JP2004137564A - Hot rolled steel member, and production method therefor - Google Patents
Hot rolled steel member, and production method therefor Download PDFInfo
- Publication number
- JP2004137564A JP2004137564A JP2002303869A JP2002303869A JP2004137564A JP 2004137564 A JP2004137564 A JP 2004137564A JP 2002303869 A JP2002303869 A JP 2002303869A JP 2002303869 A JP2002303869 A JP 2002303869A JP 2004137564 A JP2004137564 A JP 2004137564A
- Authority
- JP
- Japan
- Prior art keywords
- ferrite
- cementite
- hot
- rolled steel
- content
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、微細粒熱延鋼材及びその製造方法に関し、詳しくは、自動車や各種の産業機械に用いられる高強度部材の素材として好適な微細粒熱延鋼材及びその製造方法に関する。
【0002】
【従来の技術】
自動車を初めとする輸送用機械や各種産業機械の構造部材の素材として用いられる鋼材には、強度、加工性及び靱性などの機械的性質の向上が要求される。これらの機械的性質を総合的に向上させる手段として組織を微細化することが有効であることから、微細な組織を得るための鋼成分や製造方法が数多く提案されてきた。なお、以下の説明において「鋼材」の例として「鋼板」と記載することがある。
【0003】
組織の微細化手法としては、Nb又はTiの析出強化作用を利用して高強度化を図るとともに、NbやTiが備えるオーステナイト粒の再結晶抑制効果を利用して低温仕上げ圧延を施し、未再結晶変形オーステナイト粒からの「オーステナイト/フェライト」歪誘起変態によって、フェライト結晶粒を微細化しようとするものである。しかし、NbやTiの炭化物が高密度に析出した鋼板は延性が劣り、組織の細粒化効果による特性向上が得られない場合がある。
【0004】
一方、NbやTiを含まない鋼板では、変態や粒成長速度が速いため、従来の圧延方法では細粒組織が得られず、大圧下圧延法による細粒化や表層部近傍の細粒組織を得るための冷却方法が提案されている。しかし、大圧下圧延により結晶粒が扁平したり、鋼中の炭化物の分布が不均一になることにより、機械的性質に異方性が生じ、特に捻れの加わる変形に対してはその特性が劣る。又、鋼板の表面近傍で細粒組織が得られても、鋼板全体の機械的特性の向上には寄与しない。
【0005】
更に、鋼板の強度、延性及び加工性は第2相の形状や性質に大きく左右されることから、第2相の形状や硬さを制御するための冷却方法も多数提案されている。しかし、主相が細粒化しても、第2相は必ずしも細粒化せず、第2相の効果が得られない。
【0006】
例えば、特許文献1には、フェライトを主相とし、フェライトの占績率、フェライト粒径、フェライトと第2相のビッカース硬さを規定することにより、成形性、耐疲労特性及び耐熱軟化特性を向上させた熱延鋼板が開示されている。しかし、その実施例から明らかなようにNbを含有しない「C−Si−Mn鋼」において細粒組織を得るためには、C、Si及びMnの含有量を増やすか、「オーステナイト/フェライト」変態温度以下の低温で圧延する必要がある。
【0007】
特許文献2には、「C−Si−Mn鋼」について、圧延仕上げ前に表面を強制冷却し、圧延仕上げ温度を規定することによって、表層部が細粒の熱延鋼板を得る技術が開示されている。しかし、鋼板内部の粒径は20μmを超えるものもある。
【0008】
特許文献3には、「C−Si−Mn鋼」について、動的再結晶域での多パス圧延により平均フェライト粒径が0.9μmの細粒組織が得られることが記載されている。しかし、一般的な量産ホットストリップミルにおいて、圧延温度を安定して動的再結晶温度域に制御することは極めて困難である。
【0009】
特許文献4や特許文献5には、TiやNbを添加した鋼に動的再結晶域での多パス圧延を施して細粒熱延鋼板を得る技術が開示されている。しかし、上述のように、一般的な量産ホットストリップミルにおいて、圧延温度を安定して動的再結晶温度域に制御することは極めて困難である。
【0010】
【特許文献1】
特開平9−143611号公報
【特許文献2】
特開平9−137248号公報
【特許文献3】
特開平11−152544号公報
【特許文献4】
特開2000−144316号公報
【特許文献5】
特2000−192191号公報
【0011】
【発明が解決しようとする課題】
本発明は、上記現状に鑑みてなされたもので、その目的は、自動車や各種の産業機械に用いられる高強度構造部材の素材として好適な、強度、延性、穴拡げ性及び捻れ変形性に優れた微細粒熱延鋼材及びその製造方法を提供することである。より具体的には、延性を高めるためにNb、Ti及びVなどの析出強化型の合金元素を極力低減した「C−Si−Mn鋼」であっても高強度が得られ、高強度鋼であっても優れた延性、穴拡げ性及び捻れ変形性を有する微細粒熱延鋼材及びその製造方法を提供することである。
【0012】
【課題を解決するための手段】
本発明の要旨は、下記(1)に示す微細粒熱延鋼材及び(2)に示す微細粒熱延鋼材の製造方法にある。
【0013】
(1)質量%で、C:0.05以上0.15%未満、Mn:0.8〜1.2%、Si:0.02〜2.0%、sol.Al:0.002%以上0.05%未満、N:0.001%以上0.005%未満を含み、残部はFe及び不純物から成り、不純物中のTi、Nb及びVがいずれも0.005%未満で、組織が平均粒径1.1〜5.0μmのフェライトを主相とし、第2相としてパーライトとセメンタイトのうちのいずれか一方又は双方を含有し、且つ、下記▲1▼式を満足する微細粒熱延鋼材。
【0014】
Mnθ/Mnα≦1・・・▲1▼
ここで、Mnθはパーライト中のセメンタイトを含んだセメンタイト中のMn量、Mnαは主相であるフェライト中のMn量である。
【0015】
(2)タンデム熱延において、最終圧延スタンド又は最終から1段前の圧延スタンドで、Ae3 点〜「Ae3 点+50℃」の温度範囲で圧延し、その後800℃/秒以上の平均冷却速度で冷却することを特徴とする上記(1)に記載の微細粒熱延鋼材の製造方法。
【0016】
ここで、フェライトの「平均粒径」とは、いわゆる「切片法」で求めた平均切片長さを1.128倍して得たものを指す。「主相」とは「組織に占める割合が50%を超える相」をいう。
【0017】
又、本発明における「平均冷却速度」とは、冷却前後の温度差を冷却時間で除したものをいう。
【0018】
以下、上記(1)の微細粒熱延鋼材に係る発明及び(2)のその製造方法に係る発明をそれぞれ(1)及び(2)の発明という。
【0019】
【発明の実施の形態】
本発明者らは、前記した目的を達成するために種々検討を行い、下記(a)〜(e)の知見を得た。
【0020】
(a)「C−Si−Mn鋼」の加工性は、Ti、Nb及びVといった析出強化型元素の含有量を低く制限することにより向上する。
【0021】
(b)Ti、Nb及びVなどをほとんど含まない鋼板の場合には、フェライトの平均粒径が1.1〜5.0μmの場合に捻れ変形特性が最も高くなる。
【0022】
(c)平均粒径が1.1〜5.0μmのフェライトを主相とする鋼板において、SiとMnの含有量を規定値以下に抑えることにより、セメンタイトが微細球状化しやすくなり、成形性が向上する。
【0023】
(d)平均粒径が1.1〜5.0μmのフェライトを主相とする鋼板において、セメンタイト中に分配するMn量を低く抑えると、セメンタイトの剛性率は低下し、一方主相であるフェライトの剛性率は増加するので両相間の剛性差が小さくなり、成形性が向上する。
【0024】
(e)所定の温度範囲で熱間圧延後、直ちに800℃/秒以上の平均冷却速度で冷却することにより、平均粒径が1.1〜5.0μmのフェライト主相と、セメンタイト中のMn量が規定値以下になる熱延鋼板が得られる。
【0025】
前記(1)及び(2)の本発明は、上記の知見に基づいて完成されたものである。
【0026】
以下、本発明の各要件について詳しく説明する。なお、各元素の含有量の「%」表示は「質量%」を意味する。
(A)熱延鋼材の化学組成
C:
Cは、鋼の強度を効果的に高めるとともに、「オーステナイト/フェライト」変態を支配する重要な元素である。しかし、その含有量が0.05%未満ではフェライトの平均粒径5μm以下が達成できないし、強度も確保できない。一方、0.15%以上では、ベイナイトが形成されるため、穴拡げ性及び捻れ変形特性が低下する。したがって、Cの含有量を0.05%以上0.15%未満とした。
【0027】
Mn:
Mnは、Ae3 点を低下させて結晶粒の微細化に寄与し、又、「オーステナイト/フェライト」変態を支配する重要な元素である。更に、固溶強化作用を有しフェライトを強化する。しかし、その含有量が0.8%未満では、十分な強度が得られない。一方、Mnを1.2%を超えて含有させると、セメンタイトが粒界に沿って板状に析出し、延性及び成形性の低下を招く。したがって、Mnの含有量を0.8〜1.2%とした。
【0028】
Si:
Siは、フェライトを強化するとともにフェライトの延性を向上させる元素である。しかし、Siの含有量が0.02%未満では添加効果に乏しく、一方、2.0%を超えて含有させると、セメンタイトが粒界に沿って板状に析出するので、延性及び成形性の低下をきたす。したがって、Siの含有量を0.02〜2.0%とした。なお、Si含有量の上限は1.0%とするのが望ましい。
【0029】
sol.Al:
Alは、脱酸作用を有し、sol.Alの含有量が0.002%以上で効果が得られる。しかし、Alをsol.Alで0.05%以上含有させても前記の効果は飽和し、コストが嵩むばかりである。したがって、sol.Alの含有量を0.002%以上0.05%未満とした。なお、sol.Alの含有量は、0.003%以上0.04%以下とするのがよい。
【0030】
N:
Nは、「オーステナイト/フェライト」変態を支配するとともに、フェライト中に固溶して強化する作用を有する。しかし、Nの含有量が0.001%未満では前記効果が得難い。一方、Nの含有量が0.005%以上の場合には、窒化物が粗大化して延性及び成形性の低下を招く。したがって、Nの含有量を0.001%以上0.005%未満とした。なお、Nの含有量は、0.002%以上0.004%未満とするのがよい。
【0031】
本発明に係る微細粒熱延鋼材は、不純物としてのTi、Nb及びVの含有量を以下のとおりに規制する
Ti、Nb及びV:
Ti、Nb及びVは、Cと結合して微細な炭化物を形成し、延性及び成形性に悪影響を及ぼし、特に、これらの元素の含有量がそれぞれ0.005%以上になると延性及び成形性の低下が著しくなる。したがって、本発明においては、不純物としてのTi、Nb及びVの含有量をいずれも0.005%未満に規制した。
【0032】
なお、不純物中のP及びSも加工性に悪影響を及ぼすため低く抑えるのが望ましく、PとSの含有量はそれぞれ、0.02%以下及び0.005%以下とすることが望ましい。
(B)熱延鋼材の組織
主相:
主相はフェライトとする必要がある。これはフェライト以外の相、例えばベイナイト、マルテンサイト、セメンタイト、パーライトが主相を形成すると強度が高くなって延性、穴拡げ性及び捻れ変形性が低下するためである。
【0033】
第2相:
第2相はパーライトとセメンタイトのうちのいずれか一方又は双方とする必要がある。これは第2相がベイナイトの場合は延性と捻れ変形性が低下し、マルテンサイトやオーステナイトの場合には穴拡げ性が低下し、強度、延性、穴拡げ性及び捻れ変形性のいずれもが良好な熱延鋼材を得ることができないためである。
【0034】
フェライトの平均粒径:
フェライトの平均粒径を5.0μm以下に微細化すると、強度と延性が総合的に向上する。しかしながら、平均粒径が1.1μm未満の微細組織になると、却って延性が低下する。したがって、フェライトの平均粒径を1.1〜5.0μmとした。
【0035】
セメンタイト中のMn量:
Mnθをパーライト中のセメンタイトを含んだセメンタイト中のMn量、Mnαを主相であるフェライト中のMn量として、「Mnθ/Mnα」の値が1以下となる、つまり前記▲1▼式を満たすことが重要である。これは、次の理由による。
【0036】
セメンタイトはこれを構成する金属元素がFeを主体とする炭化物で、Mnを含む鋼の場合には、セメンタイトを構成するFeの一部がMnで置換される。セメンタイトの成長に伴い、セメンタイト中にはMnが濃化し、主相であるフェライト中のMn固溶量が減少する傾向がある。
【0037】
セメンタイト中のMn量が増加すると、セメンタイトの剛性率が著しく増加するのに対し、主相のフェライト中ではMn量が減少して剛性率が低下する。そして両相間の剛性の差が大きくなると、二次加工時に、両相間の界面で割れが生じやすくなり、成形性が低下してしまう。したがって、良好な成形性を確保するためには、セメンタイト中のMn量(Mnθ)を主相であるフェライト中のMn量(Mnα)以下にする必要がある。
【0038】
したがって、(1)の発明における組織は、平均粒径1.1〜5.0μmのフェライトを主相とし、第2相としてパーライトとセメンタイトのうちのいずれか一方又は双方を含有し、且つ、前記▲1▼式を満足するものとした。
【0039】
ここで、「Mnθ」及び「Mnα」は下記(イ)〜(ホ)の方法で測定、算出すればよい。
【0040】
(イ)得られた熱延鋼板について、電解抽出により抽出残渣を採取する。
【0041】
(ロ)析出物はセメンタイトのみであるから、抽出残渣量がセメンタイトの総析出量に相当する。
【0042】
(ハ)抽出残渣の定量分析を行い、抽出残渣の組成分析を行う。
【0043】
(ニ)残渣として抽出されたMn量をmn(%)、残渣として抽出されたFe量をfe(%)として、下記▲2▼式からMnθを算出する。
【0044】
Mnθ=(mn/fe)×100・・・▲2▼。
【0045】
(ホ)鋼中の総Mn量をMn(%)、鋼中の総Fe量をFe(%)として、下記▲3▼式からMnαを算出する。
【0046】
Mnα={(Mn−mn)/(Fe−fe)}×100・・・▲3▼。
(C)熱延鋼材の製造方法
前記(1)の発明に係る熱延鋼材は、例えば、タンデム熱延において、最終圧延スタンド又は最終から1段前の圧延スタンドで、Ae3 点〜「Ae3 点+50℃」の温度範囲で圧延し、その後800℃/秒以上の平均冷却速度で冷却することによって製造することができる。
【0047】
なお、タンデム熱延に供するのは鋼塊又は鋼片のいずれであってもよい。鋼塊若しくは鋼片をAc3 点以上の温度に加熱した後に、又は鋳造後の鋼塊若しくは熱間加工後の鋼片をAr3 点以下の温度域まで温度低下させることなしに、タンデム熱延に供すればよい。
【0048】
すなわち、鋼塊や鋼片はAc3 点以上の温度に再加熱されると、合金元素がオーステナイト中に固溶する。加熱炉や均熱炉など再加熱処理のための炉への装入は、鋳造後や熱間加工後の高温のままの状態で行ってもよいし、一旦室温近傍まで冷却した状態から行ってもよい。このように鋼塊若又は鋼片をオーステナイト域へ再加熱した後タンデム熱延に供してもよいし、鋳造後の鋼塊又は熱間加工後の鋼片をAr3 点以下の温度域まで温度低下させることなしにオーステナイト状態のままでタンデム熱延に供してもよいのである。
【0049】
上記のオーステナイト組織を呈する鋼塊又は鋼片に、タンデム熱延を施すが、この場合、最終圧延スタンド又は最終から1段前の圧延スタンドで、Ae3 点〜「Ae3 点+50℃」の温度範囲で圧延し、その後800℃/秒以上の平均冷却速度で冷却することによって、前記(B)項に記載した組織を得ることができる。
【0050】
タンデムミルにおける最終圧延スタンド又は最終から1段前の圧延スタンドでの圧延をAe3 点〜「Ae3 点+50℃」の温度範囲で行えば、オーステナイトを微細化できるとともに、オーステナイトを加工硬化させて、ポリゴナルフェライトの生成を促進することができるので、その後800℃/秒以上の平均冷却速度で冷却しても、冷却中に十分な量のポリゴナルフェライトを生成することが可能となる。
【0051】
平均冷却速度が800℃/秒以上という超急速冷却処理を施すことにより、オーステナイト中での転位の回復が抑えられ、フェライト変態に対する核生成密度が増加するとともに、フェライト変態後の粒成長が抑制され、マイクロアロイを含まない「C−Mn−Si鋼」であっても微細な組織が得られる。
【0052】
上記のような超急速冷却中には、変態とともに、セメンタイトがパラ平衡過程で析出するため、セメンタイト中の金属元素の主成分はFeであり、他の合金元素はほとんど含有しない。このように他の合金元素を含まないセメンタイトは極短時間で球状化し、均一な分布を示す。
【0053】
一方、800℃/秒を下回る平均冷却速度では、冷却中にオーステナイト中の転位回復が促進され、フェライト変態に対する核生成密度が低下し、粗粒フェライトが形成される。又、平均冷却速度が遅いと、セメンタイトがオルソ平衡過程で析出するようになり、Fe以外の合金元素の濃化を伴うようになる。このような場合、セメンタイトは粒界に沿って板状(フィルム状)に析出し、成形性及び延性に悪影響を及ぼす。
【0054】
したがって(2)の発明においては、タンデム熱延において、最終圧延スタンド又は最終から1段前の圧延スタンドで、Ae3 点〜「Ae3 点+50℃」の温度範囲で圧延し、その後800℃/秒以上の平均冷却速度で冷却することとした。なお、上記平均冷却速度は大きければ大きい方がよいが、実質的には1500℃/秒程度が設備上の限界となる。
【0055】
以下、実施例により本発明を更に詳しく説明する。
【0056】
【実施例】
表1に示す化学組成を有する鋼のスラブを、実験圧延機を使用して、表2に示す条件で加熱、熱間圧延、冷却及び巻き取りして、板厚が2.5mmの熱延鋼板を得た。
【0057】
【表1】
【0058】
【表2】
【0059】
このようにして得た厚さ2.5mmの鋼板の任意の部位から試験片を採取し、組織、引張特性、穴拡げ性及び捻り特性を調査した。
【0060】
鋼板板厚の断面を光学顕微鏡と走査型電子顕微鏡とを用いて観察し、組織における各相を判定した。又、走査型電子顕微鏡観察写真におけるコントラストの差によってフェライトとその他の第2相とを区分し、2次元の写真上でフェライトの占める割合を求めた。なお、視野数は5とした。
【0061】
又、いわゆる「切片法」で求めた平均切片長さを1.128倍してフェライトの平均粒径を求めた。
【0062】
電解による析出物の抽出は、10%アセチルアセトン−1%テトラメチルアンモニウムクロライド−メタノール系電解液を用い、得られた残渣の定量分析を行って前記▲2▼及び▲3▼式からMnθとMnαを求めた。
【0063】
引張特性はJIS Z 2201に記載のJIS5号試験片を用いて調査した。
【0064】
又、縦横それぞれ120mmの正方形の試験片を採取し、その中央にポンチで直径が14mmの打ち抜き穴をあけ、円錐ポンチでこの穴を拡げて、穴の縁にクラックが貫通する限界の穴直径から計算される限界穴拡げ率によって穴拡げ性を評価した。
【0065】
更に、直径が2.0mmで長さが100mmの棒状試験片を圧延方向及びそれに直角な板幅方向に平行な方向から各2本ずつ採取し、90度の捻り変形を加えた場合の割れの発生状況から捻れ率を求めて捻れ変形性を評価した。
【0066】
表3に、前記の各調査結果をまとめて示す。なお、捻れ率とは各試験番号における前記4本の試験片のうちで割れが発生しなかったものの割合を指す。
【0067】
【表3】
【0068】
表3から、本発明で定める化学組成と組織を有する試験番号1〜12の熱延鋼板は、Ti、Nb及びVなどの析出強化型の合金元素を含有しないにもかかわらず、引張強度は500MPa以上、伸びは30%以上、限界穴拡げ率は85%以上で、しかも捻れ率は100%であり、高強度と高加工性を同時に満足することが明らかである。
【0069】
これに対して、本発明で規定する条件から外れた試験番号13〜18の場合には、強度、伸び、穴拡げ性及び捻れ加工性の少なくとも1つにおいて劣っている。
【0070】
すなわち、試験番号13は、鋼のC及びMnの含有量が本発明の規定を下回り、組織におけるフェライトの平均粒径も大きく、前記▲1▼式からも外れるので、強度が低く、更に、捻れ特性も劣っている。
【0071】
試験番号14は、組織におけるフェライトの平均粒径が1.1μmを下回り、前記▲1▼式からも外れるので、穴拡げ性及び捻れ特性が劣っている。
【0072】
試験番号15は、組織におけるフェライトの平均粒径が本発明の規定を上回り、前記▲1▼式からも外れるので、強度が低く、捻れ特性も劣っている。
【0073】
試験番号16及び17は、TiやNbの添加によりフェライトの平均粒径は本発明の規定を満たすもののフェライトが主相ではなく、しかも第2相にセメンタイトとパーライトのいずれをも含んでいないし、前記▲1▼式からも外れるので、伸びが低く、穴拡げ性及び捻れ特性が劣っている。
【0074】
試験番号18は、鋼のSi含有量が本発明の規定を上回り、更に前記▲1▼式からも外れるので、捻れ特性が劣っている。
【0075】
【発明の効果】
本発明の熱延鋼材は、強度、延性、穴拡げ性及び捻れ変形性に優れるので、自動車や各種の産業機械に用いられる高強度構造部材の素材として利用することができる。本発明の熱延鋼材は、本発明の方法によって比較的容易に製造することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fine-grained hot-rolled steel material and a method for producing the same, and more particularly, to a fine-grained hot-rolled steel material suitable as a material for high-strength members used in automobiles and various industrial machines, and a method for producing the same.
[0002]
[Prior art]
2. Description of the Related Art Steel materials used as materials for structural members of transport machines such as automobiles and various industrial machines are required to have improved mechanical properties such as strength, workability, and toughness. Since it is effective to refine the structure as a means for comprehensively improving these mechanical properties, many steel components and manufacturing methods for obtaining a fine structure have been proposed. In the following description, “steel” may be described as “steel” as an example.
[0003]
As a method for refining the structure, high strength is achieved by using the precipitation strengthening action of Nb or Ti, and low-temperature finish rolling is performed by using the effect of suppressing recrystallization of austenite grains provided in Nb or Ti. The purpose of the present invention is to reduce the size of ferrite grains by the "austenite / ferrite" strain-induced transformation from the deformed austenite grains. However, a steel sheet in which carbides of Nb and Ti are precipitated at a high density is inferior in ductility, and may not be able to improve the properties due to the effect of grain refinement of the structure.
[0004]
On the other hand, in a steel sheet that does not contain Nb or Ti, the transformation and the grain growth rate are high, so that a fine grain structure cannot be obtained by the conventional rolling method. Cooling methods to achieve this have been proposed. However, due to the flattening of the crystal grains and the uneven distribution of carbides in the steel due to the large rolling, anisotropy occurs in the mechanical properties, and the properties are inferior especially to the deformation with twist. . Further, even if a fine grain structure is obtained in the vicinity of the surface of the steel sheet, it does not contribute to improving the mechanical properties of the entire steel sheet.
[0005]
Furthermore, since the strength, ductility, and workability of a steel sheet largely depend on the shape and properties of the second phase, many cooling methods for controlling the shape and hardness of the second phase have been proposed. However, even if the main phase is refined, the second phase is not necessarily refined, and the effect of the second phase cannot be obtained.
[0006]
For example, in Patent Document 1, the formability, fatigue resistance and heat softening characteristics are improved by specifying the ferrite occupancy rate, ferrite particle size, and Vickers hardness of the ferrite and the second phase, with ferrite as the main phase. A hot rolled steel sheet is disclosed. However, as apparent from the examples, in order to obtain a fine-grained structure in the "C-Si-Mn steel" containing no Nb, the content of C, Si and Mn must be increased or the "austenite / ferrite" transformation must be performed. It is necessary to roll at a low temperature below the temperature.
[0007]
Patent Document 2 discloses a technique for obtaining a hot-rolled steel sheet having a fine-grained surface layer by forcibly cooling the surface of a “C-Si-Mn steel” before rolling and defining the rolling finishing temperature. ing. However, in some cases, the grain size inside the steel sheet exceeds 20 μm.
[0008]
Patent Document 3 describes that a fine grain structure having an average ferrite grain size of 0.9 μm can be obtained by performing multi-pass rolling in a dynamic recrystallization region for “C—Si—Mn steel”. However, it is extremely difficult to stably control the rolling temperature in the dynamic recrystallization temperature range in a general mass production hot strip mill.
[0009]
Patent Literature 4 and Patent Literature 5 disclose a technique in which a steel to which Ti or Nb is added is subjected to multi-pass rolling in a dynamic recrystallization region to obtain a fine-grained hot-rolled steel sheet. However, as described above, it is extremely difficult to stably control the rolling temperature in the dynamic recrystallization temperature range in a general mass production hot strip mill.
[0010]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 9-143611 [Patent Document 2]
JP-A-9-137248 [Patent Document 3]
JP-A-11-152544 [Patent Document 4]
JP 2000-144316 A [Patent Document 5]
Japanese Patent Publication No. 2000-192191
[Problems to be solved by the invention]
The present invention has been made in view of the above situation, and its object is to have excellent strength, ductility, hole-expandability, and torsional deformability suitable as a material for high-strength structural members used in automobiles and various industrial machines. To provide a hot-rolled fine-grained steel material and a method for producing the same. More specifically, even in the case of a "C-Si-Mn steel" in which precipitation-strength-type alloy elements such as Nb, Ti, and V are reduced as much as possible in order to increase ductility, high strength is obtained. It is an object of the present invention to provide a fine-grained hot-rolled steel material having excellent ductility, hole-expandability and torsional deformation even if it is provided, and a method for producing the same.
[0012]
[Means for Solving the Problems]
The gist of the present invention resides in a method for producing a hot-rolled fine-grained steel material shown in (1) below and a hot-rolled fine-grained steel material shown in (2) below.
[0013]
(1) In mass%, C: 0.05 or more and less than 0.15%, Mn: 0.8 to 1.2%, Si: 0.02 to 2.0%, sol. Al: 0.002% or more and less than 0.05%, N: 0.001% or more and less than 0.005%, the balance being Fe and impurities, and Ti, Nb and V in the impurities are all 0.005%. %, The structure has a main phase of ferrite having an average grain size of 1.1 to 5.0 μm, contains one or both of pearlite and cementite as a second phase, and has the following formula (1). Satisfactory fine grain hot rolled steel.
[0014]
Mnθ / Mnα ≦ 1 (1)
Here, Mnθ is the amount of Mn in cementite containing cementite in pearlite, and Mnα is the amount of Mn in ferrite, which is the main phase.
[0015]
(2) In tandem hot rolling, rolling is performed at a temperature ranging from Ae 3 points to “Ae 3 points + 50 ° C.” at the final rolling stand or the rolling stand immediately before the last rolling stand, and thereafter, an average cooling rate of 800 ° C./sec or more. The method for producing a hot-rolled fine-grained steel material according to the above (1), wherein the steel material is cooled by a cooling method.
[0016]
Here, the “average particle size” of ferrite refers to a value obtained by multiplying the average intercept length obtained by the so-called “intercept method” by 1.128. The “main phase” refers to a “phase that accounts for more than 50% of the organization”.
[0017]
The “average cooling rate” in the present invention refers to a value obtained by dividing a temperature difference before and after cooling by a cooling time.
[0018]
Hereinafter, the invention (1) relating to the hot-rolled fine-grained steel material and the invention (2) relating to the manufacturing method thereof are referred to as the inventions (1) and (2), respectively.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
The present inventors have conducted various studies in order to achieve the above object, and obtained the following findings (a) to (e).
[0020]
(A) The workability of the “C—Si—Mn steel” is improved by limiting the content of precipitation strengthening elements such as Ti, Nb and V to low.
[0021]
(B) In the case of a steel sheet containing almost no Ti, Nb, V, etc., when the average grain size of ferrite is 1.1 to 5.0 μm, the torsional deformation characteristics are the highest.
[0022]
(C) In a steel sheet containing ferrite having an average grain size of 1.1 to 5.0 μm as a main phase, by suppressing the content of Si and Mn to a specified value or less, cementite is easily made into fine spheres, and formability is reduced. improves.
[0023]
(D) In a steel sheet containing ferrite having an average grain size of 1.1 to 5.0 μm as a main phase, when the amount of Mn distributed in cementite is suppressed to be low, the rigidity of cementite is reduced, and ferrite as the main phase is reduced. Since the rigidity of the two phases increases, the difference in rigidity between the two phases is reduced, and the formability is improved.
[0024]
(E) Immediately after hot rolling in a predetermined temperature range, by cooling at an average cooling rate of 800 ° C./sec or more, a ferrite main phase having an average particle size of 1.1 to 5.0 μm, and Mn in cementite. A hot rolled steel sheet whose amount is equal to or less than the specified value is obtained.
[0025]
The present invention of the above (1) and (2) has been completed based on the above findings.
[0026]
Hereinafter, each requirement of the present invention will be described in detail. In addition, "%" of the content of each element means "% by mass".
(A) Chemical composition C of hot-rolled steel material:
C is an important element that effectively increases the strength of the steel and governs the “austenite / ferrite” transformation. However, when the content is less than 0.05%, an average particle size of ferrite of 5 μm or less cannot be achieved, and strength cannot be secured. On the other hand, when the content is 0.15% or more, bainite is formed, so that the hole expandability and the torsional deformation characteristics are reduced. Therefore, the content of C is set to 0.05% or more and less than 0.15%.
[0027]
Mn:
Mn contributes to the refinement of crystal grains by lowering the Ae 3 points and is an important element that controls the “austenite / ferrite” transformation. Further, it has a solid solution strengthening action and strengthens ferrite. However, if the content is less than 0.8%, sufficient strength cannot be obtained. On the other hand, when Mn is contained in excess of 1.2%, cementite precipitates in the form of a plate along the grain boundaries, leading to a decrease in ductility and formability. Therefore, the content of Mn is set to 0.8 to 1.2%.
[0028]
Si:
Si is an element that strengthens ferrite and improves ductility of ferrite. However, if the content of Si is less than 0.02%, the effect of addition is poor. On the other hand, if the content of Si exceeds 2.0%, cementite precipitates in a plate shape along the grain boundaries, so that ductility and formability are reduced. Causes a decline. Therefore, the content of Si is set to 0.02 to 2.0%. The upper limit of the Si content is desirably 1.0%.
[0029]
sol. Al:
Al has a deoxidizing effect, and sol. The effect is obtained when the Al content is 0.002% or more. However, Al was added to sol. Even if Al is contained in an amount of 0.05% or more, the above effect is saturated and the cost is increased. Therefore, sol. The content of Al was set to 0.002% or more and less than 0.05%. In addition, sol. The content of Al is preferably set to 0.003% or more and 0.04% or less.
[0030]
N:
N controls the "austenite / ferrite" transformation and has the effect of forming a solid solution in the ferrite to strengthen it. However, if the content of N is less than 0.001%, the above effect is difficult to obtain. On the other hand, when the content of N is 0.005% or more, the nitride becomes coarse, which causes a decrease in ductility and moldability. Therefore, the content of N is set to 0.001% or more and less than 0.005%. Note that the content of N is preferably set to 0.002% or more and less than 0.004%.
[0031]
The fine-grained hot-rolled steel material according to the present invention regulates the contents of Ti, Nb and V as impurities as follows: Ti, Nb and V:
Ti, Nb, and V combine with C to form fine carbides and adversely affect ductility and formability. In particular, when the content of each of these elements is 0.005% or more, ductility and formability are reduced. The drop is significant. Therefore, in the present invention, the contents of Ti, Nb and V as impurities are all restricted to less than 0.005%.
[0032]
Note that P and S in the impurities also adversely affect the workability, so that it is desirable to keep them low, and the contents of P and S are desirably 0.02% or less and 0.005% or less, respectively.
(B) Main structure of hot rolled steel:
The main phase must be ferrite. This is because when a phase other than ferrite, for example, bainite, martensite, cementite, or pearlite forms a main phase, the strength is increased and ductility, hole expanding property, and torsional deformability are reduced.
[0033]
Phase 2:
The second phase must be one or both of pearlite and cementite. This is because when the second phase is bainite, ductility and torsional deformability decrease, and when martensite or austenite, the hole expandability decreases, and all of the strength, ductility, hole expandability and torsional deformability are good. This is because a hot rolled steel material cannot be obtained.
[0034]
Average particle size of ferrite:
When the average particle diameter of ferrite is reduced to 5.0 μm or less, the strength and ductility are improved comprehensively. However, when the microstructure has an average particle size of less than 1.1 μm, the ductility is rather reduced. Therefore, the average grain size of the ferrite is set to 1.1 to 5.0 μm.
[0035]
Mn content in cementite:
Assuming that Mnθ is the amount of Mn in cementite containing cementite in pearlite and Mnα is the amount of Mn in ferrite, which is the main phase, the value of “Mnθ / Mnα” is 1 or less, that is, the above formula (1) is satisfied. is important. This is for the following reason.
[0036]
Cementite is a carbide whose main metal element is Fe. In the case of steel containing Mn, a part of Fe forming cementite is replaced by Mn. With the growth of cementite, Mn tends to concentrate in cementite, and the amount of Mn solid solution in ferrite, which is the main phase, tends to decrease.
[0037]
When the amount of Mn in cementite increases, the rigidity of cementite increases remarkably, whereas in ferrite of the main phase, the amount of Mn decreases and the rigidity decreases. If the difference in rigidity between the two phases is large, cracks are likely to occur at the interface between the two phases during the secondary processing, and the formability is reduced. Therefore, in order to ensure good formability, the Mn content (Mnθ) in cementite must be equal to or less than the Mn content (Mnα) in ferrite, which is the main phase.
[0038]
Therefore, the structure in the invention of (1) contains ferrite having an average particle size of 1.1 to 5.0 μm as a main phase, and contains one or both of pearlite and cementite as a second phase, and Formula (1) was satisfied.
[0039]
Here, “Mnθ” and “Mnα” may be measured and calculated by the following methods (A) to (E).
[0040]
(B) About the obtained hot-rolled steel sheet, an extraction residue is collected by electrolytic extraction.
[0041]
(B) Since the precipitate is only cementite, the extraction residue amount corresponds to the total precipitation amount of cementite.
[0042]
(C) A quantitative analysis of the extraction residue is performed, and a composition analysis of the extraction residue is performed.
[0043]
(D) Assuming that the amount of Mn extracted as a residue is mn (%) and the amount of Fe extracted as a residue is fe (%), Mnθ is calculated from the following equation (2).
[0044]
Mnθ = (mn / fe) × 100 (2).
[0045]
(E) Assuming that the total amount of Mn in the steel is Mn (%) and the total amount of Fe in the steel is Fe (%), Mnα is calculated from the following equation (3).
[0046]
Mnα = {(Mn-mn) / (Fe-fe)} × 100 (3).
(C) Method of Manufacturing Hot Rolled Steel Material The hot rolled steel material according to the invention of the above (1) is, for example, a tandem hot rolling in a final rolling stand or a rolling stand one stage before the final rolling stand, from three points of Ae to “Ae 3 ”. It can be manufactured by rolling in a temperature range of “point + 50 ° C.” and then cooling at an average cooling rate of 800 ° C./sec or more.
[0047]
In addition, what is provided for a tandem hot rolling may be either a steel ingot or a steel slab. After heating the ingot or slab to a temperature of 3 or more Ac, or without lowering the temperature of the ingot after casting or the slab after hot working to a temperature range of 3 or less Ar, tandem hot rolling is performed. It may be served to.
[0048]
That is, when the steel ingot or the billet is reheated to a temperature of three or more Ac, the alloy element dissolves in the austenite. The charging to a furnace for reheating treatment such as a heating furnace or a soaking furnace may be performed in a state where the temperature is high after casting or hot working, or may be performed from a state in which the furnace is once cooled to around room temperature. Is also good. As described above, the ingot or the slab may be subjected to tandem hot rolling after reheating the slab or the slab to the austenite region, or the ingot after casting or the slab after hot working may be heated to a temperature range of Ar 3 points or less. The steel sheet may be subjected to tandem hot rolling in an austenite state without lowering.
[0049]
The steel ingot or slab exhibiting the austenitic structure is subjected to tandem hot rolling. In this case, the temperature of Ae 3 points to “Ae 3 points + 50 ° C.” at the final rolling stand or the rolling stand one stage before the final rolling stand. The structure described in the above section (B) can be obtained by rolling in the range and then cooling at an average cooling rate of 800 ° C./sec or more.
[0050]
If the rolling at the final rolling stand or the rolling stand immediately before the final rolling stand in the tandem mill is performed in the temperature range of Ae 3 points to “Ae 3 points + 50 ° C.”, austenite can be refined and austenite can be work-hardened. Since the formation of polygonal ferrite can be promoted, a sufficient amount of polygonal ferrite can be formed during cooling even after cooling at an average cooling rate of 800 ° C./sec or more.
[0051]
By performing ultra-rapid cooling at an average cooling rate of 800 ° C./sec or more, recovery of dislocations in austenite is suppressed, nucleation density for ferrite transformation is increased, and grain growth after ferrite transformation is suppressed. Even if it is a "C-Mn-Si steel" containing no microalloy, a fine structure can be obtained.
[0052]
During ultra-rapid cooling as described above, cementite precipitates in the para-equilibrium process together with transformation, so that the main component of the metal element in cementite is Fe, and almost no other alloying element is contained. As described above, cementite containing no other alloying element becomes spherical in an extremely short time and shows a uniform distribution.
[0053]
On the other hand, when the average cooling rate is lower than 800 ° C./sec, the recovery of dislocations in austenite during cooling is promoted, the nucleation density for ferrite transformation is reduced, and coarse-grain ferrite is formed. On the other hand, if the average cooling rate is low, cementite will precipitate in the process of ortho-equilibrium, and enrichment of alloying elements other than Fe will occur. In such a case, the cementite precipitates in the form of a plate (film) along the grain boundaries, and adversely affects the formability and ductility.
[0054]
Therefore, in the invention of (2), in the tandem hot rolling, at the final rolling stand or the rolling stand one stage before the final rolling, rolling is performed in a temperature range of Ae 3 points to “Ae 3 points + 50 ° C.”, and then 800 ° C. / The cooling was performed at an average cooling rate of at least seconds. The higher the average cooling rate is, the better. However, the practical limit is about 1500 ° C./sec.
[0055]
Hereinafter, the present invention will be described in more detail with reference to examples.
[0056]
【Example】
A slab of steel having the chemical composition shown in Table 1 was heated, hot-rolled, cooled and wound under the conditions shown in Table 2 by using an experimental rolling mill to obtain a hot-rolled steel sheet having a thickness of 2.5 mm. Got.
[0057]
[Table 1]
[0058]
[Table 2]
[0059]
A test piece was sampled from an arbitrary portion of the thus obtained steel sheet having a thickness of 2.5 mm, and the structure, tensile properties, hole expandability, and torsion properties were examined.
[0060]
The cross section of the steel plate thickness was observed using an optical microscope and a scanning electron microscope, and each phase in the structure was determined. Further, the ferrite and the other second phase were classified according to the difference in contrast in the scanning electron microscope observation photograph, and the proportion of the ferrite in the two-dimensional photograph was obtained. The number of fields of view was 5.
[0061]
In addition, the average grain length of the ferrite was determined by multiplying the average slice length determined by the so-called “slice method” by 1.128.
[0062]
Extraction of the precipitate by electrolysis was performed using a 10% acetylacetone-1% tetramethylammonium chloride-methanol-based electrolytic solution, and the obtained residue was quantitatively analyzed to determine Mnθ and Mnα from the above formulas (2) and (3). I asked.
[0063]
The tensile properties were investigated using a JIS No. 5 test piece described in JIS Z 2201.
[0064]
In addition, a square test piece of 120 mm in length and width was collected, a punched hole having a diameter of 14 mm was punched in the center with a punch, this hole was expanded with a conical punch, and from the limit hole diameter through which a crack penetrated the edge of the hole The hole spreading property was evaluated by the calculated critical hole spreading rate.
[0065]
Further, two rod-shaped test specimens each having a diameter of 2.0 mm and a length of 100 mm were sampled two each from the rolling direction and a direction parallel to the sheet width direction perpendicular thereto, and cracking when 90 ° torsional deformation was applied. The torsional deformation was evaluated by calculating the torsional rate from the occurrence state.
[0066]
Table 3 summarizes the results of each of the above surveys. The torsion ratio refers to the ratio of the four test pieces in each test number where no crack occurred.
[0067]
[Table 3]
[0068]
From Table 3, the hot-rolled steel sheets of Test Nos. 1 to 12 having the chemical composition and structure defined by the present invention have a tensile strength of 500 MPa even though they do not contain precipitation-strengthened alloy elements such as Ti, Nb and V. As described above, the elongation is 30% or more, the critical hole expansion rate is 85% or more, and the torsion rate is 100%. It is clear that high strength and high workability are satisfied at the same time.
[0069]
On the other hand, in the case of Test Nos. 13 to 18, which deviate from the conditions specified in the present invention, at least one of strength, elongation, hole expandability, and twistability is inferior.
[0070]
That is, in Test No. 13, since the contents of C and Mn in the steel were below the provisions of the present invention and the average grain size of ferrite in the structure was large and deviated from the above equation (1), the strength was low and the torsion was low. The properties are also inferior.
[0071]
In Test No. 14, the average particle diameter of ferrite in the structure was less than 1.1 μm, which was outside the above formula (1), and thus the hole expandability and torsion characteristics were inferior.
[0072]
In Test No. 15, the average grain size of the ferrite in the structure exceeded the stipulation of the present invention and deviated from the above formula (1), so that the strength was low and the torsion characteristics were poor.
[0073]
Test Nos. 16 and 17 show that although the average particle size of ferrite satisfies the requirements of the present invention due to the addition of Ti or Nb, ferrite is not the main phase, and the second phase contains neither cementite nor pearlite. Since it also deviates from the formula (1), the elongation is low, and the hole expanding property and the twisting property are inferior.
[0074]
Test No. 18 is inferior in torsion characteristics because the Si content of the steel exceeds the requirement of the present invention and further deviates from the above formula (1).
[0075]
【The invention's effect】
Since the hot-rolled steel material of the present invention is excellent in strength, ductility, hole-expandability and torsional deformation, it can be used as a material for high-strength structural members used in automobiles and various industrial machines. The hot-rolled steel material of the present invention can be produced relatively easily by the method of the present invention.
Claims (2)
Mnθ/Mnα≦1・・・▲1▼
ここで、Mnθはパーライト中のセメンタイトを含んだセメンタイト中のMn量、Mnαは主相であるフェライト中のMn量である。C: 0.05 to less than 0.15%, Mn: 0.8 to 1.2%, Si: 0.02 to 2.0%, sol. Al: 0.002% or more and less than 0.05%, N: 0.001% or more and less than 0.005%, the balance being Fe and impurities, and Ti, Nb and V in the impurities are all 0.005%. %, The structure has a main phase of ferrite having an average grain size of 1.1 to 5.0 μm, contains one or both of pearlite and cementite as a second phase, and has the following formula (1). Hot rolled steel material to satisfy.
Mnθ / Mnα ≦ 1 (1)
Here, Mnθ is the amount of Mn in cementite containing cementite in pearlite, and Mnα is the amount of Mn in ferrite, which is the main phase.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002303869A JP3858803B2 (en) | 2002-10-18 | 2002-10-18 | Hot-rolled steel material and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002303869A JP3858803B2 (en) | 2002-10-18 | 2002-10-18 | Hot-rolled steel material and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004137564A true JP2004137564A (en) | 2004-05-13 |
JP3858803B2 JP3858803B2 (en) | 2006-12-20 |
Family
ID=32451476
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002303869A Expired - Fee Related JP3858803B2 (en) | 2002-10-18 | 2002-10-18 | Hot-rolled steel material and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3858803B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006161112A (en) * | 2004-12-08 | 2006-06-22 | Sumitomo Metal Ind Ltd | High-strength hot rolled steel sheet and its production method |
JP2007044697A (en) * | 2005-08-05 | 2007-02-22 | Sumitomo Metal Ind Ltd | Method for producing hot rolled steel sheet having fine ferrite structure |
WO2007079625A1 (en) * | 2006-01-06 | 2007-07-19 | Angang Steel Company Limited | An ultrafine grain steel sheet produced by continuous casting and rolling a medium-thin slab and its manufacture process |
WO2013094130A1 (en) | 2011-12-19 | 2013-06-27 | Jfeスチール株式会社 | High-strength steel sheet and process for producing same |
WO2015189978A1 (en) * | 2014-06-13 | 2015-12-17 | 新日鐵住金株式会社 | Steel material for cold forging |
CN117358756A (en) * | 2023-09-26 | 2024-01-09 | 安徽富凯特材有限公司 | Rolling method for improving internal structure of ferronickel-chromium high-temperature corrosion-resistant alloy |
-
2002
- 2002-10-18 JP JP2002303869A patent/JP3858803B2/en not_active Expired - Fee Related
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006161112A (en) * | 2004-12-08 | 2006-06-22 | Sumitomo Metal Ind Ltd | High-strength hot rolled steel sheet and its production method |
JP4581665B2 (en) * | 2004-12-08 | 2010-11-17 | 住友金属工業株式会社 | High-strength hot-rolled steel sheet and its manufacturing method |
JP2007044697A (en) * | 2005-08-05 | 2007-02-22 | Sumitomo Metal Ind Ltd | Method for producing hot rolled steel sheet having fine ferrite structure |
JP4670538B2 (en) * | 2005-08-05 | 2011-04-13 | 住友金属工業株式会社 | Method for producing hot-rolled steel sheet having fine ferrite structure |
WO2007079625A1 (en) * | 2006-01-06 | 2007-07-19 | Angang Steel Company Limited | An ultrafine grain steel sheet produced by continuous casting and rolling a medium-thin slab and its manufacture process |
WO2013094130A1 (en) | 2011-12-19 | 2013-06-27 | Jfeスチール株式会社 | High-strength steel sheet and process for producing same |
WO2015189978A1 (en) * | 2014-06-13 | 2015-12-17 | 新日鐵住金株式会社 | Steel material for cold forging |
JPWO2015189978A1 (en) * | 2014-06-13 | 2017-04-27 | 新日鐵住金株式会社 | Steel for cold forging |
CN106661684A (en) * | 2014-06-13 | 2017-05-10 | 新日铁住金株式会社 | Steel material for cold forging |
US10533242B2 (en) | 2014-06-13 | 2020-01-14 | Nippon Steel Corporation | Steel for cold forging |
CN117358756A (en) * | 2023-09-26 | 2024-01-09 | 安徽富凯特材有限公司 | Rolling method for improving internal structure of ferronickel-chromium high-temperature corrosion-resistant alloy |
CN117358756B (en) * | 2023-09-26 | 2024-05-14 | 安徽富凯特材有限公司 | Rolling method for improving internal structure of ferronickel-chromium high-temperature corrosion-resistant alloy |
Also Published As
Publication number | Publication date |
---|---|
JP3858803B2 (en) | 2006-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110832098B (en) | Hot-rolled steel sheet and method for producing same | |
JP3172505B2 (en) | High strength hot rolled steel sheet with excellent formability | |
JP6048580B2 (en) | Hot rolled steel sheet and manufacturing method thereof | |
JP5447741B1 (en) | Steel plate, plated steel plate, and manufacturing method thereof | |
JP4304473B2 (en) | Manufacturing method of ultra fine grain hot rolled steel sheet | |
JP6229736B2 (en) | Hot-formed member and method for producing the same | |
JPWO2018011978A1 (en) | Hot-dip galvanized steel sheet | |
WO2013132796A1 (en) | High-strength cold-rolled steel sheet and process for manufacturing same | |
JP2003138345A (en) | High strength and high ductility steel and steel sheet having excellent local ductility, and method of producing the steel sheet | |
KR20170107057A (en) | High-strength cold-rolled steel plate and method for producing same | |
JP6519016B2 (en) | Hot rolled steel sheet and method of manufacturing the same | |
JP5363922B2 (en) | High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability | |
JP6879378B2 (en) | Hot-rolled steel sheet and its manufacturing method | |
JP7218533B2 (en) | Steel material and its manufacturing method | |
JP2004292891A (en) | High tensile strength hot dip galvanized steel sheet having excellent fatigue property and hole expansibility, and its production method | |
JP2007291514A (en) | Hot-rolled steel sheet with small in-plane anisotropy after cold rolling and recrystallization annealing, cold-rolled steel sheet with small in-plane anisotropy and production method therefor | |
JP5302840B2 (en) | High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability | |
JP2021161478A (en) | Steel material and method for manufacturing the same | |
JP2010229514A (en) | Cold rolled steel sheet and method for producing the same | |
JP6098537B2 (en) | High-strength cold-rolled steel sheet and manufacturing method thereof | |
JP3858803B2 (en) | Hot-rolled steel material and manufacturing method thereof | |
JP2008174813A (en) | High-strength steel sheet and its production method | |
WO2019088044A1 (en) | High-strength steel sheet and method for producing same | |
TWI615484B (en) | Hot-dip galvanized steel sheet | |
JP5363867B2 (en) | High strength cold-rolled steel sheet with excellent elongation and stretch flangeability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041119 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20041227 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060201 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060207 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060406 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060606 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060829 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060911 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3858803 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090929 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100929 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100929 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110929 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120929 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120929 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130929 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130929 Year of fee payment: 7 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130929 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |