JP2007002276A - High strength steel sheet and its manufacturing method - Google Patents

High strength steel sheet and its manufacturing method Download PDF

Info

Publication number
JP2007002276A
JP2007002276A JP2005180882A JP2005180882A JP2007002276A JP 2007002276 A JP2007002276 A JP 2007002276A JP 2005180882 A JP2005180882 A JP 2005180882A JP 2005180882 A JP2005180882 A JP 2005180882A JP 2007002276 A JP2007002276 A JP 2007002276A
Authority
JP
Japan
Prior art keywords
steel sheet
less
ferrite
steel
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005180882A
Other languages
Japanese (ja)
Other versions
JP4925611B2 (en
Inventor
Kotaro Hayashi
宏太郎 林
Hiroyuki Nakagawa
浩行 中川
Hideki Matsuda
英樹 松田
Futoshi Katsuki
太 香月
Hirotatsu Kojima
啓達 小嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2005180882A priority Critical patent/JP4925611B2/en
Publication of JP2007002276A publication Critical patent/JP2007002276A/en
Application granted granted Critical
Publication of JP4925611B2 publication Critical patent/JP4925611B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high strength steel sheet having excellent workability and material stability. <P>SOLUTION: The high strength steel sheet has a steel composition consisting of 0.06 to 0.18% C, 0.005 to 0.5% Si, 2.0 to 3.0% Mn, ≤0.02% P, ≤0.01% S, 0.01 to 0.1% Al, ≤0.01% N, further 0.05%, in total, of either or both of ≤0.2% Ti and ≤0.2% Nb and the balance Fe with impurities and containing, if necessary, one or more kinds selected from the group consisting of ≤1.0% Cr, ≤1.0% Mo and ≤0.003% B and also has a steel structure in which the average grain size of ferrite and the volume fraction of the ferrite are 1 to 3.5μm and ≥40%, respectively, and the product of the volume fraction of the ferrite and the nano-hardness of the ferrite is ≥180%×GPa and the tensile strength is ≥780 MPa. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高強度鋼板およびその製造方法に関し、例えば、自動車車体用鋼板のようにプレス加工や曲げ加工を施されて使用される用途に好適な高強度鋼板およびその製造方法に関する。   The present invention relates to a high-strength steel plate and a method for producing the same, and for example, to a high-strength steel plate suitable for applications that are used after being pressed or bent, such as a steel plate for automobile bodies.

車体の軽量化ならびに衝突特性を向上させるため、引張強度が780MPa以上に達する高強度鋼板の自動車部品への適用が進んでいる。一般に、高強度になると、延性が低下して加工性が劣化するとともに、鋼板の機械特性の変動が大きくなってプレス成形後の部品精度が低下する。したがって、単に高強度を有するというだけではなく、加工性やプレス成形後の部品精度も優れた高強度鋼板が求められている。また、高強度鋼板の自動車部品への適用拡大を考慮すると、耐食性を向上することも重要である。   In order to reduce the weight of the vehicle body and improve the impact characteristics, the application of high strength steel sheets having a tensile strength of 780 MPa or more to automobile parts is progressing. In general, when the strength is increased, ductility is reduced and workability is deteriorated, and mechanical characteristics of the steel plate are largely changed, so that the accuracy of a part after press forming is lowered. Therefore, there is a demand for a high-strength steel sheet that not only has high strength but also excellent workability and part accuracy after press forming. Further, considering the expansion of application of high-strength steel sheets to automobile parts, it is also important to improve the corrosion resistance.

従来より、加工性に優れた高強度鋼板として、フェライトを主相とし、マルテンサイトやベイナイト等の低温変態相を硬質第二相とする複合組織鋼板が提案されている。例えば特許文献1には、C:0.08〜0.20%(本明細書では特にことわりがない限り「%」は「質量%」を意味する)、Mn:1.5〜3.5%、Al:0.010〜0.1%、P:0.010%以下、S:0.001%以下、Ti:0.010〜0.1%およびNb:0.010〜0.1%の1種以上、残部Feおよび不可避不純物からなる鋼組成とフェライトを主相とする複合組織とを有し、引張強度:784MPa以上、降伏比:60%以下であって、引張強度と伸びとのバランス(TS×El)が17000〜25000MPa・%と優れた加工性を示す溶融めっき鋼板が開示されている。   Conventionally, as a high-strength steel sheet having excellent workability, a composite structure steel sheet having ferrite as a main phase and a low-temperature transformation phase such as martensite or bainite as a hard second phase has been proposed. For example, in Patent Document 1, C: 0.08 to 0.20% (in this specification, “%” means “mass%” unless otherwise specified), Mn: 1.5 to 3.5% Al: 0.010 to 0.1%, P: 0.010% or less, S: 0.001% or less, Ti: 0.010 to 0.1% and Nb: 0.010 to 0.1% It has a steel composition composed of one or more types, the balance Fe and inevitable impurities, and a composite structure mainly composed of ferrite, and has a tensile strength of 784 MPa or more and a yield ratio of 60% or less, and a balance between tensile strength and elongation. A hot-dip galvanized steel sheet having excellent workability (TS × El) of 17000 to 25000 MPa ·% is disclosed.

しかし、硬質な低温変態相を利用した高強度鋼板は、フェライトと硬質相との界面に亀裂が形成され易く、曲げ性や伸びフランジ性が十分ではない。また、硬質相によって強度を確保するので、この高強度鋼板を冷却速度が低い連続溶融亜鉛めっきラインで製造すると、均熱後の冷却条件や合金化処理条件の変化によって、機械特性が大幅に変動してしまうおそれがある。   However, a high-strength steel sheet using a hard low-temperature transformation phase is liable to form a crack at the interface between the ferrite and the hard phase, and the bendability and stretch flangeability are not sufficient. In addition, since the strength is secured by the hard phase, when this high-strength steel sheet is produced on a continuous hot-dip galvanizing line with a low cooling rate, the mechanical properties fluctuate significantly due to changes in cooling conditions and alloying conditions after soaking. There is a risk of it.

硬質相によって強度を確保する鋼板の機械特性を安定化するには、鋼の焼入性を高めて、連続焼鈍条件が変わっても連続焼鈍後に生成する硬質相の硬さや体積率を変動させないことが重要である。そこで、鋼中のC、Mn量を高めて焼入性を高めることにより材質安定性を高めた高強度鋼板が提案されている。例えば特許文献2には、連続溶融亜鉛めっきライン均熱温度、均熱後の冷却速度さらには合金化処理時間が変動しても機械特性の変動が小さい、材質安定性に優れた引張強度が784MPa以上を有する溶融亜鉛めっき鋼板が開示されている。この鋼板は、C量を0.13〜0.3%、Mn量を2.5〜4%と高め、連続溶融亜鉛めっき工程での均熱温度をAc点〜900℃とすることによって、連続溶融亜鉛めっき工程の製造条件の変化に対する優れた材質安定性を示す。しかし、この溶融亜鉛めっき鋼板は、硬質相によって強度を確保し、かつ、C量が高いため、溶接性が十分でない。また、鋼中のMn量が増加すると合金化処理し難くなり、合金化処理を高温で行わなければならなくなるが、合金化処理温度を高めると合金化処理中に硬質相が焼き戻され、機械特性が大幅に変動する可能性がある。しかし、この溶融亜鉛めっき鋼板では、合金化処理温度の上昇による機械特性の変動を抑制する手段は考慮されておらず、材質安定性が不足する。 In order to stabilize the mechanical properties of a steel plate that secures strength by the hard phase, the hardenability of the steel should be increased and the hardness and volume ratio of the hard phase generated after continuous annealing should not be changed even if the continuous annealing conditions change. is important. In view of this, a high-strength steel sheet having improved material stability by increasing the amounts of C and Mn in the steel to enhance hardenability has been proposed. For example, Patent Document 2 discloses that a continuous hot-dip galvanizing line has a soaking temperature, a cooling rate after soaking, and a mechanical strength is small even when the alloying treatment time fluctuates, and a tensile strength excellent in material stability is 784 MPa. A hot-dip galvanized steel sheet having the above is disclosed. In this steel sheet, the C content is increased to 0.13 to 0.3%, the Mn content is increased to 2.5 to 4%, and the soaking temperature in the continuous hot dip galvanizing process is set to Ac 3 to 900 ° C. Excellent material stability against changes in manufacturing conditions in the continuous hot dip galvanizing process. However, this hot dip galvanized steel sheet has sufficient strength due to the hard phase and has a high amount of C, so that the weldability is not sufficient. In addition, when the amount of Mn in steel increases, alloying treatment becomes difficult, and the alloying treatment must be performed at a high temperature. However, when the alloying treatment temperature is increased, the hard phase is tempered during the alloying treatment, and the machine Characteristics can vary significantly. However, in this hot dip galvanized steel sheet, no means for suppressing fluctuations in mechanical properties due to an increase in the alloying temperature is taken into consideration, and the material stability is insufficient.

したがって、鋼板の強度を高めながら材質安定性を高めるためには、マルテンサイトやベイナイト等の硬質相の利用を出来るだけ抑え、TiCやNbCなどの微細析出物の分散や結晶粒の微細化によって、基地であるフェライトを強化しなければならない。   Therefore, in order to increase the material stability while increasing the strength of the steel sheet, the use of hard phases such as martensite and bainite is suppressed as much as possible, and by the dispersion of fine precipitates such as TiC and NbC and the refinement of crystal grains, We must strengthen the base ferrite.

特許文献3には、C:0.10%未満、Ti:0.03〜0.10%、Mo:0.05〜0.6%を含有し、粒径が10nm未満の微細析出物が分散したフェライト単相組織を有し、引張強度が550MPa以上である薄鋼板が開示されている。この薄鋼板は、熱延条件ならびに連続溶融亜鉛めっきライン均熱条件を最適化することによって、780MPa以上の引張強度を確保した上、TS×Elが16000MPa・%以上と優れた加工性を示す。しかし、この薄鋼板は熱延鋼板であって、表面粗度および板厚精度をともに向上させる冷間圧延工程は考慮されていない。このため、この薄鋼板にさらに冷間圧延を行うと、Ti、Nb等の炭窒化物形成元素を多量に含有するために再結晶温度の上昇が起こり、これに伴ってAc点以上での高温焼鈍を行うこととなり、析出物の粗大化が進行してしまうために所望の高強度化を図れない。 Patent Document 3 contains C: less than 0.10%, Ti: 0.03-0.10%, Mo: 0.05-0.6%, and fine precipitates having a particle size of less than 10 nm are dispersed. A thin steel sheet having a single-phase ferrite structure and a tensile strength of 550 MPa or more is disclosed. By optimizing the hot rolling conditions and the continuous hot dip galvanizing line soaking conditions, this thin steel sheet secures a tensile strength of 780 MPa or more and exhibits excellent workability with TS × El of 16000 MPa ·% or more. However, this thin steel plate is a hot-rolled steel plate, and a cold rolling process for improving both surface roughness and thickness accuracy is not considered. For this reason, when cold rolling is further performed on this thin steel plate, the recrystallization temperature rises due to containing a large amount of carbonitride-forming elements such as Ti and Nb, and accompanying this, Ac 3 points or more High-temperature annealing will be performed, and the coarsening of the precipitate will proceed, so that the desired high strength cannot be achieved.

特許文献4には、C:0.07〜0.25%、Mn:1.5〜2.5%、Nb:0.10%以下、Ti:0.3%以下、Si:0.1%以下、Cr:0.1%以下、P:0.05%以下、Sol.Al:0.010〜0.100%、S:0.01%以下、N:0.01%以下を含有し、残部Feおよび不可避的不純物からなる鋼組成を有し、引張強度が441MPa以上であり、降伏比が80%以上である非複合組織の高強度高降伏比型溶融亜鉛めっき鋼板が開示されている。この鋼板は、炭窒化物形成元素であるTiおよびNbを添加し、連続焼鈍中にフェライトとオーステナイト相の二相組織にすることによって、引張強度700MPa以上、降伏比70%以上の高強度を示す。しかし、TiおよびNbを添加した鋼を二相組織となる温度で焼鈍すると、バンド組織となり機械特性が劣化する。   In Patent Document 4, C: 0.07 to 0.25%, Mn: 1.5 to 2.5%, Nb: 0.10% or less, Ti: 0.3% or less, Si: 0.1% Hereinafter, Cr: 0.1% or less, P: 0.05% or less, Sol. Al: 0.010-0.100%, S: 0.01% or less, N: 0.01% or less, having a steel composition consisting of the balance Fe and inevitable impurities, and having a tensile strength of 441 MPa or more There is disclosed a non-composite high strength high yield ratio hot dip galvanized steel sheet having a yield ratio of 80% or more. This steel sheet exhibits high strength with a tensile strength of 700 MPa or more and a yield ratio of 70% or more by adding Ti and Nb, which are carbonitride-forming elements, and forming a two-phase structure of ferrite and austenite phases during continuous annealing. . However, if the steel to which Ti and Nb are added is annealed at a temperature at which it has a two-phase structure, it becomes a band structure and the mechanical properties deteriorate.

特許文献5には、C:0.03〜0.16%、Si:0.2〜2.0%、Mn:1.0〜3.0%および/またはNi:0.5〜3.0%、Ti:0.2%以下および/またはNb:0.2%以下、Al:0.01〜0.1%、P:0.1 %以下、S:0.02%以下およびN:0.005%以下で、かつC、Si、Mn、Ni、TiおよびNbが特定の関係式を満足する範囲において含有し、残部はFeおよび不可避的不純物の組成になる鋼素材を、1200℃以上に加熱したのち熱間圧延し、ついで冷間圧延後、A点以上(A点+30℃)以下で再結晶焼鈍し、ついで酸洗した後、フェライトとオーステナイト相の二相組織となるA点以上(A点+70℃)以下の温度範囲で5〜30秒均熱することによって、フェライトの体積分率が70%以上、フェライトの平均結晶粒径が3.5μm以下の延性に優れ、TS×Elが20000MPa・%以上と優れた加工性を示す溶融亜鉛めっき鋼板が開示されている。しかし、この鋼板を製造するには、焼鈍を二工程で行うために生産性およびコストの両面で問題があるだけでなく、二相組織となる温度域で均熱すると、均熱温度の変動によって機械特性が著しく変化し、材質安定性の面で問題である。 In Patent Document 5, C: 0.03-0.16%, Si: 0.2-2.0%, Mn: 1.0-3.0% and / or Ni: 0.5-3.0 %, Ti: 0.2% or less and / or Nb: 0.2% or less, Al: 0.01 to 0.1%, P: 0.1% or less, S: 0.02% or less, and N: 0 0.005% or less, and C, Si, Mn, Ni, Ti, and Nb are contained in a range that satisfies a specific relational expression, and the balance is a steel material having a composition of Fe and inevitable impurities at 1200 ° C or more. After heating, it is hot-rolled, then cold-rolled, then recrystallized and annealed at A 3 points or more (A 3 points + 30 ° C.), then pickled, and then A 1 which becomes a two-phase structure of ferrite and austenite phase by 5-30 ByoHitoshinetsu above the point (a 1 point + 70 ° C.) below the temperature range, the ferrite Volume fraction of 70% or more, the average crystal grain size of the ferrite is excellent in the following ductility 3.5 [mu] m, galvanized steel sheet TS × El exhibit excellent workability and 20000 MPa ·% or more is disclosed. However, in order to produce this steel sheet, annealing is performed in two steps, which is not only problematic in terms of productivity and cost, but if soaking is performed in a temperature range where a two-phase structure is formed, fluctuations in the soaking temperature Mechanical properties change significantly, which is a problem in terms of material stability.

特許文献6には、C:0.04%〜0.25%、Si:0.7%以下、Mn:1.4〜3.5%、Cr:0.05〜1%、P:0.05%以下、S:0.01%以下、Nb:0.005〜0.1%を含有し、残部が実質的にFeからなり、かつ複合組織を構成するフェライトと低温変態相の平均粒径が10μm以下であってHAZ軟化特性に優れた高強度溶融亜鉛めっき鋼板が開示されている。この鋼板は、熱延板中に微細なNbCを析出させることによって、粒径3μm程度のフェライトとマルテンサイトが微細に分散した組織を示す。しかし、熱延板中にTiCやNbCを析出させると、冷間圧延し難くなって生産性が低下するだけでなく、板厚精度も低下する。また、熱間圧延以降の工程で析出物が粗大化するので、フェライトを強化し難くなる。   In Patent Document 6, C: 0.04% to 0.25%, Si: 0.7% or less, Mn: 1.4 to 3.5%, Cr: 0.05 to 1%, P: 0.0. 0.5% or less, S: 0.01% or less, Nb: 0.005 to 0.1%, the balance being substantially composed of Fe, and the average grain size of ferrite and low-temperature transformation phase constituting the composite structure Is a high-strength hot-dip galvanized steel sheet excellent in HAZ softening characteristics. This steel sheet shows a structure in which ferrite and martensite having a particle diameter of about 3 μm are finely dispersed by precipitating fine NbC in a hot-rolled sheet. However, if TiC or NbC is deposited in the hot rolled sheet, it is difficult to cold-roll and not only productivity is lowered, but also sheet thickness accuracy is lowered. Moreover, since precipitates are coarsened in the processes after hot rolling, it is difficult to strengthen the ferrite.

このように、微細析出物の分散や結晶粒の微細化によってフェライトを強化して鋼板の強度を高めようとしても、冷間圧延を施しその後焼鈍してもなお780MPa以上の引張強度を確保するためには、マルテンサイトやベイナイト等の硬質相の利用が不可欠である。その場合、加工性を向上させるためには、フェライトおよび硬質相について、それぞれの体積率や硬さを制御しなければならない。   Thus, in order to ensure the tensile strength of 780 MPa or more even if cold rolling and subsequent annealing are performed, even if it is intended to enhance the strength of the steel sheet by strengthening the ferrite by dispersing fine precipitates or refining crystal grains. It is essential to use a hard phase such as martensite or bainite. In that case, in order to improve workability, the volume ratio and hardness of the ferrite and the hard phase must be controlled.

特許文献7には、C:0.08〜0.25%、Mn:0.8〜3.0%、S:0.01%以下、Al:0.01〜0.1%、N:0.001〜0.010%を含有し、残部Fe及び不可避的不純物からなり、組織が低温変態生成相又はこれとフェライトとの複合相からなり、降伏比が0.7以上である、剪断加工後の伸びフランジ性に優れた高強度鋼板が開示されている。この鋼板は、フェライトの硬さHv(↑)に対する低温変態相の硬さHv(s)の比[Hv(↑)/Hv(s)]が0.3〜0.6の範囲にある組織とすることによって、ボイドの発生を抑制でき、優れた局部延性を示している。
特開平4−236741号公報 特開平5−179402号公報 特開2002−322539号公報 特開平10−273754号公報 特開2004−204341号公報 特開2002−256386号公報 特開平9−67645号公報
In Patent Document 7, C: 0.08 to 0.25%, Mn: 0.8 to 3.0%, S: 0.01% or less, Al: 0.01 to 0.1%, N: 0 .001 to 0.010%, the balance is Fe and inevitable impurities, the structure is a low-temperature transformation generation phase or a composite phase of this and ferrite, and the yield ratio is 0.7 or more, after shearing A high-strength steel sheet having excellent stretch flangeability is disclosed. This steel sheet has a structure in which the ratio [Hv (↑) / Hv (s)] of the hardness Hv (s) of the low temperature transformation phase to the hardness Hv (↑) of the ferrite is in the range of 0.3 to 0.6. By doing so, generation of voids can be suppressed, and excellent local ductility is exhibited.
JP-A-4-236671 Japanese Patent Laid-Open No. 5-179402 JP 2002-322539 A JP-A-10-273754 JP 2004-204341 A JP 2002-256386 A JP-A-9-67645

しかしながら、特許文献7にも、優れた局部延性を確保しながら材質安定性を向上させる方策は、何ら開示されていない。
本発明は、引張強度が780MPa以上の高強度鋼板およびその製造方法を提供することを目的とする。より詳しくは、本発明の目的は、加工性ならびに材質安定性に優れた高強度鋼板ならびにその製造方法を提供することであり、例えば、加工性の目標値は、TS×ELが10000MPa・%以上、最小曲げ半径が1.0t以下であり、材質安定性の目標値は、板幅方向中央部と板幅方向(1/4)部の引張強度差の絶対値が、引張強度の10%以内、好ましくは5%以内であることである。
However, Patent Document 7 does not disclose any measures for improving material stability while ensuring excellent local ductility.
An object of the present invention is to provide a high-strength steel sheet having a tensile strength of 780 MPa or more and a method for producing the same. More specifically, an object of the present invention is to provide a high-strength steel sheet excellent in workability and material stability and a method for producing the same. For example, the target value of workability is TS × EL of 10,000 MPa ·% or more. The minimum bending radius is 1.0t or less, and the target value of material stability is that the absolute value of the difference in tensile strength between the central part in the plate width direction and the (1/4) part in the plate width direction is within 10% of the tensile strength. It is preferably within 5%.

本発明者らは、上記の特性を備える鋼板を提供すべく、鋼組成、鋼組織、製造条件のそれぞれの観点から検討を重ねた。その結果、鋼素材の組成および熱間圧延条件をいずれも適正化することによって、熱延板におけるTiまたはNbの析出を抑制して、冷間圧延以降の工程において微細な炭化物を析出させてフェライトを有効に強化し、これにより、フェライトの平均結晶粒径が1〜3.5μmおよびフェライトの体積率が40%以上であって、フェライトの体積率とフェライトのナノ硬さとの積が180%・GPa以上であるとともに引張強度が780MPa以上であるという、これまでには存在しない優れた特性を備える高強度冷延鋼板を得ることができ、これにより、強度レベルを低下させることなく、加工性ならびに材質安定性に優れた高強度鋼板を提供できることを知見し、さらに検討を重ねて本発明を完成した。   In order to provide a steel plate having the above characteristics, the present inventors have repeatedly studied from the viewpoints of steel composition, steel structure, and production conditions. As a result, by optimizing both the composition of the steel material and the hot rolling conditions, the precipitation of Ti or Nb in the hot-rolled sheet is suppressed, and fine carbides are precipitated in the processes after the cold rolling to produce ferrite. As a result, the average grain size of ferrite is 1 to 3.5 μm and the volume fraction of ferrite is 40% or more, and the product of the volume fraction of ferrite and the nano hardness of ferrite is 180%. It is possible to obtain a high-strength cold-rolled steel sheet having excellent properties that have not been heretofore, such as a GPa or higher and a tensile strength of 780 MPa or higher, thereby reducing the workability and the strength level. As a result of finding out that a high-strength steel sheet excellent in material stability can be provided, the present invention was completed through further studies.

本発明は、フェライトの平均結晶粒径が1〜3.5μmであり、フェライトの体積率が40%以上であり、フェライトの体積率とフェライトのナノ硬さとの積が180%・GPa以上であるとともに、引張強度が780MPa以上である鋼組織を有することを特徴とする高強度鋼板である。   In the present invention, the average crystal grain size of ferrite is 1 to 3.5 μm, the volume fraction of ferrite is 40% or more, and the product of the volume fraction of ferrite and the nano hardness of ferrite is 180% · GPa or more. A high strength steel sheet having a steel structure having a tensile strength of 780 MPa or more.

この本発明にかかる高強度鋼板は、C:0.06%以上0.18%以下、Si:0.005%以上0.5%以下、Mn:2.0%以上3.0%以下、P:0.02%以下、S:0.01%以下、Al:0.01%以上0.1%以下、N:0.01%以下、さらに、Ti:0.20%以下およびNb:0.20%以下の1種または2種を合計で0.05%以上、必要に応じて、Cr:1.0%以下、Mo:1.0%以下およびB:0.003%以下からなる群から選ばれた1種または2種以上、残部Feおよび不純物からなる鋼組成を有することが、例示される。   The high-strength steel sheet according to the present invention includes C: 0.06% to 0.18%, Si: 0.005% to 0.5%, Mn: 2.0% to 3.0%, P : 0.02% or less, S: 0.01% or less, Al: 0.01% or more and 0.1% or less, N: 0.01% or less, Ti: 0.20% or less, and Nb: 0.0. 1 type or 2 types of 20% or less in total, 0.05% or more, if necessary, from the group consisting of Cr: 1.0% or less, Mo: 1.0% or less, and B: 0.003% or less It is exemplified to have a steel composition composed of one or more selected, the balance Fe and impurities.

別の観点からは、本発明は、例えば、上述した鋼組成を有する鋼を連続鋳造後に、直接熱延、直送熱延、または、一旦冷却した後に1150℃以上1300℃以下に再加熱した後に熱間圧延し、800℃以上950℃以下で仕上げ圧延を完了し、仕上げ圧延完了後30秒以内に500℃以上700℃以下の温度範囲で巻き取ることによって、鋼中の固溶Ti量および固溶Nb量の合計が鋼中の全Ti量および全Nb量の合計の40%以上である鋼板とし、この鋼板を冷間圧延し、次いで、連続焼鈍設備により、Ac点以上900℃以下の温度範囲で10秒間以上300秒間以下で焼鈍した後、650℃から550℃まで5℃/秒以上200℃/秒以下の平均冷却速度で冷却することを特徴とする高強度鋼板の製造方法である。 From another point of view, the present invention provides, for example, a method in which a steel having the above-described steel composition is continuously cast, directly hot-rolled, directly-rolled hot-rolled, or once cooled and then reheated to 1150 ° C. or higher and 1300 ° C. or lower. The steel sheet is rolled between the temperatures of 800 ° C. or higher and 950 ° C. or lower, and the finish rolling is completed within 30 seconds. A steel sheet in which the total amount of Nb is 40% or more of the total amount of Ti and the total amount of Nb in the steel is cold-rolled, and then the temperature of Ac is 3 to 900 ° C. by continuous annealing equipment. A method for producing a high-strength steel sheet, characterized by annealing from 650 ° C. to 550 ° C. at an average cooling rate of 5 ° C./second to 200 ° C./second after annealing at a range of 10 seconds to 300 seconds.

本発明によれば、引張強度が780MPa以上で、加工性および材質安定性に優れた高強度冷延鋼板を提供できるので、自動車の車体部品の軽量化や衝突安全性の向上に寄与する効果は顕著である。   According to the present invention, a high-strength cold-rolled steel sheet having a tensile strength of 780 MPa or more and excellent in workability and material stability can be provided. Therefore, the effect of contributing to weight reduction of automobile body parts and improvement in collision safety is It is remarkable.

また、本発明によれば、この高強度冷延鋼板の素材となる熱延鋼板中のTiCなどの析出を抑制してこの熱延鋼板を軟質化できるので、冷間圧延機の圧延ロールの消耗も低減でき、この高強度冷延鋼板の生産性を向上することも可能である。   In addition, according to the present invention, since the hot-rolled steel sheet can be softened by suppressing precipitation of TiC and the like in the hot-rolled steel sheet that is a material of the high-strength cold-rolled steel sheet, the consumption of the rolling roll of the cold rolling mill is reduced. It is also possible to improve the productivity of this high-strength cold-rolled steel sheet.

以下、本発明にかかる高強度鋼板およびその製造方法を実施するための最良の形態を、詳細に説明する。
本実施の形態の高強度熱延鋼板は、フェライトの平均結晶粒径が1μm以上3.5μm以下であり、フェライトの体積率が40%以上であり、フェライトの体積率とフェライトのナノ硬さとの積が180%・GPa以上であり、さらに、引張強度が780MPa以上である鋼組織を有する。そして、本実施の形態の高強度鋼板は、このような組織面での特徴を有することによって直接的に優れた加工性および材質安定性を奏するという技術思想に基づくものである。
Hereinafter, the best mode for carrying out the high-strength steel sheet and the manufacturing method thereof according to the present invention will be described in detail.
The high-strength hot-rolled steel sheet of the present embodiment has an average crystal grain size of ferrite of 1 μm or more and 3.5 μm or less, a volume ratio of ferrite of 40% or more, and the volume ratio of ferrite and the nano hardness of ferrite. The steel structure has a product of 180% · GPa or more and a tensile strength of 780 MPa or more. The high-strength steel sheet of the present embodiment is based on the technical idea that it has excellent workability and material stability directly by having such a structural feature.

以降の説明では、この組織面での特徴を確保するための具体的な一態様として、上述したように、C、Mn、Ti、Nb等の合金元素を適量含有するとともに熱間圧延条件、焼鈍条件および焼鈍後冷却条件をいずれも制御する態様を例に取るが、あくまでもこれは上述した特徴を確保するための一態様に過ぎないのであり、この特徴を確保できる態様であれば、本実施の形態で開示する態様以外の態様であっても等しく適用できるものである。このため、上述した本発明の技術思想が、最良の実施の形態として例示するこの態様に不当に制限されるものではない。   In the following description, as described above, as a specific mode for securing the characteristics in the structure, as described above, an appropriate amount of alloying elements such as C, Mn, Ti, Nb and the like are included, as well as hot rolling conditions and annealing. Although the aspect which controls both conditions and cooling conditions after annealing is taken as an example, this is only one aspect for ensuring the above-mentioned feature to the last, and if this aspect can ensure this feature, this embodiment Even aspects other than the aspects disclosed in the embodiments are equally applicable. For this reason, the technical idea of the present invention described above is not unduly limited to this aspect exemplified as the best mode.

はじめに、本実施の形態にかかる高強度鋼板の鋼組成の限定理由を説明する。
(C:0.06%以上0.18%以下)
Cは高強度鋼板の強度向上に寄与する元素であり、引張強度を780MPa以上にするために、少なくとも0.06%以上含有する。ただし、C含有量が0.18%を超えると溶接性が著しく劣化する。このため、C量は0.06%以上0.18%以下と限定する。同様の観点から、C含有量の下限は0.07%であることが望ましく、上限は0.15%であることが望ましい。
First, the reasons for limiting the steel composition of the high-strength steel sheet according to the present embodiment will be described.
(C: 0.06% to 0.18%)
C is an element that contributes to improving the strength of the high-strength steel sheet, and is contained at least 0.06% in order to make the tensile strength 780 MPa or more. However, when the C content exceeds 0.18%, the weldability is remarkably deteriorated. For this reason, the amount of C is limited to 0.06% or more and 0.18% or less. From the same viewpoint, the lower limit of the C content is preferably 0.07%, and the upper limit is preferably 0.15%.

(Si:0.005%以上0.5%以下)
Siは高強度鋼板の強度向上に寄与する元素であり、0.005%以上含有する。しかし、Si含有量が0.5%を超えるとめっきの濡れ性や化成処理性が劣化する。このため、Si量は0.005%以上0.5%以下と限定する。同様の観点から、Si含有量の上限は0.1%であることが望ましい。
(Si: 0.005% to 0.5%)
Si is an element that contributes to improving the strength of the high-strength steel sheet, and is contained in an amount of 0.005% or more. However, when the Si content exceeds 0.5%, the wettability and chemical conversion treatment of the plating deteriorate. For this reason, the amount of Si is limited to 0.005% or more and 0.5% or less. From the same viewpoint, the upper limit of the Si content is desirably 0.1%.

(Mn:2.0%以上3.0%以下)
Mnは高強度鋼板の強度向上に寄与する元素であり、引張強度780MPa以上を確保するために、少なくとも2.0%以上含有する。しかし、Mn含有量が3.0%を超えると、フェライトが生成し難くなるだけでなく、不均一な組織となり加工性が劣化する。このため、Mn量は2.0%以上3.0%以下と限定する。Mn含有量の下限は、780MPa以上の引張強度を安定確保するために、具体的には引張強度800MPa以上を確保するために2.2%であることが望ましい。Mn含有量の上限は、同様の観点から、2.8%であることが望ましい。
(Mn: 2.0% to 3.0%)
Mn is an element that contributes to improving the strength of the high-strength steel sheet, and is contained at least 2.0% in order to ensure a tensile strength of 780 MPa or more. However, if the Mn content exceeds 3.0%, not only is it difficult to produce ferrite, but the structure becomes non-uniform and workability deteriorates. For this reason, the amount of Mn is limited to 2.0% or more and 3.0% or less. The lower limit of the Mn content is desirably 2.2% in order to ensure a stable tensile strength of 780 MPa or more, specifically, to ensure a tensile strength of 800 MPa or more. The upper limit of the Mn content is desirably 2.8% from the same viewpoint.

(P:0.02%以下)
Pは本実施の形態の高強度鋼板では不可避的不純物であり、過多に含有させると不均一な組織となるために加工性が劣化する。このため、P含有量は0.02%以下と限定する。同様の観点からP含有量の上限は0.015%であることが望ましく、製造コストの上昇を抑制するためには0.005%以上とすることが望ましい。
(P: 0.02% or less)
P is an unavoidable impurity in the high-strength steel sheet of the present embodiment, and if included excessively, the structure becomes non-uniform and deteriorates workability. For this reason, the P content is limited to 0.02% or less. From the same viewpoint, the upper limit of the P content is desirably 0.015%, and is desirably 0.005% or more in order to suppress an increase in manufacturing cost.

(S:0.01%以下)
Sは本実施の形態の高強度鋼板では硫化物として存在し、応力集中源となるために加工性が劣化する。このため、S含有量はできるだけ少ないことが望ましいが、0.01%以下であれば、本実施の形態が対象とする引張強度780MPa以上の高強度鋼板でも曲げ性に悪影響を及ぼさない。このため、S含有量は0.01%以下と限定する。なお、好ましくは0.005%以下である。
(S: 0.01% or less)
In the high-strength steel sheet of the present embodiment, S exists as a sulfide and becomes a stress concentration source, so that workability deteriorates. For this reason, it is desirable that the S content is as low as possible. However, if it is 0.01% or less, even a high-strength steel sheet with a tensile strength of 780 MPa or more targeted by this embodiment does not adversely affect bendability. For this reason, S content is limited to 0.01% or less. In addition, Preferably it is 0.005% or less.

(sol.Al:0.01%以上0.1%以下)
Alは鋼の脱酸のために添加される元素であり、鋼の清浄度を向上させるのに有効に作用する。シリケート介在物を除去し、加工性を向上させるために、sol.Alで0.01%以上含有する。ただし、sol.Al含有量が0.1%を超えると酸化物系介在物が増加するためにかえって表面性状や加工性が劣化する。このため、sol.Al量は0.01%以上0.1%以下と限定する。なお、同様の観点から、sol.Al量の上限は0.06%であることが好ましく、下限は0.02%であることが望ましい。
(Sol.Al: 0.01% or more and 0.1% or less)
Al is an element added for deoxidation of steel, and effectively acts to improve the cleanliness of the steel. In order to remove silicate inclusions and improve processability, sol. Al content of 0.01% or more. However, sol. If the Al content exceeds 0.1%, the oxide inclusions increase, so the surface properties and workability deteriorate. For this reason, sol. The amount of Al is limited to 0.01% or more and 0.1% or less. From the same viewpoint, sol. The upper limit of the amount of Al is preferably 0.06%, and the lower limit is preferably 0.02%.

(N:0.01%以下)
Nは本実施の形態の高強度鋼板では不可避的不純物であり、過多に含有させると粗大な窒化物が析出するため加工性が劣化する。このため、N含有量はできるだけ少なくすることが望ましいが、0.01%以下であれば、本発明で目的とするような高強度材でも加工性に悪影響を及ぼさない。このため、N含有量は0.01%以下と限定する。なお、好ましくはN含有量の上限は、0.005%であることが望ましく、0.003%であることがさらに望ましい。
(N: 0.01% or less)
N is an unavoidable impurity in the high-strength steel sheet according to the present embodiment, and if it is excessively contained, coarse nitrides are precipitated and workability is deteriorated. For this reason, it is desirable to reduce the N content as much as possible. However, if it is 0.01% or less, even a high-strength material as intended in the present invention does not adversely affect the workability. For this reason, N content is limited to 0.01% or less. Note that the upper limit of the N content is preferably 0.005%, and more preferably 0.003%.

(Ti:0.20%以下、Nb:0.20%以下、Ti+Nb:0.05%以上)
TiおよびNbは、いずれも、本発明では重要な元素の一つであり、1種または2種を含有させる。TiおよびNbの1種または2種を含有することにより、炭化物を形成し、析出強化ならびに結晶粒微細化によってフェライトを強化し、これにより、材質安定性を劣化させることなく、引張強度780MPa以上の高強度化を図ることができる。TiおよびNbの1種または2種を微量添加することによって、降伏強度、引張強度または伸びが著しく上昇する。したがって、機械特性の変動を低減するために、TiおよびNb合計で0.05%以上含有する。ただし、TiまたはNbのいずれかを0.20%超含有させると、鋼中の析出物が粗大化するため加工性が劣化する。このため、TiおよびNbそれぞれ単独の含有量は0.20%以下と限定する。なお、同様の観点から、TiおよびNbそれぞれ単独の含有量の上限は0.15%であることが望ましく、下限は0.05%であることが望ましい。
(Ti: 0.20% or less, Nb: 0.20% or less, Ti + Nb: 0.05% or more)
Ti and Nb are both important elements in the present invention, and contain one or two of them. By containing one or two of Ti and Nb, a carbide is formed, and ferrite is strengthened by precipitation strengthening and crystal grain refinement. Thereby, the tensile strength is 780 MPa or more without deteriorating material stability. High strength can be achieved. By adding a small amount of one or two of Ti and Nb, the yield strength, tensile strength or elongation is remarkably increased. Therefore, in order to reduce fluctuations in mechanical properties, the total content of Ti and Nb is 0.05% or more. However, if either Ti or Nb is contained in excess of 0.20%, precipitates in the steel are coarsened and workability deteriorates. For this reason, each content of Ti and Nb is limited to 0.20% or less. From the same viewpoint, the upper limit of the content of each of Ti and Nb is preferably 0.15%, and the lower limit is preferably 0.05%.

(Cr:1.0%以下、Mo:1.0%以下、B:0.003%以下)
本実施の形態の高強度鋼板では、Cr、Mo、Bはいずれも必要に応じて添加される任意添加元素であり、フェライトの強化に有効に作用するので、1種単独で、または2種以上複合して含有してもよい。しかし、Cr、Moそれぞれの含有量が1.0%を超え、一方、B含有量が0.003%を超えると、フェライトが生成し難くなって加工性が劣化する。このため、Cr、Moの含有量はそれぞれ1.0%以下と限定し、B含有量は0.003%以下と限定する。上記効果を確実に得るには、Cr、Moはそれぞれ0.1%以上含有し、Bは0.0005%以上含有することが好ましい。
(Cr: 1.0% or less, Mo: 1.0% or less, B: 0.003% or less)
In the high-strength steel sheet of the present embodiment, Cr, Mo, and B are all optional addition elements that are added as necessary, and effectively act on the strengthening of ferrite. It may be contained in combination. However, if the Cr and Mo contents exceed 1.0%, and the B content exceeds 0.003%, ferrite is difficult to be generated and workability deteriorates. For this reason, the Cr and Mo contents are limited to 1.0% or less, and the B content is limited to 0.003% or less. In order to surely obtain the above effect, Cr and Mo are each preferably contained in an amount of 0.1% or more, and B is preferably contained in an amount of 0.0005% or more.

なお、上記した成分以外の残部はFeおよび不可避的不純物である。不可避的不純物として、O:0.006%以下、Cu:0.05%以下、Ni:0.05%以下さらにはCa:0.0003%以下は、許容される。   The balance other than the components described above is Fe and inevitable impurities. As unavoidable impurities, O: 0.006% or less, Cu: 0.05% or less, Ni: 0.05% or less, and Ca: 0.0003% or less are allowed.

次に、本実施の形態の高強度鋼板の鋼組織の限定理由を説明する。
上述した鋼組成を有する本実施の形態の高強度鋼板は、フェライトの平均結晶粒径が1μm以上3.5μm以下であり、フェライトの、面積率で評価した体積率が40%以上であり、フェライトの体積率とフェライトのナノ硬さとの積が180%・GPa以上であり、さらに、引張強度が780MPa以上となる鋼組織を有する。
Next, the reason for limiting the steel structure of the high-strength steel plate according to the present embodiment will be described.
The high-strength steel sheet of the present embodiment having the steel composition described above has an average crystal grain size of ferrite of 1 μm or more and 3.5 μm or less, and a volume ratio of ferrite evaluated by an area ratio of 40% or more. The product of the volume ratio of ferrite and the nano hardness of ferrite is 180% · GPa or more, and further has a steel structure having a tensile strength of 780 MPa or more.

フェライトの平均結晶粒径が3.5μm超であると、フェライトと硬質相との界面で割れが発生し易くなり、加工性が劣化するだけでなく、引張強度を780MPa以上にすることが困難になる。一方、フェライトの平均結晶粒径が1μm未満であると、均一変形し難くなり、加工性が劣化する。このため、本実施の形態の高強度鋼板のフェライトの平均結晶粒径は1μm以上3.5μm以下と限定する。フェライトの平均結晶粒径の上限は、780MPa以上の引張強度を安定確保するために、具体的には引張強度800MPa以上を確保するために3.2μmであることが望ましい。フェライトの平均結晶粒径の下限は、同様の観点から、1.2μmであることが望ましい。   If the average crystal grain size of the ferrite exceeds 3.5 μm, cracks are likely to occur at the interface between the ferrite and the hard phase, not only the workability is deteriorated but also the tensile strength is difficult to be increased to 780 MPa or more. Become. On the other hand, if the average crystal grain size of ferrite is less than 1 μm, uniform deformation becomes difficult and workability deteriorates. For this reason, the average crystal grain size of ferrite of the high-strength steel plate of this embodiment is limited to 1 μm or more and 3.5 μm or less. The upper limit of the average crystal grain size of ferrite is desirably 3.2 μm in order to ensure stable tensile strength of 780 MPa or more, specifically, to ensure tensile strength of 800 MPa or more. From the same viewpoint, the lower limit of the average crystal grain size of ferrite is desirably 1.2 μm.

また、フェライトの体積率が40%未満であると、不均一変形が助長され、加工性が劣化するだけでなく、鋼板の強度に関する硬質相の寄与が大きくなり、材質安定性も劣化する。フェライトの体積率が40%以上であれば、加工性の劣化を抑制しながら780MPa以上の引張強度を実現できる。このため、本実施の形態の高強度鋼板のフェライトの体積率は40%以上と限定する。同様の観点から、フェライトの体積率の下限は50%であることが望ましい。   Further, if the volume fraction of ferrite is less than 40%, non-uniform deformation is promoted and not only the workability is deteriorated, but also the contribution of the hard phase relating to the strength of the steel sheet is increased, and the material stability is also deteriorated. If the ferrite volume fraction is 40% or more, a tensile strength of 780 MPa or more can be realized while suppressing deterioration of workability. For this reason, the volume fraction of ferrite of the high-strength steel plate of the present embodiment is limited to 40% or more. From the same viewpoint, the lower limit of the volume fraction of ferrite is desirably 50%.

さらに、本実施の形態の高強度鋼板の組織上の新規な最大の特徴は、フェライトの体積率とフェライトのナノ硬さとの積が180%・GPa以上と、本願前には存在しない範囲に高められている点である。   Furthermore, the greatest new feature on the structure of the high-strength steel sheet according to the present embodiment is that the product of the volume fraction of ferrite and the nano hardness of ferrite is 180% · GPa or more, which is higher than the range that does not exist before this application. This is the point.

周知のように、AFMナノインデンテーションによりナノ硬さを測定することにより、正確にフェライトの硬さを測定することができる。フェライトの体積率と、フェライトのナノ硬さとの積が180%・GPa未満である場合にこの鋼板の引張強度を780MPa以上とすると、鋼板の強度に関して硬質相の寄与が大きくなり過ぎ、材質安定性が劣化する。フェライトの体積率とフェライトのナノ硬さとの積を180%・GPa以上にすることにより、材質安定性の劣化を抑制しながら780MPa以上の引張強度を達成することが可能となる。   As is well known, the hardness of ferrite can be accurately measured by measuring the nano hardness by AFM nanoindentation. If the product of the volume fraction of ferrite and the nano hardness of the ferrite is less than 180% · GPa, and the tensile strength of this steel sheet is 780 MPa or more, the contribution of the hard phase becomes too large with respect to the strength of the steel sheet, and the material stability Deteriorates. By setting the product of the volume fraction of ferrite and the nano-hardness of ferrite to 180% · GPa or more, it becomes possible to achieve a tensile strength of 780 MPa or more while suppressing deterioration of material stability.

本実施の形態の高強度鋼板は、以上説明した鋼組成および鋼組織を有する。次に、本実施の形態の高強度鋼板の製造方法の限定理由について説明する。
本実施の形態では、上述した鋼組成の溶鋼を、転炉や電気炉等の常法により溶製し、連続鋳造法によりスラブ等の鋼素材とするのが望ましい。なお、連続鋳造法に代えて、造塊法や薄スラブ鋳造法等により鋼素材としてもよい。
The high-strength steel plate of the present embodiment has the steel composition and steel structure described above. Next, the reason for limitation of the manufacturing method of the high strength steel plate of this Embodiment is demonstrated.
In the present embodiment, it is desirable that the molten steel having the steel composition described above is melted by a conventional method such as a converter or an electric furnace, and a steel material such as a slab is formed by a continuous casting method. Instead of the continuous casting method, a steel material may be used by an ingot casting method, a thin slab casting method, or the like.

この鋼素材に慣用される手段により熱間圧延を行って熱延鋼板とする。この熱間圧延は、鋳造された鋼素材を室温まで冷却させずに温片のまま加熱炉に装入して加熱した後に圧延する直送圧延や、わずかの保熱を行った後に直ちに圧延する直接圧延、さらには、一旦鋼素材を冷却した後に再加熱してから圧延することのいずれによってもよい。   Hot rolling is performed by means commonly used for this steel material to obtain a hot rolled steel sheet. This hot rolling is a direct feed rolling in which the cast steel material is rolled after being charged in a heating furnace without being cooled to room temperature and then heated immediately, or directly after a slight heat retention. The rolling may be performed by either rolling the steel material once and then reheating it and then rolling it.

(鋼素材の再加熱温度:1150℃以上1300℃以下)
一旦鋼素材を冷却した後に再加熱してから圧延する場合には、加工性を劣化させないとともに、連続焼鈍後に生成されるフェライトを有効に強化することによって材質安定性と780MPa以上の引張強度を両立させるために、加熱中にTiCやNbCを再固溶させることが有効である。このために、鋼素材を1150℃以上に加熱することが有効であるが、1300℃超に加熱しても効果が飽和するだけでなく、スケールロスが増加する。このため、鋼素材の再加熱温度は1150℃以上1300℃以下とすることが望ましい。
(Reheating temperature of steel material: 1150 ° C or higher and 1300 ° C or lower)
When steel material is cooled and then reheated before rolling, workability is not deteriorated, and ferrite produced after continuous annealing is effectively strengthened to achieve both material stability and tensile strength of 780 MPa or more. Therefore, it is effective to re-dissolve TiC or NbC during heating. For this reason, it is effective to heat the steel material to 1150 ° C. or higher. However, heating the steel material to over 1300 ° C. not only saturates the effect but also increases the scale loss. For this reason, it is desirable that the reheating temperature of the steel material be 1150 ° C. or higher and 1300 ° C. or lower.

(仕上げ圧延終了温度:800℃以上950℃以下)
本実施の形態では、鋼素材に対して熱間圧延を行うが、熱間圧延の仕上げ圧延終了温度は、800℃以上950℃以下と限定する。仕上げ圧延終了温度が800℃未満であると、圧延時の変形抵抗が大きくなって生産性が劣るだけではなく、組織が不均一なバンド組織となり、冷却焼鈍後の加工性が劣化する。一方、仕上圧延終了温度が950℃を超えると、その後の冷却中に、鋼中のTiまたはNbの殆どが熱延鋼板の内部で炭化物として析出してしまい、その後の冷間圧延が困難となるだけでなく、炭化物が連続焼鈍中に粗大化して、冷延焼鈍後に材質安定性を高めること、および780MPa以上の引張強度を確保することの両立も困難となるとともに、加工性が劣化する。
(Finish rolling finish temperature: 800 ° C or higher and 950 ° C or lower)
In the present embodiment, hot rolling is performed on a steel material, but the finish rolling finish temperature of hot rolling is limited to 800 ° C. or more and 950 ° C. or less. When the finish rolling finish temperature is less than 800 ° C., not only the deformation resistance during rolling becomes large and the productivity is deteriorated, but also the structure becomes a non-uniform band structure and the workability after cooling annealing deteriorates. On the other hand, when the finish rolling finish temperature exceeds 950 ° C., during the subsequent cooling, most of Ti or Nb in the steel precipitates as carbides inside the hot-rolled steel sheet, making subsequent cold rolling difficult. In addition, the carbide coarsens during the continuous annealing, and it becomes difficult to improve the material stability after the cold rolling annealing and to ensure the tensile strength of 780 MPa or more, and the workability deteriorates.

このため、本実施の形態では、熱間圧延の仕上圧延終了温度は800℃以上950℃以下と限定する。
(仕上げ圧延終了後の冷却条件:仕上げ圧延終了後から30秒以内で巻取り開始)
本実施の形態では、仕上げ圧延終了後から30秒間以内で巻取りを開始する。巻取り開始までに30秒間超要すると、鋼中のTiまたはNbのほとんどが熱延板中に炭化物として析出してしまい、その後の冷間圧延が困難となるだけでなく、炭化物が連続焼鈍中に粗大化して、冷延焼鈍後に材質安定性を高めることと780MPa以上の引張強度を確保することの両立も困難となる。
For this reason, in this Embodiment, the finish rolling finish temperature of hot rolling is limited to 800 degreeC or more and 950 degrees C or less.
(Cooling conditions after finishing rolling: Winding starts within 30 seconds after finishing rolling)
In the present embodiment, winding is started within 30 seconds after finishing rolling. If it takes more than 30 seconds to start winding, most of Ti or Nb in the steel precipitates as carbides in the hot-rolled sheet, and subsequent cold rolling becomes difficult, and the carbides are being continuously annealed. Thus, it is difficult to increase the material stability after cold rolling annealing and to ensure the tensile strength of 780 MPa or more.

このため、本実施の形態では、仕上げ圧延終了後から30秒間以内で巻取りを開始することと限定する。同様の観点から、25秒以内に巻取りを開始することが望ましい。
(巻取り温度:500℃以上700℃以下)
本実施の形態では、巻取り温度を500℃以上700℃以下とする。巻取り温度が500℃未満であると、硬質なベイナイトやマルテンサイトが生成し、その後の冷間圧延が困難となる。一方、巻取り温度が700℃を超えると炭化物が粗大化し、冷延焼鈍後に材質安定性を高めること、および780MPa以上の引張強度を確保することの両立が困難となる。
For this reason, in this Embodiment, it is limited to starting winding within 30 seconds after completion | finish of finish rolling. From the same viewpoint, it is desirable to start winding within 25 seconds.
(Taking-up temperature: 500 ° C to 700 ° C)
In the present embodiment, the winding temperature is set to 500 ° C. or higher and 700 ° C. or lower. When the coiling temperature is less than 500 ° C., hard bainite and martensite are generated, and subsequent cold rolling becomes difficult. On the other hand, when the coiling temperature exceeds 700 ° C., the carbides become coarse, and it becomes difficult to improve the material stability after cold rolling annealing and to ensure the tensile strength of 780 MPa or more.

このため、本実施の形態では、巻取り温度は500℃以上700℃以下に限定する。同様の観点から、巻取り温度の下限は530℃であることが望ましく、上限は680℃であることが望ましい。   For this reason, in this Embodiment, coiling temperature is limited to 500 degreeC or more and 700 degrees C or less. From the same viewpoint, the lower limit of the coiling temperature is desirably 530 ° C., and the upper limit is desirably 680 ° C.

(熱延鋼板中に固溶Ti量および固溶Nb量の合計が鋼中の全Ti量と全Nb量の合計の40%以上であること)
本実施の形態では、上述した熱間圧延工程および巻取り工程を経ることにより、巻き取った熱延鋼板中の固溶Ti量および固溶Nb量の合計を、鋼中の全Ti量と全Nb量の合計の40%以上とする。熱延鋼板中の固溶Ti量および固溶Nb量の合計が鋼中の全Ti量と全Nb量の合計の40%未満であると、その後の冷間圧延が困難となるだけでなく、炭化物が連続焼鈍中に粗大化して冷延焼鈍後に生成するフェライトを強化することが難しくなり、材質安定性を高めること、および780MPa以上の引張強度を確保することの両立が困難となる。
(The total amount of solute Ti and solute Nb in the hot-rolled steel sheet is 40% or more of the total amount of total Ti and total Nb in the steel)
In the present embodiment, by passing through the hot rolling step and the winding step described above, the total amount of solute Ti and solute Nb in the rolled hot-rolled steel sheet is calculated as the total amount of Ti in the steel and the total amount of solute Nb. 40% or more of the total amount of Nb. If the total amount of solute Ti and solute Nb in the hot-rolled steel sheet is less than 40% of the total amount of total Ti and total Nb in the steel, not only the subsequent cold rolling becomes difficult, It becomes difficult to reinforce the ferrite formed after the cold rolling annealing because the carbide coarsens during continuous annealing, and it becomes difficult to improve both the material stability and the tensile strength of 780 MPa or more.

このように、本実施の形態では、鋼素材の成分の調整および熱間圧延条件の適正化によって熱延鋼板におけるTiまたはNbの析出を抑制し、これにより、冷間圧延以降の工程において微細な炭化物を析出させ、フェライトを有効に強化できる。   As described above, in this embodiment, the precipitation of Ti or Nb in the hot-rolled steel sheet is suppressed by adjusting the components of the steel material and optimizing the hot rolling conditions. Carbide can be precipitated and ferrite can be effectively strengthened.

このようにして、固溶Ti量および固溶Nb量の合計が鋼中の全Ti量と全Nb量の合計の40%未満とされた熱延鋼板は、常法にしたがって酸洗を施された後に冷間圧延を行われ、冷延鋼板とされる。冷間圧延における圧下率は、特に限定を要するものではないが、焼鈍中のオーステナイト粒径を微細にして材質安定性をさらに高めるためには、30%以上とすることが望ましい。   Thus, the hot-rolled steel sheet in which the total amount of solute Ti and solute Nb is less than 40% of the total amount of total Ti and total Nb in the steel is pickled according to a conventional method. After that, cold rolling is performed to obtain a cold rolled steel sheet. The rolling reduction in the cold rolling is not particularly limited, but is desirably 30% or more in order to make the austenite grain size during annealing finer and further improve the material stability.

(冷延鋼板の焼鈍条件:Ac以上900℃以下で10秒以上300秒以下)
本実施の形態では、固溶Ti量および固溶Nb量の合計が鋼中の全Ti量と全Nb量の合計の40%未満とされた熱延鋼板に対して冷間圧延および焼鈍を行うが、冷延鋼板の焼鈍は連続焼鈍とし、冷延鋼板がオーステナイト単相組織となる温度であるAc点以上になるまで加熱し、Ac点以上900℃以下の温度範囲で10秒以上300秒以下焼鈍する。一旦、冷延鋼板をオーステナイト単相組織にすることにより、均一微細な組織を有する冷延焼鈍板となる。
(Annealing conditions of cold-rolled steel sheet: Ac 3 to 900 ° C. for 10 to 300 seconds)
In the present embodiment, cold rolling and annealing are performed on a hot-rolled steel sheet in which the total amount of solute Ti and solute Nb is less than 40% of the total amount of total Ti and total Nb in the steel. However, the cold-rolled steel sheet is annealed continuously and is heated until the temperature at which the cold-rolled steel sheet has an austenite single-phase structure becomes Ac 3 points or higher, and the temperature ranges from Ac 3 points to 900 ° C. for 10 seconds to 300 seconds. Annealing for less than a second. Once the cold-rolled steel sheet has an austenite single-phase structure, a cold-rolled annealed sheet having a uniform and fine structure is obtained.

焼鈍温度がAc未満では、加工組織が残ってバンド状の組織となり加工性が著しく劣化するだけでなく、機械特性の変動が大きくなって材質安定性が劣化する。一方、焼鈍温度が900℃を超えると、炭化物が粗大化して、冷延焼鈍後に780MPa以上の引張強度を確保することが困難になる。 It is less than the annealing temperature Ac 3, not only the workability becomes worked structure remained band-like tissue is significantly deteriorated, material stability variation of mechanical properties is increased to deteriorate. On the other hand, if the annealing temperature exceeds 900 ° C., the carbides become coarse and it becomes difficult to ensure a tensile strength of 780 MPa or more after cold rolling annealing.

また、焼鈍時間が10秒未満であれば、置換型元素であるMn等の偏析が残り、冷延焼鈍板の組織が不均一となり、加工性が劣化する。一方、焼鈍時間が300秒を超えると、炭化物が粗大化するとともに、焼鈍後のフェライトが粗大となり加工性が劣化する。   Further, if the annealing time is less than 10 seconds, segregation of substitutional elements such as Mn remains, the structure of the cold-rolled annealing plate becomes non-uniform, and the workability deteriorates. On the other hand, if the annealing time exceeds 300 seconds, the carbides become coarse, and the ferrite after annealing becomes coarse and the workability deteriorates.

このため、本実施の形態では冷延鋼板の焼鈍条件を、Ac以上900℃以下の温度範囲で10秒以上300秒以下と限定する。
(冷延鋼板の冷却条件:650℃から550℃までの平均冷却速度を5℃/秒以上200℃/秒以下)
冷延鋼板は焼鈍後、650℃から550℃までを、5℃/秒以上200℃/秒以下の平均冷却速度で冷却する。平均冷却速度が5℃/秒未満であると、結晶粒が粗大化するだけでなく、780MPa以上の強度を確保することが困難となる。一方、平均冷却速度が200℃/秒超であると、フェライト相が生成し難くなり加工性が劣化する。なお、さらに良好な材質安定性が要求されるときは、冷却速度を5℃/秒以上80℃/秒以下とするのが好ましい。
Therefore, in this embodiment to limit the annealing conditions of the cold-rolled steel sheet, Ac 3 above 900 ° C. and 300 seconds or less 10 seconds or more in a temperature range of below.
(Cooling conditions for cold-rolled steel sheet: average cooling rate from 650 ° C. to 550 ° C. is 5 ° C./second or more and 200 ° C./second or less)
The cold-rolled steel sheet is cooled from 650 ° C. to 550 ° C. at an average cooling rate of 5 ° C./second or more and 200 ° C./second or less after annealing. When the average cooling rate is less than 5 ° C./second, not only the crystal grains become coarse, but it becomes difficult to ensure a strength of 780 MPa or more. On the other hand, if the average cooling rate is more than 200 ° C./second, it is difficult to produce a ferrite phase and the workability deteriorates. When better material stability is required, the cooling rate is preferably 5 ° C./second or more and 80 ° C./second or less.

また、冷却前のオーステナイト粒径を4μm以下にすることによって、フェライトの生成量が安定して材質安定性が高まるので、さらに良好な材質安定性が要求されるときは、冷却前のオーステナイト粒径を4μm以下とすることが好ましい。   In addition, by making the austenite grain size before cooling 4 μm or less, the amount of ferrite produced is stabilized and the material stability is increased. Therefore, when better material stability is required, the austenite grain size before cooling is increased. Is preferably 4 μm or less.

本実施の形態では、材質安定性を劣化させるマルテンサイトの生成を抑制するために、上述のような冷却速度で、300℃以上550℃以下の冷却停止温度まで冷却した後、300℃以上600℃以下の温度範囲で30秒から600秒間保持することが好ましい。   In the present embodiment, in order to suppress the formation of martensite that degrades the material stability, after cooling to a cooling stop temperature of 300 ° C. or more and 550 ° C. or less at the cooling rate as described above, 300 ° C. or more and 600 ° C. It is preferable to hold for 30 seconds to 600 seconds in the following temperature range.

なお、本実施の形態の高強度鋼板は、優れた耐食性も求められる場合には、表面に溶融亜鉛系めっき被膜を形成して溶融亜鉛系めっき鋼板としてもよい。ここで、溶融亜鉛系めっきとは、ZnおよびZnを主体とした溶融めっきであり、Znの他にAl、Cr等の合金元素を含んだものを含む。溶融亜鉛系めっきを施した本実施の形態の高強度鋼板は、めっきままでもよいし、あるいはめっき後に合金化処理を行ってもよい。なお、溶融亜鉛系めっきを施す場合には、めっき性や合金化処理性を劣化させないために、Si量を0.3%以下にすることが望ましく、0.1%以下にすることがさらに望ましい。   In addition, the high-strength steel plate of this Embodiment is good also as a hot-dip galvanized steel plate by forming the hot-dip galvanized coating film on the surface, when the outstanding corrosion resistance is calculated | required. Here, the hot dip galvanizing is hot dip plating mainly composed of Zn and Zn, and includes those containing alloy elements such as Al and Cr in addition to Zn. The high-strength steel plate of the present embodiment subjected to hot dip galvanizing may be left as it is or may be alloyed after plating. In addition, when performing hot dip galvanizing, Si content is desirably 0.3% or less, and more desirably 0.1% or less, in order not to deteriorate the plating property and alloying processability. .

このように、本実施の形態によれば、鋼素材の組成の調整と、熱間圧延および冷延後焼鈍条件の適正化とを図ることによって、フェライトの平均結晶粒径が1〜3.5μmであり、フェライトの体積率が40%以上であり、フェライトの体積率とフェライトのナノ硬さとの積が180%・GPa以上であるとともに、引張強度が780MPa以上である鋼組織を有する冷延鋼板を得ることができ、加工性ならびに材質安定性に極めて優れた高強度冷延鋼板、具体的には、TS×ELが10000MPa・%以上であり、最小曲げ半径が1.0t以下であり、さらに、後述する評価方法により引張強度の変動が引張強度の10%以内、好ましくは5%以内である材質安定性を有する高強度冷延鋼板を提供できる。   Thus, according to the present embodiment, by adjusting the composition of the steel material and optimizing the annealing conditions after hot rolling and cold rolling, the average crystal grain size of ferrite is 1 to 3.5 μm. A cold rolled steel sheet having a steel structure in which the volume fraction of ferrite is 40% or more, the product of the volume fraction of ferrite and the nano hardness of the ferrite is 180% · GPa or more, and the tensile strength is 780 MPa or more. A high-strength cold-rolled steel sheet having excellent workability and material stability, specifically, TS × EL is 10000 MPa ·% or more, minimum bending radius is 1.0 t or less, According to the evaluation method described later, a high strength cold-rolled steel sheet having material stability in which the variation in tensile strength is within 10%, preferably within 5% of the tensile strength can be provided.

さらに、本発明を、実施例を参照しながらより具体的に説明する。
表1に示す組成を有する溶鋼を連続鋳造により1000mm巾のスラブとした。これらのスラブを表2−1に示す条件で板厚2.4mmの熱延鋼板とし、酸洗後、表2−2に示す圧下率で冷間圧延を施して冷延鋼板とした。その後、冷延鋼板に連続焼鈍にて表2−2に示す条件で加熱、焼鈍および焼鈍後冷却し、圧延率0.2%のスキンパスを行った。
Furthermore, the present invention will be described more specifically with reference to examples.
Molten steel having the composition shown in Table 1 was made into a 1000 mm wide slab by continuous casting. These slabs were hot-rolled steel sheets having a thickness of 2.4 mm under the conditions shown in Table 2-1, and after pickling, cold rolling was performed at the rolling reduction shown in Table 2-2 to obtain cold-rolled steel sheets. Thereafter, the cold-rolled steel sheet was heated, annealed and cooled after annealing under the conditions shown in Table 2-2 by continuous annealing, and a skin pass with a rolling rate of 0.2% was performed.

連続焼鈍が溶融亜鉛めっきラインの場合、めっき浴中の鋼板温度は460℃であった。表1に示す成分を有し、表2−1の条件で製造された熱延鋼板の固溶Ti量と固溶Nb量、冷延鋼板のAc点、連続焼鈍中のオーステナイト粒径を測定するとともに、得られた冷延焼鈍板について、組織観察、ナノ硬さ測定、引張試験および曲げ試験を行った。また、溶融亜鉛系めっき鋼板についてはめっき性、合金化処理性を評価した。試験方法を下記に示す。 When continuous annealing was a hot dip galvanizing line, the steel plate temperature in the plating bath was 460 ° C. Measure the solid solution Ti amount and solid solution Nb amount of hot-rolled steel sheets manufactured under the conditions shown in Table 2-1 and the three- point Ac of cold-rolled steel sheets and the austenite grain size during continuous annealing. At the same time, the obtained cold-rolled annealed plate was subjected to structure observation, nano hardness measurement, tensile test and bending test. Moreover, about the hot dip galvanized steel plate, plating property and alloying processability were evaluated. The test method is shown below.

(実験方法)
(Ac点の測定)
各冷延鋼板から試験片を採取し、室温から1000℃まで10℃/sで加熱した際の膨張率変化を解析することによって、各冷延鋼板のAc点を測定した。
(experimental method)
(Ac 3 point measurement)
Test pieces were collected from each cold-rolled steel sheet, and the Ac 3 points of each cold-rolled steel sheet were measured by analyzing the change in expansion coefficient when heated from room temperature to 1000 ° C. at 10 ° C./s.

(熱延板の固溶Ti量、固溶Nb量の測定)
各熱延鋼板の長手方向中央部の位置の巾方向中央部から試験片を採取し、電解抽出残査を化学分析することにより熱延板の固溶Ti量および固溶Nb量を測定した。
(Measurement of solid solution Ti amount and solid solution Nb amount of hot-rolled sheet)
A specimen was taken from the center in the width direction at the position of the center in the longitudinal direction of each hot-rolled steel sheet, and the amount of solute Ti and solute Nb in the hot-rolled sheet was measured by chemical analysis of the electrolytic extraction residue.

(焼鈍中のオーステナイト粒径の測定)
各種冷延板から試験片を採取し、室温から500℃まで10℃/sで加熱し、表2に示す焼鈍温度まで3℃/sで加熱し、表2に示す焼鈍温度および焼鈍時間の熱処理後に水冷することによって試験片を作製した。この試験片の圧延方向断面、および圧延方向と直角方向断面の組織を光学顕微鏡で撮影し、JISG0552に準拠して旧オーステナイト粒径を測定し、それをオーステナイト粒径とした。
(Measurement of austenite grain size during annealing)
Samples were taken from various cold-rolled plates, heated from room temperature to 500 ° C. at 10 ° C./s, heated to the annealing temperature shown in Table 2 at 3 ° C./s, and heat treatment at the annealing temperature and annealing time shown in Table 2. A test piece was prepared by water cooling later. The cross section in the rolling direction and the structure of the cross section perpendicular to the rolling direction were photographed with an optical microscope, the prior austenite grain size was measured in accordance with JISG0552, and this was used as the austenite grain size.

(組織観察)
各冷延焼鈍板から試験片を採取し、試験片の圧延方向断面、および圧延方向と直角方向断面の組織を、光学顕微鏡あるいは電子顕微鏡で撮影し、JIS G 0552に準拠してフェライトの結晶粒径を測定した。フェライトの体積率は画像解析により測定した。
(Tissue observation)
Test specimens were taken from each cold-rolled annealed plate, and the cross section in the rolling direction of the test specimen and the structure of the cross section perpendicular to the rolling direction were photographed with an optical microscope or an electron microscope, and ferrite grains were observed in accordance with JIS G 0552. The diameter was measured. The volume fraction of ferrite was measured by image analysis.

(ナノ硬さ測定)
フェライトのナノ硬さは、AFMナノインデンテーションを用い、鋼板表面から板厚の1/4の部分において、圧痕荷重を1000μNとし、フェライト相について抽出した10箇所のナノ硬さを測定し、その平均値を用いた。
(Nano hardness measurement)
The nano hardness of the ferrite was measured using the AFM nano-indentation, the indentation load was 1000 μN, and the 10 nano hardness values extracted from the ferrite phase were measured from the steel sheet surface, and the average was obtained. Values were used.

(引張試験)
各種冷延焼鈍板の圧延方向に直角方向からJIS5号引張試験片を採取し、引張特性(引張強度TS、伸びEl)を調査した。試験片の採取は、得られた鋼板の長手方向中央部の位置の巾方向中央部と端部から250mm内側の巾方向1/4部の2箇所とし、両平均を引張特性値とした。
(Tensile test)
JIS No. 5 tensile test specimens were sampled from the direction perpendicular to the rolling direction of various cold-rolled annealed plates and examined for tensile properties (tensile strength TS, elongation El). The specimens were sampled in two places, the center in the width direction at the position of the center in the longitudinal direction of the obtained steel sheet and the 1/4 part in the width direction 250 mm from the end, and the average of both was taken as the tensile property value.

(曲げ試験)
各種冷延焼鈍板から圧延方向に直角方向を長手方向とするJIS3号曲げ試験片を採取し、JIS Z 2248の規定に準拠したVブロック法により、曲げ性を調査した。試験片の採取は、引張試験と同様である。その際、頂角90°の押し金具をバリが内側となるように押し込んだ。試験後の正否は目視にて調査し、試験後に割れが認められない押し金具の最小半径を板厚で割り、規格化することにより最小曲げ半径を算出した。なお、半径が2mm、1mm、0.5mm、0mmの押し金具を用いた。
(Bending test)
JIS No. 3 bending test specimens having a longitudinal direction perpendicular to the rolling direction as a longitudinal direction were collected from various cold-rolled annealed plates, and the bendability was investigated by a V-block method in accordance with JIS Z 2248. The specimen collection is the same as in the tensile test. At that time, a push fitting with an apex angle of 90 ° was pushed so that the burr was inside. The correctness after the test was visually checked, and the minimum radius of the metal fitting that was not cracked after the test was divided by the plate thickness and normalized to calculate the minimum bend radius. In addition, a press fitting having a radius of 2 mm, 1 mm, 0.5 mm, and 0 mm was used.

(材質安定性の評価)
材質安定性は、巾方向中央部と巾方向1/4部の引張強度差の絶対値で評価した。
(めっき性、合金化処理性の評価)
不めっき、欠陥がないサンプルを良好、不めっき、欠陥が一部発生したサンプルをやや良好、不めっき、欠陥が多数発生したサンプルを不良とした。合金化ムラが全くないサンプルを良好、わずかに合金化ムラがあるサンプルをやや良好、合金化ムラの著しいサンプルを不良とした。
(Evaluation of material stability)
Material stability was evaluated by the absolute value of the difference in tensile strength between the center in the width direction and 1/4 part in the width direction.
(Evaluation of plating properties and alloying properties)
Samples with no plating and no defects were good, samples without plating and some defects were slightly good, samples with many non-plating and defects were considered defective. Samples with no alloying unevenness were good, samples with slight alloying unevenness were slightly good, and samples with remarkable alloying unevenness were considered defective.

これらの結果を表3に示す。本発明例の鋼板No.1、3、5、7、8、10〜16、19〜21、26〜29、31〜35、38、39および42〜45は、いずれも、フェライトの平均結晶粒径が1μm以上3.5μm以下であるとともにフェライトの体積率が40%以上であり、フェライトの体積率とフェライトのナノ硬さとの積が180%・GPa以上であり、かつ引張強度が780MPa以上であるという、これまでには存在しない特性を有しており、加工性と材質安定性に優れた高強度鋼板である。   These results are shown in Table 3. Steel plate No. of the example of the present invention. 1, 3, 5, 7, 8, 10 to 16, 19 to 21, 26 to 29, 31 to 35, 38, 39, and 42 to 45 all have an average crystal grain size of ferrite of 1 μm to 3.5 μm. The volume ratio of ferrite is 40% or more, the product of the volume ratio of ferrite and the nano hardness of ferrite is 180% · GPa or more, and the tensile strength is 780 MPa or more. It is a high-strength steel sheet that has non-existing properties and is excellent in workability and material stability.

これに対し、比較例の鋼板No.2は、製造条件が、本発明が規定する条件を逸脱しており、材質安定性を高めること、および780MPa以上の引張強度を確保することの両立ができないだけでなく、加工性も不芳である。   In contrast, the steel plate No. No. 2 shows that the manufacturing conditions deviate from the conditions specified by the present invention, and not only the stability of the material cannot be improved and the tensile strength of 780 MPa or more cannot be ensured. is there.

鋼板No.4は、製造条件が、本発明が規定する条件を逸脱しており、所定の強度を確保できないだけでなく、加工性も不芳である。
鋼板No.6、9および30は、いずれも、製造条件が、本発明が規定する条件を逸脱しており、材質安定性を高めること、および780MPa以上の引張強度を確保することの両立ができない。
Steel plate No. In No. 4, the manufacturing conditions deviate from the conditions defined by the present invention, and not only the predetermined strength cannot be secured, but also the workability is unsatisfactory.
Steel plate No. As for 6, 9, and 30, all the manufacturing conditions deviate from the conditions defined by the present invention, and it is impossible to improve both material stability and secure a tensile strength of 780 MPa or more.

鋼板No.25、41は、ともに、製造条件が、本発明が規定する条件を外れており、加工性が不芳であるだけでなく、材質安定性も不芳である。
鋼板No.17は、化学組成が、本発明が規定する条件を逸脱しており、加工性が不芳であるだけでなく、材質安定性も不芳である。
Steel plate No. In both Nos. 25 and 41, the manufacturing conditions deviate from the conditions specified by the present invention, and not only the workability is unsatisfactory but also the material stability is unsatisfactory.
Steel plate No. In No. 17, the chemical composition deviates from the conditions specified by the present invention, and not only the workability is unsatisfactory but also the material stability is unsatisfactory.

鋼板No.18、23は、ともに、組成が、本発明が規定する鋼組成を逸脱しており、所定の強度を確保できない。
鋼板No.24は、組成が、本発明が規定する鋼組成を逸脱しており、濡れ性および合金化処理性が悪い。
Steel plate No. 18 and 23 both have compositions that deviate from the steel composition defined by the present invention, and a predetermined strength cannot be ensured.
Steel plate No. In No. 24, the composition deviates from the steel composition defined by the present invention, and the wettability and alloying processability are poor.

鋼板No.22、36は、ともに、組成が、本発明が規定する鋼組成を逸脱しており、加工性が不芳である。
さらに、鋼板No.37は、組成が、本発明が規定する範囲を逸脱しており、材質安定性が悪い。
Steel plate No. In both Nos. 22 and 36, the composition deviates from the steel composition defined by the present invention, and the workability is poor.
Furthermore, steel plate No. No. 37 has a composition deviating from the range defined by the present invention, and the material stability is poor.

Figure 2007002276
Figure 2007002276

Figure 2007002276
Figure 2007002276

Figure 2007002276
Figure 2007002276

Figure 2007002276
Figure 2007002276

Claims (5)

フェライトの平均結晶粒径が1〜3.5μmであり、フェライトの体積率が40%以上であり、フェライトの体積率とフェライトのナノ硬さとの積が180%・GPa以上であるとともに、引張強度が780MPa以上である鋼組織を有することを特徴とする高強度鋼板。 The average crystal grain size of ferrite is 1 to 3.5 μm, the volume fraction of ferrite is 40% or more, the product of the volume fraction of ferrite and the nano hardness of ferrite is 180% · GPa or more, and the tensile strength A high-strength steel sheet characterized by having a steel structure of 780 MPa or more. 質量%で、C:0.06〜0.18%、Si:0.005〜0.5%、Mn:2.0〜3.0%、P:0.02%以下、S:0.01%以下、Al:0.01〜0.1%、N:0.01%以下、さらに、Ti:0.20%以下およびNb:0.20%以下の1種または2種を合計で0.05%以上、残部Feおよび不純物からなる鋼組成を有する請求項1に記載の高強度鋼板。 In mass%, C: 0.06-0.18%, Si: 0.005-0.5%, Mn: 2.0-3.0%, P: 0.02% or less, S: 0.01 % Or less, Al: 0.01 to 0.1%, N: 0.01% or less, Ti: 0.20% or less, and Nb: 0.20% or less in total of 0.2%. The high-strength steel sheet according to claim 1, which has a steel composition consisting of 05% or more, the balance Fe and impurities. さらに、質量%で、Cr:1.0%以下、Mo:1.0%以下およびB:0.003%以下からなる群から選ばれた1種または2種以上を含有する請求項1または請求項2に記載の高強度鋼板。 Furthermore, claim 1 or claim 2 containing one or more selected from the group consisting of Cr: 1.0% or less, Mo: 1.0% or less, and B: 0.003% or less in mass%. Item 3. A high-strength steel sheet according to Item 2. 請求項2または請求項3に記載の鋼組成を有し、鋼中の固溶Ti量および固溶Nb量の合計が、鋼中の全Ti量および全Nb量の合計の40%以上である鋼板を冷間圧延し、次いで、連続焼鈍設備により、Ac点〜900℃の温度範囲で10〜300秒間焼鈍した後、650℃から550℃まで5〜200℃/秒の平均冷却速度で冷却することを特徴とする高強度鋼板の製造方法。 It has the steel composition of Claim 2 or Claim 3, and the sum total of the amount of solid solution Ti and solid solution Nb in steel is 40% or more of the sum total of the total Ti amount and total Nb amount in steel. The steel sheet was cold-rolled and then annealed for 10 to 300 seconds in a temperature range of Ac 3 to 900 ° C. with a continuous annealing facility, and then cooled at an average cooling rate of 5 to 200 ° C./second from 650 ° C. to 550 ° C. A method for producing a high-strength steel sheet characterized by comprising: 請求項2または請求項3に記載の鋼組成を有する鋼を連続鋳造後に、直接熱延、直送熱延、または、一旦冷却した後に1150〜1300℃に再加熱した後に熱間圧延し、800℃〜950℃で仕上げ圧延を完了し、仕上げ圧延完了後30秒以内に500〜700℃の温度範囲で巻き取ることにより、鋼中の固溶Ti量および固溶Nb量の合計が、鋼中の全Ti量および全Nb量の合計の40%以上である鋼板とし、該鋼板を冷間圧延し、次いで、連続焼鈍設備により、Ac点〜900℃の温度範囲で10〜300秒間焼鈍した後、650℃から550℃まで5〜200℃/秒の平均冷却速度で冷却することを特徴とする高強度鋼板の製造方法。 The steel having the steel composition according to claim 2 or claim 3 is continuously cast, directly hot rolled, directly fed hot rolled, or once cooled and then reheated to 1150 to 1300 ° C and hot-rolled to 800 ° C. By completing the finish rolling at ˜950 ° C. and winding up in the temperature range of 500 to 700 ° C. within 30 seconds after the completion of finish rolling, the total amount of solute Ti and solute Nb in the steel is After the steel sheet is 40% or more of the total of the total Ti amount and the total Nb amount, the steel sheet is cold-rolled, and then annealed for 10 to 300 seconds in a temperature range of Ac 3 to 900 ° C. by continuous annealing equipment. A method for producing a high-strength steel sheet, characterized by cooling from 650 ° C. to 550 ° C. at an average cooling rate of 5 to 200 ° C./second.
JP2005180882A 2005-06-21 2005-06-21 High strength steel plate and manufacturing method thereof Active JP4925611B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005180882A JP4925611B2 (en) 2005-06-21 2005-06-21 High strength steel plate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005180882A JP4925611B2 (en) 2005-06-21 2005-06-21 High strength steel plate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007002276A true JP2007002276A (en) 2007-01-11
JP4925611B2 JP4925611B2 (en) 2012-05-09

Family

ID=37688148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005180882A Active JP4925611B2 (en) 2005-06-21 2005-06-21 High strength steel plate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4925611B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008231541A (en) * 2007-03-22 2008-10-02 Sumitomo Metal Ind Ltd High strength cold rolled steel sheet and manufacturing method thereof
WO2008123267A1 (en) * 2007-03-22 2008-10-16 Jfe Steel Corporation High-strength hot dip zinc plated steel sheet having excellent moldability, and method for production thereof
JP2008291314A (en) * 2007-05-24 2008-12-04 Sumitomo Metal Ind Ltd High-strength hot-dip galvannealed steel sheet and method for manufacturing the same
JP2009108343A (en) * 2007-10-26 2009-05-21 Sumitomo Metal Ind Ltd High-strength steel sheet and manufacturing method therefor
JP2009179851A (en) * 2008-01-31 2009-08-13 Jfe Steel Corp Method for producing cold-rolled steel sheet
JP2009256695A (en) * 2008-04-11 2009-11-05 Sumitomo Metal Ind Ltd Thin steel sheet, and method for producing the same
JP2010180462A (en) * 2009-02-06 2010-08-19 Sumitomo Metal Ind Ltd Cold-rolled steel sheet and method for producing the same
KR101412354B1 (en) 2012-03-29 2014-06-25 현대제철 주식회사 High strength steel sheet and method for manufacturing the same
JP2015071824A (en) * 2013-09-04 2015-04-16 Jfeスチール株式会社 Method for producing high strength steel sheet
CN113195755A (en) * 2018-12-21 2021-07-30 杰富意钢铁株式会社 Steel sheet, member, and method for producing same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10435762B2 (en) 2014-03-31 2019-10-08 Jfe Steel Corporation High-yield-ratio high-strength cold-rolled steel sheet and method of producing the same
JP6354075B1 (en) 2016-08-10 2018-07-11 Jfeスチール株式会社 High strength thin steel sheet and method for producing the same
KR102197431B1 (en) 2016-08-31 2020-12-31 제이에프이 스틸 가부시키가이샤 High-strength cold rolled steel sheet and its manufacturing method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000290745A (en) * 1999-04-06 2000-10-17 Nippon Steel Corp High strength steel sheet for working, excellent in fatigue characteristic and safety against collision, and its manufacture
JP2002363685A (en) * 2001-06-07 2002-12-18 Nkk Corp Low yield ratio high strength cold rolled steel sheet
JP2003221623A (en) * 2002-01-29 2003-08-08 Jfe Engineering Kk Method for manufacturing high-strength cold-rolled steel sheet and hot-dip galvanized high-strength steel sheet
JP2003247043A (en) * 2001-07-06 2003-09-05 Jfe Steel Kk High tensile strength galvanized, cold rolled steel sheet having excellent balance in strength-ductility and production method thereof
JP2004292881A (en) * 2003-03-26 2004-10-21 Jfe Steel Kk Hot-dip galvanized steel sheet and manufacturing method therefor
JP2004339606A (en) * 2003-04-21 2004-12-02 Jfe Steel Kk High strength hot rolled steel plate and manufacturing method
JP2005002404A (en) * 2003-06-11 2005-01-06 Jfe Steel Kk High strength cold rolled steel sheet, and its production method
JP2006052458A (en) * 2003-08-26 2006-02-23 Jfe Steel Kk High tensile strength cold-rolled steel sheet and its production method
JP2006052455A (en) * 2004-08-16 2006-02-23 Sumitomo Metal Ind Ltd High-tension hot-dip galvanized steel sheet and method for producing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000290745A (en) * 1999-04-06 2000-10-17 Nippon Steel Corp High strength steel sheet for working, excellent in fatigue characteristic and safety against collision, and its manufacture
JP2002363685A (en) * 2001-06-07 2002-12-18 Nkk Corp Low yield ratio high strength cold rolled steel sheet
JP2003247043A (en) * 2001-07-06 2003-09-05 Jfe Steel Kk High tensile strength galvanized, cold rolled steel sheet having excellent balance in strength-ductility and production method thereof
JP2003221623A (en) * 2002-01-29 2003-08-08 Jfe Engineering Kk Method for manufacturing high-strength cold-rolled steel sheet and hot-dip galvanized high-strength steel sheet
JP2004292881A (en) * 2003-03-26 2004-10-21 Jfe Steel Kk Hot-dip galvanized steel sheet and manufacturing method therefor
JP2004339606A (en) * 2003-04-21 2004-12-02 Jfe Steel Kk High strength hot rolled steel plate and manufacturing method
JP2005002404A (en) * 2003-06-11 2005-01-06 Jfe Steel Kk High strength cold rolled steel sheet, and its production method
JP2006052458A (en) * 2003-08-26 2006-02-23 Jfe Steel Kk High tensile strength cold-rolled steel sheet and its production method
JP2006052455A (en) * 2004-08-16 2006-02-23 Sumitomo Metal Ind Ltd High-tension hot-dip galvanized steel sheet and method for producing the same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8241759B2 (en) 2007-03-22 2012-08-14 Jfe Steel Corporation Zinc-plated high-tension steel sheet excellent in press formability
WO2008123267A1 (en) * 2007-03-22 2008-10-16 Jfe Steel Corporation High-strength hot dip zinc plated steel sheet having excellent moldability, and method for production thereof
JP2008266778A (en) * 2007-03-22 2008-11-06 Jfe Steel Kk High-strength hot dip zinc-plated steel sheet having excellent moldability, and method for production thereof
JP2008231541A (en) * 2007-03-22 2008-10-02 Sumitomo Metal Ind Ltd High strength cold rolled steel sheet and manufacturing method thereof
JP2008291314A (en) * 2007-05-24 2008-12-04 Sumitomo Metal Ind Ltd High-strength hot-dip galvannealed steel sheet and method for manufacturing the same
JP2009108343A (en) * 2007-10-26 2009-05-21 Sumitomo Metal Ind Ltd High-strength steel sheet and manufacturing method therefor
JP2009179851A (en) * 2008-01-31 2009-08-13 Jfe Steel Corp Method for producing cold-rolled steel sheet
JP2009256695A (en) * 2008-04-11 2009-11-05 Sumitomo Metal Ind Ltd Thin steel sheet, and method for producing the same
JP2010180462A (en) * 2009-02-06 2010-08-19 Sumitomo Metal Ind Ltd Cold-rolled steel sheet and method for producing the same
KR101412354B1 (en) 2012-03-29 2014-06-25 현대제철 주식회사 High strength steel sheet and method for manufacturing the same
JP2015071824A (en) * 2013-09-04 2015-04-16 Jfeスチール株式会社 Method for producing high strength steel sheet
WO2016024371A1 (en) * 2013-09-04 2016-02-18 Jfeスチール株式会社 Method for manufacturing high-strength steel sheet
CN113195755A (en) * 2018-12-21 2021-07-30 杰富意钢铁株式会社 Steel sheet, member, and method for producing same
CN113195755B (en) * 2018-12-21 2023-01-06 杰富意钢铁株式会社 Steel sheet, member, and method for producing same

Also Published As

Publication number Publication date
JP4925611B2 (en) 2012-05-09

Similar Documents

Publication Publication Date Title
JP4925611B2 (en) High strength steel plate and manufacturing method thereof
EP3309273B1 (en) Galvannealed steel sheet and method for manufacturing same
JP6631760B1 (en) High strength galvanized steel sheet and high strength members
EP3050989B1 (en) High-strength steel sheet and method for producing same
EP3214197B1 (en) High-strength steel sheet and method for manufacturing same
JP4737319B2 (en) High-strength galvannealed steel sheet with excellent workability and fatigue resistance and method for producing the same
JP5447741B1 (en) Steel plate, plated steel plate, and manufacturing method thereof
WO2018147400A1 (en) High-strength steel plate and manufacturing method therefor
JP4501699B2 (en) High-strength steel sheet excellent in deep drawability and stretch flangeability and method for producing the same
WO2013114850A1 (en) Hot-dip galvanized steel sheet and production method therefor
JP5884476B2 (en) High-tensile hot-rolled steel sheet excellent in bending workability and manufacturing method thereof
WO2016031165A1 (en) High-strength hot-dip galvanized steel sheet having superb stretch-flangeability, in-plane stability of stretch-flangeability, and bendability, and method for producing same
JP5071173B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JP5958669B1 (en) High strength steel plate and manufacturing method thereof
WO2013094130A1 (en) High-strength steel sheet and process for producing same
JP3812279B2 (en) High yield ratio type high-tensile hot dip galvanized steel sheet excellent in workability and strain age hardening characteristics and method for producing the same
EP3889283A1 (en) High-strength steel sheet and method for manufacturing same
EP3498876B1 (en) Cold-rolled high-strength steel sheet, and production method therefor
JP5206350B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JP6769576B1 (en) High-strength galvanized steel sheet and its manufacturing method
KR20180114920A (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP3870868B2 (en) Composite structure type high-tensile cold-rolled steel sheet excellent in stretch flangeability, strength-ductility balance and strain age hardening characteristics, and method for producing the same
JP5206352B2 (en) Steel sheet and manufacturing method thereof
JP4867338B2 (en) Ultra-high strength steel sheet and method for manufacturing the same
JP5644964B2 (en) High strength hot rolled steel sheet and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091027

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4925611

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350