WO2013094130A1 - High-strength steel sheet and process for producing same - Google Patents

High-strength steel sheet and process for producing same Download PDF

Info

Publication number
WO2013094130A1
WO2013094130A1 PCT/JP2012/007663 JP2012007663W WO2013094130A1 WO 2013094130 A1 WO2013094130 A1 WO 2013094130A1 JP 2012007663 W JP2012007663 W JP 2012007663W WO 2013094130 A1 WO2013094130 A1 WO 2013094130A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
ferrite
steel sheet
strength steel
pearlite
Prior art date
Application number
PCT/JP2012/007663
Other languages
French (fr)
Japanese (ja)
Inventor
功一 中川
河村 健二
横田 毅
瀬戸 一洋
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to IN1170KON2014 priority Critical patent/IN2014KN01170A/en
Priority to EP12860717.3A priority patent/EP2796584B1/en
Priority to US14/363,166 priority patent/US20140332123A1/en
Priority to CN201280063029.3A priority patent/CN104011240B/en
Priority to KR1020147018870A priority patent/KR101624439B1/en
Publication of WO2013094130A1 publication Critical patent/WO2013094130A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0463Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Definitions

  • the present invention is a high-strength steel sheet with excellent formability that can be applied to automobile parts and the like, and in particular, tensile strength TS is 600 to 700 MPa, elongation El is 25% or more (plate thickness 1.6 mm, JIS No. 5 specimen), high strength steel plate with a hole expansion ratio ⁇ of 80% or more, which is an index of stretch flangeability, and its manufacturing method (high strength, steel, sheet, and method for for producing same).
  • Patent Document 1 As chemical components, C: 0.02 to 0.16% by mass, P ⁇ 0.010%, S ⁇ 0.003%, one or two of Si and Al in a total amount of 0.2 to 4%, One or more of Mn, Ni, Cr, Mo, Cu are included in a total amount of 0.5-4%, C / (Si + Al + P) is 0.1 or less, the remainder Fe and inevitable impurities A steel sheet having a cross-sectional microstructure of one or two of martensite and retained austenite in a total area ratio of less than 3%, ferrite and bainite.
  • the total area ratio of one or two of (bainite) is 80% or more, the balance is pearlite, the maximum length of pearlite, martensite, and retained austenite is 10 microns or less.
  • Strength-hole expansion ratio balance and shape fixability characterized by the inclusion of inclusions of 20 microns or more in the cross section within 0.3 per square mm An excellent high strength steel sheet for processing is disclosed.
  • Patent Document 2 includes mass%, C: 0.05 to 0.15%, Mn: 0.8 to 1.2%, Si: 0.02 to 2.0%, sol.Al: 0.002% to less than 0.05%, N: 0.001% to 0.005
  • the balance consists of Fe and impurities, and Ti, Nb and V in the impurities are all less than 0.005%, and the microstructure is ferrite with an average particle size of 1.1-5.0 ⁇ m as the main phase and pearlite as the second phase.
  • a hot-rolled steel material containing either one or both of cementite and cementite and satisfying Mn ⁇ / Mn ⁇ ⁇ 1 is disclosed.
  • Mn ⁇ is the amount of Mn in cementite containing cementite in pearlite
  • Mn ⁇ is the amount of Mn in ferrite as the main phase.
  • Punched when the tensile strength is 50 kgf / mm 2 or more characterized in that the structure ratio of cementite with an equivalent circle radius of 0.1 ⁇ m or more is 0.1% or less and / or the structure ratio of martensite is 5% or less.
  • the structure ratio of cementite with an equivalent circle radius of 0.1 ⁇ m or more is 0.1% or less and / or the structure ratio of martensite is 5% or less.
  • the present invention provides a high-strength steel sheet having excellent workability with TS of 600 to 700 MPa, El of 25% or more (in the case of a plate thickness of 1.6 mm, JIS No. 5 test piece) and ⁇ of 80% or more, and a method for producing the same.
  • the purpose is to do.
  • the inventors of the present invention have studied the above-mentioned high-strength steel sheet, and have ferrite and pearlite, the ferrite volume fraction is 70% to 97%, the pearlite volume fraction is 3% or more, and the ferrite It is effective to have a microstructure in which the volume fraction of cementite existing at grain boundaries is 2% or less, the volume fraction of other phases is less than 3% in total, and the average grain size of ferrite is 7 ⁇ m or less I found out.
  • the present invention has been made based on such findings, in mass%, C: 0.10% or more and 0.18% or less, Si: more than 0.5% and 1.5% or less, Mn: 0.5% or more and 1.5% or less, P: 0.05% or less, S: 0.005% or less, Al: 0.05% or less, having a composition composed of the remaining Fe and inevitable impurities, the microstructure has ferrite and pearlite, and the volume fraction of the ferrite is 70% or more 97% or less, the pearlite volume fraction is 3% or more, the volume fraction of cementite present in the ferrite grain boundary is 2% or less, and the volume fraction of phases other than the ferrite, pearlite, and cementite is 3 in total. And providing a high-strength steel sheet having an average grain size of 7 ⁇ m or less.
  • the high-strength steel sheet of the present invention further includes at least one selected from mass%, Cr: 0.01% to 1.0%, Ti: 0.01% to 0.1%, V: 0.01% to 0.1%. It is preferable to do.
  • the high-strength steel sheet of the present invention preferably has a tensile strength TS of 600 to 700 MPa.
  • the high-strength steel sheet of the present invention preferably has a hole expansion ratio ⁇ of 80% or more.
  • the high-strength steel sheet of the present invention preferably has a ferrite volume fraction of 80% to 95%.
  • the high strength steel sheet of the present invention preferably has a pearlite volume fraction of 3% to 30%. The volume ratio of pearlite is more preferably 5% or more and 28% or less.
  • the production method of the high strength steel sheet of the present invention is mass%, C: 0.10% or more and 0.18% or less, Si: more than 0.5% and 1.5% or less, Mn: 0.5% or more and 1.5% or less, P: 0.05% or less, S: 0.005% or less, Al: including 0.05% or less, a step of preparing a steel slab having a chemical composition consisting of the balance Fe and inevitable impurities, a step of subjecting the steel slab to hot rolling to form a hot rolled sheet, The hot-rolled sheet is heated to a two-phase temperature range between the Ac 1 transformation point and the Ac 3 transformation point, and then the average cooling rate is 5 ° C./s to 30 ° C./s in a temperature range of 450 ° C. to 600 ° C. Cooling and performing annealing for staying in the temperature range for 100 s or more.
  • the steel slab further contains at least one selected from mass%, Cr: 0.01% to 1.0%, Ti: 0.01% to 0.1%, V: 0.01% to 0.1%. preferable.
  • the annealing is performed by heating to a two-phase temperature range between the Ac 1 transformation point and the Ac 3 transformation point, and then to an average cooling rate of 10 ° C./s to 20 ° C./s to a temperature range of 450 ° C. to 600 ° C. It is preferable that it is cooled at a temperature of 100s to 300s.
  • the present invention makes it possible to produce a high-strength steel sheet having excellent workability with TS of 600 to 700 MPa, El of 25% or more, and ⁇ of 80% or more.
  • C 0.10% or more and 0.18% or less C forms a second phase such as pearlite, martensite, and cementite, and contributes to an increase in the strength of the steel sheet.
  • a C amount of 0.10% or more is necessary.
  • the second phase increases too much, so TS exceeds 700MPa and El and ⁇ decrease.
  • the C content is 0.10% to 0.18%. Preferably it is 0.12% or more and 0.16% or less.
  • Si more than 0.5% and less than 1.5% Si is an element contributing to solid solution strengthening. In order to obtain a TS of 600 MPa or more, a Si amount exceeding 0.5% is required. However, if it exceeds 1.5%, the surface properties of the steel sheet deteriorate due to the generation of scale. From the above, the Si content is 0.5% to 1.5%. Preferably they are 0.7% or more and 1.2% or less.
  • Mn 0.5% or more and 1.5% or less Mn is an element contributing to solid solution strengthening. In order to obtain a TS of 600 MPa or more, an Mn amount of 0.5% or more is necessary. However, if it exceeds 1.5%, TS exceeds 700 MPa, or ⁇ decreases due to segregation. From the above, the Mn content is 0.5% or more and 1.5% or less. Preferably they are 1.1% or more and 1.5% or less.
  • P 0.05% or less
  • P is an element contributing to solid solution strengthening. However, if it exceeds 0.05%, El decreases due to segregation. Based on the above, the P content is 0.05% or less. Preferably it is 0.03% or less.
  • S 0.005% or less
  • S segregation occurs in the prior austenite grain boundaries, or MnS precipitates in the steel sheet, leading to a decrease in ⁇ . From the above, the amount of S is set to 0.005% or less, but the smaller the amount, the better.
  • Al 0.05% or less Al is added as a deoxidizer for steel and is an effective element for improving the cleanliness of steel. However, if it exceeds 0.05%, a large amount of inclusions are generated, which causes surface defects of the steel sheet. From the above, the Al content is 0.05% or less. Preferably it is 0.03% or less.
  • the balance is Fe and inevitable impurities, and further contains at least one selected from Cr: 0.01% to 1.0%, Ti: 0.01% to 0.1%, V: 0.01% to 0.1%. be able to.
  • Cr, Ti, and V suppress the recrystallization and recovery of austenite in the hot rolling temperature range, promote ferrite refinement, form carbides, or form a solid solution of ferrite. This is because it works to strengthen Note that Nb is an element that has the same effect. However, the addition of these elements does not lower the ductility (El) as much as when the same amount of Nb is added.
  • Cr 0.02% to 0.5%
  • Ti 0.02% to 0.05%
  • V 0.02% to 0.05%.
  • O is 0.003% or less
  • Cu, Ni, Sn, and Sb are each 0.05% or less.
  • the volume fraction of ferrite is 70% or more and 97% or less. If the volume fraction of the entire ferrite structure is less than 70%, TS exceeds 700 MPa or ⁇ of 80% or more cannot be obtained. On the other hand, when the volume ratio exceeds 97%, the amount of pearlite decreases, so that a TS of 600 MPa or more cannot be obtained. From the above, the volume fraction of ferrite is 70% or more and 97% or less. It is preferably 95% or less, and more preferably 80% or more and 90% or less.
  • Perlite volume ratio 3% or more ⁇ improves when the pearlite volume ratio is 3% or more. Preferably it is 5% or more. This is because pearlite is soft compared to cementite, martensite, and retained austenite, so compared to the number of voids generated at the interface between ferrite and martensite and the interface between ferrite and retained austenite after processing, This is probably because the number of voids generated at the interface is small.
  • the volume fraction of cementite present at the ferrite grain boundaries 2% or less
  • the steel sheet of the present invention may contain cementite, martensite, etc. in addition to ferrite and pearlite. If the volume fraction of cementite in the entire grain structure of cementite exceeds 2%, the number of voids generated at the interface between ferrite and cementite during hole expansion increases, leading to a decrease in ⁇ . Therefore, the volume fraction of cementite existing at the ferrite grain boundary is set to 2% or less. It may be 0%.
  • volume fraction of phases other than cementite present in ferrite, pearlite, and ferrite grain boundaries less than 3% in total
  • Other phases other than cementite present in ferrite, pearlite, and ferrite grain boundaries include martensite and retained austenite
  • the volume fraction of phases other than cementite should be less than 3% in total. Preferably it is 2.5% or less, and may be 0%.
  • Average ferrite particle diameter 7 ⁇ m or less Since the average particle diameter of ferrite exceeds 7 ⁇ m, the strength is reduced, so a TS of 600 MPa or more cannot be obtained. From the above, the average grain size of ferrite is 7 ⁇ m or less. Preferably, it is 5 ⁇ m or less.
  • the volume fraction of the entire structure of ferrite, pearlite, cementite, martensite, and retained austenite is corroded with a nital solution after polishing the plate thickness section parallel to the rolling direction of the steel plate, and the magnification is 1000 times with an optical microscope. 3 fields of view were taken, and the type of tissue was selected by image processing. At the same time, the average particle diameter of the ferrite was calculated by a cutting method.
  • an image taken with an optical microscope at a magnification of 1000 times is divided into 20 lines vertically and 20 lines horizontally.
  • the segment was plotted, and the value obtained by dividing the total length of ferrite grains cut by one line segment by the number of ferrite to be cut was taken as the cut length, and the average intercept length L at each line segment was calculated. And the average particle diameter d was calculated
  • required by following Formula. d 1.13 ⁇ L
  • the volume ratio of the cementite existing in the ferrite grain boundary in the entire structure was obtained by taking three fields of view with a scanning electron microscope at a magnification of 3000 and extracting the cementite existing in the ferrite grain boundary by image processing.
  • the steel slab to be used is preferably manufactured by a continuous casting method in order to prevent macrosegregation of the component molten steel melted in the above component composition by a known method such as a converter. However, it can also be produced by an ingot-making method.
  • Hot rolling The steel slab thus produced is hot-rolled after being cooled to room temperature or reheated in a heating furnace without being cooled to room temperature, or kept at a high temperature without passing through the heating furnace.
  • the hot rolling conditions need not be particularly limited, but after heating the steel slab to the range of 1100 ° C to 1300 ° C, the hot rolling (finish rolling) is finished at 850 ° C to 950 ° C, and the coil is wound at 720 ° C or lower. It is preferable to take. This is due to the following reason.
  • the heating temperature is less than 1100 ° C.
  • the deformation resistance of the steel is high, so that hot rolling may be difficult, and if it exceeds 1300 ° C., the crystal grain size becomes coarse and TS may decrease.
  • the finish rolling finish temperature is less than 850 ° C, ferrite is formed during rolling, so that extended ferrite is formed, which may lead to a decrease in ⁇ , and if it exceeds 950 ° C, the crystal grain size becomes coarse , TS may decrease.
  • the winding temperature exceeds 720 ° C., the formation of the internal oxide layer becomes remarkable, and the chemical conversion property and the corrosion resistance after coating may be deteriorated.
  • the hot-rolled sheet after hot rolling is pickled to remove scale generated on the surface of the steel sheet.
  • Annealing The hot-rolled sheet after pickling treatment is heated to a two-phase temperature range between the Ac 1 transformation point and Ac 3 transformation point, and then an average cooling rate of 5 ° C / s in the temperature range of 450 ° C to 600 ° C. It is cooled at 30 ° C./s or less and annealed to stay in the temperature range for 100 s or more.
  • the reason for heating to the two-phase temperature range between the Ac 1 transformation point and the Ac 3 transformation point is to form a microstructure having ferrite and pearlite.
  • cooling to a temperature range of 450 ° C to 600 ° C at an average cooling rate of 5 ° C / s to 30 ° C / s is because the volume fraction of cementite present at the ferrite grain boundaries exceeds 600 ° C.
  • the average cooling rate is preferably 10 ° C./s or more and 20 ° C./s or less. The reason for staying in the temperature range of 450 ° C.
  • the staying time be 150 seconds or longer.
  • the effect is only saturated when staying for an excessively long time, it is preferably set to 300 s or less from the viewpoint of production efficiency.
  • annealing can be performed by a continuous annealing facility or the like.
  • the steel sheet thus obtained was examined for the microstructure by the above method, and a tensile test was performed according to JIS Z 2241 using a JIS No. 5 test piece to measure TS and El. Further, using a 100 mm square test piece, a hole expansion test was performed in accordance with JFST 1001-1996, and ⁇ was measured.
  • the steel plates of the examples of the present invention are high-strength steel plates having excellent workability with TS of 600 to 700 MPa, El of 25% or more, and ⁇ of 80% or more.
  • the target TS or ⁇ was not obtained in the steel plate of the comparative example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

Provided are a high-strength steel sheet which has a tensile strength (TS) of 600-700 MPa, an elongation (El) of 25% or higher, and a hole expansion ratio (λ) of 80% or higher and has excellent formability and a process for producing the steel sheet. The high-strength steel sheet has a composition which contains, in terms of mass%, 0.10-0.18% C, 0.5-1.5%, excluding 0.5%, Si, 0.5-1.5% Mn, up to 0.05% P, up to 0.005% S, and up to 0.05% Al, with the remainder comprising Fe and unavoidable impurities. The sheet has a microstructure which comprises ferrite and pearlite, the volume proportion of the ferrite being 70-97% and the volume proportion of the pearlite being 3% or higher, and in which cementite is present at the ferrite grain boundaries in an amount of 2% by volume or less, the volume proportion of the phases other than the ferrite, pearlite, and cementite is less than 3% in total, and the ferrite has an average grain diameter of 7 µm or less.

Description

高強度鋼板およびその製造方法High strength steel plate and manufacturing method thereof
本発明は、自動車部品などに適用可能な加工性(formability)に優れた高強度鋼板、特に、引張強度(tensile strength)TSが600~700MPa、伸びElが25%以上(板厚1.6mm、JIS 5号試験片の場合)、伸びフランジ性(stretch frangeability)の指標である穴広げ率(hole expansion ratio)λが80%以上の高強度鋼板およびその製造方法(high strength steel sheet and method for producing the same )に関する。 The present invention is a high-strength steel sheet with excellent formability that can be applied to automobile parts and the like, and in particular, tensile strength TS is 600 to 700 MPa, elongation El is 25% or more (plate thickness 1.6 mm, JIS No. 5 specimen), high strength steel plate with a hole expansion ratio λ of 80% or more, which is an index of stretch flangeability, and its manufacturing method (high strength, steel, sheet, and method for for producing same).
 近年、環境保全の観点から、車体軽量化による自動車の燃費向上が重要な課題となっている。このため、自動車部品の素材である鋼板の高強度化による薄肉軽量化が検討されている。しかし、一般には、鋼板の高強度化に伴いその加工性は低下するため、高強度と良好な加工性を兼ね備えた高強度鋼板が強く要望されている。 In recent years, improving the fuel efficiency of automobiles by reducing the weight of the vehicle body has become an important issue from the viewpoint of environmental conservation. For this reason, the reduction in thickness and weight by increasing the strength of steel plates, which are materials for automobile parts, has been studied. However, generally, since the workability of steel sheets decreases with increasing strength, there is a strong demand for high-strength steel sheets having both high strength and good workability.
 これまで、加工性に優れた高強度鋼板についていくつかの提案がなされている。
特許文献1には、化学成分として、質量%でC:0.02~0.16%、P≦0.010%、S≦0.003%、SiとAlの内の1種又は2種を合計量で0.2~4%、Mn、Ni、Cr、Mo、Cu、の内の1種又は2種以上を合計量で0.5~4%を含み、C/(Si+Al+P)が0.1以下で、残部Fe及び不可避的不純物よりなる鋼板であって、該鋼板断面のミクロ組織として、マルテンサイト(martensite)と残留オーステナイト(retained austenite)の内の1種又は2種を合計面積率で3%未満、フェライト(ferrite)とベイナイト(bainite)の内の1種又は2種を合計面積率で80%以上、残部がパーライト(pearlite)よりなると共に、パーライト、マルテンサイト、残留オーステナイトの最大長が10ミクロン以下であり、さらに、鋼板断面内に20ミクロン以上の介在物が1平方mm当り0.3ヶ以下であることを特徴とする強度-穴広げ率バランスと形状凍結性(shape fixability)に優れた加工用高強度鋼板が開示されている。
特許文献2には、質量%で、C:0.05以上0.15%未満、Mn:0.8~1.2%、Si:0.02~2.0%、sol.Al:0.002%以上0.05%未満、N:0.001%%以上0.005%未満を含み、残部はFe及び不純物から成り、不純物中のTi、Nb及びVがいずれも0.005%未満で、組織が平均粒径1.1~5.0μmのフェライトを主相とし、第2相としてパーライトとセメンタイトのうちのいずれか一方又は双方を含有し、且つ、Mnθ/Mnα≦1を満足する熱延鋼材が開示されている。ここで、Mnθはパーライト中のセメンタイトを含んだセメンタイト中のMn量、Mnαは主相であるフェライト中のMn量である。
特許文献3には、重量%で、C:0.07~0.18%、Si:0.5~1.0%、Mn:0.7~1.5%、P:0.02%以下、S:0.005%以下、Ca:0.0005~0.0050%、Al:0.01~0.10%を含み残部Feおよび不可避的不純物からなる鋼をスラブとした後、1000~1200℃に加熱し、熱間圧延して(Ar3変態点+60)℃以上950℃以下の温度で仕上圧延(finish rolling)を終了し、仕上げ圧延終了から3秒以内に50℃/秒以上の冷却を施し、T=660-450×[%C]+40×[%Si]-60×[%Mn]+470×[%P]で計算される温度(T℃)以下(T-70)℃以上の範囲で急冷を終了し、その後空冷を経て350超~500℃で巻き取ることにより得られる、円相当半径が0.1μm以上のセメンタイトの組織率が0.1%以下で及び/またはマルテンサイトの組織率が5%以下であることを特徴とする引張強さが50kgf/mm2以上で打ち抜き穴広げ≧1.8の伸びフランジ性を有しかつ延性の優れた熱延鋼板の製造方法が開示されている。
Until now, some proposals have been made on high-strength steel sheets having excellent workability.
In Patent Document 1, as chemical components, C: 0.02 to 0.16% by mass, P ≦ 0.010%, S ≦ 0.003%, one or two of Si and Al in a total amount of 0.2 to 4%, One or more of Mn, Ni, Cr, Mo, Cu are included in a total amount of 0.5-4%, C / (Si + Al + P) is 0.1 or less, the remainder Fe and inevitable impurities A steel sheet having a cross-sectional microstructure of one or two of martensite and retained austenite in a total area ratio of less than 3%, ferrite and bainite. The total area ratio of one or two of (bainite) is 80% or more, the balance is pearlite, the maximum length of pearlite, martensite, and retained austenite is 10 microns or less. Strength-hole expansion ratio balance and shape fixability characterized by the inclusion of inclusions of 20 microns or more in the cross section within 0.3 per square mm An excellent high strength steel sheet for processing is disclosed.
Patent Document 2 includes mass%, C: 0.05 to 0.15%, Mn: 0.8 to 1.2%, Si: 0.02 to 2.0%, sol.Al: 0.002% to less than 0.05%, N: 0.001% to 0.005 The balance consists of Fe and impurities, and Ti, Nb and V in the impurities are all less than 0.005%, and the microstructure is ferrite with an average particle size of 1.1-5.0μm as the main phase and pearlite as the second phase. A hot-rolled steel material containing either one or both of cementite and cementite and satisfying Mnθ / Mnα ≦ 1 is disclosed. Here, Mnθ is the amount of Mn in cementite containing cementite in pearlite, and Mnα is the amount of Mn in ferrite as the main phase.
In Patent Document 3, by weight, C: 0.07 to 0.18%, Si: 0.5 to 1.0%, Mn: 0.7 to 1.5%, P: 0.02% or less, S: 0.005% or less, Ca: 0.0005 to 0.0050%, After making a steel slab containing Al: 0.01-0.10% and the balance Fe and inevitable impurities, heated to 1000-1200 ° C, hot-rolled (Ar 3 transformation point +60) ° C to 950 ° C Finish rolling at temperature, finish cooling at 50 ℃ / sec within 3 seconds after finish rolling, T = 660-450 × [% C] + 40 × [% Si] -60 × By rapidly quenching at a temperature calculated as [% Mn] + 470 x [% P] (T ° C) or lower (T-70) ° C or higher, and then air-cooled and wound at over 350 to 500 ° C. Punched when the tensile strength is 50 kgf / mm 2 or more, characterized in that the structure ratio of cementite with an equivalent circle radius of 0.1 μm or more is 0.1% or less and / or the structure ratio of martensite is 5% or less Disclosed is a method for manufacturing hot-rolled steel sheets with stretch flangeability of hole expansion ≧ 1.8 and excellent ductility. It has been.
特開2004-68095号公報JP 2004-68095 A 特開2004-137564号公報JP 2004-137564 A 特開平4-88125号公報Japanese Unexamined Patent Publication No. 4-88125
 しかしながら、特許文献1に記載の高強度鋼板や特許文献2に記載の熱延鋼材では、600~700MPaのTSが得られない。また、特許文献3に記載の高強度熱延鋼板では、板厚1.6mmで25%以上のElが得られない。 However, with the high-strength steel sheet described in Patent Document 1 and the hot-rolled steel material described in Patent Document 2, a TS of 600 to 700 MPa cannot be obtained. Further, in the high-strength hot-rolled steel sheet described in Patent Document 3, 25% or more El cannot be obtained with a plate thickness of 1.6 mm.
 本発明は、TSが600~700MPa、Elが25%以上(板厚1.6mm、JIS 5号試験片の場合)、λが80%以上の加工性に優れた高強度鋼板およびその製造方法を提供することを目的とする。 The present invention provides a high-strength steel sheet having excellent workability with TS of 600 to 700 MPa, El of 25% or more (in the case of a plate thickness of 1.6 mm, JIS No. 5 test piece) and λ of 80% or more, and a method for producing the same. The purpose is to do.
 本発明者らは、上記の目的とする高強度鋼板について検討したところ、フェライトとパーライトを有し、フェライトの体積率が70%以上97%以下、パーライトの体積率が3%以上であり、フェライト粒界に存在するセメンタイトの体積率が2%以下であり、それ以外の相の体積率が合計で3%未満であり、フェライトの平均粒径が7μm以下であるミクロ組織とすることが効果的であることを見出した。 The inventors of the present invention have studied the above-mentioned high-strength steel sheet, and have ferrite and pearlite, the ferrite volume fraction is 70% to 97%, the pearlite volume fraction is 3% or more, and the ferrite It is effective to have a microstructure in which the volume fraction of cementite existing at grain boundaries is 2% or less, the volume fraction of other phases is less than 3% in total, and the average grain size of ferrite is 7 μm or less I found out.
 本発明は、このような知見に基づいてなされたものであり、mass%で、C:0.10%以上0.18%以下、Si:0.5%超え1.5%以下、Mn:0.5%以上1.5%以下、P:0.05%以下、S:0.005%以下、Al:0.05%以下を含み、残部Feおよび不可避的不純物からなる組成を有し、ミクロ組織がフェライトとパーライトを有し、前記フェライトの体積率が70%以上97%以下、前記パーライトの体積率が3%以上であり、前記フェライト粒界に存在するセメンタイトの体積率が2%以下であり、前記フェライト、パーライト、セメンタイト以外の相の体積率が合計で3%未満であり、前記フェライトの平均粒径が7μm以下である、高強度鋼板を提供する。 The present invention has been made based on such findings, in mass%, C: 0.10% or more and 0.18% or less, Si: more than 0.5% and 1.5% or less, Mn: 0.5% or more and 1.5% or less, P: 0.05% or less, S: 0.005% or less, Al: 0.05% or less, having a composition composed of the remaining Fe and inevitable impurities, the microstructure has ferrite and pearlite, and the volume fraction of the ferrite is 70% or more 97% or less, the pearlite volume fraction is 3% or more, the volume fraction of cementite present in the ferrite grain boundary is 2% or less, and the volume fraction of phases other than the ferrite, pearlite, and cementite is 3 in total. And providing a high-strength steel sheet having an average grain size of 7 μm or less.
 本発明の高強度鋼板は、さらに、mass%で、Cr:0.01%以上1.0%以下、Ti:0.01%以上0.1%以下、V:0.01%以上0.1%以下のうちから選ばれた少なくとも一種を含有することが好ましい。 The high-strength steel sheet of the present invention further includes at least one selected from mass%, Cr: 0.01% to 1.0%, Ti: 0.01% to 0.1%, V: 0.01% to 0.1%. It is preferable to do.
 本発明の高強度鋼板は、600~700MPaの引張強度TSを有するのが好ましい。
また、本発明の高強度鋼板は、80%以上の穴広げ率λを有するのが好ましい。
本発明の高強度鋼板は、フェライトの体積率が80%以上95%以下であるのが好ましい。
本発明の高強度鋼板は、パーライトの体積率が3%以上30%以下であるのが好ましい。パーライトの体積率が5%以上28%以下であるのがより好ましい。
The high-strength steel sheet of the present invention preferably has a tensile strength TS of 600 to 700 MPa.
The high-strength steel sheet of the present invention preferably has a hole expansion ratio λ of 80% or more.
The high-strength steel sheet of the present invention preferably has a ferrite volume fraction of 80% to 95%.
The high strength steel sheet of the present invention preferably has a pearlite volume fraction of 3% to 30%. The volume ratio of pearlite is more preferably 5% or more and 28% or less.
 本発明の高強度鋼板の製造方法は、mass%で、C:0.10%以上0.18%以下、Si:0.5%超え1.5%以下、Mn:0.5%以上1.5%以下、P:0.05%以下、S:0.005%以下、Al:0.05%以下を含み、残部Feおよび不可避的不純物からなる化学組成を有する鋼スラブを準備する工程と、前記鋼スラブに、熱間圧延を施し熱延板とする工程と、該熱延板に、Ac1変態点とAc3変態点の間の二相温度域に加熱後、450℃以上600℃以下の温度域に平均冷却速度5℃/s以上30℃/s以下で冷却し、該温度域に100s以上滞在させる焼鈍を施す工程と、を有する。 The production method of the high strength steel sheet of the present invention is mass%, C: 0.10% or more and 0.18% or less, Si: more than 0.5% and 1.5% or less, Mn: 0.5% or more and 1.5% or less, P: 0.05% or less, S: 0.005% or less, Al: including 0.05% or less, a step of preparing a steel slab having a chemical composition consisting of the balance Fe and inevitable impurities, a step of subjecting the steel slab to hot rolling to form a hot rolled sheet, The hot-rolled sheet is heated to a two-phase temperature range between the Ac 1 transformation point and the Ac 3 transformation point, and then the average cooling rate is 5 ° C./s to 30 ° C./s in a temperature range of 450 ° C. to 600 ° C. Cooling and performing annealing for staying in the temperature range for 100 s or more.
 前記鋼スラブは、さらに、mass%で、Cr:0.01%以上1.0%以下、Ti:0.01%以上0.1%以下、V:0.01%以上0.1%以下のうちから選ばれた少なくとも一種を含有するのが好ましい。
前記焼鈍を施す工程は、Ac1変態点とAc3変態点の間の二相温度域に加熱後、450℃以上600℃以下の温度域に平均冷却速度10℃/s以上20℃/s以下で冷却し、該温度域に100s以上300s以下滞在させることからなる、のが好ましい。
The steel slab further contains at least one selected from mass%, Cr: 0.01% to 1.0%, Ti: 0.01% to 0.1%, V: 0.01% to 0.1%. preferable.
The annealing is performed by heating to a two-phase temperature range between the Ac 1 transformation point and the Ac 3 transformation point, and then to an average cooling rate of 10 ° C./s to 20 ° C./s to a temperature range of 450 ° C. to 600 ° C. It is preferable that it is cooled at a temperature of 100s to 300s.
 本発明により、TSが600~700MPa、Elが25%以上、λが80%以上の加工性に優れた高強度鋼板を製造することが可能になった。 The present invention makes it possible to produce a high-strength steel sheet having excellent workability with TS of 600 to 700 MPa, El of 25% or more, and λ of 80% or more.
 本発明の高強度鋼板およびその製造方法の限定理由について、以下に詳述する。 The reasons for limitation of the high-strength steel sheet and the manufacturing method thereof according to the present invention will be described in detail below.
 (1) 組成
 以下、成分元素の含有量の単位である%は、mass%を意味するものとする。
(1) Composition Hereinafter, “%” as a unit of content of component elements means “mass%”.
 C:0.10%以上0.18%以下
 Cはパーライト、マルテンサイト、セメンタイトなどの第二相を形成し、鋼板の強度上昇に寄与する。600MPa以上のTSを得るためには、0.10%以上のC量が必要である。しかし、0.18%を超えると第二相が多くなり過ぎるため、TSが700MPaを超えたり、Elやλが低下する。以上より、C量は0.10%以上0.18%以下とする。好ましくは0.12%以上0.16%以下である。
C: 0.10% or more and 0.18% or less C forms a second phase such as pearlite, martensite, and cementite, and contributes to an increase in the strength of the steel sheet. In order to obtain a TS of 600 MPa or more, a C amount of 0.10% or more is necessary. However, if it exceeds 0.18%, the second phase increases too much, so TS exceeds 700MPa and El and λ decrease. From the above, the C content is 0.10% to 0.18%. Preferably it is 0.12% or more and 0.16% or less.
 Si:0.5%超え1.5%以下
 Siは固溶強化に寄与する元素である。600MPa以上のTSを得るためには、0.5%超えのSi量が必要である。しかし、1.5%を超えるとスケールの生成により鋼板の表面性状が悪化する。以上より、Si量は0.5%超え1.5%以下とする。好ましくは0.7%以上1.2%以下である。
Si: more than 0.5% and less than 1.5% Si is an element contributing to solid solution strengthening. In order to obtain a TS of 600 MPa or more, a Si amount exceeding 0.5% is required. However, if it exceeds 1.5%, the surface properties of the steel sheet deteriorate due to the generation of scale. From the above, the Si content is 0.5% to 1.5%. Preferably they are 0.7% or more and 1.2% or less.
 Mn:0.5%以上1.5%以下
 Mnは固溶強化に寄与する元素である。600MPa以上のTSを得るためには、0.5%以上のMn量が必要である。しかし、1.5%を超えるとTSが700MPaを超えたり、偏析によりλの低下が生じる。以上より、Mn量は0.5%以上1.5%以下とする。好ましくは1.1%以上1.5%以下である。
Mn: 0.5% or more and 1.5% or less Mn is an element contributing to solid solution strengthening. In order to obtain a TS of 600 MPa or more, an Mn amount of 0.5% or more is necessary. However, if it exceeds 1.5%, TS exceeds 700 MPa, or λ decreases due to segregation. From the above, the Mn content is 0.5% or more and 1.5% or less. Preferably they are 1.1% or more and 1.5% or less.
 P:0.05%以下
 Pは固溶強化に寄与する元素である。しかし、0.05%を超えると偏析によるElの低下が生じる。以上より、P量は0.05%以下とする。好ましくは0.03%以下である。
P: 0.05% or less P is an element contributing to solid solution strengthening. However, if it exceeds 0.05%, El decreases due to segregation. Based on the above, the P content is 0.05% or less. Preferably it is 0.03% or less.
 S:0.005%以下
 S量が0.005%を超えると旧オーステナイト粒界へS偏析が起きたり、鋼板中にMnSが析出し、λの低下を招く。以上より、S量は0.005%以下とするが、少ないほど好ましい。
S: 0.005% or less When the S content exceeds 0.005%, S segregation occurs in the prior austenite grain boundaries, or MnS precipitates in the steel sheet, leading to a decrease in λ. From the above, the amount of S is set to 0.005% or less, but the smaller the amount, the better.
 Al:0.05%以下
 Alは鋼の脱酸剤として添加され、鋼の清浄度を向上させるのに有効な元素である。しかし、0.05%を超えると介在物が多量に発生し、鋼板の表面欠陥の原因となる。以上より、Al量は0.05%以下とする。好ましくは0.03%以下である。
Al: 0.05% or less Al is added as a deoxidizer for steel and is an effective element for improving the cleanliness of steel. However, if it exceeds 0.05%, a large amount of inclusions are generated, which causes surface defects of the steel sheet. From the above, the Al content is 0.05% or less. Preferably it is 0.03% or less.
 残部はFeおよび不可避的不純物とするが、さらに、Cr:0.01%以上1.0%以下、Ti:0.01%以上0.1%以下、V:0.01%以上0.1%以下のうちから選ばれた少なくとも一種を含有させることができる。これは、Cr、TiおよびVには、熱間圧延温度域でのオーステナイトの再結晶および回復を抑制し、フェライトの細粒化を促進したり、炭化物を形成して、あるいは固溶状態でフェライトを強化する働きがあるためである。なお、同様の効果を得る元素としてNbがあるが、これら元素の添加は、同量のNbを添加した場合ほど延性(El)を低下させることはない。好ましくはCr:0.02%以上0.5%以下、Ti:0.02%以上0.05%以下、V:0.02%以上0.05%以下である。 The balance is Fe and inevitable impurities, and further contains at least one selected from Cr: 0.01% to 1.0%, Ti: 0.01% to 0.1%, V: 0.01% to 0.1%. be able to. This is because Cr, Ti, and V suppress the recrystallization and recovery of austenite in the hot rolling temperature range, promote ferrite refinement, form carbides, or form a solid solution of ferrite. This is because it works to strengthen Note that Nb is an element that has the same effect. However, the addition of these elements does not lower the ductility (El) as much as when the same amount of Nb is added. Preferably, Cr: 0.02% to 0.5%, Ti: 0.02% to 0.05%, and V: 0.02% to 0.05%.
 なお、不可避的不純物として、例えば、Oは0.003%以下、Cu、Ni、Sn、Sbはそれぞれ0.05%以下である。 As unavoidable impurities, for example, O is 0.003% or less, and Cu, Ni, Sn, and Sb are each 0.05% or less.
 (2) ミクロ組織
 鋼板の高強度化と加工性の向上を図るため、フェライトとパーライトを有するミクロ組織にする。
(2) Microstructure In order to increase the strength and improve the workability of the steel sheet, a microstructure with ferrite and pearlite is adopted.
 フェライトの体積率:70%以上97%以下
 フェライトの組織全体に占める体積率が70%未満では、TSが700MPaを超えたり、80%以上のλが得られない。一方、体積率が97%を超えるとパーライトの量が減少するため、600MPa以上のTSが得られない。以上より、フェライトの体積率は70%以上97%以下とする。好ましくは95%以下であり、80%以上90%以下とすることがより好ましい。
Ferrite volume fraction: 70% or more and 97% or less If the volume fraction of the entire ferrite structure is less than 70%, TS exceeds 700 MPa or λ of 80% or more cannot be obtained. On the other hand, when the volume ratio exceeds 97%, the amount of pearlite decreases, so that a TS of 600 MPa or more cannot be obtained. From the above, the volume fraction of ferrite is 70% or more and 97% or less. It is preferably 95% or less, and more preferably 80% or more and 90% or less.
 パーライトの体積率:3%以上
 パーライトの体積率を3%以上とするとλが向上する。好ましくは5%以上である。これは、セメンタイト、マルテンサイトおよび残留オーステナイトに比べ、パーライトは軟質であるため、加工後にフェライトとマルテンサイトとの界面やフェライトと残留オーステナイトとの界面で発生するボイド数に比べて、フェライトとパーライトとの界面で発生するボイド数が少ないためと考えられる。
Perlite volume ratio: 3% or more λ improves when the pearlite volume ratio is 3% or more. Preferably it is 5% or more. This is because pearlite is soft compared to cementite, martensite, and retained austenite, so compared to the number of voids generated at the interface between ferrite and martensite and the interface between ferrite and retained austenite after processing, This is probably because the number of voids generated at the interface is small.
 フェライト粒界に存在するセメンタイトの体積率:2%以下
 本発明の鋼板には、フェライト、パーライトの他に、セメンタイト、マルテンサイトなどが含まれる場合がある。セメンタイトの中でもフェライト粒界に存在するセメンタイトの組織全体に占める体積率が2%を超えると、穴広げ加工時にフェライトとセメンタイト界面で発生するボイド数が増加するためにλの低下を招く。よって、フェライト粒界に存在するセメンタイトの体積率は2%以下とする。なお、0%であってもよい。
The volume fraction of cementite present at the ferrite grain boundaries: 2% or less The steel sheet of the present invention may contain cementite, martensite, etc. in addition to ferrite and pearlite. If the volume fraction of cementite in the entire grain structure of cementite exceeds 2%, the number of voids generated at the interface between ferrite and cementite during hole expansion increases, leading to a decrease in λ. Therefore, the volume fraction of cementite existing at the ferrite grain boundary is set to 2% or less. It may be 0%.
 フェライト、パーライト、フェライト粒界に存在するセメンタイト以外の相の体積率:合計で3%未満
 フェライト、パーライト、フェライト粒界に存在するセメンタイト以外のその他の相としては、マルテンサイトや残留オーステナイトなどを挙げられるが、こうした相の量は、組織全体に占める合計の体積率で3%未満であれば、要求される鋼板特性に大きな影響を与えることはないため、フェライト、パーライト、フェライト粒界に存在するセメンタイト以外の相の体積率は、合計で3%未満とする。好ましくは2.5%以下であり、0%であってもよい。
Volume fraction of phases other than cementite present in ferrite, pearlite, and ferrite grain boundaries: less than 3% in total Other phases other than cementite present in ferrite, pearlite, and ferrite grain boundaries include martensite and retained austenite However, if the amount of these phases is less than 3% of the total volume ratio of the entire structure, it does not have a significant effect on the required steel sheet properties, so it exists in ferrite, pearlite, and ferrite grain boundaries. The volume fraction of phases other than cementite should be less than 3% in total. Preferably it is 2.5% or less, and may be 0%.
 フェライトの平均粒径:7μm以下
 フェライトの平均粒径が7μmを超えると強度低下が生じるため、600MPa以上のTSが得られない。以上より、フェライトの平均粒径は7μm以下とする。好ましくは5μm以下である。
Average ferrite particle diameter: 7 μm or less Since the average particle diameter of ferrite exceeds 7 μm, the strength is reduced, so a TS of 600 MPa or more cannot be obtained. From the above, the average grain size of ferrite is 7 μm or less. Preferably, it is 5 μm or less.
 ここで、フェライト、パーライト、セメンタイト、マルテンサイト、残留オーステナイトの組織全体に占める体積率は、鋼板の圧延方向に平行な板厚断面を研磨した後、ナイタール液で腐食し、光学顕微鏡で倍率1000倍で3視野撮影して、画像処理により組織の種類を選別して求めた。また、同時に、フェライトの平均粒径を切断法により算出した。ここで、フェライトの平均粒径を求めるにあたり、光学顕微鏡で倍率1000倍で撮影した画像(圧延方向に84μm、板厚方向に65μmに相当)を縦に20分割、横に20分割した直行する線分を作図し、1つの線分で切断されるフェライト粒の長さの総和を切断されるフェライトの数で除した値を切断長さとし、各線分での平均切片長さLを算出した。そして、平均粒径dは、次式によって求めた。
d=1.13×L
 フェライト粒界に存在するセメンタイトの組織全体に占める体積率は、走査型電子顕微鏡で倍率3000倍で3視野撮影し、画像処理によりフェライト粒界に存在するセメンタイトを抽出して求めた。
Here, the volume fraction of the entire structure of ferrite, pearlite, cementite, martensite, and retained austenite is corroded with a nital solution after polishing the plate thickness section parallel to the rolling direction of the steel plate, and the magnification is 1000 times with an optical microscope. 3 fields of view were taken, and the type of tissue was selected by image processing. At the same time, the average particle diameter of the ferrite was calculated by a cutting method. Here, in order to obtain the average grain size of ferrite, an image taken with an optical microscope at a magnification of 1000 times (equivalent to 84 μm in the rolling direction and 65 μm in the plate thickness direction) is divided into 20 lines vertically and 20 lines horizontally. The segment was plotted, and the value obtained by dividing the total length of ferrite grains cut by one line segment by the number of ferrite to be cut was taken as the cut length, and the average intercept length L at each line segment was calculated. And the average particle diameter d was calculated | required by following Formula.
d = 1.13 × L
The volume ratio of the cementite existing in the ferrite grain boundary in the entire structure was obtained by taking three fields of view with a scanning electron microscope at a magnification of 3000 and extracting the cementite existing in the ferrite grain boundary by image processing.
 (3) 製造方法
 鋼スラブ:使用する鋼スラブは、転炉等の公知の方法により上記の成分組成に溶製した溶鋼を成分のマクロ偏析を防止するために連続鋳造法で製造することが好ましいが、造塊法で製造することもできる。
(3) Manufacturing method Steel slab: The steel slab to be used is preferably manufactured by a continuous casting method in order to prevent macrosegregation of the component molten steel melted in the above component composition by a known method such as a converter. However, it can also be produced by an ingot-making method.
 熱間圧延:こうして製造された鋼スラブは、室温まで冷却後あるいは室温まで冷却せずに加熱炉で再加熱したり、加熱炉を通さず高温のまま保熱して、熱間圧延される。熱延条件は、特に限定する必要はないが、鋼スラブを1100℃~1300℃の範囲に加熱したのち、850℃~950℃で熱間圧延(仕上圧延)を終了し、720℃以下で巻取ることが好ましい。これは以下の理由による。すなわち、加熱温度が1100℃未満では鋼の変形抵抗が高いため、熱間圧延が困難になる場合があり、1300℃を超えると結晶粒径が粗大化するため、TSが低下する場合がある。また、仕上圧延の終了温度が850℃未満では圧延中にフェライトが生成するため、伸展したフェライトが形成され、λの低下を招く場合があり、950℃を超えると結晶粒径が粗大化するため、TSが低下する場合がある。さらに、巻取りの温度が720℃を超えると、内部酸化層の形成が著しくなり、化成処理性および塗装後耐食性を劣化させる場合がある。 Hot rolling: The steel slab thus produced is hot-rolled after being cooled to room temperature or reheated in a heating furnace without being cooled to room temperature, or kept at a high temperature without passing through the heating furnace. The hot rolling conditions need not be particularly limited, but after heating the steel slab to the range of 1100 ° C to 1300 ° C, the hot rolling (finish rolling) is finished at 850 ° C to 950 ° C, and the coil is wound at 720 ° C or lower. It is preferable to take. This is due to the following reason. That is, if the heating temperature is less than 1100 ° C., the deformation resistance of the steel is high, so that hot rolling may be difficult, and if it exceeds 1300 ° C., the crystal grain size becomes coarse and TS may decrease. Also, if the finish rolling finish temperature is less than 850 ° C, ferrite is formed during rolling, so that extended ferrite is formed, which may lead to a decrease in λ, and if it exceeds 950 ° C, the crystal grain size becomes coarse , TS may decrease. Furthermore, when the winding temperature exceeds 720 ° C., the formation of the internal oxide layer becomes remarkable, and the chemical conversion property and the corrosion resistance after coating may be deteriorated.
 熱間圧延後の熱延板は、鋼板表面に生成しているスケールを除去するために酸洗処理される。 The hot-rolled sheet after hot rolling is pickled to remove scale generated on the surface of the steel sheet.
 焼鈍:酸洗処理後の熱延板には、Ac1変態点とAc3変態点の間の二相温度域に加熱後、450℃以上600℃以下の温度域に平均冷却速度5℃/s以上30℃/s以下で冷却し、該温度域に100s以上滞在させる焼鈍が施される。Ac1変態点とAc3変態点の間の二相温度域に加熱するのは、フェライトとパーライトを有するミクロ組織を形成するためである。また、加熱後、450℃以上600℃以下の温度域に平均冷却速度5℃/s以上30℃/s以下で冷却するのは、600℃を超えるとフェライト粒界に存在するセメンタイトの体積率が2%を超えるため、目標とするλが得られず、450℃未満ではマルテンサイトの量が増大して、TSが700MPaを超えたり、λが低下し、平均冷却速度が5℃/s未満ではフェライト粒が粗大化し、600MPa以上のTSが得られず、30℃/sを超えるとフェライト粒界に存在するセメンタイトの体積率が2%を超え、80%以上のλが得られないためである。なお、平均冷却速度は10℃/s以上20℃/s以下とすることが好ましい。該450℃以上600℃以下の温度域に100s以上滞在させるのは、100s未満ではパーライトの量が減少して、λが低下するためである。滞在時間はさらに150s以上とすることが好ましい。なお、あまりに長時間滞在させても効果が飽和するだけであるため、生産効率の観点からは300s以下とすることが好ましい。また、焼鈍は連続焼鈍設備などにより行うことができる。 Annealing: The hot-rolled sheet after pickling treatment is heated to a two-phase temperature range between the Ac 1 transformation point and Ac 3 transformation point, and then an average cooling rate of 5 ° C / s in the temperature range of 450 ° C to 600 ° C. It is cooled at 30 ° C./s or less and annealed to stay in the temperature range for 100 s or more. The reason for heating to the two-phase temperature range between the Ac 1 transformation point and the Ac 3 transformation point is to form a microstructure having ferrite and pearlite. In addition, after heating, cooling to a temperature range of 450 ° C to 600 ° C at an average cooling rate of 5 ° C / s to 30 ° C / s is because the volume fraction of cementite present at the ferrite grain boundaries exceeds 600 ° C. Since it exceeds 2%, the target λ cannot be obtained, and if it is less than 450 ° C, the amount of martensite increases, TS exceeds 700 MPa, λ decreases, and if the average cooling rate is less than 5 ° C / s This is because ferrite grains are coarsened, and a TS of 600 MPa or more cannot be obtained, and if it exceeds 30 ° C / s, the volume fraction of cementite that exists at the ferrite grain boundary exceeds 2% and λ of 80% or more cannot be obtained. . The average cooling rate is preferably 10 ° C./s or more and 20 ° C./s or less. The reason for staying in the temperature range of 450 ° C. or higher and 600 ° C. or lower for 100 seconds or longer is that the amount of pearlite decreases and λ decreases below 100 seconds. It is preferable that the staying time be 150 seconds or longer. In addition, since the effect is only saturated when staying for an excessively long time, it is preferably set to 300 s or less from the viewpoint of production efficiency. Moreover, annealing can be performed by a continuous annealing facility or the like.
 表1に示す組成の鋼を溶製し、スラブとなした後、1200℃に加熱し、圧延終了温度890℃で熱間圧延し、600℃で巻取って板厚1.6mmの熱延板とした。次いで、熱延板を酸洗後、連続焼鈍設備により、表2に示す焼鈍条件で焼鈍を施した。なお、表1に示す鋼のAc1変態点、Ac3変態点は、それぞれ次の式より算出した。
Ac1変態点(℃)=723+29.1(%Si)-10.7(%Mn)+16.9(%Cr)
Ac3変態点(℃)=910-203(%C)1/2+44.7(%Si)-30(%Mn)+700(%P)+400(%Al)-11(%Cr)
+104(%V)+400(%Ti)
ただし、(%M)は元素Mのmass%を表す。
After melting steel with the composition shown in Table 1 into a slab, it was heated to 1200 ° C, hot-rolled at a rolling end temperature of 890 ° C, wound at 600 ° C, and a hot-rolled sheet with a thickness of 1.6 mm did. Next, the hot-rolled sheet was pickled and then annealed under the annealing conditions shown in Table 2 using a continuous annealing facility. The Ac 1 transformation point and Ac 3 transformation point of the steel shown in Table 1 were calculated from the following formulas, respectively.
Ac 1 transformation point (℃) = 723 + 29.1 (% Si) -10.7 (% Mn) +16.9 (% Cr)
Ac 3 transformation point (° C) = 910-203 (% C) 1/2 +44.7 (% Si) -30 (% Mn) +700 (% P) +400 (% Al) -11 (% Cr)
+104 (% V) +400 (% Ti)
However, (% M) represents mass% of the element M.
 このようにして得られた鋼板に対し、上記の方法によりミクロ組織を調べるとともに、JIS 5号試験片を用いて、JIS Z 2241に準拠して引張試験を行い、TSおよびElを測定した。また、100mm角の試験片を用いて、日本鉄連規格JFST1001-1996に準拠して穴広げ試験を行い、λを測定した。 The steel sheet thus obtained was examined for the microstructure by the above method, and a tensile test was performed according to JIS Z 2241 using a JIS No. 5 test piece to measure TS and El. Further, using a 100 mm square test piece, a hole expansion test was performed in accordance with JFST 1001-1996, and λ was measured.
 結果を表3に示す。 The results are shown in Table 3.
 本発明例の鋼板は、いずれもTSが600~700MPa、Elが25%以上、λが80%以上であり、加工性に優れた高強度鋼板であることがわかる。これに対して、比較例の鋼板では、目的とするTSあるいはλが得られていない。 It can be seen that the steel plates of the examples of the present invention are high-strength steel plates having excellent workability with TS of 600 to 700 MPa, El of 25% or more, and λ of 80% or more. On the other hand, the target TS or λ was not obtained in the steel plate of the comparative example.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 
 
 
Figure JPOXMLDOC01-appb-T000003
 
 
 

Claims (10)

  1.  mass%で、C:0.10%以上0.18%以下、Si:0.5%超え1.5%以下、Mn:0.5%以上1.5%以下、P:0.05%以下、S:0.005%以下、Al:0.05%以下を含み、残部Feおよび不可避的不純物からなる組成を有し、ミクロ組織がフェライトとパーライトを有し、前記フェライトの体積率が70%以上97%以下、前記パーライトの体積率が3%以上であり、前記フェライト粒界に存在するセメンタイトの体積率が2%以下であり、前記フェライト、パーライト、セメンタイト以外の相の体積率が合計で3%未満であり、前記フェライトの平均粒径が7μm以下である、高強度鋼板。 In mass%, C: 0.10% to 0.18%, Si: 0.5% to 1.5%, Mn: 0.5% to 1.5%, P: 0.05% or less, S: 0.005% or less, Al: 0.05% or less In addition, the composition comprising the balance Fe and inevitable impurities, the microstructure has ferrite and pearlite, the ferrite volume fraction is 70% to 97%, the pearlite volume fraction is 3% or more, The volume fraction of cementite present in the ferrite grain boundaries is 2% or less, the volume fraction of phases other than the ferrite, pearlite, and cementite is less than 3% in total, and the average grain size of the ferrite is 7 μm or less. High strength steel plate.
  2.  さらに、mass%で、Cr:0.01%以上1.0%以下、Ti:0.01%以上0.1%以下、V:0.01%以上0.1%以下のうちから選ばれた少なくとも一種を含有する、請求項1に記載の高強度鋼板。 Further, in mass%, Cr: 0.01% or more and 1.0% or less, Ti: 0.01% or more and 0.1% or less, V: 0.01% or more and 0.1% or less, containing at least one selected from claim 1, High strength steel plate.
  3.  さらに、600~700MPaの引張強度TSを有する請求項1に記載の高強度鋼板。 The high-strength steel sheet according to claim 1, further having a tensile strength TS of 600 to 700 MPa.
  4.  さらに、80%以上の穴広げ率λを有する請求項1に記載の高強度鋼板。 The high-strength steel sheet according to claim 1, further having a hole expansion ratio λ of 80% or more.
  5.  前記フェライトの体積率が80%以上95%以下である請求項1に記載の高強度鋼板。 2. The high-strength steel sheet according to claim 1, wherein a volume ratio of the ferrite is 80% or more and 95% or less.
  6.  前記パーライトの体積率が3%以上30%以下である請求項1に記載の高強度鋼板。 2. The high-strength steel sheet according to claim 1, wherein a volume ratio of the pearlite is 3% or more and 30% or less.
  7.  前記パーライトの体積率が5%以上28%以下である請求項1に記載の高強度鋼板。 2. The high-strength steel sheet according to claim 1, wherein the volume ratio of the pearlite is 5% or more and 28% or less.
  8.  mass%で、C:0.10%以上0.18%以下、Si:0.5%超え1.5%以下、Mn:0.5%以上1.5%以下、P:0.05%以下、S:0.005%以下、Al:0.05%以下を含み、残部Feおよび不可避的不純物からなる化学組成を有する鋼スラブを準備する工程と、
     前記鋼スラブに、熱間圧延を施し熱延板とする工程と、
    該熱延板に、Ac1変態点とAc3変態点の間の二相温度域に加熱後、450℃以上600℃以下の温度域に平均冷却速度5℃/s以上30℃/s以下で冷却し、該温度域に100s以上滞在させる焼鈍を施す工程と、
    を有する高強度鋼板の製造方法。
    In mass%, C: 0.10% to 0.18%, Si: 0.5% to 1.5%, Mn: 0.5% to 1.5%, P: 0.05% or less, S: 0.005% or less, Al: 0.05% or less Preparing a steel slab having a chemical composition comprising the balance Fe and inevitable impurities;
    The steel slab is hot-rolled by subjecting it to hot rolling,
    The hot-rolled sheet is heated to a two-phase temperature range between the Ac 1 transformation point and the Ac 3 transformation point, and then the average cooling rate is 5 ° C./s to 30 ° C./s in a temperature range of 450 ° C. to 600 ° C. Cooling and applying annealing to stay in the temperature range for 100 s or more;
    A method for producing a high-strength steel sheet having
  9.  前記鋼スラブが、さらに、mass%で、Cr:0.01%以上1.0%以下、Ti:0.01%以上0.1%以下、V:0.01%以上0.1%以下のうちから選ばれた少なくとも一種を含有する、請求項8に記載の高強度鋼板の製造方法。 The steel slab further contains at least one selected from mass%, Cr: 0.01% to 1.0%, Ti: 0.01% to 0.1%, V: 0.01% to 0.1%, Item 9. A method for producing a high-strength steel sheet according to Item 8.
  10. 前記焼鈍を施す工程が、Ac1変態点とAc3変態点の間の二相温度域に加熱後、450℃以上600℃以下の温度域に平均冷却速度10℃/s以上20℃/s以下で冷却し、該温度域に100s以上300s以下滞在させることからなる、請求項8に記載の高強度鋼板の製造方法。 The annealing step is performed after heating in a two-phase temperature range between the Ac 1 transformation point and the Ac 3 transformation point, and an average cooling rate of 10 ° C./s to 20 ° C./s in a temperature range of 450 ° C. to 600 ° C. The method for producing a high-strength steel sheet according to claim 8, comprising cooling at a temperature of 100 s to 300 s in the temperature range.
PCT/JP2012/007663 2011-12-19 2012-11-29 High-strength steel sheet and process for producing same WO2013094130A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
IN1170KON2014 IN2014KN01170A (en) 2011-12-19 2012-11-29
EP12860717.3A EP2796584B1 (en) 2011-12-19 2012-11-29 High-strength steel sheet and process for producing same
US14/363,166 US20140332123A1 (en) 2011-12-19 2012-11-29 High-strength steel sheet and method for producing the same
CN201280063029.3A CN104011240B (en) 2011-12-19 2012-11-29 High-strength steel sheet and manufacture method thereof
KR1020147018870A KR101624439B1 (en) 2011-12-19 2012-11-29 High-strength steel sheet and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011276997A JP5316634B2 (en) 2011-12-19 2011-12-19 High-strength steel sheet with excellent workability and method for producing the same
JP2011-276997 2011-12-19

Publications (1)

Publication Number Publication Date
WO2013094130A1 true WO2013094130A1 (en) 2013-06-27

Family

ID=48668049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/007663 WO2013094130A1 (en) 2011-12-19 2012-11-29 High-strength steel sheet and process for producing same

Country Status (7)

Country Link
US (1) US20140332123A1 (en)
EP (1) EP2796584B1 (en)
JP (1) JP5316634B2 (en)
KR (1) KR101624439B1 (en)
CN (1) CN104011240B (en)
IN (1) IN2014KN01170A (en)
WO (1) WO2013094130A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11891674B2 (en) * 2017-08-30 2024-02-06 Baoshan Iron & Steel Co., Ltd. High-strength multiphase tinned steel raw plate and manufacturing method therefor

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5874376B2 (en) * 2011-12-19 2016-03-02 Jfeスチール株式会社 High-strength steel sheet with excellent workability and method for producing the same
CN104694854A (en) * 2015-03-20 2015-06-10 苏州科胜仓储物流设备有限公司 High-strength steel plate for cantilever type goods shelves and heat processing process thereof
CN104674138A (en) * 2015-03-20 2015-06-03 苏州科胜仓储物流设备有限公司 Friction-resistant steel plate for narrow path type goods shelf and thermal treatment technology of friction-resistant steel plate
CN108138277B (en) * 2015-08-11 2020-02-14 杰富意钢铁株式会社 Material for high-strength steel sheet, and method for producing same
JP6179584B2 (en) * 2015-12-22 2017-08-16 Jfeスチール株式会社 High strength steel plate with excellent bendability and method for producing the same
CN117026072A (en) 2016-03-29 2023-11-10 杰富意钢铁株式会社 Steel sheet for hot stamping, method for producing same, and hot stamped member and method for producing same
JP6260676B2 (en) 2016-03-29 2018-01-17 Jfeスチール株式会社 Hot press steel plate and method for manufacturing the same, and hot press member and method for manufacturing the same
US20220154301A1 (en) * 2019-02-28 2022-05-19 Jfe Steel Corporation Steel sheet and member, and methods for manufacturing same
JP7235621B2 (en) * 2019-08-27 2023-03-08 株式会社神戸製鋼所 Steel plate for low-strength hot stamping, hot stamped parts, and method for manufacturing hot stamped parts
DE102020203564A1 (en) * 2020-03-19 2021-09-23 Sms Group Gmbh Process for producing a rolled multiphase steel strip with special properties

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0488125A (en) 1990-07-30 1992-03-23 Nippon Steel Corp Production of high strength hot rolled steel plate excellent in stretch-flange formability and ductility
JPH06200351A (en) * 1992-12-28 1994-07-19 Kobe Steel Ltd High strength hot rolled steel plate excellent in stretch-flange formability
JPH09143611A (en) * 1995-11-21 1997-06-03 Nippon Steel Corp Hot rolled high strength steel sheet excellent in formability and fatigue characteristic and having thermal softening resistance
JPH1192855A (en) * 1997-09-22 1999-04-06 Natl Res Inst For Metals Steel having ultrafine double phase structure
JP2000144316A (en) * 1998-11-10 2000-05-26 Kawasaki Steel Corp Hot rolled steel sheet for working having superfine grain
JP2001089811A (en) * 1999-09-20 2001-04-03 Kawasaki Steel Corp Production method of high tensile hot rolled steel plate for working
JP2002155315A (en) * 2000-11-16 2002-05-31 Kobe Steel Ltd Method for manufacturing high strength hot-rolled steel sheet having excellent uniformity of material in coil and workability, and high strength hot-rolled steel sheet produced by the method
JP2004068095A (en) 2002-08-07 2004-03-04 Nippon Steel Corp High strength steel sheet for working excellent in balance of strength-hole expansion ratio and shape fixability and method for producing the same
JP2004137564A (en) 2002-10-18 2004-05-13 Sumitomo Metal Ind Ltd Hot rolled steel member, and production method therefor
JP2008133514A (en) * 2006-11-29 2008-06-12 Jfe Steel Kk High-strength hot-rolled steel plate showing superior formability for extension flange and elongation properties after having been worked, and manufacturing method therefor
JP2010255097A (en) * 2009-02-25 2010-11-11 Jfe Steel Corp High-strength hot-dip galvanized steel sheet superior in workability, and manufacturing method therefor
JP2012012623A (en) * 2010-06-29 2012-01-19 Jfe Steel Corp High-strength steel sheet superior in processability and method for manufacturing the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1124358C (en) * 1999-10-22 2003-10-15 川崎制铁株式会社 Hot-dip galvanized steel sheet having high strength and also being excellent in formability and gelvanizing property and method for producing the same
JP4306078B2 (en) * 2000-02-15 2009-07-29 Jfeスチール株式会社 High tensile hot-rolled steel sheet excellent in bake hardenability and impact resistance and method for producing the same
DE60127879T2 (en) * 2000-02-29 2007-09-06 Jfe Steel Corp. High strength hot rolled steel sheet with excellent stretch aging properties
JP2001342520A (en) * 2000-06-02 2001-12-14 Nippon Steel Corp Method for manufacturing high tension steel of low yield ratio and superior toughness with little fluctuation of material property
JP3680262B2 (en) * 2000-06-28 2005-08-10 Jfeスチール株式会社 Hot-dip galvanized steel sheet with excellent stretch flangeability and manufacturing method thereof
JP4507494B2 (en) * 2003-01-17 2010-07-21 Jfeスチール株式会社 Method for producing high strength steel with excellent fatigue strength
JP4466619B2 (en) * 2006-07-05 2010-05-26 Jfeスチール株式会社 High tensile welded steel pipe for automobile structural members and method for manufacturing the same
JP5372696B2 (en) * 2009-10-20 2013-12-18 杏林製薬株式会社 Determination of dimethylaminoethyl methacrylate-containing copolymer
WO2011062012A1 (en) * 2009-11-17 2011-05-26 新日本製鐵株式会社 Steel wire for low-temperature annealing and method for producing the same
JP5786318B2 (en) * 2010-01-22 2015-09-30 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet with excellent fatigue characteristics and hole expansibility and method for producing the same
CN102212747A (en) * 2011-06-03 2011-10-12 首钢总公司 Low-cost steel for automobile beam and manufacturing method thereof

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0488125A (en) 1990-07-30 1992-03-23 Nippon Steel Corp Production of high strength hot rolled steel plate excellent in stretch-flange formability and ductility
JPH06200351A (en) * 1992-12-28 1994-07-19 Kobe Steel Ltd High strength hot rolled steel plate excellent in stretch-flange formability
JPH09143611A (en) * 1995-11-21 1997-06-03 Nippon Steel Corp Hot rolled high strength steel sheet excellent in formability and fatigue characteristic and having thermal softening resistance
JPH1192855A (en) * 1997-09-22 1999-04-06 Natl Res Inst For Metals Steel having ultrafine double phase structure
JP2000144316A (en) * 1998-11-10 2000-05-26 Kawasaki Steel Corp Hot rolled steel sheet for working having superfine grain
JP2001089811A (en) * 1999-09-20 2001-04-03 Kawasaki Steel Corp Production method of high tensile hot rolled steel plate for working
JP2002155315A (en) * 2000-11-16 2002-05-31 Kobe Steel Ltd Method for manufacturing high strength hot-rolled steel sheet having excellent uniformity of material in coil and workability, and high strength hot-rolled steel sheet produced by the method
JP2004068095A (en) 2002-08-07 2004-03-04 Nippon Steel Corp High strength steel sheet for working excellent in balance of strength-hole expansion ratio and shape fixability and method for producing the same
JP2004137564A (en) 2002-10-18 2004-05-13 Sumitomo Metal Ind Ltd Hot rolled steel member, and production method therefor
JP2008133514A (en) * 2006-11-29 2008-06-12 Jfe Steel Kk High-strength hot-rolled steel plate showing superior formability for extension flange and elongation properties after having been worked, and manufacturing method therefor
JP2010255097A (en) * 2009-02-25 2010-11-11 Jfe Steel Corp High-strength hot-dip galvanized steel sheet superior in workability, and manufacturing method therefor
JP2012012623A (en) * 2010-06-29 2012-01-19 Jfe Steel Corp High-strength steel sheet superior in processability and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11891674B2 (en) * 2017-08-30 2024-02-06 Baoshan Iron & Steel Co., Ltd. High-strength multiphase tinned steel raw plate and manufacturing method therefor

Also Published As

Publication number Publication date
US20140332123A1 (en) 2014-11-13
KR101624439B1 (en) 2016-05-25
JP2013127099A (en) 2013-06-27
CN104011240B (en) 2016-11-23
EP2796584A1 (en) 2014-10-29
CN104011240A (en) 2014-08-27
EP2796584A4 (en) 2015-10-14
IN2014KN01170A (en) 2015-10-16
EP2796584B1 (en) 2018-03-07
JP5316634B2 (en) 2013-10-16
KR20140100994A (en) 2014-08-18

Similar Documents

Publication Publication Date Title
JP6179461B2 (en) Manufacturing method of high-strength steel sheet
JP5316634B2 (en) High-strength steel sheet with excellent workability and method for producing the same
EP2589678B1 (en) High-strength steel sheet with excellent processability and process for producing same
EP2589677B1 (en) High-strength hot-dip galvanized steel sheet with excellent processability and process for producing same
JP4324072B2 (en) Lightweight high strength steel with excellent ductility and its manufacturing method
JP5029748B2 (en) High strength hot rolled steel sheet with excellent toughness and method for producing the same
JP4740099B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
WO2014188966A1 (en) Hot-rolled steel sheet and method for manufacturing same
WO2013114850A1 (en) Hot-dip galvanized steel sheet and production method therefor
JP5825082B2 (en) High yield ratio high strength cold-rolled steel sheet with excellent elongation and stretch flangeability and its manufacturing method
JP6079726B2 (en) Manufacturing method of high-strength steel sheet
WO2014097559A1 (en) Low-yield-ratio high-strength cold-rolled steel sheet and method for manufacturing same
JP5817671B2 (en) Hot-rolled steel sheet and manufacturing method thereof
JP2007002276A (en) High strength steel sheet and its manufacturing method
JP5348071B2 (en) High strength hot rolled steel sheet and method for producing the same
JP5842748B2 (en) Cold rolled steel sheet and method for producing the same
JP2009235440A (en) High-yield ratio and high-strength cold rolled steel sheet
JP4736853B2 (en) Precipitation strengthened high strength steel sheet and method for producing the same
KR102286270B1 (en) High-strength cold rolled steel sheet and method for manufacturing the same
JP2007224408A (en) Hot-rolled steel sheet having excellent strain aging property and method for producing the same
JP5874376B2 (en) High-strength steel sheet with excellent workability and method for producing the same
JP5994262B2 (en) Manufacturing method of high-strength steel sheet with excellent workability
JP5515623B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP6119894B2 (en) High strength steel plate with excellent workability
JP2013127098A (en) High-strength hot-dip galvanized steel sheet excellent in workability and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12860717

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14363166

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012860717

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201404006

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 20147018870

Country of ref document: KR

Kind code of ref document: A