensile hot-dip galvanized steel sheet having excellent ductility

Info

Publication number
JP2002129241A
JP2002129241A JP2000321386A JP2000321386A JP2002129241A JP 2002129241 A JP2002129241 A JP 2002129241A JP 2000321386 A JP2000321386 A JP 2000321386A JP 2000321386 A JP2000321386 A JP 2000321386A JP 2002129241 A JP2002129241 A JP 2002129241A
Authority
JP
Japan
Prior art keywords
steel sheet
hot
temperature
cooling
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000321386A
Other languages
Japanese (ja)
Other versions
JP3820868B2 (en
Inventor
Tatsuya Nakagaito
達也 中垣内
Takashi Kobayashi
崇 小林
Kazuhiro Seto
一洋 瀬戸
Tetsuo Shimizu
哲雄 清水
Takashi Sakata
坂田  敬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2000321386A priority Critical patent/JP3820868B2/en
Publication of JP2002129241A publication Critical patent/JP2002129241A/en
Application granted granted Critical
Publication of JP3820868B2 publication Critical patent/JP3820868B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a high tensile hot-dip galvanized steel sheet having sufficient ductility required for a stock for automotive parts by utilizing a continuous hot-dip galvanizing line. SOLUTION: A steel sheet having a composition consisting of, by mass, 0.05-0.20% C, 0.3-1.8% Si, 1.0-3.0% Mn and the balance Fe with inevitable impurities is subjected to: a primary step where the steel sheet is rapidly cooled to a temperature not higher than the MS point after primary heat treatment; a secondary step where the steel sheet is rapidly cooled to 470-350 deg.C after secondary heat treatment and held at a temperature ranging from cooling stop temperature to 350 deg.C for 10-500 s to undergo holding treatment; and a tertiary step where the steel sheet is subjected to hot-dip galvanizing treatment and rapid cooling. In this way, a composite structure consisting of tempered martensite, >=3% retained austenite, ferrite, and low-temperature transformation phase is formed, and also a hot-dip galvanizing layer is formed on the surface of the steel sheet. Moreover, alloying treatment can be applied after the hot-dip galvanizing treatment.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高張力溶融亜鉛め
っき鋼板の製造方法に係り、とくに連続溶融亜鉛めっき
ラインで製造される高張力溶融亜鉛めっき鋼板の延性の
向上に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a high-strength hot-dip galvanized steel sheet, and more particularly to an improvement in ductility of a high-strength hot-dip galvanized steel sheet manufactured by a continuous hot-dip galvanizing line.

【0002】[0002]

【従来の技術】近年、地球環境の保全という観点から、
自動車の燃費改善が要求されている。さらに加えて、衝
突時に乗員を保護するため、自動車車体の安全性向上も
要求されている。このようなことから、自動車車体の軽
量化および自動車車体の強化が積極的に進められてい
る。自動車車体の軽量化と強化を同時に満足させるに
は、部品素材を高強度化することが効果的であると言わ
れており、最近では高張力鋼板が自動車部品に積極的に
使用されている。
2. Description of the Related Art In recent years, from the viewpoint of preserving the global environment,
There is a demand for improved fuel efficiency of automobiles. In addition, in order to protect occupants in the event of a collision, there is a demand for improved safety of the vehicle body. For these reasons, reduction of the weight of the vehicle body and reinforcement of the vehicle body have been actively promoted. It is said that it is effective to increase the strength of the component material in order to satisfy the weight reduction and strengthening of an automobile body at the same time. Recently, high-tensile steel sheets have been actively used for automobile components.

【0003】鋼板を素材とする自動車部品の多くがプレ
ス加工によって成形されるため、自動車部品用鋼板には
優れたプレス成形性が要求される。優れたプレス成形性
を実現するには、第一義的には高い延性を確保すること
が肝要である。そのため、自動車部品用高張力鋼板に
は、高い延性を有することが強く求められている。延性
に優れる高張力鋼板としては、フェライトと低温変態相
との複合組織からなる組織強化型鋼板が提案されてい
る。この組織強化型鋼板では、フェライトとマルテンサ
イトの複合組織を有する二相組織鋼板が代表的である。
また最近では、残留オーステナイトに起因する変態誘起
塑性を利用した高延性鋼板も実用化の段階に至ってい
る。
[0003] Since many automotive parts made of steel sheets are formed by press working, steel sheets for automotive parts are required to have excellent press formability. In order to realize excellent press formability, it is essential to secure high ductility in the first place. Therefore, high tensile strength steel sheets for automobile parts are strongly required to have high ductility. As a high-tensile steel sheet having excellent ductility, a structure-reinforced steel sheet having a composite structure of ferrite and a low-temperature transformation phase has been proposed. A typical example of the structure strengthened steel sheet is a two-phase structure steel sheet having a composite structure of ferrite and martensite.
Recently, a highly ductile steel sheet utilizing transformation induced plasticity caused by retained austenite has also reached the stage of practical use.

【0004】一方、自動車部品には、適用部位によって
は高い耐食性も要求される。このような部位に適用され
る部品素材には、合金化溶融亜鉛めっき鋼板を主体とす
る溶融亜鉛めっき鋼板が好適である。したがって、自動
車車体の軽量化および強化をより一層推進するために
は、耐食性に優れ、しかも延性に優れる高張力溶融亜鉛
めっき鋼板が必要不可欠な素材となっている。
On the other hand, high corrosion resistance is required for automotive parts depending on the application site. A hot-dip galvanized steel sheet mainly composed of an alloyed hot-dip galvanized steel sheet is suitable for a component material applied to such a part. Therefore, in order to further reduce the weight and strengthen the automobile body, a high-strength hot-dip galvanized steel sheet having excellent corrosion resistance and excellent ductility is an indispensable material.

【0005】しかし、現在、溶融亜鉛めっき鋼板の多く
は、連続溶融亜鉛めっきラインで製造されている。これ
ら連続溶融亜鉛めっきラインは、焼鈍設備とめっき設備
とを連続化して設置していることが多く、焼鈍後のめっ
き処理により、焼鈍後の冷却がめっき温度で中断されて
いる。このため、工程全体での平均冷却速度を大きくす
ることが困難となる。
However, at present, most hot-dip galvanized steel sheets are manufactured in a continuous hot-dip galvanizing line. In these continuous hot-dip galvanizing lines, the annealing equipment and the plating equipment are often installed in a continuous manner, and the cooling after annealing is interrupted at the plating temperature due to the plating treatment after annealing. For this reason, it becomes difficult to increase the average cooling rate in the entire process.

【0006】したがって、連続溶融亜鉛めっきラインで
製造される高張力溶融亜鉛めっき鋼板では、一般に冷却
速度の大きい冷却条件下で生成するマルテンサイトや残
留オーステナイトをめっき処理後の鋼板中に存在させる
ことは難しい。連続溶融亜鉛めっきラインで、組織強化
型高張力溶融亜鉛めっき鋼板を製造する方法としては、
CrやMoといった焼入性を高める合金元素を多量に添加
し、マルテンサイト等の低温変態相の生成を容易にする
方法がある。しかし、合金元素の多量添加は、製造コス
トの上昇を招くという問題がある。
[0006] Therefore, in a high-strength hot-dip galvanized steel sheet manufactured in a continuous hot-dip galvanizing line, martensite and residual austenite, which are generally generated under cooling conditions with a high cooling rate, do not exist in the steel sheet after the plating treatment. difficult. As a method of manufacturing a structure-reinforced high-strength galvanized steel sheet in a continuous hot-dip galvanizing line,
There is a method of adding a large amount of an alloying element such as Cr or Mo that enhances hardenability to facilitate generation of a low-temperature transformation phase such as martensite. However, there is a problem that the addition of a large amount of alloying elements causes an increase in manufacturing cost.

【0007】また、例えば、特公昭62−40405 号公報に
は、C:0.005 〜0.15%、Mn:0.3〜2.0 %、Cr:0.03
〜0.8 %を含有する薄鋼板をAc1変態点〜Ac3変態点間
に加熱したのち、冷却途中に溶融亜鉛めっき処理を行
い、さらに500 ℃〜Ac1変態点間の温度に加熱する合金
化処理を施し、その後300 ℃まで冷却する連続溶融亜鉛
めっきラインを用いた組織強化型合金化溶融亜鉛めっき
高張力鋼板の製造方法が提案されている。この合金化溶
融亜鉛めっき高張力鋼板の製造方法においては、Ac1
態点〜Ac3変態点間に加熱後の冷却、および合金化処理
後300 ℃までの冷却を、CrとMn量と関連づけられた式で
規定される臨界冷却速度以上の冷却速度で行うことを特
徴としており、フェライト素地中に主としてマルテンサ
イトからなる低温変態組織を含む二相組織鋼板とし、そ
の鋼板上に合金化亜鉛めっき層を有する鋼板としてい
る。
For example, Japanese Patent Publication No. Sho 62-40405 discloses that C: 0.005 to 0.15%, Mn: 0.3 to 2.0%, Cr: 0.03%.
Alloying by heating a thin steel sheet containing 0.80.8% between the Ac 1 transformation point and the Ac 3 transformation point, performing hot-dip galvanizing during cooling, and further heating to a temperature between 500 ° C. and the Ac 1 transformation point A method has been proposed for producing a structure-strengthened alloyed hot-dip galvanized high-strength steel sheet using a continuous hot-dip galvanizing line that is subjected to a treatment and then cooled to 300 ° C. In this method for producing an alloyed hot-dip galvanized high-strength steel sheet, cooling after heating between the Ac 1 transformation point and the Ac 3 transformation point and cooling to 300 ° C. after the alloying treatment are related to the amounts of Cr and Mn. It is characterized in that it is performed at a cooling rate higher than the critical cooling rate specified by the following formula, and it is a two-phase steel sheet containing a low-temperature transformation structure mainly composed of martensite in a ferrite base, and an alloyed galvanized layer is formed on the steel sheet. And a steel plate having

【0008】しかしながら、特公昭62−40405 号公報に
記載された技術では、連続溶融亜鉛めっきラインで焼鈍
後やめっき処理後の冷却条件を、各鋼板の組成に合致し
て調整する必要がある。このような冷却条件の調整は、
連続亜鉛めっきラインの設備上の制約から問題があっ
た。また、特公昭62−40405 号公報に記載された技術で
製造された鋼板の延性も十分なものとは言えなかった。
However, in the technique described in Japanese Patent Publication No. 62-40405, it is necessary to adjust the cooling conditions after annealing or plating in a continuous galvanizing line in accordance with the composition of each steel sheet. Adjustment of such cooling conditions
There was a problem due to restrictions on the equipment of the continuous galvanizing line. Further, the ductility of the steel sheet manufactured by the technique described in Japanese Patent Publication No. 62-40405 was not sufficient.

【0009】一方、特公昭62−40405 号公報に記載され
た組織強化型溶融亜鉛めっき高張力鋼板とは異なり、連
続溶融亜鉛めっきラインを用いて、焼戻マルテンサイト
を利用して、成形性に優れる高張力溶融亜鉛めっき鋼板
を得る方法が提示されている。例えば、特開平6−9334
0 号公報には、連続溶融亜鉛めっきラインにおいて、再
結晶温度以上かつAc1変態点以上に加熱保持し、その後
S 点以下に急冷し、ついでMS 点以上の温度であって
少なくとも溶融亜鉛浴温度および合金化炉温度に加熱し
たのち、溶融亜鉛槽に浸漬する高強度合金化溶融亜鉛め
っき鋼板の製造方法が提案されている。
On the other hand, unlike the structure-strengthened hot-dip galvanized high-strength steel sheet described in Japanese Patent Publication No. 62-40405, the formability is improved using tempered martensite using a continuous hot-dip galvanizing line. A method for obtaining an excellent high tensile galvanized steel sheet has been proposed. For example, JP-A-6-9334
The 0 JP, in a continuous galvanizing line, and kept heated above the recrystallization temperature or higher and Ac 1 transformation point, then rapidly cooled to below then M S point, then at least molten zinc at a temperature of more than M S point A method for producing a high-strength alloyed hot-dip galvanized steel sheet that is heated to a bath temperature and an alloying furnace temperature and then immersed in a hot-dip zinc bath has been proposed.

【0010】また、特開平6−108152号公報には、(A
c3変態点−50℃)〜900 ℃の温度にて少なくとも1sec
以上保持することを含む再結晶焼鈍工程と、亜鉛めっき
を施す工程と、これらの工程の後にAc1変態点以下250
℃以上の温度にて再加熱処理を施す工程を有し、再結晶
焼鈍工程の後でかつ再加熱処理工程前に、MS 点より高
い温度から、合金元素量に依存する臨界冷却速度以上の
冷却速度で、MS 点以下まで冷却する曲げ加工性に優れ
た高強度合金化溶融亜鉛めっき鋼板の製造方法が提案さ
れている。
Japanese Patent Application Laid-Open No. 6-108152 discloses (A
c 3 Transformation point -50 ° C) ~ 900 ° C for at least 1 sec
A recrystallization annealing step including holding the above, a step of applying galvanization, and after these steps, an Ac 1 transformation point or less of 250 or less.
Having a step of performing a reheating treatment at a temperature of not less than ℃, after the recrystallization annealing step and before the reheating treatment step, from a temperature higher than the MS point, a critical cooling rate or more depending on the alloy element amount or more A method for producing a high-strength alloyed hot-dip galvanized steel sheet that is excellent in bending workability and that is cooled to a temperature equal to or lower than the MS point at a cooling rate has been proposed.

【0011】特開平6−93340 号公報、特開平6−1081
52号公報に記載された技術は、いずれも、鋼板をめっき
前あるいは合金化処理前にオーステナイト温度域からM
S 点以下の温度に焼入れてマルテンサイト組織の鋼板と
し、これを再加熱して焼戻マルテンサイトとする高強度
合金化溶融亜鉛めっき鋼板の製造方法である。しかしな
がら、特開平6−93340 号公報、特開平6−108152号公
報に記載された技術で製造された鋼板は、いずれも、自
動車部品等の素材用として現在要求される延性を十分満
足できず、更なる延性の向上が望まれていた。
JP-A-6-93340 and JP-A-6-1081
In any of the techniques described in Japanese Patent Publication No. 52, the steel sheet is heated from the austenitic temperature range before plating or alloying treatment.
This is a method for producing a high-strength galvannealed steel sheet having a martensite structure by quenching the steel sheet to a temperature equal to or lower than the S point and reheating the steel sheet to form tempered martensite. However, none of the steel sheets manufactured by the techniques described in JP-A-6-93340 and JP-A-6-108152 cannot sufficiently satisfy the ductility currently required for materials such as automobile parts. Further improvement in ductility has been desired.

【0012】[0012]

【発明が解決しようとする課題】本発明は、上記した従
来技術の問題を解決し、自動車部品用素材として十分な
延性を有し、強度−伸びバランスに優れる高張力溶融亜
鉛めっき鋼板の製造方法を提供するものである。本発明
の高張力溶融亜鉛めっき鋼板の製造方法では、連続溶融
亜鉛めっきラインを利用するのが望ましい。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, and provides a method for producing a high-strength hot-dip galvanized steel sheet having sufficient ductility as a material for automobile parts and excellent strength-elongation balance. Is provided. In the method for producing a high-strength galvanized steel sheet of the present invention, it is desirable to use a continuous galvanizing line.

【0013】[0013]

【課題を解決するための手段】本発明者らは、連続溶融
亜鉛めっきラインを用いて高延性高張力溶融亜鉛めっき
鋼板を製造するため、鋼板の組成およびミクロ組織の観
点から鋭意研究を重ねた。その結果、溶融亜鉛めっき処
理後に得られる高張力溶融亜鉛めっき鋼板の組織を焼戻
マルテンサイト、残留オーステナイトを含み、残部をフ
ェライトと低温変態相とからなる複合組織とすることに
より、鋼板に優れた延性を発現せしめることが可能であ
ることを知見した。
Means for Solving the Problems The present inventors have conducted intensive studies from the viewpoint of the composition and microstructure of a steel sheet in order to manufacture a high ductility and high tensile galvanized steel sheet using a continuous galvanizing line. . As a result, the structure of the high-strength hot-dip galvanized steel sheet obtained after the hot-dip galvanizing treatment was tempered martensite, including retained austenite, and the balance being a composite structure composed of ferrite and a low-temperature transformation phase, thereby excelling in the steel sheet. It has been found that ductility can be expressed.

【0014】さらに、鋼板の組織を焼戻マルテンサイ
ト、残留オーステナイトを含み、残部をフェライトと低
温変態相とからなる複合組織とするには、化学成分を所
定の範囲に調整した鋼板の組織を、まずラス状マルテン
サイトを含む組織とし、さらに連続溶融亜鉛めっきライ
ンにて所定の条件下で再加熱処理およびめっき処理を施
すことにより、焼戻マルテンサイト、残留オーステナイ
トを含み、残部をフェライトと低温変態相とからなる上
記複合組織とすることができ、極めて延性に優れた高張
力溶融亜鉛めっき鋼板とすることが可能であるという知
見を得た。
Further, in order to obtain a composite structure including tempered martensite and retained austenite and a balance of ferrite and a low-temperature transformation phase, the structure of the steel sheet in which the chemical composition is adjusted to a predetermined range is defined by: First, a structure containing lath-like martensite, and further subjected to reheating treatment and plating treatment under predetermined conditions in a continuous hot-dip galvanizing line, including tempered martensite and residual austenite, and the rest being ferrite and low-temperature transformation. It has been found that it is possible to obtain the above-mentioned composite structure composed of phases and to obtain a high tensile galvanized steel sheet having extremely excellent ductility.

【0015】さらに、まずラス状マルテンサイトを含む
組織とすることにより、その後の焼戻し処理時に析出す
るオーステナイトを微細に分散させることができ、した
がってオーステナイト中へのCの濃化が容易になり、さ
らにはオーステナイトの微細化によりオーステナイトが
安定化し、残留オーステナイト量が増加して、極めて延
性に優れた高張力溶融亜鉛めっき鋼板とすることができ
ることを知見した。
Further, by first forming a structure containing lath-like martensite, austenite precipitated during the subsequent tempering treatment can be finely dispersed, so that enrichment of C in austenite is facilitated. Found that austenite was stabilized by the refinement of austenite, the amount of retained austenite was increased, and a high-tensile galvanized steel sheet having extremely excellent ductility could be obtained.

【0016】本発明は、上記した知見に基づいて構成さ
れたものである。すなわち、本発明は、鋼板の表層に溶
融亜鉛めっき層を有する溶融亜鉛めっき鋼板の製造方法
であって、質量%で、C:0.05〜0.20%、Si:0.3 〜1.
8 %、Mn:1.0 〜3.0 %を含み、残部Feおよび不可避的
不純物からなる組成を有する鋼板に、(Ac3変態点−50
℃)以上の温度で、5sec 以上保持する一次熱処理を施
した後、10℃/sec 以上の冷却速度でMS 点以下の温度
まで冷却する一次工程と、ついで、(Ac1変態点〜Ac3
変態点)の間の温度域で5〜120sec間保持する二次熱処
理を施した後、5℃/sec 以上の冷却速度で、470 〜35
0 ℃の温度域の冷却停止温度まで冷却したのち、該冷却
停止温度以下350 ℃以上の温度域で10〜500sec間滞留す
る滞留処理を施す二次工程と、ついで溶融亜鉛めっき処
理を施し前記鋼板表面に溶融亜鉛めっき皮膜を形成した
のち、5℃/sec 以上の冷却速度で300 ℃まで冷却する
三次工程とを順次施すことを特徴とする延性に優れる高
張力溶融亜鉛めっき鋼板の製造方法であり、また、本発
明では、前記三次工程が、溶融亜鉛めっき処理を施し前
記鋼板表面に溶融亜鉛めっき皮膜を形成したのち、450
℃〜550 ℃の温度域まで再加熱して溶融亜鉛めっき皮膜
の合金化処理を施し、該合金化処理後に5℃/sec 以上
の冷却速度で300 ℃まで冷却する工程であることが好ま
しい。
The present invention has been made based on the above findings. That is, the present invention is a method for producing a hot-dip galvanized steel sheet having a hot-dip galvanized layer on the surface layer of the steel sheet, wherein, by mass%, C: 0.05 to 0.20%, and Si: 0.3 to 1.
8%, Mn: 1.0 to 3.0%, and having a composition comprising the balance of Fe and inevitable impurities, (Ac 3 transformation point −50)
° C.) at temperatures above was subjected to primary heat treatment for holding more than 5 sec, a primary step of cooling to a temperature below M S point 10 ° C. / sec or more cooling rate, then, (Ac 1 transformation point to Ac 3
After performing a secondary heat treatment for 5 to 120 seconds in a temperature range between (transformation point) and 470 to 35 at a cooling rate of 5 ° C./sec or more.
After cooling to a cooling stop temperature in a temperature range of 0 ° C., a secondary process of performing a staying process of staying at a temperature range of 350 ° C. or lower that is not higher than the cooling stop temperature for 10 to 500 seconds, and then performing a hot-dip galvanizing process on the steel sheet And forming a hot-dip galvanized film on the surface and then sequentially performing a tertiary step of cooling to 300 ° C. at a cooling rate of 5 ° C./sec or more. Further, in the present invention, after the tertiary step is subjected to hot-dip galvanizing to form a hot-dip galvanized film on the steel sheet surface, 450
Preferably, the method is a step of re-heating to a temperature range of from 5 ° C. to 550 ° C. to perform an alloying treatment of the hot-dip galvanized film, and cooling to 300 ° C. at a cooling rate of 5 ° C./sec or more after the alloying treatment.

【0017】また、本発明は、前記組成に加え、さら
に、次(a群)〜(e群) (a群):Al:0.2 〜1.5 質量%、 (b群):Cr、Moのうちの1種または2種を合計で、0.
05〜1.0 質量%、 (c群):B:0.003 質量%以下、 (d群):Ti、Nb、Vのうちから選ばれた1種または2
種以上を合計で、0.01〜0.3 質量%、 (e群):Ca、REM のうちから選ばれた1種または2種
を合計で、0.01質量%以下 のうちから選ばれた1群または2群以上を含有すること
が好ましい。
In addition, the present invention further provides, in addition to the above-mentioned composition, the following (groups) to (e) (group a): 0.2 to 1.5% by mass of Al; One or two types in total of 0.
05 to 1.0% by mass, (group c): B: 0.003% by mass or less, (d): one or two selected from Ti, Nb, and V
(E group): 1 or 2 groups selected from among 0.01% by mass or less of one or two selected from Ca and REM in total. It is preferable to contain the above.

【0018】また、本発明では、前記鋼板を、最終熱間
圧延が(Ar3変態点−50℃)以上の温度で行われた熱延
鋼板とし、前記一次工程に代えて、最終熱間圧延後の冷
却をMS 点以下の温度まで10℃/sec 以上の冷却速度で
急冷する熱延鋼板組織調整工程とすることが可能であ
る。
Further, in the present invention, the steel sheet is a hot-rolled steel sheet in which final hot rolling is performed at a temperature of (Ar 3 transformation point−50 ° C.) or more, and the final hot rolling is performed in place of the primary step. The subsequent cooling can be a hot rolled steel sheet structure adjusting step of rapidly cooling to a temperature below the MS point at a cooling rate of 10 ° C./sec or more.

【0019】[0019]

【発明の実施の形態】本発明は、鋼板表層に溶融亜鉛め
っき層または合金化溶融亜鉛めっき層を有する溶融亜鉛
めっき鋼板の製造方法である。まず、本発明に用いる鋼
板の組成限定理由について説明する。なお、本発明で
は、組成における%は質量%を意味する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention is a method for producing a hot-dip galvanized steel sheet having a hot-dip galvanized layer or an alloyed hot-dip galvanized layer on the surface layer of the steel sheet. First, the reasons for limiting the composition of the steel sheet used in the present invention will be described. In the present invention,% in the composition means mass%.

【0020】C:0.05〜0.20% Cは、鋼板の高強度化に必須の元素であり、さらに残留
オーステナイトや低温変態相の生成に効果があり、不可
欠の元素である。しかし、C含有量が0.05%未満では所
望の高強度化が得られず、一方、0.20%を超えると、溶
接性の劣化を招く。このため、Cは0.05〜0.20%の範囲
に限定した。
C: 0.05 to 0.20% C is an essential element for increasing the strength of a steel sheet, and is effective for generating retained austenite and a low-temperature transformation phase, and is an essential element. However, if the C content is less than 0.05%, the desired high strength cannot be obtained, while if it exceeds 0.20%, the weldability deteriorates. For this reason, C was limited to the range of 0.05 to 0.20%.

【0021】Mn:1.0 〜3.0 % Mnは、固溶強化により鋼を強化するとともに、鋼の焼入
性を向上し、さらに残留オーステナイトや低温変態相の
生成を促進する作用を有する。このような作用は、Mn含
有量が1.0 %以上で認められる。一方、3.0 %を超えて
含有しても効果が飽和し、含有量に見合う効果が期待で
きなくなりコストの上昇を招く。このため、Mnは1.0 〜
3.0 %の範囲に限定した。
Mn: 1.0 to 3.0% Mn has the effect of strengthening the steel by solid solution strengthening, improving the hardenability of the steel, and promoting the formation of retained austenite and a low-temperature transformation phase. Such an effect is observed when the Mn content is 1.0% or more. On the other hand, if the content exceeds 3.0%, the effect saturates and the effect corresponding to the content cannot be expected, resulting in an increase in cost. Therefore, Mn is 1.0 to
Limited to the 3.0% range.

【0022】Si:0.3 〜1.8 % Siは、固溶強化により鋼を強化するとともに、炭化物の
生成を抑制し、オーステナイトを安定化し、残留オース
テナイト相の生成を促進する作用を有する。このような
作用は、Si含有量が0.3 %以上で認められる。一方、1.
8 %を超えて含有すると、めっき性が顕著に劣化する。
このため、Siは0.3 〜1.8 %の範囲に限定した。
Si: 0.3 to 1.8% Si has the effect of strengthening the steel by solid solution strengthening, suppressing the formation of carbides, stabilizing austenite, and promoting the formation of a retained austenite phase. Such an effect is observed when the Si content is 0.3% or more. Meanwhile, 1.
If the content exceeds 8%, the plating property is significantly deteriorated.
For this reason, Si is limited to the range of 0.3 to 1.8%.

【0023】さらに、本発明の鋼板では、必要に応じ
て、上記した化学成分に加え、下記に示す(a群)〜
(e群)のうちの1種または2種以上をさらに含有する
ことが可能である。 (a群):Al:0.2 〜1.5 %、 Alは、Siと同様に炭化物の生成を抑制し、残留オーステ
ナイト相の生成を促進する作用を有し、本発明では必要
に応じ含有できる。このような作用は、0.2 %以上の含
有で認められる。一方、1.5 %を超える含有は、鋼中の
介在物量を増加させ、延性を低下させる。このため、Al
は0.2 〜1.5 %の範囲に限定するのが好ましい。
Further, in the steel sheet of the present invention, if necessary, in addition to the chemical components described above, the following (group a) to
It is possible to further contain one or more of (group e). (Group a): Al: 0.2 to 1.5%, Al has an effect of suppressing the formation of carbides and promoting the formation of a retained austenite phase, as in the case of Si, and can be contained as necessary in the present invention. Such an effect is observed at a content of 0.2% or more. On the other hand, when the content exceeds 1.5%, the amount of inclusions in the steel increases and the ductility decreases. For this reason, Al
Is preferably limited to the range of 0.2 to 1.5%.

【0024】(b群):Cr、Moのうちの1種または2種
を合計で、0.05〜1.0 % CrおよびMoは、鋼の焼入性を向上し、低温変態相の生成
を促進する作用を有する元素である。このような作用
は、CrおよびMoのうちの1種または2種を合計で0.05%
以上含有して認められる。一方、合計で1.0 %を超えて
含有しても効果が飽和し、含有量に見合う効果を期待で
きず、経済的に不利となる。このため、Cr、Moのうちの
1種または2種を合計で0.05〜1.0 %の範囲に限定する
のが望ましい。
(Group b): One or two of Cr and Mo in a total amount of 0.05 to 1.0% Cr and Mo improve the hardenability of steel and promote the formation of a low-temperature transformation phase. Is an element having This effect is achieved by adding one or two of Cr and Mo in a total of 0.05%.
Above is recognized. On the other hand, if the content exceeds 1.0% in total, the effect is saturated, and an effect commensurate with the content cannot be expected, which is economically disadvantageous. Therefore, it is desirable to limit one or two of Cr and Mo to a range of 0.05 to 1.0% in total.

【0025】(c群):B:0.003 %以下、 Bは、鋼の焼入性を向上する作用を有する元素であり、
必要に応じ含有できる。しかし、B含有量が0.003 %を
超えると、効果が飽和するため、Bは0.003 %以下に限
定するのが望ましい。なお、0.001 〜0.002 %が一層好
ましい。 (d群):Ti、Nb、Vのうちから選ばれた1種または2
種以上を合計で、0.01〜0.3 % Ti、Nb、Vは、炭窒化物を形成し、鋼を析出強化により
高強度化する作用を有しており、必要に応じて添加でき
る。このような作用は、Ti、Nb、Vのうちから選ばれた
1種または2種以上を合計で、0.01%以上含有すること
で認められる。一方、合計で0.3 %を超えて含有して
も、過度に高強度化し、延性が低下する。このため、T
i、Nb、Vのうちの1種または2種以上の含有量は、合
計で、0.01〜0.3 %の範囲に限定するのが好ましい。な
お、より好ましくは0.01〜0.15%である。
(Group c): B: 0.003% or less B is an element having an effect of improving the hardenability of steel,
It can be contained as needed. However, if the B content exceeds 0.003%, the effect is saturated, so it is desirable to limit B to 0.003% or less. In addition, 0.001 to 0.002% is more preferable. (D group): one or two selected from Ti, Nb and V
At least 0.01% to 0.3% of the species, Ti, Nb, and V form a carbonitride and have the effect of increasing the strength of the steel by precipitation strengthening, and can be added as necessary. Such an effect is recognized when one or more selected from Ti, Nb, and V are contained in a total amount of 0.01% or more. On the other hand, if the total content exceeds 0.3%, the strength becomes excessively high and the ductility decreases. Therefore, T
It is preferable that the content of one or more of i, Nb, and V is limited to a total range of 0.01 to 0.3%. In addition, more preferably, it is 0.01 to 0.15%.

【0026】(e群):Ca、REM のうちから選ばれた1
種または2種を合計で、0.01%以下Ca、REM は、硫化物
系介在物の形態を制御する作用を有し、これにより、鋼
板の伸びフランジ特性を向上させる効果を有する。この
ような効果を得るためには、Ca、REM のうちの1種また
は2種を合計で0.001 %以上含有することが好ましい。
このような効果はCa、REM のうちから選ばれた1種また
は2種の含有量が合計で、0.01%を超えると飽和する。
このため、Ca、REM のうちの1種または2種の含有量は
合計で、0.01%以下に限定するのが好ましい。
(Group e): 1 selected from Ca and REM
Ca or REM of 0.01% or less in total of two or more species has the effect of controlling the form of sulfide-based inclusions, and thereby has the effect of improving the stretch flange properties of the steel sheet. In order to obtain such an effect, it is preferable that one or two of Ca and REM are contained in a total of 0.001% or more.
Such an effect is saturated when the content of one or two selected from Ca and REM exceeds 0.01% in total.
Therefore, the content of one or two of Ca and REM is preferably limited to 0.01% or less in total.

【0027】本発明に用いる鋼板は、上記した化学成分
以外は、残部Feおよび不可避的不純物からなる。不可避
的不純物としては、Al:0.1 %以下、P:0.05%以下、
S:0.02%以下が許容できる。つぎに、本発明方法にお
ける製造工程の限定理由について説明する。上記した組
成を有する溶鋼を溶製し、通常の公知の方法で鋳造し、
通常の公知の方法で熱間圧延、あるいはさらに冷間圧延
して、鋼板とする。また、必要に応じて、酸洗あるいは
焼鈍等の工程を加えることができる。
The steel sheet used in the present invention comprises the balance Fe and unavoidable impurities other than the above-mentioned chemical components. As inevitable impurities, Al: 0.1% or less, P: 0.05% or less,
S: 0.02% or less is acceptable. Next, the reasons for limiting the manufacturing steps in the method of the present invention will be described. Melt the molten steel having the above composition, cast by a usual known method,
The steel sheet is hot-rolled or further cold-rolled by a known method. Further, if necessary, a step such as pickling or annealing can be added.

【0028】本発明では、上記した組成を有する鋼板
に、一次熱処理後冷却しマルテンサイトを含有する組織
とする一次工程()と、ついで連続溶融亜鉛めっきラ
インにて二次熱処理を施し、一次工程で形成されたマル
テンサイトの焼戻しと、残留オーステナイトおよび低温
変態相の生成を図る二次工程()とを施し、しかるの
ち亜鉛めっき処理する三次工程()を施し、延性に優
れる高張力溶融亜鉛めっき鋼板を得る。
In the present invention, the steel sheet having the above-mentioned composition is subjected to a primary heat treatment, followed by cooling to form a structure containing martensite (), followed by a secondary heat treatment in a continuous hot-dip galvanizing line. Tempering of the martensite formed in step 2) and a secondary step (1) for generating retained austenite and a low-temperature transformation phase, and then a tertiary step (2) of galvanizing to obtain high-tensile hot-dip galvanizing with excellent ductility Obtain a steel plate.

【0029】一次工程 一次工程では、鋼板に(Ac3変態点−50℃)以上の温度
で少なくとも5sec 以上保持する一次熱処理を施した
後、MS 点以下の温度まで10℃/sec 以上の冷却速度で
急冷する。この一次工程により、鋼板中にラス状マルテ
ンサイトが20%(体積率)以上生成される。本発明でい
う焼戻マルテンサイトを得るためには、前組織としてラ
ス状マルテンサイトを含む組織とすることが必要であ
る。
[0029] In the primary process first reaction step is subjected to primary heat treatment for holding at least 5sec or more (Ac 3 transformation point -50 ° C.) temperatures above the steel sheet, cooling over 10 ° C. / sec to a temperature below M S point Quench at speed. By this primary process, 20% (volume ratio) of lath martensite is generated in the steel sheet. In order to obtain tempered martensite according to the present invention, it is necessary to have a structure containing lath martensite as a prestructure.

【0030】一次熱処理の保持温度が(Ac3変態点−50
℃)未満、あるいは保持時間が5sec 未満では、加熱保
持中に生成するオーステナイト量が少なく、冷却後に得
られるラス状マルテンサイト量が不足する。また、一次
熱処理後の冷却速度が10℃/sec 未満では、冷却後の鋼
板組織をラス状マルテンサイトを含む組織とすることが
できない。なお、一次熱処理後の冷却速度の上限は、鋼
板の形状を良好に保つためには100 ℃/sec 以下とする
のが好ましい。また、保持時間は5sec 以上120sec以下
とするのが好ましい。
When the holding temperature of the primary heat treatment is (Ac 3 transformation point −50)
C) or less than 5 sec, the amount of austenite generated during heating and holding is small, and the amount of lath martensite obtained after cooling is insufficient. If the cooling rate after the primary heat treatment is less than 10 ° C./sec, the steel sheet structure after cooling cannot be a structure containing lath martensite. The upper limit of the cooling rate after the primary heat treatment is preferably 100 ° C./sec or less in order to keep the shape of the steel sheet good. Further, the holding time is preferably set to 5 seconds or more and 120 seconds or less.

【0031】なお、めっき母板として、最終熱間圧延が
(Ar3変態点−50℃)以上の温度で行われた熱延鋼板を
使用する場合には、この一次工程は、最終圧延後の冷却
を、MS 点以下の温度まで10℃/sec 以上の冷却速度で
急冷することにより、代わりとすることができる。ただ
し、冷却後の鋼板組織の均質化を図るためには、一次工
程は熱間圧延後に独立した工程として行うのが好まし
い。
When a hot-rolled steel sheet whose final hot rolling is performed at a temperature of (Ar 3 transformation point −50 ° C.) or higher is used as the plating base plate, this primary step is performed after the final rolling. The cooling can be replaced by rapid cooling to a temperature below the MS point at a cooling rate of 10 ° C./sec or more. However, in order to homogenize the structure of the steel sheet after cooling, it is preferable that the primary step be performed as an independent step after hot rolling.

【0032】二次工程 二次工程では、一次工程により20%以上のラス状マルテ
ンサイトを生成させた鋼板に、さらに(Ac1変態点〜A
c3変態点)の間の温度域で5〜120sec間保持する二次熱
処理を施した後、5℃/sec 以上の冷却速度で、470 〜
350 ℃の温度域の冷却停止温度まで冷却し、該冷却停止
温度以下350 ℃以上の温度域で10〜500sec間滞留する滞
留処理を施す。
Secondary Step In the secondary step, the steel sheet which has produced lath martensite of 20% or more in the primary step is further subjected to (Ac 1 transformation point to A
c After performing a secondary heat treatment for 5 to 120 seconds in the temperature range between 3 transformation points), at a cooling rate of 5 ° C./sec or more, 470 to
It is cooled to a cooling stop temperature in a temperature range of 350 ° C., and is subjected to a staying process of staying at a temperature range of 350 ° C. or less below the cooling stop temperature for 10 to 500 seconds.

【0033】この二次工程により、一次工程により生成
したラス状マルテンサイトを焼戻マルテンサイトとする
とともに、最終的に残留オーステナイト、低温変態相を
生成させるための鋼板組織の一部再オーステナイト化を
図る。二次熱処理における加熱保持温度がAc1変態点未
満では、オーステナイトが再生成せず、冷却後に残留オ
ーステナイトや低温変態相が得られない。また、保持温
度がAc3変態点を超えると、焼戻マルテンサイトの再オ
ーステナイト化を招く。
By this secondary step, the lath martensite generated in the primary step is converted into tempered martensite, and a part of the steel sheet structure is finally re-austenitized to finally generate retained austenite and a low-temperature transformation phase. Aim. When the heating holding temperature in the secondary heat treatment is lower than the Ac 1 transformation point, austenite is not regenerated, and no residual austenite or low-temperature transformation phase is obtained after cooling. On the other hand, when the holding temperature exceeds the Ac 3 transformation point, tempered martensite is re-austenitized.

【0034】また、二次熱処理における加熱保持時間が
5sec 未満ではオーステナイトの再生成が不十分である
ため、冷却後に十分な量の残留オーステナイトが得られ
ない。また、120secを超えると、焼戻マルテンサイトの
再オーステナイト化が進行し、必要量の焼戻マルテンサ
イトを得ることが困難となる。また、二次熱処理後の47
0 〜350 ℃の温度域までの冷却速度が5℃/sec 未満で
は、冷却速度が遅く二次熱処理で生成したオーステナイ
トがフェライト、パーライト等に変態し、残留オーステ
ナイトや低温変態相とならない。なお、二次熱処理後の
冷却速度は5℃/sec 以上50℃/sec 以下とするのが好
ましい。
If the heating holding time in the secondary heat treatment is less than 5 seconds, austenite is not sufficiently regenerated, so that a sufficient amount of retained austenite cannot be obtained after cooling. On the other hand, when the time exceeds 120 seconds, the re-austenitization of tempered martensite proceeds, and it becomes difficult to obtain a required amount of tempered martensite. In addition, 47
If the cooling rate to the temperature range of 0 to 350 ° C. is less than 5 ° C./sec, the cooling rate is low and the austenite formed by the secondary heat treatment transforms to ferrite, pearlite, etc., and does not become a retained austenite or a low-temperature transformation phase. Note that the cooling rate after the secondary heat treatment is preferably 5 ° C./sec or more and 50 ° C./sec or less.

【0035】冷却停止温度から350 ℃間の温度域(以
下、滞留温度域ともいう)で、等温保持または徐冷を行
う滞留処理は、残留オーステナイトの生成を促進するた
めに施される。この滞留処理を施すことにより、オース
テナイトが安定化し、残留オーステナイト量が増加す
る。滞留処理の温度域が350 ℃未満では、オーステナイ
トがマルテンサイトに変態する可能性があり、一方、47
0 ℃を超えると、ベイナイト変態が過度に進行し、また
炭化物の析出が速くなり、残留オーステナイト量が減少
する。
In the temperature range between the cooling stop temperature and 350 ° C. (hereinafter also referred to as the “retention temperature range”), the retention treatment for maintaining the temperature isothermally or gradually cooling is performed to promote the generation of retained austenite. By performing this staying treatment, austenite is stabilized, and the amount of retained austenite increases. If the temperature range of the retention treatment is lower than 350 ° C, austenite may transform to martensite, while
If the temperature exceeds 0 ° C., the bainite transformation proceeds excessively, the precipitation of carbides becomes faster, and the amount of retained austenite decreases.

【0036】また、滞留温度域での滞留時間が10sec 未
満では、オーステナイトへのCの濃化が不十分でオース
テナイトの安定化が得られない。一方、500secを超える
と、べイナイト変態が過度に進行し残留オーステナイト
量が減少するため、鋼板の延性が低下する。このため、
滞留処理における滞留時間は、10〜500secに限定する。
なお、好ましくは、10〜100secである。滞留時間が100s
ecを超えて長くしても、オーステナイトへのCの濃化が
飽和し、オーステナイトの安定化も十分となるため、そ
れ以上の長時間の滞留は、生産性を低下させることにな
る。
If the residence time in the retention temperature range is less than 10 seconds, the concentration of C in austenite is insufficient and austenite cannot be stabilized. On the other hand, if it exceeds 500 sec, bainite transformation proceeds excessively and the amount of retained austenite decreases, so that the ductility of the steel sheet decreases. For this reason,
The residence time in the residence processing is limited to 10 to 500 sec.
In addition, preferably, it is 10 to 100 seconds. Residence time 100s
Even if the length is longer than ec, the concentration of C in austenite is saturated, and the austenite is sufficiently stabilized, so that a longer residence time longer than that will lower the productivity.

【0037】なお、この二次工程は、焼鈍設備と溶融亜
鉛めっき設備を兼ね備えた連続溶融亜鉛めっきラインで
行うのが好ましい。連続溶融亜鉛めっきラインで行うこ
とにより二次工程後直ちに三次工程に移行でき、生産性
が向上する。 三次工程 三次工程では、二次工程を施された鋼板に溶融亜鉛めっ
き処理を施し、5℃/sec 以上の冷却速度で300 ℃まで
冷却する。なお、二次工程を経た鋼板の板温が、例えば
430 ℃未満と、めっき浴温に比し著しく低く、亜鉛が凝
固する可能性がある場合には、溶融亜鉛めっき処理前
に、加熱手段により鋼板の板温を溶融亜鉛めっき処理に
好適な温度に昇温させるめっき前加熱処理を施すのが好
ましい。めっき前加熱処理の温度は、めっき密着性の観
点からめっき浴温以上とするのが好ましい。なお、加熱
手段は、とくに限定する必要はないが、誘導加熱等が好
ましい。
This secondary step is preferably performed in a continuous hot-dip galvanizing line having both an annealing facility and a hot-dip galvanizing facility. By using the continuous hot-dip galvanizing line, the process can be shifted to the tertiary process immediately after the secondary process, and the productivity is improved. Tertiary Step In the tertiary step, the steel sheet subjected to the secondary step is subjected to a hot-dip galvanizing treatment and cooled to 300 ° C. at a cooling rate of 5 ° C./sec or more. In addition, the sheet temperature of the steel sheet after the secondary process is, for example,
If the temperature is less than 430 ° C, which is extremely low compared to the plating bath temperature and there is a possibility of solidification of zinc, before hot-dip galvanizing treatment, the sheet temperature of the steel sheet is adjusted to a temperature suitable for hot-dip galvanizing treatment by a heating means. It is preferable to perform a pre-plating heat treatment for raising the temperature. The temperature of the pre-plating heat treatment is preferably set to a plating bath temperature or higher from the viewpoint of plating adhesion. The heating means does not need to be particularly limited, but induction heating or the like is preferable.

【0038】また、溶融亜鉛めっき処理は、通常、連続
溶融亜鉛めっきラインで行われている処理条件でよく、
特に限定する必要はない。しかし、極端な高温でのめっ
き処理は、必要な残留オーステナイト量の確保が困難と
なる。このため、500 ℃以下でのめっき処理とするのが
好ましい。また、めっき後の冷却速度が極端に小さいと
きは、残留オーステナイトの確保が困難となる。このた
め、めっき処理後から300℃までの温度範囲における冷
却速度は5℃/sec 以上に限定するのが好ましい。な
お、好ましくは50℃/sec 以下である。また、めっき処
理後、必要に応じて目付量調整のためのワイピングを行
ってもよいのはいうまでもない。
Further, the hot-dip galvanizing treatment may be performed under the processing conditions usually performed in a continuous hot-dip galvanizing line.
There is no particular limitation. However, plating at an extremely high temperature makes it difficult to secure a necessary amount of retained austenite. For this reason, it is preferable to perform plating at 500 ° C. or lower. When the cooling rate after plating is extremely low, it is difficult to secure retained austenite. For this reason, it is preferable that the cooling rate in the temperature range from the plating treatment to 300 ° C. be limited to 5 ° C./sec or more. Preferably, it is 50 ° C./sec or less. Needless to say, after plating, wiping for adjusting the basis weight may be performed as necessary.

【0039】また、溶融亜鉛めっき処理後、合金化処理
を施してもよい。合金化処理は、溶融亜鉛めっき処理
後、450 ℃〜550 ℃の温度域まで再加熱し溶融亜鉛めっ
き皮膜の合金化を行う。合金化処理後は、5℃/sec 以
上の冷却速度で300 ℃まで冷却するのが好ましい。高温
での合金化は、必要な残留オーステナイト量の確保が困
難となり、鋼板の延性が低下する。このため、合金化温
度の上限は 550℃に限定するのが好ましい。また、合金
化温度が450 ℃未満では、合金化の進行が遅く生産性が
低下する。また、合金化処理後の冷却速度が極端に低い
場合には、必要な残留オーステナイトの確保が困難にな
る。このため、合金化処理後から 300℃までの温度範囲
における冷却速度を5℃/sec 以上に限定するのが好ま
しい。
After the hot-dip galvanizing treatment, an alloying treatment may be performed. In the alloying treatment, after the hot-dip galvanizing treatment, reheating to a temperature range of 450 ° C. to 550 ° C. is performed to alloy the hot-dip galvanized film. After the alloying treatment, it is preferable to cool to 300 ° C. at a cooling rate of 5 ° C./sec or more. Alloying at a high temperature makes it difficult to secure the necessary amount of retained austenite, and reduces the ductility of the steel sheet. For this reason, the upper limit of the alloying temperature is preferably limited to 550 ° C. On the other hand, when the alloying temperature is lower than 450 ° C., the progress of alloying is slow, and the productivity is reduced. If the cooling rate after the alloying treatment is extremely low, it becomes difficult to secure necessary austenite. Therefore, it is preferable to limit the cooling rate in the temperature range from after the alloying treatment to 300 ° C. to 5 ° C./sec or more.

【0040】なお、めっき処理後あるいは合金化処理後
の鋼板には、形状矯正、表面粗度等の調整のための調質
圧延を加えてもよい。また、樹脂あるいは油脂コーティ
ング、各種塗装等の処理を施しても何ら不都合はない。
本発明は、焼鈍設備とめっき設備および合金化処理設備
を連続した溶融亜鉛めっきラインにおいて鋼板の二次加
熱と溶融亜鉛めっきおよび合金化処理を行うことを前提
としているが、各工程を独立した設備あるいは工程にお
いて実施することも可能である。
The steel sheet after the plating treatment or the alloying treatment may be subjected to temper rolling for shape correction and adjustment of surface roughness and the like. Further, there is no inconvenience even if a treatment such as resin or oil coating or various kinds of painting is performed.
The present invention is based on the premise that the steel sheet is subjected to secondary heating, hot-dip galvanizing, and alloying in a continuous hot-dip galvanizing line with annealing equipment, plating equipment, and alloying treatment equipment. Alternatively, it can be performed in a process.

【0041】上記した、本発明の製造方法で得られる溶
融亜鉛めっき鋼板は、上記した組成と、焼戻マルテンサ
イト、残留オーステナイト、フェライトおよび低温変態
相からなる複合組織を有する鋼板である。なお、本発明
における焼戻マルテンサイトとは、ラス状のマルテンサ
イトを(Ac1変態点〜Ac3変態点)の温度域に短時間加
熱保持した際に鉄炭化物が析出して生成する相を指す。
The hot-dip galvanized steel sheet obtained by the manufacturing method of the present invention is a steel sheet having the above composition and a composite structure composed of tempered martensite, retained austenite, ferrite, and a low-temperature transformation phase. The tempered martensite in the present invention refers to a phase formed by precipitation of iron carbide when lath-like martensite is heated and maintained in a temperature range of (Ac 1 transformation point to Ac 3 transformation point) for a short time. Point.

【0042】焼戻マルテンサイトは、焼戻前のラス状マ
ルテンサイトの形態を引継いだ微細な内部構造を有する
相である。焼戻マルテンサイトは、焼戻しによって軟質
化しており十分な塑性変形能を有するため、高張力鋼板
の延性向上に有効な相である。本発明の製造方法で得ら
れる溶融亜鉛めっき鋼板では、このような焼戻マルテン
サイト相を、体積率で20%以上含有する。焼戻マルテン
サイト量が20%未満では、顕著な延性向上効果が期待で
きない。また、60%を超えると、鋼板の高強度化が困難
となるため、60%以下とするのが好ましい。
Tempered martensite is a phase having a fine internal structure that inherits the form of lath martensite before tempering. Tempered martensite is a phase that is effective for improving the ductility of a high-strength steel sheet because it is softened by tempering and has sufficient plastic deformability. The galvanized steel sheet obtained by the production method of the present invention contains such a tempered martensite phase in a volume ratio of 20% or more. If the amount of tempered martensite is less than 20%, a remarkable ductility improving effect cannot be expected. On the other hand, if it exceeds 60%, it is difficult to increase the strength of the steel sheet.

【0043】残留オーステナイトは、加工時にマルテン
サイトに歪誘起変態し、局所的に加えられた加工歪を広
く分散させ、鋼板の延性を向上する作用を有する。本発
明の製造方法で得られた鋼板では、このような残留オー
ステナイトを体積率で3%以上含有する。残留オーステ
ナイト量が3%未満では、顕著な延性の向上が期待でき
ない。また、残留オーステナイト量は、好ましくは5%
以上である。なお、残留オーステナイト量は多いほどよ
いが、連続溶融亜鉛めっきラインの熱履歴を経る本発明
の製造方法では、実際的には15%以下となる。
The retained austenite has a function of transforming martensite into strain during processing, dispersing locally applied processing strain widely, and improving ductility of the steel sheet. The steel sheet obtained by the production method of the present invention contains such retained austenite in a volume ratio of 3% or more. If the amount of retained austenite is less than 3%, remarkable improvement in ductility cannot be expected. The amount of retained austenite is preferably 5%.
That is all. The larger the amount of retained austenite is, the better, but it is actually 15% or less in the manufacturing method according to the present invention which passes through the heat history of the continuous hot-dip galvanizing line.

【0044】本発明の製造方法で得られた鋼板における
複合組織では、上記した焼戻マルテンサイトと残留オー
ステナイト以外は、フェライトおよび低温変態相であ
る。フェライトは、鉄炭化物を含まない軟質な相であ
り、高い変形能を有し、鋼板の延性を向上させる。本発
明の製造方法で得られた鋼板では、フェライトを体積率
で30%以上含有するのが好ましい。30%未満では延性の
向上が少ない。一方、70%を超えると鋼板の高強度化が
困難となるため、70%以下とするのが好ましい。
In the composite structure of the steel sheet obtained by the production method of the present invention, except for the above-mentioned tempered martensite and retained austenite, there are ferrite and a low-temperature transformation phase. Ferrite is a soft phase that does not contain iron carbide, has a high deformability, and improves the ductility of a steel sheet. The steel sheet obtained by the production method of the present invention preferably contains ferrite in a volume ratio of 30% or more. If it is less than 30%, the improvement in ductility is small. On the other hand, if it exceeds 70%, it becomes difficult to increase the strength of the steel sheet, so it is preferably set to 70% or less.

【0045】一方、本発明でいう低温変態相とは、焼戻
しされていないマルテンサイトあるいはベイナイトを指
す。これらの低温変態相は、本発明の製造方法における
二次工程以降の冷却過程中に生成する。マルテンサイ
ト、ベイナイトとも硬質相であり、鋼板強度を増加させ
る。また、強度の増加を十分図るためには、低温変態相
は、焼戻されてないマルテンサイトとするのが好適であ
る。低温変態相量は、本発明では特に限定しない。鋼板
の強度に応じて適宜配分すればよいが、好ましくは体積
率で5〜30%である。
On the other hand, the low-temperature transformation phase referred to in the present invention refers to martensite or bainite that has not been tempered. These low-temperature transformation phases are generated during the cooling process after the second step in the production method of the present invention. Both martensite and bainite are hard phases and increase the strength of the steel sheet. In order to sufficiently increase the strength, it is preferable that the low-temperature transformation phase is martensite that has not been tempered. The amount of the low-temperature transformation phase is not particularly limited in the present invention. It may be appropriately distributed according to the strength of the steel sheet, but preferably 5 to 30% by volume.

【0046】軟質相であるフェライトと硬質相である低
温変態相とが、焼戻マルテンサイト、残留オーステナイ
トとともに複合組織を構成することにより、軟質相から
硬質相までが混在する微細組織となって、鋼板の高延性
化や低降伏比化が実現し鋼板の成形性が著しく向上す
る。本発明の製造方法で得られた高張力溶融亜鉛めっき
鋼板は、上記した組成および上記した複合組織を有する
鋼板の表層に、溶融亜鉛めっき層、または合金化溶融亜
鉛めっき層が形成されためっき鋼板である。めっき層の
目付量は、使用部位による耐食性要求により適宜決定す
ればよく、とくに規定されない。自動車の構造部品に使
用される鋼板では、溶融亜鉛めっき層の厚さ(目付量)
は30〜60g/m2 とするのが好ましい。
The ferrite, which is a soft phase, and the low-temperature transformation phase, which is a hard phase, form a composite structure together with tempered martensite and retained austenite, resulting in a microstructure in which a soft phase to a hard phase are mixed. High ductility and a low yield ratio of the steel sheet are realized, and the formability of the steel sheet is remarkably improved. The high-strength hot-dip galvanized steel sheet obtained by the production method of the present invention is a coated steel sheet in which a hot-dip galvanized layer or an alloyed hot-dip galvanized layer is formed on a surface layer of a steel sheet having the above-described composition and the above-described composite structure. It is. The basis weight of the plating layer may be appropriately determined according to the corrosion resistance requirement depending on the use site, and is not particularly specified. For steel sheets used for automobile structural parts, the thickness of hot-dip galvanized layer (weight per unit area)
Is preferably 30 to 60 g / m 2 .

【0047】[0047]

【実施例】(実施例1)表1に示す組成の鋼を転炉で溶
製し、連続鋳造法で鋳片とした。得られた鋳片を板厚2.
6mm まで熱間圧延し、次いで酸洗したのち、冷間圧延に
より板厚1.0mmの鋼板を得た。
EXAMPLES (Example 1) Steel having the composition shown in Table 1 was melted in a converter and cast into a slab by a continuous casting method. The obtained slab is used for plate thickness 2.
After hot rolling to 6 mm, and then pickling, a 1.0 mm thick steel sheet was obtained by cold rolling.

【0048】次いで、これら冷延鋼板に、連続焼鈍ライ
ンで、表2に示す一次工程条件で加熱保持後冷却する一
次工程を施した。一次工程後、組織調査を行い、ラス状
マルテンサイト量を測定した。さらに、一次工程済のこ
れら鋼板に、連続溶融亜鉛めっきラインにて、表2に示
す二次工程条件で、加熱保持した後冷却し、引き続いて
滞留処理を施す二次工程を施したのち、引続き溶融亜鉛
めっき処理を施し、一部については溶融亜鉛めっき処理
後に再加熱する溶融亜鉛めっき皮膜の合金化処理を行
い、冷却する三次工程を施した。溶融亜鉛めっき処理
は、浴温 475℃のめっき槽に鋼板を浸漬して行い、引き
上げて片面当たりの目付量が50g/m2 となるようにガ
スワイピングにより目付量を調整した。なお、めっき皮
膜の合金化処理を行う場合には、ワイピング処理の後、
10℃/sec の加熱速度で 500℃まで昇温し、合金化処理
した。合金化処理時の保持時間はめっき皮膜中の鉄含有
率が9〜11%となるように調整した。なお、めっき浴浸
入前の板温が430 ℃を下回る鋼板は必ず、あるいはめっ
き浴浸入前の板温が430 ℃以上の鋼板の一部について、
二次工程後で、溶融亜鉛めっき処理前に、所定の温度ま
で板温を上昇する加熱処理を施した。
Next, these cold-rolled steel sheets were subjected to a primary step of cooling after heating and holding under the primary step conditions shown in Table 2 in a continuous annealing line. After the first step, the structure was examined to measure the amount of lath martensite. Further, the steel sheet after the first step is subjected to a second step of heating and holding, then cooling, and subsequently performing a stagnation treatment in a continuous hot-dip galvanizing line under the second step conditions shown in Table 2, and subsequently, A tertiary step was performed in which a hot-dip galvanizing treatment was performed, a part of the hot-dip galvanizing treatment was re-heated after the hot-dip galvanizing treatment, and an alloying treatment was performed on the hot-dip galvanized film. The hot-dip galvanizing treatment was performed by immersing the steel sheet in a plating bath at a bath temperature of 475 ° C., and was lifted up to adjust the basis weight by gas wiping such that the basis weight per side was 50 g / m 2 . In addition, when performing the alloying treatment of the plating film, after the wiping treatment,
The temperature was raised to 500 ° C. at a heating rate of 10 ° C./sec to perform an alloying treatment. The holding time during the alloying treatment was adjusted so that the iron content in the plating film was 9 to 11%. For steel sheets with a plate temperature below 430 ° C before infiltration of the plating bath, or for some of the steel sheets with a plate temperature of 430 ° C or higher before infiltration of the bath,
After the secondary process and before the hot-dip galvanizing treatment, a heat treatment for increasing the sheet temperature to a predetermined temperature was performed.

【0049】得られた鋼板について、ミクロ組織および
機械的特性を調査し表3に示す。鋼板のミクロ組織観察
は、鋼板断面を光学顕微鏡あるいは走査型電子顕微鏡で
行った。ミクロ組織中のラス状マルテンサイト量および
焼戻マルテンサイト量は、倍率1000倍の断面組織写真を
用いて、画像解析により任意に設定した 100mm四方の正
方形領域内に存在する該当相の占有面積率を求め、該当
相の体積率とした。また、残留オーステナイト量は、鋼
板より採取した試片を板厚方向の中心面まで研磨し、板
厚中心面での回折X線強度測定により求めた。入射X線
には MoKα線を使用し、試片中の残留オーステナイト相
の{111 }、{200 }、{220 }、{311 }各面の回折
X線強度比を求め、これらの平均値を残留オーステナイ
トの体積率とした。
The microstructure and mechanical properties of the obtained steel sheet were investigated and are shown in Table 3. The microstructure of the steel sheet was observed with an optical microscope or a scanning electron microscope on the cross section of the steel sheet. The amount of lath martensite and the amount of tempered martensite in the microstructure are calculated as follows: the area occupied by the relevant phase in a 100 mm square area arbitrarily set by image analysis using a cross-sectional structure photograph at a magnification of 1000 Was determined as the volume ratio of the relevant phase. The amount of retained austenite was determined by polishing a specimen taken from a steel plate to the center in the plate thickness direction and measuring the diffraction X-ray intensity at the center in the plate thickness. MoKα rays were used for the incident X-rays, and the diffracted X-ray intensity ratios of the {111}, {200}, {220}, and {311} planes of the retained austenite phase in the specimen were obtained, and the average of these values was calculated. The volume ratio of retained austenite was used.

【0050】また、機械的特性は、鋼板から圧延直角方
向に採取したJIS 5 号引張試験片を用いて、降伏強さ
(降伏点)YP、引張強さTS、伸びElを測定した。
これらの結果を表3に示す。
As for the mechanical properties, the yield strength (yield point) YP, the tensile strength TS, and the elongation El were measured using a JIS No. 5 tensile test piece taken from a steel sheet in a direction perpendicular to the rolling direction.
Table 3 shows the results.

【0051】[0051]

【表1】 [Table 1]

【0052】[0052]

【表2】 [Table 2]

【0053】[0053]

【表3】 [Table 3]

【0054】表3から、本発明例は、引張強さTSが59
0MPa以上、伸びElが30%以上、かつ強度−伸びバラン
ス(TS×El)が23000MPa%以上と、強度−伸びバラ
ンスに優れた高延性高張力溶融亜鉛めっき鋼板となって
いる。一方、本発明の範囲を外れる比較例では、延性が
十分でなく、強度−伸びバランスが低下している。
From Table 3, it can be seen that the inventive examples have a tensile strength TS of 59.
A high ductility and high tensile hot-dip galvanized steel sheet having excellent strength-elongation balance of 0 MPa or more, elongation El of 30% or more, and strength-elongation balance (TS × El) of 23000 MPa% or more. On the other hand, in the comparative examples out of the range of the present invention, the ductility is not sufficient, and the strength-elongation balance is lowered.

【0055】鋼板No.2は、一次熱処理における加熱保持
温度が低く、冷却後に得られるラス状マルテンサイト量
が少なくなり、めっき処理後の焼戻マルテンサイト量お
よび残留オーステナイト量が低下し、強度−伸びバラン
スが低下している。鋼板No.4は、一次熱処理での保持時
間が短く、冷却後に得られるラス状マルテンサイト量が
少なくなり、めっき処理後の焼戻マルテンサイト量が低
下し、強度−伸びバランスが低下している。また、鋼板
No.5は、一次熱処理後の冷却速度が遅すぎたため、ラス
状マルテンサイト量が少なくなり、めっき処理後の焼戻
マルテンサイト量が低下し、強度−伸びバランスが低下
している。
The steel sheet No. 2 has a low heat holding temperature in the primary heat treatment, a reduced amount of lath martensite obtained after cooling, a reduced amount of tempered martensite and an amount of retained austenite after plating, and a reduction in strength. Elongation balance is decreasing. In steel sheet No. 4, the holding time in the primary heat treatment was short, the amount of lath martensite obtained after cooling was small, the amount of tempered martensite after plating was reduced, and the strength-elongation balance was reduced. . Also, steel plate
In No. 5, since the cooling rate after the primary heat treatment was too slow, the amount of lath martensite was small, the amount of tempered martensite after plating was low, and the strength-elongation balance was low.

【0056】また、鋼板No.7は、二次熱処理の保持温度
が低すぎたため、めっき処理後に残留オーステナイト量
が少なく、強度−伸びバランスが低下している。また、
鋼板No.8は、二次熱処理の保持温度が高すぎたため、め
っき処理後の焼戻マルテンサイト量が少なく、強度−伸
びバランスが低下している。また、鋼板No.10 は、二次
熱処理での保持時間が短すぎたため、めっき処理後に残
留オーステナイト量が少なくなり、強度−伸びバランス
が低下している。また、鋼板No.11 は二次熱処理での保
持時間が好適範囲より長すぎたため、めっき処理後の焼
戻マルテンサイト量が少なくなり、強度−伸びバランス
が若干低下している。
Further, in steel sheet No. 7, since the holding temperature in the secondary heat treatment was too low, the amount of retained austenite was small after plating, and the strength-elongation balance was lowered. Also,
In steel sheet No. 8, since the holding temperature in the secondary heat treatment was too high, the amount of tempered martensite after the plating treatment was small, and the strength-elongation balance was lowered. Further, in steel sheet No. 10, since the holding time in the secondary heat treatment was too short, the amount of retained austenite was reduced after the plating treatment, and the strength-elongation balance was lowered. Further, in steel sheet No. 11, since the holding time in the secondary heat treatment was too long than the preferred range, the amount of tempered martensite after the plating treatment was small, and the strength-elongation balance was slightly lowered.

【0057】鋼板No.13 は、二次熱処理後の冷却速度が
小さく、また、鋼板No.20 は合金化処理後 300℃までの
冷却速度が小さく、めっき処理後の残留オーステナイト
量が少なくなり、強度−伸びバランスが低下している。
鋼板No.15 は、滞留温度域が高すぎ、また、鋼板No.16
は、滞留温度域が低すぎ、めっき処理後の残留オーステ
ナイト量が少なくなり、強度−伸びバランスが低下して
いる。
Steel sheet No. 13 has a low cooling rate after the secondary heat treatment, steel sheet No. 20 has a low cooling rate to 300 ° C. after the alloying treatment, and the amount of retained austenite after the plating treatment is small. Strength-elongation balance is reduced.
For steel sheet No.15, the residence temperature range was too high, and for steel sheet No.16
In the sample, the retention temperature range is too low, the amount of retained austenite after the plating treatment is reduced, and the strength-elongation balance is lowered.

【0058】鋼板No.18 は、滞留処理時間が短かすぎ、
めっき処理後の残留オーステナイト量が少なくなり、強
度−伸びバランスが低下している。鋼板No.24 は、滞留
処理が省略され、めっき処理後の残留オーステナイト量
が少なくなり、強度−伸びバランスが低下している。鋼
板No.21 〜23は、鋼板の組成が本発明範囲を外れ、焼戻
マルテンサイト、あるいは残留オーステナイトの生成量
が少なくなり、強度−伸びバランスが低下ししている。
For steel sheet No. 18, the residence time was too short,
The amount of retained austenite after the plating treatment is reduced, and the strength-elongation balance is lowered. In steel sheet No. 24, the staying treatment was omitted, the amount of retained austenite after the plating treatment was reduced, and the strength-elongation balance was lowered. In steel sheets Nos. 21 to 23, the composition of the steel sheets was out of the range of the present invention, the amount of tempered martensite or retained austenite was reduced, and the strength-elongation balance was lowered.

【0059】なお、めっき浴温度以上の板温を有する鋼
板は、めっき浴温度を下回る板温の鋼板に比べ、めっき
密着性が優れていた。 (実施例2)表1に示す組成の鋼Bを転炉で溶製し、連
続鋳造法にて鋳片とした。得られた鋳片に板厚2.3 mmま
で熱間圧延する熱延工程と、熱間圧延後、直ちに表4に
示す条件で急冷し、コイル状に巻き取る熱延鋼板組織調
整工程とを施した。この熱延鋼板組織調整工程を、本発
明の製造方法における一次工程の代替とした。熱延鋼板
組織調整工程後、鋼板のミクロ組織調査を行い、ラス状
マルテンサイトの量を測定した。
It should be noted that a steel plate having a plate temperature equal to or higher than the plating bath temperature had better plating adhesion than a steel plate having a plate temperature lower than the plating bath temperature. (Example 2) Steel B having the composition shown in Table 1 was melted in a converter and cast into a slab by a continuous casting method. The obtained slab was subjected to a hot rolling step of hot rolling to a sheet thickness of 2.3 mm, and immediately after hot rolling, a quenching was immediately performed under the conditions shown in Table 4 and a hot rolled steel sheet structure adjusting step of winding into a coil was performed. . This hot rolled steel sheet structure adjusting step was used as an alternative to the primary step in the production method of the present invention. After the hot-rolled steel sheet structure adjusting step, the microstructure of the steel sheet was examined, and the amount of lath martensite was measured.

【0060】次いで、この熱延鋼板に、連続溶融亜鉛め
っきラインにて、表4に示す二次工程条件で、加熱保持
した後冷却する二次工程を施した後、引続き溶融亜鉛め
っき処理を施し、さらに溶融亜鉛めっき皮膜の合金化処
理を行い、次いで冷却する三次工程を施した。溶融亜鉛
めっき処理は、実施例1と同様に行った。得られた鋼板
について、実施例1と同様にミクロ組織および機械的特
性を調査し表5に示す。
Next, the hot-rolled steel sheet was subjected to a secondary step of heating, holding and cooling under the secondary step conditions shown in Table 4 in a continuous hot-dip galvanizing line, and subsequently to a hot-dip galvanizing treatment. Then, a galvanizing treatment of the hot-dip galvanized film was performed, and then a tertiary step of cooling was performed. Hot-dip galvanizing was performed in the same manner as in Example 1. The microstructure and mechanical properties of the obtained steel sheet were examined in the same manner as in Example 1, and the results are shown in Table 5.

【0061】[0061]

【表4】 [Table 4]

【0062】[0062]

【表5】 [Table 5]

【0063】表5から、本発明例の溶融亜鉛めっき鋼板
は、延性に優れた高張力溶融亜鉛めっき鋼板となってい
る。
From Table 5, the hot-dip galvanized steel sheet of the present invention is a high-tensile hot-dip galvanized steel sheet having excellent ductility.

【0064】[0064]

【発明の効果】本発明によれば、非常に優れた延性を有
し、自動車部品に代表される成形品素材として実に好適
な高張力溶融亜鉛めっき鋼板が、安価にしかも安定して
製造でき、産業上格段の効果を奏する。
According to the present invention, a high-strength hot-dip galvanized steel sheet having extremely excellent ductility and actually suitable as a molded article material typified by an automobile part can be manufactured stably at low cost. It has a remarkable industrial effect.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C23C 2/06 C23C 2/06 2/28 2/28 (72)発明者 瀬戸 一洋 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 (72)発明者 清水 哲雄 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 (72)発明者 坂田 敬 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 Fターム(参考) 4K027 AA05 AB02 AB42 AC12 AC72 AC73 AC87 AD25 4K037 EA05 EA06 EA15 EA16 EA27 EA28 EB09 FD03 FD04 FF02 FF03 GA05 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C23C 2/06 C23C 2/06 2/28 2/28 (72) Inventor Kazuhiro Seto Chiba City, Chiba Pref. 1 Kawasaki-cho, Ward, Kawasaki Steel Engineering Co., Ltd. (72) Inventor Tetsuo Shimizu 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Steel Co., Ltd.Technical Research Laboratory (72) Inventor Takashi Sakata Central, Chiba-shi, Chiba No. 1 Kawasaki-cho, Ward F-term in Kawasaki Steel Engineering Laboratory Co., Ltd. 4K027 AA05 AB02 AB42 AC12 AC72 AC73 AC87 AD25 4K037 EA05 EA06 EA15 EA16 EA27 EA28 EB09 FD03 FD04 FF02 FF03 GA05

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 質量%で、 C:0.05〜0.20%、 Si:0.3 〜1.8 %、 Mn:1.0 〜3.0 % を含み、残部Feおよび不可避的不純物からなる組成を有
する鋼板に、(Ac3変態点−50℃)以上の温度で、5se
c 以上保持する一次熱処理を施した後、10℃/sec 以上
の冷却速度でMS 点以下の温度まで冷却する一次工程
と、ついで、(Ac1変態点〜Ac3変態点)の間の温度域
で5〜120sec間保持する二次熱処理を施した後、5℃/
sec 以上の冷却速度で、470 〜350 ℃の温度域の冷却停
止温度まで冷却したのち、該冷却停止温度以下350 ℃以
上の温度域で10〜500sec間滞留する滞留処理を施す二次
工程と、ついで溶融亜鉛めっき処理を施し前記鋼板表面
に溶融亜鉛めっき皮膜を形成したのち、5℃/sec 以上
の冷却速度で300 ℃まで冷却する三次工程とを順次施す
ことを特徴とする延性に優れる高張力溶融亜鉛めっき鋼
板の製造方法。
1. A steel sheet containing, by mass%, C: 0.05 to 0.20%, Si: 0.3 to 1.8%, Mn: 1.0 to 3.0%, and having a composition consisting of balance Fe and unavoidable impurities, (Ac 3 transformation) At a temperature of -50 ° C) or more and 5se
was subjected to a primary heat treatment of holding more than c, the primary step of cooling to a temperature below M S point 10 ° C. / sec or more cooling rate, then the temperature between (Ac 1 transformation point to Ac 3 transformation point) After performing a secondary heat treatment for 5 to 120 seconds in the temperature range,
a second step of cooling at a cooling rate of not less than sec to a cooling stop temperature in a temperature range of 470 to 350 ° C., and then performing a staying process of staying for 10 to 500 sec in a temperature range of 350 ° C. or less below the cooling stop temperature; A hot-dip galvanizing treatment to form a hot-dip galvanized film on the surface of the steel sheet, and then sequentially performing a tertiary step of cooling to 300 ° C. at a cooling rate of 5 ° C./sec or more, and a high tensile strength excellent in ductility. Manufacturing method of hot-dip galvanized steel sheet.
【請求項2】 前記三次工程が、溶融亜鉛めっき処理を
施し前記鋼板表面に溶融亜鉛めっき皮膜を形成したの
ち、450 ℃〜550 ℃の温度域まで再加熱して溶融亜鉛め
っき皮膜の合金化処理を施し、該合金化処理後に5℃/
sec 以上の冷却速度で300 ℃まで冷却する工程であるこ
とを特徴とする請求項1に記載の延性に優れる高張力溶
融亜鉛めっき鋼板の製造方法。
2. The tertiary step is to perform a hot-dip galvanizing process to form a hot-dip galvanized film on the surface of the steel sheet, and then reheat the steel sheet to a temperature range of 450 ° C. to 550 ° C. to alloy the hot-dip galvanized film. And 5 ° C. /
2. The method for producing a high-tensile hot-dip galvanized steel sheet having excellent ductility according to claim 1, wherein the step is a step of cooling to 300 ° C. at a cooling rate of at least sec.
【請求項3】 前記組成に加え、さらに、下記(a群)
〜(e群)のうちから選ばれた1群または2群以上を含
有することを特徴とする請求項1または2に記載の延性
に優れる高張力溶融亜鉛めっき鋼板の製造方法。 記 (a群):Al:0.2 〜1.5 質量%、 (b群):Cr、Moのうちの1種または2種を合計で、0.
05〜1.0 質量%、 (c群):B:0.003 質量%以下、 (d群):Ti、Nb、Vのうちから選ばれた1種または2
種以上を合計で、0.01〜0.3 質量%、 (e群):Ca、REM のうちから選ばれた1種または2種
を合計で、0.01質量%以下
3. In addition to the above composition, the following (group a)
The method for producing a high-tensile hot-dip galvanized steel sheet having excellent ductility according to claim 1 or 2, comprising one or more groups selected from (e) to (e). (Group a): Al: 0.2 to 1.5% by mass, (Group b): One or two of Cr and Mo in total of 0.
05 to 1.0% by mass, (group c): B: 0.003% by mass or less, (d): one or two selected from Ti, Nb, and V
0.01 to 0.3% by mass in total of at least one species, (group e): 0.01% by mass or less in total of one or two selected from Ca and REM
【請求項4】 前記鋼板を、最終熱間圧延が(Ar3変態
点−50℃)以上の温度で行われた熱延鋼板とし、前記一
次工程に代えて、最終熱間圧延後の冷却をM S 点以下の
温度まで10℃/sec 以上の冷却速度で急冷する熱延鋼板
組織調整工程とすることを特徴とする請求項1ないし3
のいずれかに記載の延性に優れる高張力溶融亜鉛めっき
鋼板の製造方法。
4. The steel sheet is subjected to final hot rolling (ArThreetransformation
Point -50 ° C) or higher.
Instead of the next step, cooling after the final hot rolling SBelow the point
Hot rolled steel sheet that is rapidly cooled to a temperature at a cooling rate of 10 ° C / sec or more
4. An organization adjustment step.
High tensile galvanizing with excellent ductility according to any of the above
Steel plate manufacturing method.
JP2000321386A 2000-10-20 2000-10-20 Method for producing high-tensile hot-dip galvanized steel sheet with excellent ductility Expired - Fee Related JP3820868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000321386A JP3820868B2 (en) 2000-10-20 2000-10-20 Method for producing high-tensile hot-dip galvanized steel sheet with excellent ductility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000321386A JP3820868B2 (en) 2000-10-20 2000-10-20 Method for producing high-tensile hot-dip galvanized steel sheet with excellent ductility

Publications (2)

Publication Number Publication Date
JP2002129241A true JP2002129241A (en) 2002-05-09
JP3820868B2 JP3820868B2 (en) 2006-09-13

Family

ID=18799523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000321386A Expired - Fee Related JP3820868B2 (en) 2000-10-20 2000-10-20 Method for producing high-tensile hot-dip galvanized steel sheet with excellent ductility

Country Status (1)

Country Link
JP (1) JP3820868B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004292891A (en) * 2003-03-27 2004-10-21 Jfe Steel Kk High tensile strength hot dip galvanized steel sheet having excellent fatigue property and hole expansibility, and its production method
JP2005264328A (en) * 2004-02-19 2005-09-29 Jfe Steel Kk High-strength steel plate having excellent workability and method for manufacturing the same
JP2006097067A (en) * 2004-09-29 2006-04-13 Nisshin Steel Co Ltd Method for producing high strength alloyed hot dip galvanized steel sheet having excellent workability
WO2006109489A1 (en) * 2005-03-31 2006-10-19 Kabushiki Kaisha Kobe Seiko Sho High-strength cold-rolled steel sheet excellent in coating adhesion, workability and hydrogen embrittlement resistance, and steel component for automobile
JP2007138262A (en) * 2005-11-21 2007-06-07 Jfe Steel Kk High strength cold rolled steel sheet reduced in dispersion in mechanical characteristic, and its manufacturing method
JP2007154283A (en) * 2005-12-07 2007-06-21 Jfe Steel Kk High strength steel sheet having excellent formability and shape fixability
JP2007270341A (en) * 2006-03-06 2007-10-18 Jfe Steel Kk Method for producing hot dip galvanized steel sheet
JP2011168861A (en) * 2010-02-22 2011-09-01 Jfe Steel Corp High-strength hot rolled steel sheet and method of manufacturing the same
WO2016194272A1 (en) * 2015-05-29 2016-12-08 Jfeスチール株式会社 High-strength cold-rolled steel sheet, high-strength plated steel sheet, and method for producing same
WO2017196965A1 (en) * 2016-05-10 2017-11-16 United States Steel Corporation High strength steel products and annealing processes for making the same
WO2020227438A1 (en) * 2019-05-07 2020-11-12 United States Steel Corporation Methods of producing continuously cast hot rolled high strength steel sheet products
WO2021034851A1 (en) * 2019-08-19 2021-02-25 United States Steel Corporation High strength steel products and annealing processes for making the same
CN115181889A (en) * 2021-04-02 2022-10-14 宝山钢铁股份有限公司 1180 MPa-grade low-carbon low-alloy hot-dip galvanized dual-phase steel and rapid heat treatment hot-dip galvanizing manufacturing method
US11560606B2 (en) 2016-05-10 2023-01-24 United States Steel Corporation Methods of producing continuously cast hot rolled high strength steel sheet products

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004292891A (en) * 2003-03-27 2004-10-21 Jfe Steel Kk High tensile strength hot dip galvanized steel sheet having excellent fatigue property and hole expansibility, and its production method
JP4501716B2 (en) * 2004-02-19 2010-07-14 Jfeスチール株式会社 High-strength steel sheet with excellent workability and method for producing the same
JP2005264328A (en) * 2004-02-19 2005-09-29 Jfe Steel Kk High-strength steel plate having excellent workability and method for manufacturing the same
JP2006097067A (en) * 2004-09-29 2006-04-13 Nisshin Steel Co Ltd Method for producing high strength alloyed hot dip galvanized steel sheet having excellent workability
JP4592000B2 (en) * 2004-09-29 2010-12-01 日新製鋼株式会社 Manufacturing method of high-strength galvannealed steel sheet with excellent workability
WO2006109489A1 (en) * 2005-03-31 2006-10-19 Kabushiki Kaisha Kobe Seiko Sho High-strength cold-rolled steel sheet excellent in coating adhesion, workability and hydrogen embrittlement resistance, and steel component for automobile
US8986468B2 (en) 2005-03-31 2015-03-24 Kobe Steel, Ltd. High-strength cold-rolled steel sheet excellent in coating adhesion, workability and hydrogen embrittlement resistance, and steel component for automobile
JP4640130B2 (en) * 2005-11-21 2011-03-02 Jfeスチール株式会社 High-strength cold-rolled steel sheet with small variation in mechanical properties and method for producing the same
JP2007138262A (en) * 2005-11-21 2007-06-07 Jfe Steel Kk High strength cold rolled steel sheet reduced in dispersion in mechanical characteristic, and its manufacturing method
JP2007154283A (en) * 2005-12-07 2007-06-21 Jfe Steel Kk High strength steel sheet having excellent formability and shape fixability
JP4692259B2 (en) * 2005-12-07 2011-06-01 Jfeスチール株式会社 High-strength steel sheet with excellent formability and shape freezeability
JP2007270341A (en) * 2006-03-06 2007-10-18 Jfe Steel Kk Method for producing hot dip galvanized steel sheet
JP2011168861A (en) * 2010-02-22 2011-09-01 Jfe Steel Corp High-strength hot rolled steel sheet and method of manufacturing the same
JPWO2016194272A1 (en) * 2015-05-29 2017-06-15 Jfeスチール株式会社 High-strength cold-rolled steel sheet, high-strength plated steel sheet, and production methods thereof
KR20170137899A (en) * 2015-05-29 2017-12-13 제이에프이 스틸 가부시키가이샤 High-strength cold-rolled steel sheet, high-strength plated steel sheet, and method for producing same
CN107614731A (en) * 2015-05-29 2018-01-19 杰富意钢铁株式会社 High strength cold rolled steel plate, high intensity coated steel sheet and their manufacture method
CN107614731B (en) * 2015-05-29 2019-07-23 杰富意钢铁株式会社 High strength cold rolled steel plate, high-intensitive coated steel sheet and their manufacturing method
KR102004077B1 (en) 2015-05-29 2019-07-25 제이에프이 스틸 가부시키가이샤 High-strength cold-rolled steel sheet, high-strength coated steel sheet, method for manufacturing high-strength cold-rolled steel sheet, and method for manufacturing high-strength coated steel sheet
WO2016194272A1 (en) * 2015-05-29 2016-12-08 Jfeスチール株式会社 High-strength cold-rolled steel sheet, high-strength plated steel sheet, and method for producing same
US11268162B2 (en) 2016-05-10 2022-03-08 United States Steel Corporation High strength annealed steel products
WO2017196965A1 (en) * 2016-05-10 2017-11-16 United States Steel Corporation High strength steel products and annealing processes for making the same
CN109414904A (en) * 2016-05-10 2019-03-01 美国钢铁公司 High strength steel product and annealing process for manufacturing it
US10385419B2 (en) 2016-05-10 2019-08-20 United States Steel Corporation High strength steel products and annealing processes for making the same
US11560606B2 (en) 2016-05-10 2023-01-24 United States Steel Corporation Methods of producing continuously cast hot rolled high strength steel sheet products
WO2020227438A1 (en) * 2019-05-07 2020-11-12 United States Steel Corporation Methods of producing continuously cast hot rolled high strength steel sheet products
CN113825846A (en) * 2019-05-07 2021-12-21 美国钢铁公司 Method for producing continuously cast hot-rolled high-strength steel sheet product
CN114630914A (en) * 2019-08-19 2022-06-14 美国钢铁公司 High strength steel product and annealing method for producing the same
WO2021034851A1 (en) * 2019-08-19 2021-02-25 United States Steel Corporation High strength steel products and annealing processes for making the same
CN115181889A (en) * 2021-04-02 2022-10-14 宝山钢铁股份有限公司 1180 MPa-grade low-carbon low-alloy hot-dip galvanized dual-phase steel and rapid heat treatment hot-dip galvanizing manufacturing method
CN115181889B (en) * 2021-04-02 2023-08-11 宝山钢铁股份有限公司 1180 MPa-level low-carbon low-alloy hot dip galvanized dual-phase steel and rapid heat treatment hot dip galvanizing manufacturing method

Also Published As

Publication number Publication date
JP3820868B2 (en) 2006-09-13

Similar Documents

Publication Publication Date Title
KR100638543B1 (en) High tensile hot-dip zinc-coated steel plate excellent in ductility and method for production thereof
JP5493986B2 (en) High-strength steel sheet and high-strength hot-dip galvanized steel sheet excellent in workability and methods for producing them
JP5709151B2 (en) High-strength hot-dip galvanized steel sheet with excellent formability and method for producing the same
JP3587116B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
CN110291217B (en) High-strength steel sheet and method for producing same
JP3840864B2 (en) High-tensile hot-dip galvanized steel sheet and manufacturing method thereof
WO2009125874A1 (en) High-strength steel sheets which are extremely excellent in the balance between burring workability and ductility and excellent in fatigue endurance, zinc-coated steel sheets, and processes for production of both
CN111936657B (en) High-strength steel sheet and method for producing same
JP5765116B2 (en) High-strength hot-dip galvanized steel sheet excellent in deep drawability and stretch flangeability and method for producing the same
WO2001064967A1 (en) High tensile cold-rolled steel sheet having excellent strain aging hardening properties
JP2003221623A (en) Method for manufacturing high-strength cold-rolled steel sheet and hot-dip galvanized high-strength steel sheet
JP2009035818A (en) High-strength hot dip galvanized steel sheet having excellent press formability, and production method therefor
JP3587126B2 (en) High tensile hot-dip galvanized steel sheet excellent in ductility and method for producing the same
JP4696870B2 (en) High strength steel plate and manufacturing method thereof
JP2003013177A (en) Hot-dip galvanized sheet steel with high ductility superior in press formability and strain aging hardening characteristics, and manufacturing method thereor
JP2002129241A (en) Method for manufacturing high tensile hot-dip galvanized steel sheet having excellent ductility
JP5440375B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JP4924203B2 (en) High-strength galvannealed steel sheet and method for producing the same
JP2004256836A (en) High tensile strength hot-dip galvanized steel sheet having excellent strength-elongation balance and fatigue characteristic, and its manufacturing method
JP3587115B2 (en) Method for producing high-strength hot-dip galvanized steel sheet with excellent formability
JP3624772B2 (en) Low yield ratio high-tensile hot-dip galvanized steel sheet excellent in ductility and manufacturing method thereof
JP3972551B2 (en) High tensile hot dip galvanized steel sheet and method for producing the same
JP3912181B2 (en) Composite structure type high-tensile hot-dip galvanized cold-rolled steel sheet excellent in deep drawability and stretch flangeability and manufacturing method thereof
JP4396347B2 (en) Method for producing high-tensile steel sheet with excellent ductility and stretch flangeability
JP3587114B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060612

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140630

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees