JP2003221623A - Method for manufacturing high-strength cold-rolled steel sheet and hot-dip galvanized high-strength steel sheet - Google Patents

Method for manufacturing high-strength cold-rolled steel sheet and hot-dip galvanized high-strength steel sheet

Info

Publication number
JP2003221623A
JP2003221623A JP2002019637A JP2002019637A JP2003221623A JP 2003221623 A JP2003221623 A JP 2003221623A JP 2002019637 A JP2002019637 A JP 2002019637A JP 2002019637 A JP2002019637 A JP 2002019637A JP 2003221623 A JP2003221623 A JP 2003221623A
Authority
JP
Japan
Prior art keywords
steel sheet
less
rolling
hot
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002019637A
Other languages
Japanese (ja)
Other versions
JP3858146B2 (en
Inventor
Fusahito Kitano
総人 北野
Hiroshi Matsuda
広志 松田
Toshiaki Urabe
俊明 占部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2002019637A priority Critical patent/JP3858146B2/en
Publication of JP2003221623A publication Critical patent/JP2003221623A/en
Application granted granted Critical
Publication of JP3858146B2 publication Critical patent/JP3858146B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a cold-rolled and hot-dip galvanized steel sheet with high strength, which acquires excellent impact resistance after being press-formed, coated and baked. <P>SOLUTION: This manufacturing method comprises finish rolling a steel comprising 0.02-0.15% C, 0.7% or less Si, 2.0-4.0% Mn, 0.1% or less P, 0.01% or less S, 0.1% or less sol.Al, 0.005% or less N, 0.01-0.1% Nb, and the balance substantially iron, at the Ar<SB>3</SB>point or higher, while total reduction r(%) and an average strain rate v(s<SP>-1</SP>) in the temperature range of 960 to 860°C satisfies the expression: 30≤r≤-150(Nb+C)+76-200(Nb+C)+68≤v≤-200(Nb+C)+128, winding it at 650°C or lower, making the metal structure be a composite structure containing 20-80% of a structure transformed from non-recrystallized austenite, then cold rolling it, and annealing it at 880°C or less for 120-240 seconds to make the composite structure with an average particle diameter of 5 μm or less. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は耐衝撃性に優れた高
強度冷延鋼板および高強度溶融亜鉛めっき鋼板の製造方
法に関する。
TECHNICAL FIELD The present invention relates to a high-strength cold-rolled steel sheet excellent in impact resistance and a method for producing a high-strength galvanized steel sheet.

【0002】[0002]

【従来の技術】近年、自動車の製造においては、自動車
が走行中に物体と衝突した際、衝撃に対する部材のエネ
ルギー吸収能を高め、乗員への衝撃負荷を低減すること
により、乗員の安全性を高めることが検討されている。
このような自動車の衝突安全性能を高めることと、車体
の軽量化を図るため、メンバー、ロッカー等の各種自動
車部品に高強度鋼板を適用することが進められている。
2. Description of the Related Art In recent years, in the manufacture of automobiles, when the automobile collides with an object while it is running, the energy absorption capacity of the members against impacts is increased, and the impact load on the occupants is reduced, thereby increasing the safety of the occupants. It is considered to increase.
In order to improve the collision safety performance of such automobiles and to reduce the weight of the vehicle body, application of high strength steel plates to various automobile parts such as members and lockers is being promoted.

【0003】自動車の耐衝撃性能に対する素材面での要
求に対して、例えば、特開平9-25538号公報には耐孔明
き腐食性および圧潰特性に優れた高強度冷延鋼板および
高強度溶融亜鉛めっき鋼板の製造方法が開示されてい
る。この技術は、鋼板の化学成分とミクロ組織の体積分
率を規定することにより、引張強度が500N/mm2以上で優
れた耐孔明き腐食性と圧潰特性を有する鋼板が得られる
というものである。
In order to meet the demands of automobiles from the viewpoint of impact resistance, for example, Japanese Patent Laid-Open No. 9-25538 discloses a high-strength cold-rolled steel sheet and a high-strength molten zinc excellent in perforation corrosion resistance and crushing property. A method of manufacturing a plated steel sheet is disclosed. This technology is to specify the chemical composition of the steel sheet and the volume fraction of the microstructure to obtain a steel sheet having a tensile strength of 500 N / mm 2 or more and excellent puncture corrosion resistance and crushing properties. .

【0004】[0004]

【発明が解決しようとする課題】しかし、特開平9-2553
8号公報記載の技術では、圧潰特性について、用いたサ
ンプルの形状はおろか試験方法自体の説明がされておら
ず、またその評価方法も具体的に示されていない。その
ため、プレス成形された部品の圧潰特性に対して、素材
の特性がどのように影響するのか不明である。また、実
際の自動車部品では、プレス成形後、塗装焼付処理が施
されることが多く、このような加工熱処理工程を想定し
ていない上記従来技術で、実部品の耐衝撃性能を反映で
きるとは考え難い。
[Problems to be Solved by the Invention] However, JP-A-9-2553
Regarding the crushing property, the technique described in Japanese Patent No. 8 does not explain the test method itself, let alone the shape of the sample used, and does not specifically show the evaluation method. Therefore, it is unclear how the characteristics of the material affect the crushing characteristics of the press-molded parts. In addition, in actual automobile parts, paint baking is often performed after press molding, and it is considered that the impact resistance performance of actual parts can be reflected by the above-mentioned conventional technology that does not assume such a thermomechanical treatment step. Hard to think.

【0005】また、この従来技術による冷延鋼板の組織
は、15体積%以下のフェライトと、残部がマルテンサ
イト、焼戻しマルテンサイトおよびベイナイトの低温変
態組織のいずれか1種または2種以上の組織からなるも
のである。これは、フェライトの体積率が15体積%を
超えると所定の強度が得られず、またフェライトと第二
相の差が大きくなって曲げ加工性が低下するためとして
いる。
The structure of this cold-rolled steel sheet according to the prior art is composed of at least 15% by volume of ferrite and at least one of the low-temperature transformation structures of martensite, tempered martensite and bainite at the balance. It will be. This is because if the volume ratio of ferrite exceeds 15% by volume, a predetermined strength cannot be obtained, and the difference between the ferrite and the second phase becomes large, and bending workability deteriorates.

【0006】この従来技術の実施例では、全試料とも第
二相はマルテンサイトであり、フェライトの体積率は大
部分が0〜6%となっている。しかしながら、このよう
なほぼマルテンサイト単相とも言える材料では、強度は
容易に得られるものの、プレス成形性は一般に期待でき
ない。さらに、耐衝撃性のように変形開始後のエネルギ
ー吸収能が問題となる用途には、必ずしも適していると
は言えない。
In this example of the prior art, the second phase is martensite in all the samples, and the volume fraction of ferrite is mostly 0 to 6%. However, with such a material that can be said to be almost a single phase of martensite, strength can be easily obtained, but press formability cannot be generally expected. Further, it is not necessarily suitable for applications such as impact resistance in which the energy absorption capacity after the start of deformation is a problem.

【0007】そこで、本発明では、以上の問題点を解決
し、プレス成形および塗装焼付処理後に優れた耐衝撃性
能が得られ、780MPa以上の引張強度を有する高強度冷延
鋼板および高強度溶融亜鉛めっき鋼板の製造方法を提供
することを目的とする。
Therefore, in the present invention, the above problems are solved, excellent impact resistance performance is obtained after press forming and paint baking, and a high strength cold rolled steel sheet and a high strength molten zinc having a tensile strength of 780 MPa or more are obtained. An object is to provide a method for manufacturing a plated steel sheet.

【0008】[0008]

【課題を解決するための手段】上記の課題は、次の発明
により解決される。その発明は、化学成分が、mass%で
C:0.02〜0.15%、Si:0.7%以下、Mn:2.0〜4.0%、P:0.1%以
下、S:0.01%以下、sol.Al:0.1%以下、N:0.005%以下、N
b:0.01〜0.1%を含有し、残部実質的に鉄からなる鋼を溶
製して鋳造する工程と、この鋳造されたスラブを粗圧延
し、次いで仕上圧延を施す際、960〜860℃の温度域での
全圧延率r(%)と平均ひずみ速度v(s-1)が下記の不等式
を満たし、Ar3点以上の温度で仕上圧延を終了し、その
後650℃以下の温度でコイルに巻取り、未再結晶オース
テナイトから変態した組織を20〜80%含有する複合組織
からなる熱延鋼板を製造する熱間圧延工程と、得られた
熱延鋼板に酸洗を施し、冷間圧延を施す工程と、880℃
以下の温度で120〜240秒間焼鈍する焼鈍工程とを有し、
組織を平均結晶粒径が5μm以下の複合組織とすることを
特徴とする高強度冷延鋼板の製造方法である。
The above problems can be solved by the following inventions. The invention is that the chemical composition is mass%
C: 0.02-0.15%, Si: 0.7% or less, Mn: 2.0-4.0%, P: 0.1% or less, S: 0.01% or less, sol.Al: 0.1% or less, N: 0.005% or less, N
b: a step of smelting and casting a steel containing 0.01 to 0.1% and the balance substantially consisting of iron, and rough-rolling the cast slab and then performing finish rolling, at 960 to 860 ° C. The total rolling ratio r (%) and the average strain rate v (s -1 ) in the temperature range satisfy the following inequality, and finish rolling is completed at a temperature of Ar 3 points or higher, and then coiled at a temperature of 650 ° C or lower. Winding, hot rolling process to produce a hot rolled steel sheet consisting of a composite structure containing 20-80% of the structure transformed from unrecrystallized austenite, and the obtained hot rolled steel sheet is subjected to pickling and cold rolling. Applying process and 880 ℃
And an annealing step of annealing for 120 to 240 seconds at the following temperature,
A method for producing a high-strength cold-rolled steel sheet, wherein the structure is a composite structure having an average crystal grain size of 5 μm or less.

【0009】30≦r≦-150(Nb+C)+76-200(Nb+C)+68≦v≦
-200(Nb+C)+128 ここで、式中の元素記号はそれぞれのmass%を示す。
30 ≦ r ≦ −150 (Nb + C) + 76-200 (Nb + C) + 68 ≦ v ≦
-200 (Nb + C) +128 Here, the symbol of an element in a formula shows mass% of each.

【0010】また、この発明の製造方法において、化学
成分としてさらに、mass%でTi:0.01〜0.1%、V:0.01〜0.
3%、B:0.0002〜0.002%、Cr:0.05〜0.5%、Mo:0.05〜0.5%
のうち1種以上を含有することを特徴とする高強度冷延
鋼板の製造方法とすることもできる。
Further, in the production method of the present invention, as chemical components, mass% Ti: 0.01-0.1%, V: 0.01-0.
3%, B: 0.0002 to 0.002%, Cr: 0.05 to 0.5%, Mo: 0.05 to 0.5%
It is also possible to provide a method for producing a high-strength cold-rolled steel sheet, characterized by containing at least one of these.

【0011】この発明は、耐衝撃性に優れた高強度冷延
鋼板を得るために、鋭意検討を重ねた結果見出された知
見に基づきなされた。それは、フェライトとマルテンサ
イト、ベイナイト等の硬質の低温変態相や残留オーステ
ナイトを含む複合組織鋼板においては、それらの組織を
一律に細粒化することが、プレス成形後、塗装焼付処理
が施される各種自動車部品(メンバー、ロッカー等の構
造部品)等への適用に対して、耐衝撃性能の向上を図る
上で有効であるということである。
The present invention was made on the basis of the finding found as a result of intensive studies in order to obtain a high-strength cold-rolled steel sheet excellent in impact resistance. That is, in the case of a composite microstructure steel sheet containing ferrite and martensite, a hard low-temperature transformation phase such as bainite, or retained austenite, it is possible to uniformly fine-grain those structures, and after press forming, a coating baking treatment is performed. It is effective in improving impact resistance when applied to various automobile parts (structural parts such as members and lockers).

【0012】この知見に基づき本発明は、780MPa以上の
引張強度を有し、プレス成形後の耐衝撃性能に優れた高
強度冷延鋼板および高強度溶融亜鉛めっき鋼板を得るこ
とが可能である。以下に、本発明の鋼成分の添加理由、
成分限定理由、組織形態および製造条件の限定理由につ
いて説明する。なお、以下の%はmass%を示す。
Based on this finding, the present invention makes it possible to obtain a high-strength cold-rolled steel sheet and a high-strength galvanized steel sheet having a tensile strength of 780 MPa or more and excellent in impact resistance after press forming. Below, the reason for adding the steel component of the present invention,
The reasons for limiting the components, the morphology of the structure, and the reasons for limiting the production conditions will be described. The following% indicates mass%.

【0013】(1)鋼成分の範囲 C:0.02〜0.15% Cは、鋼の強化に有効な元素であり、強化能を得るため
には0.02%以上の添加量を必要とする。しかし、C 量が0.
15%を超えると、鋼板の圧延方向にバンド組織が著しく
発達し、このような板厚方向の不均一組織はプレス成形
性および塗装焼付処理後の部材の耐衝撃性能を著しく劣
化させる。このため、C量は0.02〜0.15%の範囲内とす
る。
(1) Steel composition range C: 0.02 to 0.15% C is an element effective for strengthening steel, and an addition amount of 0.02% or more is required to obtain strengthening ability. However, the C content is 0.
If it exceeds 15%, a band structure develops remarkably in the rolling direction of the steel sheet, and such a non-uniform structure in the sheet thickness direction remarkably deteriorates the press formability and the impact resistance performance of the member after baking treatment. Therefore, the amount of C is set within the range of 0.02 to 0.15%.

【0014】Si:0.7%以下 Siは、鋼の強化に有効な元素であり、適宜添加すること
ができる。しかし、Si量が0.7%を超えると、溶融亜鉛め
っきを施す場合にめっきの密着性が著しく劣化し、均一
なめっき皮膜が得られない。このため、Si量は0.7%以下
とする。
Si: 0.7% or less Si is an element effective for strengthening steel and can be added as appropriate. However, if the amount of Si exceeds 0.7%, the adhesion of the plating is significantly deteriorated when hot dip galvanizing is performed, and a uniform plating film cannot be obtained. Therefore, the Si content is 0.7% or less.

【0015】Mn:2.0〜4.0% Mnは、鋼の焼入れ強化に有効な元素であり、十分な量の
添加を必要とする。Mnの添加量が2.0%未満では、加熱後
の冷却段階でオーステナイトからパーライトが生成し易
くなり、マルテンサイト、ベイナイト等の硬質の低温変
態相や残留オーステナイトが得られ難くなるため、780M
Pa以上の強度を安定して得られない。一方、Mn量が4.0%
を超えると、鋼中にMn系介在物が多く生成され、鋼板の
延性を著しく劣化させる。このため、Mn量は2.0〜4.0%
の範囲内とする。
Mn: 2.0 to 4.0% Mn is an element effective in quench hardening of steel and needs to be added in a sufficient amount. If the addition amount of Mn is less than 2.0%, pearlite is easily generated from austenite in the cooling step after heating, and hard low-temperature transformation phase such as martensite and bainite and retained austenite are difficult to be obtained, and thus 780M
Stable strength over Pa cannot be obtained. On the other hand, the Mn content is 4.0%
If it exceeds, Mn-based inclusions are often formed in the steel, and the ductility of the steel sheet is significantly deteriorated. Therefore, the amount of Mn is 2.0-4.0%
Within the range of.

【0016】P:0.1%以下 Pは、鋼の強化に有効な元素であり、適宜添加すること
ができる。しかし、P量が0.1%を超えると、鋼板の靭性
が著しく劣化する。さらに、溶融亜鉛めっき処理を施す
場合にはめっきの密着性が著しく劣化する。このため、
P量は0.1%以下とする。
P: 0.1% or less P is an element effective for strengthening steel and can be added as appropriate. However, if the P content exceeds 0.1%, the toughness of the steel sheet deteriorates significantly. Further, when the hot dip galvanizing treatment is performed, the adhesion of the plating is significantly deteriorated. For this reason,
The amount of P should be 0.1% or less.

【0017】S:0.01%以下 Sは鋼中に過剰に存在すると、スラブ加熱時にオーステ
ナイトの結晶粒界に偏析するため、熱間圧延時に赤熱脆
性が起こり易くなる。特に、S量が0.01%を超えると、こ
の悪影響が懸念される。このため、S量は0.01%以下とす
る。
S: 0.01% or less If S is excessively present in the steel, it segregates at the austenite grain boundaries during slab heating, so that red hot embrittlement easily occurs during hot rolling. In particular, if the S content exceeds 0.01%, this adverse effect is a concern. Therefore, the S content is 0.01% or less.

【0018】sol.Al:0.1%以下 Alは鋼中に過剰に存在すると、Al系介在物が多く生成さ
れるため、鋼板の延性が劣化する。特に、Alの添加量が
0.1%を超えると、この悪影響が懸念される。このため、
Al量は0.1%以下とする。
Sol.Al: 0.1% or less If Al is excessively present in the steel, a large amount of Al-based inclusions are produced, so that the ductility of the steel sheet deteriorates. Especially when the amount of Al added is
If it exceeds 0.1%, this adverse effect is a concern. For this reason,
The Al content is 0.1% or less.

【0019】N:0.005%以下 Nは鋼中に過剰に存在すると、鋳造時にスラブの表面に
割れが発生する。特に、N量が0.005%を超えると、この
悪影響が懸念される。このため、N量は0.005%以下とす
る。
N: 0.005% or less If N is excessively present in the steel, cracks will occur on the surface of the slab during casting. In particular, if the N content exceeds 0.005%, this adverse effect is a concern. Therefore, the N content is 0.005% or less.

【0020】Nb:0.01〜0.1% Nbは、鋼中で固溶Nbとして、また、Cと微細炭化物を形
成することにより、熱間圧延時にオーステナイトの再結
晶を遅滞化させてオーステナイトの微細化に寄与し、さ
らにこれから変態したフェライト、パーライト等の熱延
板組織の微細化に有効である。また、冷間圧延後、焼鈍
時の加熱段階においても、固溶NbあるいはNb系炭化物
は、フェライト再結晶粒の細粒化に有効であり、これか
ら逆変態したオーステナイトを微細化し、更にはその後
の冷却中に形成されるフェライト+低温変態相の微細化
にも大きく寄与する。これらの効果を得るには、Nbを0.
01%以上添加する必要がある。
Nb: 0.01 to 0.1% Nb acts as a solid solution Nb in steel and forms fine carbides with C, thereby delaying recrystallization of austenite during hot rolling to refine austenite. It is effective for refining the structure of hot-rolled sheet of ferrite, pearlite, etc. which has contributed to the transformation. Also, after cold rolling, even in the heating step during annealing, the solid solution Nb or Nb-based carbide is effective for refining the ferrite recrystallized grains, from which the reverse transformed austenite is refined, and further thereafter. It also contributes greatly to the miniaturization of the ferrite + low temperature transformation phase formed during cooling. To get these effects, set Nb to 0.
It is necessary to add more than 01%.

【0021】しかし、Nb量が0.1%を超えると、焼鈍時に
フェライトの再結晶温度が著しく上昇し、焼鈍後の鋼板
の組織に加工組織が残留し易くなるため、得られた鋼板
の延性は著しく劣化する。このため、Nb量は0.01〜0.1%
の範囲内とする。
However, if the amount of Nb exceeds 0.1%, the recrystallization temperature of ferrite is significantly increased during annealing, and the work structure is likely to remain in the structure of the steel sheet after annealing, so that the ductility of the obtained steel sheet is remarkably high. to degrade. Therefore, the Nb content is 0.01-0.1%
Within the range of.

【0022】Ti: 添加する場合0.01〜0.1% Tiは、鋼中でCまたはNと微細炭化物または微細窒化物を
形成することにより、熱延板組織ならびに焼鈍後の鋼板
組織の微細化に寄与する。この効果を得るには、Tiを0.
01%以上添加する必要がある。しかし、Ti 量が0.1%を超
えると、焼鈍時にフェライトの再結晶温度が著しく上昇
し、焼鈍後の鋼板の組織に加工組織が残留し易くなるた
め、得られた鋼板の延性は著しく劣化する。このため、
Tiを添加する場合、その添加量は0.01〜0.1%の範囲内と
する。
Ti: 0.01 to 0.1% when added Ti contributes to the refinement of the hot rolled sheet structure and the steel sheet structure after annealing by forming fine carbides or fine nitrides with C or N in the steel. . To get this effect, set Ti to 0.
It is necessary to add more than 01%. However, if the amount of Ti exceeds 0.1%, the recrystallization temperature of ferrite rises remarkably during annealing, and the work structure tends to remain in the structure of the annealed steel sheet, so the ductility of the obtained steel sheet deteriorates significantly. For this reason,
When Ti is added, its addition amount is within the range of 0.01 to 0.1%.

【0023】V:添加する場合0.01〜0.3% Vは、鋼の強化に有効な元素であり、またVにより形成さ
れる窒化物は焼鈍鋼板組織の細粒化に寄与する。これら
の効果を得るには、Vは0.01%以上の添加を必要とする。
しかし、V量が0.3%を超えると、これらの効果は飽和す
る。このため、Vを添加する場合は、その添加量は0.01
〜0.3%の範囲内とする。
V: 0.01 to 0.3% when added V is an element effective for strengthening steel, and the nitride formed by V contributes to grain refinement of the annealed steel sheet structure. In order to obtain these effects, V needs to be added in an amount of 0.01% or more.
However, when the V content exceeds 0.3%, these effects saturate. Therefore, when adding V, the addition amount should be 0.01
Within 0.3%.

【0024】B: 添加する場合0.0002〜0.002% Bは、熱間圧延時にオーステナイト粒界に偏析し、オー
ステナイトの粒成長を抑制することにより、これから変
態するフェライト、パーライト等の組織の細粒化に有効
に作用する。また、冷間圧延後、焼鈍時の加熱段階にお
いても、パーライトから逆変態したオーステナイトの粒
界に偏析して、オーステナイトの細粒化に寄与し、更に
はその後の冷却過程で形成される低温変態相の微細化に
も有効である。しかし、B量が0.002%を超えると、これ
らの細粒化の効果は飽和する。このため、Bを添加する
場合は、その添加量は0.0002〜0.002%の範囲内とする。
B: 0.0002 to 0.002% when added B segregates at the austenite grain boundaries during hot rolling and suppresses austenite grain growth, thereby reducing the grain size of the structure such as ferrite and pearlite to be transformed. It works effectively. Also, after cold rolling, even in the heating step during annealing, segregation from pearlite to grain boundaries of reverse transformed austenite contributes to austenite grain refinement, and further low temperature transformation formed in the subsequent cooling process. It is also effective for finer phases. However, when the amount of B exceeds 0.002%, the effect of grain refining becomes saturated. Therefore, when B is added, the addition amount is set to be in the range of 0.0002 to 0.002%.

【0025】Cr: 添加する場合0.05〜0.5% Crは鋼の焼入れ強化に有効な元素であり、この効果を得
るには、0.05%以上添加する必要がある。しかし、Cr量
が0.5%を超えると、この効果は飽和する。このため、Cr
を添加する場合は、その添加量を0.05〜0.5%の範囲内と
する。
Cr: 0.05 to 0.5% when added Cr is an element effective in quench hardening of steel, and it is necessary to add 0.05% or more to obtain this effect. However, when the Cr content exceeds 0.5%, this effect saturates. Therefore, Cr
When adding, the addition amount is within the range of 0.05 to 0.5%.

【0026】Mo: 添加する場合0.05〜0.5% Moは鋼の焼入れ強化に有効な元素であり、この効果を得
るには、0.05%以上添加する必要がある。しかし、Mo量
が0.5%を超えると、この効果は飽和する。このため、Mo
を添加する場合は、その添加量を0.05〜0.5%の範囲内と
する。
Mo: 0.05 to 0.5% when added Mo is an element effective in quench hardening of steel, and it is necessary to add 0.05% or more to obtain this effect. However, when the amount of Mo exceeds 0.5%, this effect is saturated. Therefore, Mo
When adding, the addition amount is within the range of 0.05 to 0.5%.

【0027】上記の元素以外の化学成分については、特
に過剰に添加しなければ、本発明の効果を損なうことは
ない。なお、この発明で残部が実質的に鉄というのは、
その他の合金元素あるいは不可避的不純物についても、
本発明の目的とする特性に悪影響を及ぼさないかぎり、
含有してもよいことを意味する。
Unless the chemical components other than the above-mentioned elements are added excessively, the effects of the present invention are not impaired. In the present invention, the balance is substantially iron,
For other alloying elements or inevitable impurities,
Unless adversely affecting the intended properties of the present invention,
It means that it may be contained.

【0028】(2) 鋼板の組織 鋼板の組織については、プレス成形および塗装焼付処理
後の部材の衝撃圧潰吸収エネルギーと関係がある。後述
のように、塗装焼付処理を通常の条件170℃×20minとす
ると、フェライトおよび第二相(低温変態相、残留オー
ステナイト)の平均粒径が5μmを超える場合には、1000
0J以上の高い吸収エネルギーが得られない。よって、フ
ェライトおよび第二相組織の平均粒径を5μm以下とす
る。
(2) Microstructure of Steel Plate The microstructure of the steel plate is related to the impact crushing absorbed energy of the member after press forming and paint baking. As will be described later, if the coating baking process is performed under normal conditions of 170 ° C. for 20 min, the average grain size of ferrite and the second phase (low temperature transformation phase, retained austenite) exceeds 5 μm.
High absorbed energy above 0J cannot be obtained. Therefore, the average grain size of the ferrite and the second phase structure is set to 5 μm or less.

【0029】本発明の高強度冷延鋼板および高強度溶融
亜鉛めっき鋼板は、優れた耐衝撃性を意図としており、
上記(1)のように所定の成分を調整し、組織を上記
(2)のように制御した鋼板であり、以下の製造方法に
て製造することができる。
The high-strength cold-rolled steel sheet and the high-strength galvanized steel sheet of the present invention are intended to have excellent impact resistance,
It is a steel sheet in which predetermined components are adjusted as in (1) above and the structure is controlled as in (2) above, and can be manufactured by the following manufacturing method.

【0030】(3)鋼板の製造方法 仕上圧延時の960〜860℃の温度域での全圧下率r(%):30
≦r≦-150(Nb+C)+76この温度域で適切な圧下を施すこと
により、未再結晶オーステナイトから変態する組織の体
積率を必要な量確保できるとともに、組織を細粒化する
ことができる。この温度域での全圧延率(合計圧下率)
r(%)が30%未満の場合、熱延板組織の段階で未再結晶オ
ーステナイトから変態する組織の体積率が20%未満と低
くなり、冷間圧延、焼鈍後のフェライトおよび第二相組
織の平均結晶粒径が5μm以下とならない。そのため、プ
レス成形および170℃×20minの塗装焼付処理後の部材の
衝撃圧潰吸収エネルギーは、10000J以上の高い特性値を
得ることができない。
(3) Manufacturing method of steel sheet Total rolling reduction r (%) in the temperature range of 960 to 860 ° C. during finish rolling: 30
≦ r ≦ −150 (Nb + C) +76 By applying appropriate reduction in this temperature range, it is possible to secure the required volume ratio of the structure transformed from unrecrystallized austenite and to refine the structure. You can Total rolling ratio (total reduction ratio) in this temperature range
When r (%) is less than 30%, the volume fraction of the structure transformed from unrecrystallized austenite in the stage of hot-rolled sheet structure is as low as less than 20%, and cold rolling, ferrite and second phase structure after annealing The average crystal grain size of is not less than 5 μm. Therefore, the impact crush absorption energy of the member after press molding and paint baking treatment at 170 ° C. × 20 min cannot obtain a high characteristic value of 10,000 J or more.

【0031】一方、この960〜860℃の温度域での全圧下
率が[-150(Nb+C)+76]%を超える場合は、未再結晶オース
テナイトから変態する組織の体積率が80%を超えるよう
になり、冷間圧延、焼鈍後の組織に加工組織が認められ
るため、鋼板の延性が著しく劣化する。従って、仕上圧
延時の960〜860℃の温度域での全圧延率r(%)を不等式 30≦r≦-150(Nb+C)+76 (1) で示される範囲内とする。
On the other hand, when the total rolling reduction in the temperature range of 960 to 860 ° C exceeds [-150 (Nb + C) +76]%, the volume fraction of the structure transformed from unrecrystallized austenite is 80%. And a work structure is observed in the structure after cold rolling and annealing, so that the ductility of the steel sheet is significantly deteriorated. Therefore, the total rolling ratio r (%) in the temperature range of 960 to 860 ° C. during finish rolling is set within the range represented by the inequality formula 30 ≦ r ≦ −150 (Nb + C) +76 (1).

【0032】平均ひずみ速度v(s-1): -200(Nb+C)+68≦
v≦-200(Nb+C)+128 仕上圧延時の上記温度域(960〜860℃)における平均ひ
ずみ速度が [-200(Nb+C)+68]s-1未満であると、熱延板
組織の段階で未再結晶オーステナイトから変態する組織
の体積率が20%未満と低くなり、冷間圧延、焼鈍後の組
織の平均粒径平均結晶粒径が5μm以下とならない。
Average strain rate v (s -1 ): -200 (Nb + C) + 68≤
v ≦ -200 (Nb + C) +128 When the average strain rate in the above temperature range (960 to 860 ° C) during finish rolling is less than [-200 (Nb + C) +68] s -1 , hot rolling The volume fraction of the structure transformed from unrecrystallized austenite in the stage of the plate structure is as low as less than 20%, and the average grain size of the structure after cold rolling and annealing does not fall below 5 μm.

【0033】一方、平均ひずみ速度が[-200(Nb+C)+128]
s-1を超えると、未再結晶オーステナイトから変態する
組織の体積率が80%を超えるようになり、冷間圧延、焼
鈍後の組織に加工組織が存在するようになるため、鋼板
の延性が著しく劣化する。従って、仕上圧延時の上記温
度域(960〜860℃)における平均ひずみ速度v(s-1)を不
等式 -200(Nb+C)+68≦v≦-200(Nb+C)+128 (2) で示される範囲内とする。
On the other hand, the average strain rate is [-200 (Nb + C) +128]
If it exceeds s -1 , the volume ratio of the structure transformed from unrecrystallized austenite will exceed 80%, and there will be a worked structure in the structure after cold rolling and annealing, so the ductility of the steel sheet will increase. Remarkably deteriorates. Therefore, the average strain rate v (s -1 ) in the above temperature range (960 to 860 ° C) during finish rolling is calculated by the inequality -200 (Nb + C) + 68≤v≤-200 (Nb + C) +128 (2 ) Within the range indicated by.

【0034】これらの高強度冷延鋼板の製造方法の発明
は、焼鈍工程の後、さらに溶融亜鉛めっき処理を施す工
程を有することを特徴とする高強度溶融亜鉛めっき鋼板
の製造方法とすることもできる。
The invention of the method for producing a high-strength cold-rolled steel sheet may be a method for producing a high-strength hot-dip galvanized steel sheet, which further comprises a step of performing hot dip galvanizing treatment after the annealing step. it can.

【0035】この発明は、上述の高強度冷延鋼板の製造
において、焼鈍工程の後、焼鈍温度からの冷却の途中
で、鋼板表面に溶融亜鉛めっき処理を施すことにより、
高強度溶融亜鉛めっき鋼板を製造する。
According to the present invention, in the production of the above-mentioned high-strength cold-rolled steel sheet, the surface of the steel sheet is subjected to hot dip galvanizing treatment after the annealing step and during the cooling from the annealing temperature.
Manufacture high strength galvanized steel sheet.

【0036】以上の製造工程を経て、本発明の意図する
耐衝撃性に優れた高強度冷延鋼板および高強度溶融亜鉛
めっき鋼板を製造することができる。また、このように
して得られた鋼板に、電気めっき、化成処理などの表面
処理を施しても所望の鋼板特性を損なうことはない。
The high-strength cold-rolled steel sheet and the high-strength hot-dip galvanized steel sheet excellent in impact resistance intended by the present invention can be manufactured through the above manufacturing steps. Further, even if the steel sheet thus obtained is subjected to surface treatment such as electroplating and chemical conversion treatment, desired steel sheet characteristics are not impaired.

【0037】[0037]

【発明の実施の形態】発明の実施に当たっては、はじめ
に上記化学成分の鋼を溶製し、鋳造する。鋼の溶製、鋳
造の方法は特に限定はなく、成分偏析等、特に組織の不
均一など無ければ良い。また、鋳造されたスラブは、鋳
造後、直ちに熱間圧延しても良いし、或いは、一旦冷却
し、加熱してから圧延しても良い。粗圧延した後、仕上
圧延を実施し、コイルに巻き取る。
BEST MODE FOR CARRYING OUT THE INVENTION In carrying out the invention, first, steel having the above chemical composition is melted and cast. The method for melting and casting steel is not particularly limited, as long as there is no segregation of components, especially nonuniformity of the structure. The cast slab may be hot-rolled immediately after casting, or may be once cooled and heated and then rolled. After rough rolling, finish rolling is performed and wound on a coil.

【0038】本発明では、耐衝撃性能に優れた鋼板を得
るための組織因子を鋭意検討した結果、フェライト、第
二相(オーステナイトの低温変態相または残留オーステ
ナイト)を含む複合組織鋼板で、これらの組織を微細均
一化することが必須であり、そのためには熱延板段階か
ら組織を細粒化することが重要であることを見出した。
In the present invention, as a result of diligent examination of the microstructural factors for obtaining a steel sheet having excellent impact resistance, a composite microstructural steel sheet containing ferrite and a second phase (low-temperature transformation phase of austenite or retained austenite) was used. It was found that it is essential to make the structure fine and uniform, and for that purpose, it is important to make the structure finer from the hot-rolled sheet stage.

【0039】次に、硬質組織の多い材料ほど、素材自体
の変形抵抗が高いため、プレス成形後の部材の高速圧潰
変形に対しても変形荷重が大きくなり、部材は潰れ難く
なることにより、耐衝撃性能は向上する。しかし、圧潰
時のエネルギー吸収能が求められるロッカー等の部材に
は、部材の潰れ易さが要求されるため、素材としては塑
性変形能の高い軟質組織が重要となる。このように部材
の耐衝撃性を向上させるには、素材として、軟質のフェ
ライトと硬質のオーステナイトの低温変態相(マルテン
サイトまたはベイナイト)または残留オーステナイトを
含む複合組織鋼板が有望である。
Next, since the material having a larger hard structure has a higher deformation resistance of the material itself, the deformation load becomes larger even at a high speed crushing deformation of the member after press molding, and the member becomes hard to be crushed. Impact performance is improved. However, since a member such as a rocker, which is required to have energy absorbing ability during crushing, is required to be easily crushed, a soft tissue having high plastic deformability is important as a material. Thus, in order to improve the impact resistance of the member, a composite structure steel sheet containing a low temperature transformation phase of soft ferrite and hard austenite (martensite or bainite) or retained austenite is promising as a material.

【0040】さらに、仕上圧延時には、圧延率と平均ひ
ずみ速度を制御して、熱延板組織を未再結晶オーステナ
イトから変態した微細組織とすることにより、冷間圧延
および焼鈍後の鋼板組織の微細化を図る。熱延板組織は
スラブ加熱条件、熱間圧延条件等により制御されるが、
組織の細粒化を図るには、仕上圧延スタンドミルの後段
パス側での圧延率、ひずみ速度等の圧延条件の適正化が
有効である。
Further, during finish rolling, the rolling ratio and the average strain rate are controlled so that the hot-rolled sheet structure becomes a fine structure transformed from unrecrystallized austenite, so that the microstructure of the steel sheet structure after cold rolling and annealing is reduced. Try to change. The hot rolled sheet structure is controlled by slab heating conditions, hot rolling conditions, etc.
In order to reduce the grain size of the structure, it is effective to optimize the rolling conditions such as the rolling rate and strain rate on the trailing pass side of the finish rolling stand mill.

【0041】特に、オーステナイト単相域における960
〜860℃の温度域での圧延条件(圧延率、ひずみ速度)を
適正化して、Ar3点以上で仕上圧延を終了し、圧延時に
未再結晶状態のオーステナイトを形成させて、これから
フェライト、第二相組織(パーライト、マルテンサイ
ト、ベイナイト等)を変態させる事が極めて重要である
ことを見出した。
In particular, 960 in the austenite single phase region
By optimizing the rolling conditions (rolling rate, strain rate) in the temperature range of ~ 860 ° C, finishing rolling is completed at Ar 3 points or more, and unrecrystallized austenite is formed during rolling. It was found that it is extremely important to transform the two-phase structure (pearlite, martensite, bainite, etc.).

【0042】そこで、実験により具体的数値を求めた。
以下に、その詳細について説明する。
Therefore, specific numerical values were obtained by experiments.
The details will be described below.

【0043】実験に用いた鋼板は、化学成分がmass%で
C:0.03〜0.08%、Si:0.05〜0.30%、Mn:2.7〜3.2%、P:0.0
1〜0.03%、S:0.001〜0.008%、sol.Al:0.04〜0.06%、N:
0.003〜0.004%、Nb:0.01〜0.07%、Cr:0.2 〜0.4%のスラ
ブ(板厚:30mm)に粗圧延および仕上圧延を施して得られ
た熱延板(板厚2.8mm)を板厚1.2mmまで冷間圧延した後、
840℃で焼鈍し、次いで伸長率0.5%にて調質圧延して作
製した焼鈍板である。
The steel sheet used in the experiment has a chemical composition of mass%
C: 0.03-0.08%, Si: 0.05-0.30%, Mn: 2.7-3.2%, P: 0.0
1-0.03%, S: 0.001-0.008%, sol.Al:0.04-0.06%, N:
Hot-rolled sheet (sheet thickness: 2.8 mm) obtained by rough rolling and finish rolling of a slab (sheet thickness: 30 mm) of 0.003 to 0.004%, Nb: 0.01 to 0.07%, Cr: 0.2 to 0.4%. After cold rolling to 1.2mm,
This is an annealed plate produced by annealing at 840 ° C and then temper rolling at an elongation of 0.5%.

【0044】ここで、仕上圧延時は960〜860℃の温度域
での圧延率と平均ひずみ速度をそれぞれ10〜80%、70〜9
0 s-1に変化させて、840℃で圧延を終了した。熱延板ま
たは焼鈍板の組織は、走査型電子顕微鏡を用いて、圧延
方向に平行な垂直断面にて観察した。焼鈍板において、
無作為に抽出した200個分のフェライト、第二相の体積
率および平均結晶粒径(焼鈍板)を測定した。また、フェ
ライト、第二相の体積率を定量化した。
Here, during finish rolling, the rolling rate and average strain rate in the temperature range of 960 to 860 ° C. are 10 to 80% and 70 to 9 respectively.
After changing to 0 s -1 , rolling was completed at 840 ° C. The structure of the hot-rolled sheet or the annealed sheet was observed with a scanning electron microscope in a vertical section parallel to the rolling direction. In the annealed plate,
For 200 randomly selected ferrites, the volume fraction of the second phase and the average grain size (annealed plate) were measured. In addition, the volume ratio of ferrite and the second phase was quantified.

【0045】また、熱延板に関しては、未再結晶オース
テナイトより変態した組織の体積率を定量化した。次
に、この焼鈍板の中から、比較的強度差が小さく、平均
粒径の大きく異なる材料を用いて、図1に示すハット型
形状にプレス成形し、次いで170℃×20minの塗焼付相当
の熱処理を施した後、成形材を衝撃圧潰試験に供した。
With respect to the hot rolled sheet, the volume fraction of the structure transformed from unrecrystallized austenite was quantified. Next, from this annealed plate, materials with relatively small difference in strength and greatly different average particle diameters were press-formed into the hat shape shown in FIG. 1, and then 170 ° C. × 20 min equivalent to baking. After the heat treatment, the molded material was subjected to an impact crush test.

【0046】試験で得られた荷重−ストローク曲線か
ら、変位が0〜130mmまでの仕事量(衝撃圧潰吸収エネル
ギー)を計算し、この特性値にて部材の耐衝撃性能を評
価した。ミクロ組織を定量化した結果を図2に示す。
From the load-stroke curve obtained in the test, the amount of work (displacement energy of impact crushing) at a displacement of 0 to 130 mm was calculated, and the impact resistance performance of the member was evaluated by this characteristic value. The results of quantifying the microstructure are shown in Fig. 2.

【0047】得られた焼鈍板は830〜900MPaのTSを有す
る。また、図2の結果から明らかなように、最終焼鈍板
で得られるフェライト、第二相組織(オーステナイトの
低温変態相または残留オーステナイト)の平均粒径は仕
上圧延時の860〜960℃の温度域での圧延率およびNb+C量
と相関が有る。つまり、圧延率が30%未満の場合、いず
れの熱延板でも未再結晶オーステナイトからの変態組織
が20%未満と少なく、焼鈍後のフェライト、第二相の平
均粒径は6〜10μmと大きい。
The resulting annealed sheet has a TS of 830-900 MPa. Further, as is clear from the results of FIG. 2, the ferrite obtained in the final annealed plate, the average grain size of the second phase structure (low-temperature transformation phase of austenite or retained austenite) is 860 ~ 960 ℃ temperature range during finish rolling. There is a correlation with the rolling ratio and the Nb + C amount at. That is, when the rolling ratio is less than 30%, the transformation structure from unrecrystallized austenite is less than 20% in any hot-rolled sheet, and the average grain size of ferrite after annealing and the second phase is large as 6 to 10 μm. .

【0048】圧延率の増大に伴ない、未再結晶オーステ
ナイトからの変態組織の体積率が増加し、焼鈍板組織の
平均粒径は減小するが、圧延率の上限はNb+C量との関係
式r=-150(Nb+C)+76で規定される。つまり、圧延率が-15
0(Nb+C)+76よりも大きい場合、未再結晶オーステナイト
からの変態組織の体積率が81〜90%と高く、焼鈍板では
加工組織が残留する。一方、圧延率が30%以上で-150(Nb
+C)+76以下の場合、熱延板では、未再結晶オーステナイ
トからの変態組織の体積率が20〜80%となり、焼鈍板で
は、フェライト、第二相の平均粒径が5μm以下の細粒組
織が得られている。
As the rolling ratio increases, the volume fraction of the transformed structure from unrecrystallized austenite increases and the average grain size of the annealed sheet structure decreases, but the upper limit of the rolling ratio is Nb + C amount. It is defined by the relational expression r = -150 (Nb + C) +76. In other words, the rolling rate is -15
When it is larger than 0 (Nb + C) +76, the volume fraction of the transformed structure from unrecrystallized austenite is as high as 81 to 90%, and the worked structure remains in the annealed sheet. On the other hand, when the rolling ratio is 30% or more, -150 (Nb
+ C) +76 or less, the volume ratio of the transformation structure from unrecrystallized austenite is 20 to 80% in the hot rolled sheet, and the average grain size of ferrite and the second phase is 5 μm or less in the annealed sheet. A grain structure is obtained.

【0049】次に、部材の耐衝撃性能を評価した結果を
図3に示す。評価に用いた鋼板は、830〜860MPaのTSを有
する。図3の結果から明らかなように、部材の衝撃吸収
エネルギーは素材組織(フェライトおよび第二相)の平均
粒径と関係があり、粒径の増大に伴ない、吸収エネルギ
ーは減小する。特に、粒径が5μmを超える場合には、吸
収エネルギーの低下が大きい。一方、粒径を5μm以下に
することにより、高い吸収エネルギーが得られている。
Next, the results of evaluating the impact resistance performance of the members are shown in FIG. The steel plate used for evaluation has a TS of 830 to 860 MPa. As is clear from the results of FIG. 3, the impact absorption energy of the member is related to the average grain size of the material structure (ferrite and second phase), and the absorbed energy decreases as the grain size increases. In particular, when the particle size exceeds 5 μm, the absorbed energy decreases significantly. On the other hand, when the particle size is 5 μm or less, high absorbed energy is obtained.

【0050】続いて、焼鈍板組織を微細化するための熱
延条件の適正範囲(ひずみ速度の適正値)を、次の実験に
より求めた。実験に用いた鋼板は、化学成分がmass%で
C:0.04〜0.08%、Si:0.10〜0.25%、Mn:2.8〜3.0%、P:0.0
1〜0.03%、S:0.003〜0.005%、sol.Al:0.04〜0.06%、N:
0.003〜0.004%、Nb:0.01〜0.07%、Cr:0.1〜0.3%のスラ
ブ(板厚:30mm)に粗圧延および仕上圧延を施して得られ
た熱延板(板厚2.8mm)を板厚1.2mmまで冷間圧延した後、
830℃で焼鈍し、次いで伸長率0.5%にて調質圧延して作
製した焼鈍板である。
Then, an appropriate range of hot rolling conditions (appropriate value of strain rate) for refining the annealed sheet structure was determined by the following experiment. The steel sheet used in the experiment has a mass% chemical composition.
C: 0.04-0.08%, Si: 0.10-0.25%, Mn: 2.8-3.0%, P: 0.0
1-0.03%, S: 0.003-0.005%, sol.Al:0.04-0.06%, N:
Slabs (sheet thickness: 30 mm) of 0.003 to 0.004%, Nb: 0.01 to 0.07%, Cr: 0.1 to 0.3% are rough-rolled and finish-rolled to obtain hot-rolled sheets (sheet thickness 2.8 mm). After cold rolling to 1.2mm,
It is an annealed plate produced by annealing at 830 ° C and then temper rolling at an elongation of 0.5%.

【0051】尚、仕上圧延時は960〜860℃の温度域での
圧延率と平均ひずみ速度をそれぞれ45%、20〜190 s-1
変化させて、840℃で圧延を終了した。熱延板および焼
鈍板組織の第二相体積率、平均結晶粒径は上記と同様の
方法にて求めた。結果を図4に示す。
During the finish rolling, the rolling rate and the average strain rate in the temperature range of 960 to 860 ° C were changed to 45% and 20 to 190 s -1 , respectively, and the rolling was completed at 840 ° C. The volume fraction of the second phase and the average crystal grain size of the structures of the hot rolled sheet and the annealed sheet were determined by the same method as above. The results are shown in Figure 4.

【0052】焼鈍板は850〜950MPaのTSを有する。ま
た、図4の結果から明らかなように、焼鈍板組織の平均
粒径は960〜860℃の温度域での圧延時の平均ひずみ速度
およびNb+C量と相関が有り、平均ひずみ速度とNb+C量と
の関係式で適正粒径範囲が規定できる。即ち、平均ひず
み速度vが-200(Nb+C)+68以上で-200(Nb+C)+128以下の場
合には、熱延板では、未再結晶オーステナイトからの変
態組織の体積率が20〜80%となり、焼鈍板では、フェラ
イト、第二相の平均粒径が5μm以下の細粒組織が得られ
ている。
The annealed sheet has a TS of 850-950 MPa. Further, as is clear from the results of FIG. 4, the average grain size of the annealed sheet structure correlates with the average strain rate and Nb + C amount during rolling in the temperature range of 960 to 860 ° C, and the average strain rate and Nb The appropriate particle size range can be specified by the relational expression with the + C amount. That is, when the average strain rate v is -200 (Nb + C) +68 or more and -200 (Nb + C) +128 or less, in the hot-rolled sheet, the volume fraction of the transformed structure from unrecrystallized austenite is The annealed plate has a fine grain structure in which the average grain size of ferrite and the second phase is 5 μm or less.

【0053】このように、本発明では、オーステナイト
単相域で仕上圧延する際、特に、860〜960℃の温度域で
の圧延条件(圧延率、平均ひずみ速度)を適正制御するこ
とにより、未再結晶オーステナイトより変態した微細な
熱延板組織が得られる。更に、冷延、焼鈍後においても
細粒組織が得られるため、成形および熱処理後の部材の
耐衝撃性能を向上できる。また、仕上圧延の終了温度
は、鋼板表層部の組織の粗大化を抑制するためから、Ar
3点以上とした方が良い。
As described above, according to the present invention, when finish rolling is performed in the austenite single-phase region, particularly, by appropriately controlling the rolling conditions (rolling rate, average strain rate) in the temperature range of 860 to 960 ° C., A fine hot rolled sheet structure transformed from recrystallized austenite can be obtained. Furthermore, since a fine grain structure is obtained even after cold rolling and annealing, the impact resistance performance of the member after molding and heat treatment can be improved. Further, the finish rolling finish temperature is set to Ar in order to suppress coarsening of the structure of the steel sheet surface layer portion.
It is better to have 3 or more points.

【0054】仕上圧延後、コイルに巻き取られるが、鋼
板表層部の組織の粗大化を抑制し、板厚方向で均一な組
織を得るためから、コイル巻取温度は650℃以下とした
方が良い。次に、この熱延コイルを酸洗し、冷間圧延を
施す。冷間圧延率は所定の製品板厚に合わせて設定され
るが、圧延負荷を低減するためから、圧延率は90%以下
とする。
After finish rolling, the coil is wound up. However, in order to suppress the coarsening of the structure of the steel sheet surface layer and to obtain a uniform structure in the plate thickness direction, the coil winding temperature is preferably 650 ° C. or less. good. Next, this hot rolled coil is pickled and cold rolled. The cold rolling rate is set according to a predetermined product sheet thickness, but the rolling rate is set to 90% or less in order to reduce the rolling load.

【0055】この後、連続焼鈍または連続溶融亜鉛めっ
きプロセスを経て、微細なフェライトおよび第二相組織
(オーステナイトの低温変態相または残留オーステナイ
ト)を有する複合組織鋼板を製造する。この際、フェラ
イトを再結晶させるためとオーステナイトからの低温変
態相(マルテンサイトまたはベイナイト)または残留オー
ステナイトを安定して形成させるためから、加熱温度は
750℃以上とするのが好ましい。
After that, through a continuous annealing or continuous hot dip galvanizing process, a fine ferrite and a second phase structure are obtained.
A composite structure steel sheet having (low temperature transformation phase of austenite or residual austenite) is manufactured. At this time, since the ferrite is recrystallized and the low-temperature transformation phase from austenite (martensite or bainite) or retained austenite is stably formed, the heating temperature is
It is preferably 750 ° C or higher.

【0056】また、これらの組織の粗大化を抑制して、
平均粒径5μm以下の微細組織を得るためには、加熱温度
の上限は880℃とし、また、加熱時間は120〜240秒間と
する。連続焼鈍、連続溶融亜鉛めっきプロセスのいずれ
の場合も加熱後の冷却条件は特に厳しい管理を必要とし
ないが、オーステナイトからパーライトへの変態を抑制
するため、加熱後、500℃までの平均冷却速度を3℃/s以
上とした方が良い。
Further, by suppressing the coarsening of these tissues,
In order to obtain a fine structure with an average grain size of 5 μm or less, the upper limit of the heating temperature is 880 ° C., and the heating time is 120 to 240 seconds. In both cases of continuous annealing and continuous hot dip galvanizing process, cooling conditions after heating do not require particularly strict control, but in order to suppress the transformation from austenite to pearlite, the average cooling rate up to 500 ° C after heating is controlled. It is better to set it to 3 ℃ / s or more.

【0057】さらに、溶融亜鉛めっき処理を施す場合
は、鋼板を加熱した後、冷却し、溶融めっき浴に浸漬し
た後、再度、冷却する。この場合、めっき処理条件は特
に限定する必要はなく、また、亜鉛めっき後、必要に応
じて、めっき層に合金化処理を施しても良い。この後、
得られた鋼板に伸長率0.1〜1.0%にて調質圧延を施し、
コイルに巻取る。
Further, when the hot dip galvanizing treatment is performed, the steel sheet is heated, cooled, immersed in a hot dip bath, and then cooled again. In this case, the plating treatment conditions are not particularly limited, and after the galvanization, the plating layer may be subjected to an alloying treatment, if necessary. After this,
The obtained steel sheet is temper-rolled at an elongation of 0.1 to 1.0%,
Wind up in a coil.

【0058】[0058]

【実施例】以下に本発明の実施例を示す。EXAMPLES Examples of the present invention will be shown below.

【0059】(実施例1)表1に示す成分の鋼(鋼番1〜1
0:本発明鋼、鋼番11〜16:比較鋼)を実験室にて溶製した
後、鋳造して、板厚50mmのスラブを作製した。このスラ
ブを板厚30mmまで分塊圧延した後、大気炉にて1270℃で
1hr加熱して、熱間圧延に供した。仕上圧延時には、960
〜860℃の温度域での圧延率を45%、平均ひずみ速度を80
s-1とし、仕上温度を840℃として圧延を実施し、その
後、550℃×1hrの巻取相当の熱処理を施して、板厚3.0m
mの熱延板を作製した。
(Example 1) Steels having the components shown in Table 1 (steel Nos. 1 to 1)
(0: Steel of the present invention, Steel Nos. 11 to 16: Comparative steel) was melted in a laboratory and then cast to form a slab having a plate thickness of 50 mm. After slab rolling this slab to a plate thickness of 30 mm, it was heated at 1270 ° C in an atmospheric furnace.
It was heated for 1 hr and subjected to hot rolling. 960 during finish rolling
Rolling rate is 45% and average strain rate is 80
s -1 , rolling at a finishing temperature of 840 ° C, and then heat treatment equivalent to winding at 550 ° C x 1 hr, with a plate thickness of 3.0 m
A hot rolled sheet of m was prepared.

【0060】[0060]

【表1】 [Table 1]

【0061】次に、この熱延板を酸洗し、板厚1.2mmま
で冷間圧延した。続いて、この冷延板を、820℃で180se
c均熱し、平均冷却速度5℃/sで冷却して、460℃の溶融
亜鉛めっき浴中に浸漬した後、550℃で亜鉛めっき層の
合金化処理を施した。その後、この亜鉛めっき鋼板に伸
長率0.5%にて調質圧延を施した。このようにして得られ
た亜鉛めっき鋼板を用いて、ミクロ組織観察、引張特性
の評価および部材の耐衝撃性能の評価を実施した。
Next, this hot-rolled sheet was pickled and cold-rolled to a sheet thickness of 1.2 mm. Then, this cold-rolled sheet was heated at 820 ° C for 180se
After being soaked and cooled at an average cooling rate of 5 ° C./s and immersed in a hot dip galvanizing bath at 460 ° C., the galvanized layer was alloyed at 550 ° C. Then, this galvanized steel sheet was temper-rolled at an elongation of 0.5%. Using the galvanized steel sheet thus obtained, microstructure observation, evaluation of tensile properties, and evaluation of impact resistance performance of members were carried out.

【0062】熱延板または焼鈍板の組織は、走査型電子
顕微鏡を用いて、圧延方向に平行で板面に垂直な断面に
て観察した。焼鈍板において、無作為に抽出した200個
分のフェライト、第二相の体積率および平均結晶粒径
(焼鈍板)を測定した。また、フェライト、第二相の体積
率を定量化した。尚、熱延板に関しては、未再結晶オー
ステナイトより変態した組織の体積率を定量化した。
The structure of the hot-rolled sheet or the annealed sheet was observed with a scanning electron microscope in a cross section parallel to the rolling direction and perpendicular to the sheet surface. Randomly extracted 200 ferrites, volume fraction of second phase and average grain size in annealed sheet
(Annealed plate) was measured. In addition, the volume ratio of ferrite and the second phase was quantified. Regarding the hot-rolled sheet, the volume ratio of the structure transformed from unrecrystallized austenite was quantified.

【0063】焼鈍板において、フェライトおよび第二相
(マルテンサイト、ベイナイト、または残留オーステナ
イト)の平均粒径が5μm以下の場合には、組織良好と
し、また、これらの組織の平均粒径が5μmを超える場合
やパーライト、加工組織などが認められた場合は、組織
不良とした。また、引張特性値は日本工業規格JIS Z220
1に記載の5号試験片を用いて、圧延直角方向にて引張試
験を行ない、測定した。
In the annealed sheet, the ferrite and the second phase
(Martensite, bainite, or retained austenite) when the average grain size is 5 μm or less, the structure is good, and when the average grain size of these structures exceeds 5 μm, pearlite, a processed structure, etc. were observed. In that case, the structure was considered to be poor. Also, the tensile property values are Japanese Industrial Standard JIS Z220
Using the No. 5 test piece described in 1, a tensile test was performed in the direction perpendicular to the rolling, and measurement was performed.

【0064】プレス成形部材の耐衝撃性能は、図1に示
すハット型部材に170℃×20minの熱処理を施した後、こ
れを衝撃圧潰試験に供し、試験で得られた荷重ーストロ
ーク曲線から、変位が0〜130mmまでの仕事量(衝撃圧潰
吸収エネルギー)を計算して評価した。この吸収エネル
ギーが10000J以上の場合には、特性良好とし、また、
吸収エネルギーが10000J未満の場合には、特性劣化と
評価した。
The impact resistance performance of the press-molded member was determined by subjecting the hat-shaped member shown in FIG. 1 to a heat treatment at 170 ° C. for 20 minutes, and then subjecting this to an impact crushing test. Work load (impact crush absorption energy) from 0 to 130 mm was calculated and evaluated. When the absorbed energy is 10,000 J or more, the characteristics are good, and
When the absorbed energy was less than 10,000 J, it was evaluated as characteristic deterioration.

【0065】これらの特性を評価した結果を表2に示
す。
Table 2 shows the results of evaluation of these characteristics.

【0066】[0066]

【表2】 [Table 2]

【0067】本発明例No.1〜10 (鋼番1〜10)はいずれも
本発明成分範囲にあり、熱延板では、未再結晶オーステ
ナイトからの変態相が30〜70%含まれており、焼鈍板で
は、平均粒径1〜4μmの微細フェライトおよび第二相組
織が得られている。また、いずれもTSは780MPa以上を満
足し、部材の吸収エネルギーは11000〜13000Jと高い。
Inventive Examples Nos. 1 to 10 (Steel Nos. 1 to 10) are all in the composition range of the present invention, and the hot rolled sheet contains 30 to 70% of the transformation phase from unrecrystallized austenite. In the annealed plate, fine ferrite having an average grain size of 1 to 4 μm and a second phase structure are obtained. Also, in all cases, TS satisfies 780 MPa or more, and the absorbed energy of the member is as high as 11000 to 13000J.

【0068】一方、比較例No.11〜16は化学成分が本発
明範囲外にあるため、鋼板組織、引張特性、部材の衝撃
圧潰特性のいずれかを満足しない。比較例No.11、12は
いずれも強度不足である。また、比較例No.13は、Cが高
く、圧延方向でバンド組織が発達しているため、部材の
衝撃吸収エネルギーは9500Jと低い。比較例No.14、15
は加工組織が存在するため、Elが低い。比較例No.16は
フェライトおよび第二相の平均粒径がいずれも7μmと大
きいため、部材の衝撃圧潰吸収エネルギーは8300Jと低
い。
On the other hand, Comparative Examples Nos. 11 to 16 have chemical components outside the scope of the present invention and therefore do not satisfy any of the steel sheet structure, tensile properties, and impact crushing properties of members. Comparative Examples Nos. 11 and 12 are both insufficient in strength. Further, in Comparative Example No. 13, since C is high and the band structure is developed in the rolling direction, the impact absorption energy of the member is as low as 9500J. Comparative Example Nos. 14 and 15
Has a processed structure, so El is low. In Comparative Example No. 16, the average particle size of both ferrite and the second phase is as large as 7 μm, so the impact crush absorption energy of the member is as low as 8300J.

【0069】(実施例2)表1の鋼番2(本発明鋼)の鋼から
板厚60mmのスラブを作製した。このスラブを30mm厚まで
分塊圧延した後、大気炉にて1290℃で1hr加熱し、熱間
圧延を実施した。仕上圧延は、850℃、975℃の二水準の
仕上温度にて行なった。前者(850℃仕上)の場合には、9
60〜860℃の温度域での圧延率を20〜60%、平均ひずみ速
度を40〜130s-1にそれぞれ変化させて圧延を実施し、ま
た、後者(975℃仕上)の場合には、仕上最終パス(975℃)
の圧延率を40%、ひずみ速度を90 s-1として圧延した。
Example 2 A slab having a plate thickness of 60 mm was produced from the steel No. 2 (inventive steel) of Table 1. After slab rolling this slab to a thickness of 30 mm, it was heated at 1290 ° C. for 1 hr in an atmospheric furnace to carry out hot rolling. Finish rolling was carried out at two levels of finishing temperatures of 850 ° C and 975 ° C. 9 in the case of the former (850 ℃ finish)
Rolling is performed by changing the rolling rate in the temperature range of 60 to 860 ° C to 20 to 60% and the average strain rate to 40 to 130 s -1 , respectively, and in the latter case (975 ° C finishing), finishing is performed. Final pass (975 ℃)
Was rolled at a rolling rate of 40% and a strain rate of 90 s -1 .

【0070】仕上圧延後、570℃×1hrの巻取シミュレー
トを行ない、板厚3.0mmの熱延板を作製した。続いて、
熱延板を酸洗し、1.2mm厚まで冷間圧延した後、焼鈍し
た。焼鈍は、840〜895℃(975℃仕上圧延材は840℃)で18
0sec均熱保持した後、平均速度10℃/sで冷却して、400
℃にて550sec保持し、次いで、平均速度5℃/sで室温ま
で冷却する連続焼鈍を実施した。
After finish rolling, a coiling simulation of 570 ° C. × 1 hr was carried out to produce a hot rolled plate having a plate thickness of 3.0 mm. continue,
The hot-rolled sheet was pickled, cold-rolled to a thickness of 1.2 mm, and then annealed. Annealing is performed at 840 ~ 895 ℃ (975 ℃ finish rolling material 840 ℃) 18
After soaking for 0 sec, cool at an average speed of 10 ° C / s to 400
Continuous annealing was carried out by holding at 550 ° C for 550 seconds and then cooling to room temperature at an average rate of 5 ° C / s.

【0071】更に、この焼鈍板に伸長率0.5%にて調質圧
延を施した後、上記と同様の方法にて、ミクロ組織観
察、引張特性の評価および部材の耐衝撃性能の評価を行
なった。結果を表3に示す。
Further, after subjecting this annealed plate to temper rolling at an elongation of 0.5%, the microstructure was observed, the tensile properties were evaluated, and the impact resistance performance of the member was evaluated in the same manner as above. . The results are shown in Table 3.

【0072】[0072]

【表3】 [Table 3]

【0073】本発明例No.26、27、30、31は製造条件が
本発明範囲にあり、熱延板では、未再結晶オーステナイ
トからの変態組織が35〜70%、焼鈍板では、平均粒径1〜
3μmの微細フェライトおよび第二相組織が得られてい
る。また、TSはいずれも780MPa以上で、部材の衝撃圧潰
吸収エネルギーは11000〜12200Jと高い。
Inventive Examples Nos. 26, 27, 30, and 31 have manufacturing conditions within the scope of the present invention, the hot rolled sheet has a transformation structure from unrecrystallized austenite of 35 to 70%, and the annealed sheet has an average grain size of 35 to 70%. Diameter 1 ~
A fine ferrite of 3 μm and a second phase structure are obtained. In addition, TS is 780MPa or more, and the impact crush absorption energy of the member is as high as 11000-12200J.

【0074】一方、比較例No.21〜25、28、29、32〜34
は、製造条件が本発明範囲外にあるため、ミクロ組織、
引張特性、部材の衝撃吸収エネルギーのいずれかを満足
しない。比較例No.21〜25、29、33、34は、平均粒径5μ
m以下の微細組織が得られておらず、部材の吸収エネル
ギーも低い。比較例No.28、32は加工組織が存在し、延
性が劣化している。
On the other hand, Comparative Examples Nos. 21-25, 28, 29, 32-34
Since the manufacturing conditions are outside the scope of the present invention, the microstructure,
Either the tensile characteristics or the impact absorption energy of the member is not satisfied. Comparative Examples Nos. 21 to 25, 29, 33 and 34 have an average particle size of 5 μm.
A fine structure of m or less is not obtained and the absorbed energy of the member is low. Comparative Examples Nos. 28 and 32 have a processed structure and their ductility is deteriorated.

【0075】[0075]

【発明の効果】本発明によれば、鋼の化学成分を規定す
るとともに、仕上圧延時に所定の温度域における圧延条
件(圧延率、ひずみ速度)を適正化することにより、熱延
板組織の微細化が可能であり、更に、冷延、焼鈍後にお
いても微細なフェライトおよび第二相(マルテンサイト
またはベイナイト、または残留オーステナイト)を有す
る冷延鋼板または溶融亜鉛めっき鋼板を製造する事がで
きる。
EFFECTS OF THE INVENTION According to the present invention, the chemical composition of steel is regulated, and the rolling conditions (rolling rate, strain rate) in the predetermined temperature range during finish rolling are optimized, whereby the microstructure of the hot-rolled sheet structure is improved. Further, it is possible to produce a cold-rolled steel sheet or hot-dip galvanized steel sheet having fine ferrite and a second phase (martensite or bainite, or retained austenite) even after cold rolling and annealing.

【0076】この鋼板により、プレス成形および熱処理
を施した後の部材の耐衝撃性能を向上させることができ
る。このように、鋼の化学成分と製造条件を規定するこ
とにより、780MPa以上の強度を有する耐衝撃性能に優れ
た冷延鋼板または溶融亜鉛めっき鋼板を安定して製造す
ることが可能であり、プレス成形後に良好な耐衝撃性能
の求められる自動車の構造部品等へ適用できることか
ら、自動車業界における利用価値は大きい。
With this steel sheet, the impact resistance performance of the member after press forming and heat treatment can be improved. In this way, by specifying the chemical composition and production conditions of steel, it is possible to stably produce cold-rolled steel sheet or hot-dip galvanized steel sheet having excellent impact resistance having a strength of 780 MPa or more. Since it can be applied to automobile structural parts and the like that require good impact resistance after molding, it has great utility value in the automobile industry.

【図面の簡単な説明】[Brief description of drawings]

【図1】部材の耐衝撃性能の評価方法を示す図。 (a)衝撃試験の部材形状 (b)衝撃試験方法FIG. 1 is a diagram showing a method of evaluating impact resistance performance of a member. (A) Impact test member shape (b) Impact test method

【図2】熱延板組織と焼鈍板組織におよぼす圧延率r(86
0〜960℃)とNb+C量の影響を示す図。 熱延板組織:未再結晶オーステナイトから変態した組織
の体積率 焼鈍板組織:フェライトと第二相の平均粒径
[Fig. 2] Rolling ratio r (86) affecting the structure of hot rolled sheet and annealed sheet
The figure which shows the influence of 0-960 degreeC) and the amount of Nb + C. Hot rolled sheet structure: Volume fraction annealed sheet structure transformed from unrecrystallized austenite: Average grain size of ferrite and second phase

【図3】部材の圧潰吸収エネルギーにおよぼす焼鈍板組
織(フェライト、第二相)の平均粒径の影響を示す図。
FIG. 3 is a diagram showing an influence of an average grain size of an annealed plate structure (ferrite, second phase) on crushing absorbed energy of a member.

【図4】熱延板組織と焼鈍板組織におよぼす圧延時(860
〜960℃)の平均ひずみ速度とNb+C量の影響を示す図。 熱延板組織:未再結晶オーステナイトから変態した組織
の体積率 焼鈍板組織:フェライトと第二相の平均粒径
[Fig. 4] Hot rolling sheet structure and annealed sheet structure during rolling (860
The figure which shows the influence of the average strain rate of (-960 degreeC) and the amount of Nb + C. Hot rolled sheet structure: Volume fraction annealed sheet structure transformed from unrecrystallized austenite: Average grain size of ferrite and second phase

フロントページの続き (72)発明者 占部 俊明 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 Fターム(参考) 4K037 EA01 EA05 EA06 EA16 EA18 EA19 EA23 EA25 EA27 EB05 EB09 FB07 FC07 FE01 FE02 FJ04 FJ05 FJ06 GA05 Continued front page    (72) Inventor Toshiaki Urabe             1-2-1, Marunouchi, Chiyoda-ku, Tokyo             Main Steel Pipe Co., Ltd. F term (reference) 4K037 EA01 EA05 EA06 EA16 EA18                       EA19 EA23 EA25 EA27 EB05                       EB09 FB07 FC07 FE01 FE02                       FJ04 FJ05 FJ06 GA05

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 化学成分が、mass%でC:0.02〜0.15%、S
i:0.7%以下、Mn:2.0〜4.0%、P:0.1%以下、S:0.01%以
下、sol.Al:0.1%以下、N:0.005%以下、Nb:0.01〜0.1%を
含有し、残部実質的に鉄からなる鋼を溶製して鋳造する
工程と、この鋳造されたスラブを粗圧延し、次いで仕上
圧延を施す際、960〜860℃の温度域での全圧延率r(%)と
平均ひずみ速度v(s-1)が下記の不等式を満たし、Ar3
以上の温度で仕上圧延を終了し、その後650℃以下の温
度でコイルに巻取り、未再結晶オーステナイトから変態
した組織を20〜80%含有する複合組織からなる熱延鋼板
を製造する熱間圧延工程と、得られた熱延鋼板に酸洗を
施し、冷間圧延を施す工程と、880℃以下の温度で120〜
240秒間焼鈍する焼鈍工程とを有し、平均結晶粒径が5μ
m以下の複合組織とすることを特徴とする高強度冷延鋼
板の製造方法。 30≦r≦-150(Nb+C)+76-200(Nb+C)+68≦v≦-200(Nb+C)+1
28 ここで、式中の元素記号はそれぞれのmass%を示す。
1. The chemical composition is C: 0.02 to 0.15% in mass% and S
i: 0.7% or less, Mn: 2.0 to 4.0%, P: 0.1% or less, S: 0.01% or less, sol.Al: 0.1% or less, N: 0.005% or less, Nb: 0.01 to 0.1%, the balance When melting and casting steel consisting essentially of iron, and roughly rolling the cast slab, and then performing finish rolling, the total rolling ratio r (%) in the temperature range of 960 to 860 ° C. And the average strain rate v (s -1 ) satisfy the following inequality, finish rolling is completed at a temperature of Ar 3 points or higher, and then wound into a coil at a temperature of 650 ° C or lower, and a structure transformed from unrecrystallized austenite A hot-rolling step of producing a hot-rolled steel sheet composed of a composite structure containing 20 to 80%, a step of subjecting the obtained hot-rolled steel sheet to pickling, and cold rolling, and at a temperature of 880 ° C. or lower 120 ~
It has an annealing step of annealing for 240 seconds and the average grain size is 5μ.
A method for producing a high-strength cold-rolled steel sheet, which has a composite structure of m or less. 30≤r≤-150 (Nb + C) + 76-200 (Nb + C) + 68≤v≤-200 (Nb + C) +1
28 Here, the element symbols in the formulas represent the respective mass%.
【請求項2】 請求項1記載の高強度冷延鋼板の製造方
法において、化学成分としてさらに、mass%でTi:0.01〜
0.1%、V:0.01〜0.3%、B:0.0002〜0.002%、Cr:0.05〜0.5
%、Mo: 0.05〜0.5%のうち1種以上を含有することを特徴
とする高強度冷延鋼板の製造方法。
2. The method for producing a high-strength cold-rolled steel sheet according to claim 1, further comprising Ti: 0.01% by mass% as a chemical component.
0.1%, V: 0.01 to 0.3%, B: 0.0002 to 0.002%, Cr: 0.05 to 0.5
%, Mo: 0.05 to 0.5%, at least one kind is contained, The manufacturing method of the high strength cold rolled steel sheet characterized by the above-mentioned.
【請求項3】 請求項1又は請求項2記載の高強度冷延
鋼板の製造方法において、焼鈍工程の後、さらに溶融亜
鉛めっき処理を施す工程を有することを特徴とする高強
度溶融亜鉛めっき鋼板の製造方法。
3. The high-strength hot-dip galvanized steel sheet according to claim 1, further comprising a hot dip galvanizing treatment step after the annealing step. Manufacturing method.
JP2002019637A 2002-01-29 2002-01-29 Manufacturing method of high-strength cold-rolled steel sheet and high-strength hot-dip galvanized steel sheet Expired - Fee Related JP3858146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002019637A JP3858146B2 (en) 2002-01-29 2002-01-29 Manufacturing method of high-strength cold-rolled steel sheet and high-strength hot-dip galvanized steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002019637A JP3858146B2 (en) 2002-01-29 2002-01-29 Manufacturing method of high-strength cold-rolled steel sheet and high-strength hot-dip galvanized steel sheet

Publications (2)

Publication Number Publication Date
JP2003221623A true JP2003221623A (en) 2003-08-08
JP3858146B2 JP3858146B2 (en) 2006-12-13

Family

ID=27743406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002019637A Expired - Fee Related JP3858146B2 (en) 2002-01-29 2002-01-29 Manufacturing method of high-strength cold-rolled steel sheet and high-strength hot-dip galvanized steel sheet

Country Status (1)

Country Link
JP (1) JP3858146B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005240126A (en) * 2004-02-27 2005-09-08 Toyo Kohan Co Ltd High-strength and extremely-thin cold-rolled steel sheet, manufacturing method therefor, material for gasket using it and gasket material using the same
JP2005314793A (en) * 2004-03-31 2005-11-10 Jfe Steel Kk High-rigidity high-strength thin steel sheet and method for producing same
JP2005314792A (en) * 2004-03-31 2005-11-10 Jfe Steel Kk High-rigidity high-strength thin steel sheet and method for producing same
JP2006152362A (en) * 2004-11-29 2006-06-15 Jfe Steel Kk High-strength steel plate having excellent rigidity and production method thereof
JP2006183140A (en) * 2004-11-30 2006-07-13 Jfe Steel Kk High-strength cold rolled steel sheet and its production method
JP2006193805A (en) * 2005-01-17 2006-07-27 Jfe Steel Kk Cold rolled steel sheet suitable for warm forming and its production method
JP2007002276A (en) * 2005-06-21 2007-01-11 Sumitomo Metal Ind Ltd High strength steel sheet and its manufacturing method
JP2007092127A (en) * 2005-09-29 2007-04-12 Jfe Steel Kk Method for producing high strength cold-rolled steel sheet excellent in stiffness
JP2007177293A (en) * 2005-12-28 2007-07-12 Sumitomo Metal Ind Ltd Ultrahigh-strength steel sheet and manufacturing method therefor
JP2008190032A (en) * 2007-01-10 2008-08-21 Nippon Steel Corp High-strength cold-rolled steel sheet excellent in workability and crash resistance and its production method
JP2008231480A (en) * 2007-03-19 2008-10-02 Jfe Steel Kk High-strength cold-rolled steel sheet, and method for producing high-strength cold-rolled steel sheet
WO2008133062A1 (en) * 2007-04-13 2008-11-06 Jfe Steel Corporation High-strength hot-dip galvanized steel sheet and method for producing the same
KR101412354B1 (en) 2012-03-29 2014-06-25 현대제철 주식회사 High strength steel sheet and method for manufacturing the same
US8828154B2 (en) 2005-03-31 2014-09-09 Jfe Steel Corporation Hot-rolled steel sheet, method for making the same, and worked body of hot-rolled steel sheet
EP2708610A4 (en) * 2011-05-12 2015-10-21 Jfe Steel Corp Vehicle collision energy absorbing member having high collision energy absorbing power, and method for manufacturing same
JP2017039972A (en) * 2015-08-19 2017-02-23 Jfeスチール株式会社 Thin steel sheet for hot molding excellent in moldability and hot molding method therefor
CN106544585A (en) * 2016-10-18 2017-03-29 安阳钢铁股份有限公司 Plate and its production method in a kind of high intensity for Wide Band Oxygen Sensors automobile axle housing
JP2020079433A (en) * 2018-11-13 2020-05-28 トヨタ自動車株式会社 Production method of steel sheet
CN112080703A (en) * 2020-09-23 2020-12-15 辽宁衡业高科新材股份有限公司 960 MPa-grade micro-residual stress high-strength steel plate and heat treatment method thereof
CN112921153A (en) * 2020-12-08 2021-06-08 武汉科技大学 Method for improving low-temperature toughness of overall section of steel plate with strength of more than or equal to 690MPa and thickness of 60-100 mm
CN114381654A (en) * 2020-10-21 2022-04-22 宝山钢铁股份有限公司 780 MPa-grade cold-rolled high-strength galvanized steel plate and manufacturing method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2019009529A (en) 2017-02-16 2019-09-16 Nippon Steel Corp Hot rolled steel sheet and method for manufacturing same.
KR102412013B1 (en) 2018-04-17 2022-06-22 닛폰세이테츠 가부시키가이샤 hot rolled steel
EP4148150A4 (en) 2020-05-08 2023-10-25 Nippon Steel Corporation Hot rolled steel sheet and method for producing same
CN115244202B (en) 2020-05-08 2023-06-13 日本制铁株式会社 Hot-rolled steel sheet and method for producing same
US20230407430A1 (en) 2021-02-26 2023-12-21 Nippon Steel Corporation Steel sheet and manufacturing method thereof

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005240126A (en) * 2004-02-27 2005-09-08 Toyo Kohan Co Ltd High-strength and extremely-thin cold-rolled steel sheet, manufacturing method therefor, material for gasket using it and gasket material using the same
JP4506438B2 (en) * 2004-03-31 2010-07-21 Jfeスチール株式会社 High-rigidity and high-strength steel sheet and manufacturing method thereof
JP2005314793A (en) * 2004-03-31 2005-11-10 Jfe Steel Kk High-rigidity high-strength thin steel sheet and method for producing same
JP2005314792A (en) * 2004-03-31 2005-11-10 Jfe Steel Kk High-rigidity high-strength thin steel sheet and method for producing same
JP4506439B2 (en) * 2004-03-31 2010-07-21 Jfeスチール株式会社 High-rigidity and high-strength steel sheet and manufacturing method thereof
JP2006152362A (en) * 2004-11-29 2006-06-15 Jfe Steel Kk High-strength steel plate having excellent rigidity and production method thereof
JP4506434B2 (en) * 2004-11-29 2010-07-21 Jfeスチール株式会社 High strength steel plate with excellent rigidity and method for producing the same
JP2006183140A (en) * 2004-11-30 2006-07-13 Jfe Steel Kk High-strength cold rolled steel sheet and its production method
JP2006193805A (en) * 2005-01-17 2006-07-27 Jfe Steel Kk Cold rolled steel sheet suitable for warm forming and its production method
JP4506476B2 (en) * 2005-01-17 2010-07-21 Jfeスチール株式会社 Cold-rolled steel sheet suitable for warm forming and manufacturing method thereof
US8828154B2 (en) 2005-03-31 2014-09-09 Jfe Steel Corporation Hot-rolled steel sheet, method for making the same, and worked body of hot-rolled steel sheet
JP2007002276A (en) * 2005-06-21 2007-01-11 Sumitomo Metal Ind Ltd High strength steel sheet and its manufacturing method
JP2007092127A (en) * 2005-09-29 2007-04-12 Jfe Steel Kk Method for producing high strength cold-rolled steel sheet excellent in stiffness
JP2007177293A (en) * 2005-12-28 2007-07-12 Sumitomo Metal Ind Ltd Ultrahigh-strength steel sheet and manufacturing method therefor
JP2008190032A (en) * 2007-01-10 2008-08-21 Nippon Steel Corp High-strength cold-rolled steel sheet excellent in workability and crash resistance and its production method
JP2008231480A (en) * 2007-03-19 2008-10-02 Jfe Steel Kk High-strength cold-rolled steel sheet, and method for producing high-strength cold-rolled steel sheet
WO2008133062A1 (en) * 2007-04-13 2008-11-06 Jfe Steel Corporation High-strength hot-dip galvanized steel sheet and method for producing the same
US8389128B2 (en) 2007-04-13 2013-03-05 Jfe Steel Corporation High tensile-strength galvanized steel sheet and process for manufacturing high tensile-strength galvanized steel sheet
JP2008280608A (en) * 2007-04-13 2008-11-20 Jfe Steel Kk High-strength hot-dip galvanized steel sheet excellent in workability and weldability, and its manufacturing method
US9452792B2 (en) 2011-05-12 2016-09-27 Jfe Steel Corporation Vehicle collision energy absorbing member excellent in energy absorbing performance and manufacturing method therefor
EP2708610A4 (en) * 2011-05-12 2015-10-21 Jfe Steel Corp Vehicle collision energy absorbing member having high collision energy absorbing power, and method for manufacturing same
KR101412354B1 (en) 2012-03-29 2014-06-25 현대제철 주식회사 High strength steel sheet and method for manufacturing the same
JP2017039972A (en) * 2015-08-19 2017-02-23 Jfeスチール株式会社 Thin steel sheet for hot molding excellent in moldability and hot molding method therefor
CN106544585A (en) * 2016-10-18 2017-03-29 安阳钢铁股份有限公司 Plate and its production method in a kind of high intensity for Wide Band Oxygen Sensors automobile axle housing
JP2020079433A (en) * 2018-11-13 2020-05-28 トヨタ自動車株式会社 Production method of steel sheet
JP7167648B2 (en) 2018-11-13 2022-11-09 トヨタ自動車株式会社 Steel plate manufacturing method
CN112080703A (en) * 2020-09-23 2020-12-15 辽宁衡业高科新材股份有限公司 960 MPa-grade micro-residual stress high-strength steel plate and heat treatment method thereof
CN112080703B (en) * 2020-09-23 2021-08-17 辽宁衡业高科新材股份有限公司 960 MPa-grade micro-residual stress high-strength steel plate and heat treatment method thereof
CN114381654A (en) * 2020-10-21 2022-04-22 宝山钢铁股份有限公司 780 MPa-grade cold-rolled high-strength galvanized steel plate and manufacturing method thereof
CN112921153A (en) * 2020-12-08 2021-06-08 武汉科技大学 Method for improving low-temperature toughness of overall section of steel plate with strength of more than or equal to 690MPa and thickness of 60-100 mm

Also Published As

Publication number Publication date
JP3858146B2 (en) 2006-12-13

Similar Documents

Publication Publication Date Title
JP3858146B2 (en) Manufacturing method of high-strength cold-rolled steel sheet and high-strength hot-dip galvanized steel sheet
JP5709151B2 (en) High-strength hot-dip galvanized steel sheet with excellent formability and method for producing the same
CN109642288B (en) High-strength steel sheet and method for producing same
JP4730056B2 (en) Manufacturing method of high-strength cold-rolled steel sheet with excellent stretch flange formability
KR101399741B1 (en) High-strength hot-dip zinc plated steel sheet excellent in workability and process for manufacturing the same
JP5470375B2 (en) High-strength cold-rolled steel sheet, hot-dip galvanized steel sheet excellent in high ductility and delayed fracture resistance, and manufacturing method thereof
JP5971434B2 (en) High-strength hot-dip galvanized steel sheet excellent in stretch flangeability, in-plane stability and bendability of stretch flangeability, and manufacturing method thereof
JP2010275627A (en) High-strength steel sheet and high-strength hot-dip galvanized steel sheet having excellent workability, and method for producing them
JP5256690B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and impact resistance and method for producing the same
JP4608822B2 (en) Highly ductile hot-dip galvanized steel sheet excellent in press formability and strain age hardening characteristics and method for producing the same
WO2014196645A1 (en) Heat-treated steel material and method for producing same
JP4696870B2 (en) High strength steel plate and manufacturing method thereof
JP3587126B2 (en) High tensile hot-dip galvanized steel sheet excellent in ductility and method for producing the same
JP4211520B2 (en) High strength and high ductility galvanized steel sheet with excellent aging resistance and method for producing the same
JP5870861B2 (en) High-strength hot-dip galvanized steel sheet with excellent fatigue characteristics and ductility and small in-plane anisotropy of ductility and method for producing the same
JP5141235B2 (en) High-strength hot-dip galvanized steel sheet with excellent formability and manufacturing method thereof
JP2761095B2 (en) Method for producing high strength galvanized steel sheet with excellent bending workability
JP2001226741A (en) High strength cold rolled steel sheet excellent in stretch flanging workability and producing method therefor
JP2002129241A (en) Method for manufacturing high tensile hot-dip galvanized steel sheet having excellent ductility
JP5141232B2 (en) High-strength hot-dip galvanized steel sheet with excellent formability and manufacturing method thereof
JP4367205B2 (en) Strain aging treatment method for steel sheet and method for producing high-strength structural member
JP2003193189A (en) High tensile strength galvanized steel sheet with composite structure having excellent deep drawability and production method therefor
JP2002226942A (en) Composite structure type high-tensile hot-dip galvanized steel sheet having excellent deep drawability, and its manufacturing method
JP3925064B2 (en) Hot-dip galvanized steel sheet excellent in press formability and strain age hardening characteristics and method for producing the same
JP4428075B2 (en) High-strength hot-dip galvanized steel sheet excellent in stretch flangeability and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060726

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060904

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060920

R150 Certificate of patent or registration of utility model

Ref document number: 3858146

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130929

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees