JP4740099B2 - High-strength cold-rolled steel sheet and manufacturing method thereof - Google Patents

High-strength cold-rolled steel sheet and manufacturing method thereof Download PDF

Info

Publication number
JP4740099B2
JP4740099B2 JP2006340069A JP2006340069A JP4740099B2 JP 4740099 B2 JP4740099 B2 JP 4740099B2 JP 2006340069 A JP2006340069 A JP 2006340069A JP 2006340069 A JP2006340069 A JP 2006340069A JP 4740099 B2 JP4740099 B2 JP 4740099B2
Authority
JP
Japan
Prior art keywords
less
steel sheet
rolled steel
strength
strength cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006340069A
Other languages
Japanese (ja)
Other versions
JP2007284783A (en
Inventor
登志男 小川
直紀 丸山
夏子 杉浦
学 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006340069A priority Critical patent/JP4740099B2/en
Publication of JP2007284783A publication Critical patent/JP2007284783A/en
Application granted granted Critical
Publication of JP4740099B2 publication Critical patent/JP4740099B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、自動車用部品に好適な、形状凍結性、延性及び塗装焼付硬化性に優れた高強度冷延鋼板及びその製造方法に関する。   The present invention relates to a high-strength cold-rolled steel sheet excellent in shape freezing property, ductility, and paint bake hardenability, which is suitable for automotive parts, and a method for producing the same.

近年、自動車からの炭酸ガスの排出量を抑えるため、高強度鋼板を使用することによって自動車車体の軽量化が進められている。また、軽量化に加えて、搭乗者の安全確保のため、特に衝突時の安全性の観点からも、自動車車体には、軟鋼板の他に高強度鋼板が多く使用されるようになってきている。更に、自動車車体の軽量化を、今後より一層進めていくため、従来以上に高強度鋼板の使用強度レベルを高めたいという新たな要請が非常に高まりつつある。
しかしながら、鋼板の成形性は強度が高いほど低下するため、高強度鋼板の自動車用部材への適用は、現実的には限られたものとなっている。
In recent years, in order to suppress the discharge amount of carbon dioxide from automobiles, the weight reduction of automobile bodies has been promoted by using high-strength steel sheets. In addition to weight reduction, in order to ensure the safety of passengers, especially from the viewpoint of safety at the time of collision, high strength steel sheets are increasingly used for automobile bodies in addition to mild steel sheets. Yes. Furthermore, in order to further reduce the weight of automobile bodies, new demands to increase the use strength level of high-strength steel sheets more than ever are increasing.
However, since the formability of the steel sheet decreases as the strength increases, the application of the high-strength steel sheet to automobile members is practically limited.

上述のような背景のもと、高強度鋼板の成形性に課せられている課題の内、重要なものの一つが曲げ成形性の改善であり、具体的には、形状凍結性(耐スプリングバック性)の改善、及び延性劣化に起因する割れ発生限界の改善が挙げられる。このような改善は、特にTSが440MPa以上である鋼板を自動車構造部材、あるいはシャシー用部材に使用する際に重要となる。
このような課題を解決する方法として、集合組織を制御し、形状凍結性を向上させた鋼板やその製造方法が本出願人によって提案されている(例えば、特許文献1〜4)。
In the background as described above, one of the important issues imposed on the formability of high-strength steel sheets is the improvement of bend formability. Specifically, shape freezing properties (springback resistance) ) And improvement of cracking limit due to ductile deterioration. Such an improvement is particularly important when a steel plate having a TS of 440 MPa or more is used for an automobile structural member or chassis member.
As a method of solving such a problem, the present applicant has proposed a steel plate and a manufacturing method thereof in which the texture is controlled and the shape freezing property is improved (for example, Patent Documents 1 to 4).

特許文献1には、{100}<011>方位の発達した、形状凍結性に優れた高強度冷延鋼板及びその製造方法が開示されている。しかしながら、特許文献1に記載の鋼板では、Ti又はNbのみを必須元素とし、Mo、Bを選択元素とするものであり、1/2板厚における板面の{100}<011>〜{223}<110>方位群のX線ランダム強度比の平均値が3.0以上で、且つこれらの方位群の中で{112}<110>又は{100}<011>方位のX線ランダム強度比が最大且つ4.0以上を満足するというものである。
特許文献1の鋼板は、上記構成によって優れた形状凍結性が得られるものの、曲げ成形時の成形余裕度が十分ではないという問題があった。
Patent Document 1 discloses a high-strength cold-rolled steel sheet having a developed {100} <011> orientation and excellent shape freezing property, and a method for producing the same. However, in the steel sheet described in Patent Document 1, only Ti or Nb is used as an essential element, and Mo and B are used as selective elements, and {100} <011> to {223 of the plate surface at 1/2 plate thickness. } The average value of the X-ray random intensity ratio of the <110> orientation group is 3.0 or more, and among these orientation groups, the X-ray random intensity ratio of the {112} <110> or {100} <011> orientation Satisfies the maximum value of 4.0 or more.
The steel sheet of Patent Document 1 has a problem that, although excellent shape freezing property is obtained by the above configuration, a forming margin at the time of bending is not sufficient.

特許文献2には、Ti又はNbを必須元素とし、Mo、Bを選択元素とする冷延鋼板において、1/2板厚における板面の{100}<011>〜{223}<110>方位群のX線ランダム強度比の平均値が3.5以上で、且つこれらの方位群の中で{100}<011>方位のX線ランダム強度比が最大且つ4.5以上を満足する鋼板が開示されている。   Patent Document 2 discloses a {100} <011> to {223} <110> orientation of a plate surface at 1/2 plate thickness in a cold-rolled steel plate containing Ti or Nb as essential elements and Mo and B as selective elements. A steel sheet having an average X-ray random intensity ratio of 3.5 or more and satisfying a maximum X-ray random intensity ratio of {100} <011> orientation of 4.5 or more in these orientation groups It is disclosed.

また、特許文献3には、Ti、Nb、Mo、Bを何れも必須としない熱延鋼板において、1/2板厚における板面の{100}<011>〜{223}<110>方位群のX線ランダム強度比の平均値が2.5以上で、且つこれらの方位群の中で{100}<011>方位のX線ランダム強度比が{211}<011>X線ランダム強度比以上を満足する鋼板が開示されている。   Further, Patent Document 3 discloses a {100} <011> to {223} <110> orientation group of plate surfaces at 1/2 plate thickness in a hot-rolled steel plate that does not require any of Ti, Nb, Mo, and B. The average value of the X-ray random intensity ratio is 2.5 or more, and among these orientation groups, the X-ray random intensity ratio of the {100} <011> orientation is {211} <011> the X-ray random intensity ratio or more A steel sheet that satisfies the requirements is disclosed.

また、特許文献4には、Ti、Nb、Mo、Bを何れも必須としない熱延鋼板において、1/2板厚における板面の{100}<011>〜{223}<110>方位群のX線ランダム強度比の平均値が2.5以上で、且つこれらの方位群の中で{100}<011>方位のX線ランダム強度比が2.5以上で且つ{100}<011>方位のX線ランダム強度比が{211}<011>X線ランダム強度比以上を満足する鋼板が開示されている。   Patent Document 4 discloses a {100} <011> to {223} <110> orientation group of plate surfaces at 1/2 plate thickness in a hot-rolled steel plate that does not require any of Ti, Nb, Mo, and B. The average value of the X-ray random intensity ratio is 2.5 or more, and among these orientation groups, the X-ray random intensity ratio of the {100} <011> orientation is 2.5 or more and {100} <011> A steel sheet is disclosed in which the X-ray random intensity ratio of the orientation satisfies the {211} <011> X-ray random intensity ratio or more.

しかしながら、特許文献2〜4に記載の鋼板も特許文献1と同様、優れた形状凍結性が得られるものの、曲げ成形時の成形余裕度が十分ではないという問題があった。   However, although the steel plates described in Patent Documents 2 to 4 have excellent shape freezing properties as in Patent Document 1, there is a problem that the forming margin at the time of bending is not sufficient.

一方、耐衝突特性の向上には、降伏強度を高くすることが有効である。しかしながら、形状凍結性の向上には、降伏強度を低くすることが有効であるため、曲げ成形後の塗装焼付処理による部材の降伏強度の増強が、耐衝突特性の向上に極めて重要となる。このため、曲げ成形性と耐衝突特性の両立には、鋼板の塗装焼付硬化性(Bake Hardnability:BH性ともいう。)の向上が要求される。   On the other hand, increasing the yield strength is effective for improving the impact resistance. However, since it is effective to reduce the yield strength to improve the shape freezing property, the increase in the yield strength of the member by the coating baking process after bending is extremely important for improving the impact resistance. For this reason, in order to achieve both bend formability and impact resistance, it is required to improve the paint bake hardenability (also referred to as Bake Hardness: BH property) of the steel sheet.

特許文献5には、Ti又はNbを必須元素とし、Mo、Bを選択元素とする冷延鋼板において、1/2板厚における板面の{100}<011>〜{223}<110>方位群のX線ランダム強度比の平均値が4.0以上を満足する鋼板が開示されている。
しかしながら、特許文献5に記載の鋼板は、形状凍結性と塗装焼付硬化性を両立しているものの、特許文献1〜4に記載の鋼板と同様、曲げ成形時の成形余裕度が充分ではないという問題があった。
In Patent Document 5, in a cold-rolled steel sheet having Ti or Nb as an essential element and Mo and B as selective elements, the {100} <011> to {223} <110> orientations of the plate surface at 1/2 plate thickness A steel sheet satisfying an average X-ray random intensity ratio of the group of 4.0 or more is disclosed.
However, although the steel sheet described in Patent Document 5 has both shape freezing property and paint bake hardenability, it is said that, as with the steel sheets described in Patent Documents 1 to 4, the forming margin during bending is not sufficient. There was a problem.

更に、特許文献6には、1/2板厚における板面の{001}<110>〜{223}<110>方位群のX線ランダム強度比の平均値が6.0以上で、かつ、これらの方位群の中で{112}<110>方位および{001}<110>方位のうちいずれか一方または両方のX 線ランダム強度比が8.0以上であり、径が15nm以下の化合物粒子の個数が全化合物粒子の個数の60%以上である鋼板が開示されている。
しかしながら、特許文献6に記載の鋼板は、形状凍結性と伸びフランジ加工性は良好であるものの、上述のような塗装焼付硬化性については考慮されていないため、曲げ成形性と耐衝突特性の両立が難しいという問題があった。
特開2002−363693号公報 特開2005−120453号公報 特開2005−15854号公報 特開2005−272988号公報 特開2005−120459号公報 特開2006−22349号公報
Furthermore, in Patent Document 6, the average value of the X-ray random intensity ratio of {001} <110> to {223} <110> orientation groups on the plate surface at 1/2 plate thickness is 6.0 or more, and Among these orientation groups, a compound particle having an X-ray random intensity ratio of at least one of the {112} <110> orientation and the {001} <110> orientation of 8.0 or more and a diameter of 15 nm or less A steel sheet is disclosed in which the number of particles is 60% or more of the total number of compound particles.
However, although the steel sheet described in Patent Document 6 has good shape freezing properties and stretch flangeability, it does not take into account the above-described paint bake hardenability, and thus achieves both bendability and impact resistance. There was a problem that was difficult.
JP 2002-363893 A JP 2005-120453 A JP-A-2005-15854 Japanese Patent Laid-Open No. 2005-272988 JP 2005-12059 A JP 2006-22349 A

本発明は上記事情に鑑みてなされたものであり、特に、曲げ加工される自動車用構造部材及びシャシー用部材等に好適な440MPa超のTSを有する、形状凍結性、延性及び塗装焼付性に優れた高強度冷延鋼板及びその製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and particularly has a shape freezing property, ductility, and paint bakeability having a TS of over 440 MPa suitable for automobile structural members and chassis members to be bent. Another object is to provide a high-strength cold-rolled steel sheet and a method for producing the same.

本発明者らは、従来技術において形状凍結性と延性の両立を図ることが難しかった原因について調査した結果、従来技術により得られている形状凍結性に優れた鋼板では未再結晶のフェライト分率が高く、このために優れた延性が得られていないことを知見した。
さらに、本発明者らは、フェライトの再結晶と形状凍結性に好ましい集合組織の発達を両立させる方法について検討した。その結果、Ti、Nb及びBと、Mo、Wのうち1種又は2種とを複合添加し、熱延条件を制御することにより熱延板の集合組織を発達させた上で、更にTi、Nb量の最適化と焼鈍条件の最適化により再結晶挙動を適切に制御することで、従来鋼と比較して形状凍結性を劣化させることなく優れた延性を得ることが出来ることを見出した。
さらに、形状凍結性と延性に加えてBH性を向上させるため、Alの添加量を極力抑えることにより、AlNの析出を抑制して固溶N量を増加させた。その結果、形状凍結性と延性を劣化させることなく優れたBH性を得ることが出来ることを見出した。
本発明は上述の知見に基づいて構成されており、その主旨とするところは以下の通りである。
As a result of investigating the reasons why it was difficult to achieve both shape freezing and ductility in the prior art, the present inventors found that the steel fraction excellent in shape freezing obtained by the prior art has a non-recrystallized ferrite fraction. Therefore, it was found that excellent ductility was not obtained.
Furthermore, the present inventors examined a method for achieving both the recrystallization of ferrite and the development of a texture preferable for shape freezing. As a result, Ti, Nb and B and one or two of Mo and W were added in combination, and after developing the texture of the hot-rolled sheet by controlling the hot-rolling conditions, Ti, It has been found that by appropriately controlling the recrystallization behavior by optimizing the Nb amount and the annealing conditions, excellent ductility can be obtained without degrading the shape freezing property as compared with the conventional steel.
Furthermore, in order to improve the BH property in addition to the shape freezing property and ductility, by suppressing the addition amount of Al as much as possible, precipitation of AlN was suppressed and the solid solution N amount was increased. As a result, it has been found that an excellent BH property can be obtained without deteriorating the shape freezing property and ductility.
The present invention is configured based on the above-described knowledge, and the main points thereof are as follows.

(1) 質量%で、C:0.005%以上0.25%以下、Si:0.001%以上2.5%以下、Mn:0.01%以上2.5%以下、P:0.15%以下、S:0.03%以下、Al:2.0%以下、N:0.01%以下、O:0.01%以下、B:0.0003%以上0.007%以下をそれぞれ含有し、更に、Ti:0.005%以上0.04%以下、Nb:0.005%以上0.04%以下の双方を合計で0.01%以上0.04%以下の量で含有し、更に、Mo、Wの内の何れか1種又は2種の合計を0.001%以上1.0%以下の量で含有し、残部が鉄及び不可避的不純物からなり、面積分率で1%以上25%以下のパーライト、ベイナイト又はマルテンサイトの内の何れか1種又は2種以上を含み、残部が再結晶率80%以上のフェライトからなる複合組織鋼であり、1/2板厚における板面の{100}<011>〜{223}<110>方位群のX線ランダム強度比の平均値が3.0以上であり、且つこれらの方位群の中で{100}<011>方位のX線ランダム強度比が最大且つ5.0以上を満足し、更に{554}<225>、{111}<112>及び{111}<110>の結晶方位のX線ランダム強度比の平均値が6.0以下であることを特徴とする高強度冷延鋼板。
(2) 前記Alの含有量が、質量%で、0.0005%以上0.02%以下であることを特徴とする上記(1)に記載の高強度冷延鋼板。
(3) 更に、質量%で、V:0.20%以下、Cr:1.5%以下、Cu:2.0%以下、Ni:1.0%以下、Sn:0.20%以下の内、少なくとも1種又は2種以上を含有することを特徴とする(1)又は(2)に記載の形状凍結性及び延性に優れた高強度冷延鋼板。
(4) Al含有量とN含有量が、次式Al/N=2以下を満足することを特徴とする(1)〜(3)の何れか1項に記載の高強度冷延鋼板。
(5) 引張強度TS[MPa]と全伸びEL[%]との積TS×EL[MPa・%]が、17000[MPa・%]以上であることを特徴とする(1)〜(4)の何れか1項に記載の形状凍結性及び延性に優れた高強度冷延鋼板。
(6) 上記(1)〜(5)の何れか1項に記載の高強度冷延鋼板にめっきを施したことを特徴とする形状凍結性及び延性に優れた高強度冷延鋼板。
(1) By mass%, C: 0.005% to 0.25%, Si: 0.001% to 2.5%, Mn: 0.01% to 2.5%, P: 0.00. 15% or less, S: 0.03% or less, Al: 2.0% or less, N: 0.01% or less, O: 0.01% or less, B: 0.0003% or more and 0.007% or less Further, Ti: 0.005% or more and 0.04% or less, Nb: 0.005% or more and 0.04% or less in total in an amount of 0.01% or more and 0.04% or less. Furthermore, the total of any one or two of Mo and W is contained in an amount of 0.001% or more and 1.0% or less, and the balance is composed of iron and inevitable impurities, and the area fraction is 1 % Or more of pearlite, bainite or martensite of 25% or less, with the remainder being 80% or less of the recrystallization rate It is a composite structure steel composed of the above ferrite, and the average value of the X-ray random intensity ratios of {100} <011> to {223} <110> orientation groups on the plate surface at 1/2 plate thickness is 3.0 or more. And the X-ray random intensity ratio of {100} <011> orientation is maximum and satisfies 5.0 or more among these orientation groups, and {554} <225>, {111} <112> and { A high-strength cold-rolled steel sheet having an average X-ray random strength ratio of 111} <110> crystal orientation of 6.0 or less.
(2) The high-strength cold-rolled steel sheet according to (1), wherein the Al content is 0.0005% to 0.02% by mass.
(3) Further, in mass%, V: 0.20% or less, Cr: 1.5% or less, Cu: 2.0% or less, Ni: 1.0% or less, Sn: 0.20% or less The high-strength cold-rolled steel sheet having excellent shape freezing property and ductility according to (1) or (2), comprising at least one kind or two or more kinds.
(4) The high-strength cold-rolled steel sheet according to any one of (1) to (3), wherein the Al content and the N content satisfy the following formula Al / N = 2 or less.
(5) The product TS × EL [MPa ·%] of the tensile strength TS [MPa] and the total elongation EL [%] is 17000 [MPa ·%] or more (1) to (4) A high-strength cold-rolled steel sheet excellent in shape freezing property and ductility according to any one of the above.
(6) A high-strength cold-rolled steel sheet excellent in shape freezeability and ductility, wherein the high-strength cold-rolled steel sheet according to any one of (1) to (5) is plated.

(7) 上記(1)〜(4)の何れか1項に記載の化学成分を有するスラブを、Ar変態温度〜900℃の温度範囲における圧下率の合計を25%以上、仕上圧延温度をAr変態温度以上として熱間圧延し、次いで700℃以下の温度で巻き取り、酸洗後、2〜80%の冷間圧延を施し、更に15℃/sec以下の昇温速度で700℃〜900℃の温度範囲に加熱した後、当該温度で3sec以上保持した後に冷却することを特徴とする形状凍結性及び延性に優れた高強度冷延鋼板の製造方法。
(8) 上記(7)に記載の製造方法によって製造した高強度冷延鋼板に、0.1%以上5%以下のスキンパス圧延を施すことを特徴とする形状凍結性及び延性に優れた高強度冷延鋼板の製造方法。
(7) The slab having the chemical component according to any one of (1) to (4) above, the total rolling reduction in the temperature range of Ar 3 transformation temperature to 900 ° C. is 25% or more, and the finish rolling temperature is Hot-rolled at an Ar 3 transformation temperature or higher, then wound up at a temperature of 700 ° C. or lower, pickled, cold-rolled at 2 to 80%, and further heated at a rate of 15 ° C./sec or lower from 700 ° C. A method for producing a high-strength cold-rolled steel sheet excellent in shape freezing property and ductility, characterized by heating to a temperature range of 900 ° C. and then cooling after holding at that temperature for 3 seconds or more.
(8) High strength excellent in shape freezing property and ductility, characterized by subjecting the high strength cold-rolled steel sheet produced by the production method described in (7) above to skin pass rolling of 0.1% to 5%. A method for producing a cold-rolled steel sheet.

本発明の形状凍結性、延性及びBH性に優れた高強度冷延鋼板及びその製造方法によれば、440MPa以上の引張強度を有し、スプリングバック量が少なく、衝撃吸収能の高い、形状凍結性、靱性及びBH性に優れた高強度鋼板が提供できる。これにより、従来、形状不良及び割れの問題から高強度鋼板の適用が難しかった、自動車車体等の主に曲げ加工主体の成形が施される部品にも高強度鋼板が使用できるようになる。更には、相反する特性であることから両立が困難であった、曲げ加工性と耐衝突特性の両立が可能となる。従って、自動車車体の軽量化をより一層推進することが可能となり、産業上の貢献が極めて顕著である。   According to the high strength cold-rolled steel sheet excellent in shape freezing property, ductility and BH property and its manufacturing method of the present invention, the shape freezing has a tensile strength of 440 MPa or more, a small amount of springback, and a high shock absorption capacity. Can provide a high-strength steel sheet having excellent properties, toughness, and BH properties. This makes it possible to use a high-strength steel sheet even for parts that are mainly formed by bending, such as an automobile body, where it has been difficult to apply a high-strength steel sheet due to problems of shape defects and cracks. Furthermore, it is possible to achieve both bending workability and impact resistance, which are difficult to achieve because of conflicting characteristics. Accordingly, it is possible to further reduce the weight of the automobile body, and the industrial contribution is extremely remarkable.

以下、形状凍結性、延性及び塗装焼付硬化性に優れた高強度冷延鋼板及びその製造方法の実施の形態について説明する。
なお、この実施形態は、発明の趣旨をより良く理解させるために詳細に説明するものであるから、特に指定の無い限り、本発明を限定するものではない。
Hereinafter, embodiments of a high-strength cold-rolled steel sheet excellent in shape freezing property, ductility, and paint bake hardenability and a manufacturing method thereof will be described.
In addition, since this embodiment is described in detail for better understanding of the gist of the invention, the present invention is not limited unless otherwise specified.

本発明の高強度冷延鋼板(以下、冷延鋼板と略称することがある)は、質量%で、C:0.005%以上0.25%以下、Si:0.001%以上2.5%以下、Mn:0.01%以上2.5%以下、P:0.15%以下、S:0.03%以下、Al:2.0%以下、N:0.01%以下、O:0.01%以下、B:0.0003%以上0.007%以下をそれぞれ含有し、更に、Ti:0.005%以上0.04%以下、Nb:0.005%以上0.04%以下の双方を合計で0.01%以上0.04%以下の量で含有し、更に、Mo、Wの内の何れか1種又は2種の合計を0.001%以上1.0%以下の量で含有し、残部が鉄及び不可避的不純物からなり、面積分率で1%以上25%以下のパーライト、ベイナイト又はマルテンサイトの内の何れか1種又は2種以上を含み、残部が再結晶率80%以上のフェライトからなる複合組織鋼であり、1/2板厚における板面の{100}<011>〜{223}<110>方位群のX線ランダム強度比の平均値が3.0以上であり、且つこれらの方位群の中で{100}<011>方位のX線ランダム強度比が最大且つ5.0以上を満足し、更に{554}<225>、{111}<112>及び{111}<110>の結晶方位のX線ランダム強度比の平均値が6.0以下として、概略構成されている。なお、好ましいAl含有量はAl:0.0005%以上0.02%以下であり、Al含有量とN含有量が、次式Al/N=2以下を満足することが好ましい。   The high-strength cold-rolled steel sheet (hereinafter sometimes abbreviated as “cold-rolled steel sheet”) of the present invention is mass%, C: 0.005% to 0.25%, Si: 0.001% to 2.5 %: Mn: 0.01% to 2.5%, P: 0.15% or less, S: 0.03% or less, Al: 2.0% or less, N: 0.01% or less, O: 0.01% or less, B: 0.0003% or more and 0.007% or less, respectively, Ti: 0.005% or more and 0.04% or less, Nb: 0.005% or more and 0.04% or less In a total amount of 0.01% or more and 0.04% or less, and further, the total of either one or two of Mo and W is 0.001% or more and 1.0% or less. Perlite, bainite, or martensite with an area fraction of 1% to 25%, with the balance being iron and inevitable impurities Any one or more of the above, and the balance is a composite structure steel composed of ferrite with a recrystallization rate of 80% or more, and {100} <011> to {223} of the plate surface at 1/2 plate thickness The average value of the X-ray random intensity ratio of the <110> azimuth group is 3.0 or more, and among these azimuth groups, the X-ray random intensity ratio of the {100} <011> azimuth is maximum and 5.0 or more. Is satisfied, and the average value of the X-ray random intensity ratios of the crystal orientations of {554} <225>, {111} <112> and {111} <110> is generally set to 6.0 or less. The preferable Al content is Al: 0.0005% or more and 0.02% or less, and the Al content and the N content preferably satisfy the following formula Al / N = 2 or less.

「1/2板厚における板面の{100}<011>〜{223}<110>方位群のX線ランダム強度比の平均値」
本発明では、上記X線ランダム強度比の平均値は特に重要な特性値である。
板厚中心位置での板面のX線回折を行い、ランダム試料に対する各方位の強度比を求めた際の、{100}<011>〜{223}<110>方位群の平均値は、3.0以上である必要がある。この平均値が3.0未満だと、形状凍結性が劣悪となる。この観点から、X線ランダム強度比の平均値は、より好ましくは3.5以上、更に好ましくは4.0以上である。この方位群に含まれる主な方位は、{100}<011>、{116}<110>、{114}<110>、{113}<110>、{112}<110>、{335}<110>及び{223}<110>である。これら各方位のX線ランダム強度比は{110}極点図に基づきベクトル法により計算した3次元集合組織や{110}、{100}、{211}、{310}極点図のうち複数の極点図(好ましくは3つ以上)を用いて級数展開法で計算した3次元集合組織から求めればよい。なお、極点図はX線回折法によって得ることができる。
“Average value of X-ray random intensity ratio of {100} <011> to {223} <110> orientation group of plate surface at 1/2 plate thickness”
In the present invention, the average value of the X-ray random intensity ratio is a particularly important characteristic value.
The average value of the {100} <011> to {223} <110> orientation groups when the X-ray diffraction of the plate surface at the center of the plate thickness is performed to determine the intensity ratio of each orientation to the random sample is 3 Must be greater than or equal to 0.0. When this average value is less than 3.0, the shape freezing property becomes poor. From this viewpoint, the average value of the X-ray random intensity ratio is more preferably 3.5 or more, and still more preferably 4.0 or more. The main orientations included in this orientation group are {100} <011>, {116} <110>, {114} <110>, {113} <110>, {112} <110>, {335} <110> and {223} <110>. The X-ray random intensity ratio in each direction is a three-dimensional texture calculated by the vector method based on the {110} pole figure, or a plurality of pole figures among {110}, {100}, {211}, {310} pole figures. What is necessary is just to obtain | require from the three-dimensional texture calculated by the series expansion method using (preferably three or more). The pole figure can be obtained by the X-ray diffraction method.

例えば、後者の方法における上記各結晶方位のX線ランダム強度比には、3次元集合組織のφ2=45゜断面における(001)[1−10]、(116)[1−10]、(114)[1−10]、(113)[1−10]、(112)[1−10]、(335)[1−10]、(223)[1−10]の強度をそのまま用いればよい。{100}<011>〜{223}<110>方位群の平均値とは、上記の各方位の相加平均である。上記の全ての方位の強度を得ることができない場合には、{100}<011>、{116}<110>、{114}<110>、{112}<110>、{223}<110>の各方位の相加平均で代替しても良い。   For example, the X-ray random intensity ratio of each crystal orientation in the latter method includes (001) [1-10], (116) [1-10], (114) in the φ2 = 45 ° cross section of the three-dimensional texture. ) [1-10], (113) [1-10], (112) [1-10], (335) [1-10], (223) [1-10] may be used as they are. The average value of {100} <011> to {223} <110> orientation group is an arithmetic average of each of the above-mentioned orientations. When the strengths of all the above directions cannot be obtained, {100} <011>, {116} <110>, {114} <110>, {112} <110>, {223} <110> Alternatively, an arithmetic average of each direction may be substituted.

「1/2板厚における板面の{100}<011>方位のX線ランダム強度比」
本発明では、上記X線ランダム強度比は特に重要な特性値である。
この方位は、形状凍結性の向上に最も効果を発揮する方位である。従って、{100}<011>は5.0以上である必要がある。これが5.0未満だと、高形状凍結性の確保が困難になる。この観点から、{100}<011>方位のX線ランダム強度比は5.0以上であることが好ましい。更に好ましくは6.0以上である。
なお、ここで述べる{100}<011>方位とは、同様の効果を有する方位の範囲として、圧延方向に対して直角な方向(Transverse Direction)を回転軸として、12°を許容する。好ましくは6°とする。
“X-ray random intensity ratio of {100} <011> orientation of plate surface at 1/2 plate thickness”
In the present invention, the X-ray random intensity ratio is a particularly important characteristic value.
This orientation is the orientation that is most effective in improving the shape freezing property. Therefore, {100} <011> needs to be 5.0 or more. If this is less than 5.0, it is difficult to ensure high shape freezing property. From this viewpoint, the X-ray random intensity ratio in the {100} <011> orientation is preferably 5.0 or more. More preferably, it is 6.0 or more.
Note that the {100} <011> orientation described here permits 12 ° as a range of orientations having the same effect, with a direction perpendicular to the rolling direction (Transverse Direction) as the rotation axis. The angle is preferably 6 °.

「1/2板厚における板面の{554}<225>、{111}<112>及び{111}<110>の結晶方位のX線ランダム強度比の平均値」
1/2板厚における板面の{554}<225>、{111}<112>及び{111}<110>の結晶方位のX線ランダム強度比の平均値は6.0以下である必要がある。これが6.0超であると、良好な形状凍結性を得ることが困難となる。
なお、上述のX線強度は、X線回折法によって測定することができ、これらの限定を満足するX線強度が板厚1/2位置だけでなく、なるべく多くの厚みについて得られれば、より一層形状凍結性が良好になる。
“Average value of X-ray random intensity ratio of {554} <225>, {111} <112> and {111} <110> crystal orientations of the plate surface at 1/2 plate thickness”
The average value of the X-ray random intensity ratio of the crystal orientations {554} <225>, {111} <112> and {111} <110> on the plate surface at 1/2 plate thickness needs to be 6.0 or less. is there. If this exceeds 6.0, it will be difficult to obtain good shape freezing properties.
The above-mentioned X-ray intensity can be measured by an X-ray diffraction method, and if the X-ray intensity satisfying these limitations is obtained not only for the position of 1/2 the plate thickness but also for as many thicknesses as possible, The shape freezing property is further improved.

以上に述べたような冷延鋼板のX線強度が、曲げ加工時の形状凍結性に重要であることの理由は必ずしも明らかではないが、曲げ変形時の結晶のすべり挙動と関係があるものと推測される。   The reason why the X-ray strength of the cold-rolled steel sheet as described above is important for the shape freezing property at the time of bending is not necessarily clear, but it is related to the sliding behavior of the crystal at the time of bending deformation. Guessed.

X線回折に供する試料は、機械研磨などによって鋼板を所定の板厚まで減厚し、次いで化学研磨や電解研磨などによって歪みを除去すると同時に、板厚1/2面が測定面となるように作製する。鋼板の板厚中心層に偏析帯や欠陥などが存在し、測定上不都合が生ずる場合には、板厚の3/8〜5/8の範囲で適当な面が測定面となるように、上述の方法に従って試料を調整して測定すればよい。
少なくとも2つの測定面でのX線ランダム強度比の平均値が上述の値を満足していれば、優れた形状凍結性が得られる。
Samples to be subjected to X-ray diffraction are mechanically polished to reduce the thickness of the steel sheet to a predetermined thickness, and then the distortion is removed by chemical polishing, electrolytic polishing, etc., and at the same time, the thickness 1/2 surface becomes the measurement surface. Make it. When there is a segregation zone or a defect in the thickness center layer of the steel sheet, which causes inconvenience in measurement, the above-described surface is set so that an appropriate surface becomes the measurement surface in the range of 3/8 to 5/8 of the plate thickness. The sample may be adjusted according to the above method.
If the average value of the X-ray random intensity ratio on at least two measurement surfaces satisfies the above value, excellent shape freezing property can be obtained.

なお、{hkl}<uvw>で表される結晶方位とは、板面の法線方向が<hkl>に平行で、圧延方向が<uvw>と平行であることを示している。
本発明で規定した結晶方位に関する指標は、引張強度レベルの低い軟鋼板から高強度鋼板にいたる全ての冷延鋼板に適用できるものであり、上記の限定が満たされれば、冷延鋼板の曲げ加工性は飛躍的に向上する。換言すれば、冷延鋼板の機械的強度レベルの制約を越えた、曲げ加工変形に関する基本的材料指標であるということができる。
The crystal orientation represented by {hkl} <uvw> indicates that the normal direction of the plate surface is parallel to <hkl> and the rolling direction is parallel to <uvw>.
The crystal orientation index defined in the present invention is applicable to all cold-rolled steel sheets ranging from mild steel sheets with low tensile strength levels to high-strength steel sheets, and bending processing of cold-rolled steel sheets if the above limitation is satisfied. Sexually improves. In other words, it can be said that it is a basic material index regarding bending deformation exceeding the constraints of the mechanical strength level of the cold-rolled steel sheet.

「冷延鋼板の化学成分組成」
以下に、本発明の高強度冷延鋼板の化学成分組成の限定条件について詳述する。
“Chemical composition of cold-rolled steel sheet”
Below, the limiting conditions of the chemical component composition of the high-strength cold-rolled steel sheet of the present invention will be described in detail.

(C:C:0.005%以上0.25%以下)
C量が0.005%未満であると、面積分率で1%以上のパーライト、ベイナイト又はマルテンサイトを鋼中に分散させることが難しく、一方、C量が0.25%超になると、延性が劣化する。このため、Cの含有量の適正範囲を0.005%〜0.25%の範囲内に限定した。なお、440MPa超の引張強度を安定的に得るためのより好ましい添加量は0.01%以上である。
(C: C: 0.005% or more and 0.25% or less)
When the C content is less than 0.005%, it is difficult to disperse pearlite, bainite or martensite in an area fraction of 1% or more in the steel, while when the C content exceeds 0.25%, ductility Deteriorates. For this reason, the appropriate range of the C content is limited to a range of 0.005% to 0.25%. A more preferable addition amount for stably obtaining a tensile strength exceeding 440 MPa is 0.01% or more.

(Si:0.001%以上2.5%以下)
Siは、鋼板の機械的強度を高めるのに有効な元素であるが、2.5%超となると化成処理性が劣化したり、表面疵が発生したりするので、これを上限とした。一方、実用鋼でSiを0.001%未満とするのは困難であるので、これを下限とした。
(Si: 0.001% to 2.5%)
Si is an element effective for increasing the mechanical strength of the steel sheet. However, if it exceeds 2.5%, the chemical conversion property deteriorates or surface flaws occur, so this was made the upper limit. On the other hand, since it is difficult to make Si less than 0.001% with practical steel, this was made the lower limit.

(Mn:0.01%以上2.5%以下)
Mnも、Siと同様、鋼板の機械的強度を高めるのに有効な元素であるが、2.5%超になると加工性が劣化するのでこれを上限とした。一方、実用鋼でMnを0.01%未満とするのは困難であるので、これを下限とした。なお、高強度化のためには、0.5%以上のMnを含有することが好ましい。
なお、Mn以外に、Sによる熱間割れの発生を抑制する元素が十分に添加されていない場合には、質量%でMn/S≧20となるMn量を添加することが好ましい。
(Mn: 0.01% to 2.5%)
Mn, like Si, is an element effective for increasing the mechanical strength of the steel sheet. However, if it exceeds 2.5%, the workability deteriorates, so this was made the upper limit. On the other hand, since it is difficult to make Mn less than 0.01% in practical steel, this was made the lower limit. In order to increase the strength, it is preferable to contain 0.5% or more of Mn.
In addition to Mn, when the element which suppresses the generation | occurrence | production of the hot crack by S is not fully added, it is preferable to add the amount of Mn which becomes Mn / S> = 20 by mass%.

(P:0.15%以下、S:0.03%以下)
P及びSは不純物であり、それぞれ0.15%以下、0.03%以下とする。これは、2次加工性の劣化や熱間圧延時又は冷間圧延時の割れを防ぐためである。
(P: 0.15% or less, S: 0.03% or less)
P and S are impurities, and are 0.15% or less and 0.03% or less, respectively. This is to prevent secondary workability deterioration and cracking during hot rolling or cold rolling.

(Al:2.0%以下、もしくは0.0005%以上0.02%以下)
Alは、以下の2点の理由から、本発明において非常に重要な元素である。
(Al: 2.0% or less, or 0.0005% or more and 0.02% or less)
Al is a very important element in the present invention for the following two reasons.

Alが重要である第一の理由は、脱酸剤としての作用であり、この効果を得るために0.01%以上添加することが好ましい。しかし、添加量が多すぎると加工性が低下し、表面性状が劣悪となるため、上限を2.0%とする。   The first reason why Al is important is the action as a deoxidizer, and it is preferable to add 0.01% or more in order to obtain this effect. However, if the addition amount is too large, the workability deteriorates and the surface properties become poor, so the upper limit is made 2.0%.

Alが重要である第二の理由は、AlNの形成である。本発明においては、固溶N量の確保により、BH性を向上させることが好ましい。そのため、Alの添加量は、極力抑え、AlNの形成を抑制することが好ましい。この、BH性の向上という観点からは、Al量の上限を0.02%とすることが好ましい。一方、製鋼コストの観点からAl量の下限を0.0005%以上とすることが好ましい。   The second reason why Al is important is the formation of AlN. In the present invention, it is preferable to improve the BH property by securing the solid solution N amount. Therefore, it is preferable to suppress the addition amount of Al as much as possible and suppress the formation of AlN. From the viewpoint of improving the BH property, the upper limit of Al content is preferably 0.02%. On the other hand, from the viewpoint of steelmaking cost, it is preferable that the lower limit of the Al amount is 0.0005% or more.

(N:0.01%以下)
Nは不純物であり、加工性を悪くさせないように、上限を0.01%とする。一方、Nは、塗装焼付処理により降伏強度を上昇させ、部材の耐衝突特性を向上させる元素である。したがって、固溶N量を確保してBH性を向上させるため、Nを0.001%以上含有していることが望ましい。
(N: 0.01% or less)
N is an impurity, and the upper limit is made 0.01% so as not to deteriorate the workability. On the other hand, N is an element that increases the yield strength by the coating baking process and improves the collision resistance of the member. Therefore, in order to ensure the solid solution N amount and improve the BH property, it is desirable to contain N 0.001% or more.

(Al(質量%)/N(質量%)=2以下)
本発明において、固溶N量を確保するためには、上述のように、AlNの生成を極力抑えることが好ましい。したがって、BH性を更に向上させるために、Al/Nが2以下であることが好ましい。
(Al (mass%) / N (mass%) = 2 or less)
In the present invention, in order to ensure the solid solution N amount, it is preferable to suppress the generation of AlN as much as possible as described above. Therefore, Al / N is preferably 2 or less in order to further improve the BH property.

(O:0.01%以下)
Oは不純物であり、加工性の悪化を防止するために、上限を0.01%とする。
(O: 0.01% or less)
O is an impurity, and the upper limit is made 0.01% in order to prevent deterioration of workability.

(B:0.0003%以上0.007%以下)
Bは、本発明において非常に重要である。Bは、粒界の強化や鋼材の高強度化に有効であるだけでなく、本発明においては形状凍結性に有利な熱延板の集合組織を発達させていると推測され、0.0003%以上を添加することが好ましい。なお、その添加量が0.007%を超えると、上記効果が飽和するばかりでなく、延性を低下させるので、上限を0.007%とした。
(B: 0.0003% or more and 0.007% or less)
B is very important in the present invention. B is not only effective for strengthening grain boundaries and increasing the strength of steel materials, but in the present invention, it is presumed that a texture of hot-rolled sheets advantageous for shape freezing properties is developed, and 0.0003% It is preferable to add the above. In addition, since the said effect will not only be saturated when the addition amount exceeds 0.007% but ductility is reduced, the upper limit was made 0.007%.

(Ti:0.005%以上0.04%以下、Nb:0.005%以上0.04%以下)
これらの元素は、本発明において非常に重要である。従来、これらの元素を添加する主たる目的は、冷延後の焼鈍中の再結晶及び粒成長を抑制し、形状凍結性に有利な集合組織を破壊することなく保存するためであった。本発明では、Ti及びNbの添加量の上限を制限し、再結晶を完了させ、これにより優れた形状凍結性を得、且つ従来よりも延性を向上させるものである。
従って、Ti及びNbの過度の添加は再結晶及び粒成長を抑制し、延性を損なうので、Ti、Nbの添加量の上限をそれぞれ0.04%以下、0.04%以下、且つ双方の合計を0.04%以下と設定した。また、Ti、Nbの添加量が極端に少ないと、形状凍結性に有利な{100}<011>方位が発達しないため、Ti、Nbの添加量の下限をそれぞれ0.005%、0.005%、且つ双方の合計を0.01%以上と設定した。なお、再結晶フェライトの分率をより高めて延性を向上させる観点から、Ti及びNbの合計のより好ましい上限は、0.03%以下である。
(Ti: 0.005% to 0.04%, Nb: 0.005% to 0.04%)
These elements are very important in the present invention. Conventionally, the main purpose of adding these elements has been to suppress recrystallization and grain growth during annealing after cold rolling, and to preserve the texture that is advantageous for shape freezing property without being destroyed. In the present invention, the upper limit of the addition amount of Ti and Nb is limited, recrystallization is completed, thereby obtaining an excellent shape freezing property and improving the ductility as compared with the prior art.
Therefore, excessive addition of Ti and Nb suppresses recrystallization and grain growth and impairs ductility. Therefore, the upper limit of the addition amount of Ti and Nb is 0.04% or less and 0.04% or less, respectively, and the total of both. Was set to 0.04% or less. Further, if the addition amount of Ti and Nb is extremely small, the {100} <011> orientation advantageous for shape freezing property does not develop, so the lower limit of the addition amount of Ti and Nb is 0.005% and 0.005, respectively. %, And the total of both was set to 0.01% or more. From the viewpoint of further improving the ductility by further increasing the fraction of recrystallized ferrite, the more preferable upper limit of the total of Ti and Nb is 0.03% or less.

(Mo、W:何れか1種又は2種の合計を0.001%以上1.0%以下)
Mo、Wは、本発明において非常に重要であり、焼鈍後に形状凍結性に有利な集合組織を発達させるために必須の元素である。両者の内の何れか1種又は2種の合計量で0.001%未満では上記効果が発現せず、また、両者の内の何れか1種又は2種の合計で1.0%超の添加は逆に加工性を劣化させるので、その範囲を0.001%から1.0%に限定した。
(Mo, W: the total of any one or two of 0.001% to 1.0%)
Mo and W are very important in the present invention, and are essential elements for developing a texture that is advantageous for shape freezing property after annealing. If the total amount of any one or two of the two is less than 0.001%, the above effect is not exhibited, and the total of any one or two of both exceeds 1.0%. On the contrary, addition deteriorates workability, so the range was limited to 0.001% to 1.0%.

なお、本発明の形状凍結性及び延性に優れた高強度冷延鋼板は、更に、必要に応じて、V、Cr、Cu、Ni、Snの内、少なくとも1種又は2種以上を含有させた化学成分組成としても良い。   The high-strength cold-rolled steel sheet excellent in shape freezing property and ductility of the present invention further contains at least one or more of V, Cr, Cu, Ni, and Sn as necessary. It is good also as a chemical component composition.

(V:0.20%以下、Cr:1.5%以下)
V及びCrは、C、Nの固定、析出強化、組織制御、細粒強化などの機構を通じて材質を改善するので、それぞれ0.0001%以上添加することが好ましい。但し、過度に添加しても格段の効果はなく、むしろ加工性や表面性状を劣化させるので、上限はそれぞれ0.20%、1.5%とすることが好ましい。
(V: 0.20% or less, Cr: 1.5% or less)
Since V and Cr improve the material through mechanisms such as C and N fixation, precipitation strengthening, structure control, and fine grain strengthening, it is preferable to add 0.0001% or more of each. However, even if added excessively, there is no remarkable effect, but rather the workability and surface properties are deteriorated, so the upper limit is preferably 0.20% and 1.5%, respectively.

(Cu:2.0%以下、Ni:1.0%以下、Sn:0.20%以下)
Cu、Ni及びSnは、機械的強度を高めたり、材質を改善する効果があるので、各成分とも0.001%以上を添加することが好ましく、また、過度の添加は逆に加工性を劣化させるので、上限をそれぞれ2.0%、1.0%、0.20%とすることが好ましい。
(Cu: 2.0% or less, Ni: 1.0% or less, Sn: 0.20% or less)
Since Cu, Ni, and Sn have the effect of increasing mechanical strength or improving the material, it is preferable to add 0.001% or more for each component, and excessive addition conversely deteriorates workability. Therefore, the upper limit is preferably set to 2.0%, 1.0%, and 0.20%, respectively.

なお、本発明では特に限定しないが、脱酸の目的や硫化物の形態制御の目的でCaやMg、Ceを1種又は2種以上の合計で0.005%以下添加しても構わない。   In the present invention, although not particularly limited, 0.005% or less of Ca, Mg, or Ce in total may be added for one purpose or two or more kinds for the purpose of deoxidation and sulfide shape control.

「冷延鋼板のミクロ組織」
鋼板のミクロ組織は、フェライトを面積率で最大の相としてその他にパーライト、ベイナイト又はマルテンサイトの内の何れか1種又は2種を含む組織とする。
パーライトとベイナイト又はマルテンサイトの内の何れか1種又は2種以上の合計の面積分率が1%未満であると、440MPa超のTSを得ることが難しく、25%を超えると必要以上に強度が上昇するとともに延性が著しく低下する。このため、パーライト、ベイナイト又はマルテンサイトの内の何れか1種又は2種以上の合計量を、面積分率で1〜25%の範囲に制限した。
ミクロ組織は、圧延方向に平行な板厚断面を観察面として試料を採取し、観察面を研磨、ナイタールエッチ、必要に応じてレペラーエッチし、光学顕微鏡で観察すれば良い。光学顕微鏡によって得られたミクロ組織写真を画像解析することによって、パーライト、ベイナイト又はマルテンサイトの内の何れか1種又は2種以上の面積分率の合計量を求めることができる。
"Microstructure of cold-rolled steel sheet"
The microstructure of the steel sheet is a structure containing any one or two of pearlite, bainite, and martensite with ferrite as the largest phase in area ratio.
If the total area fraction of one or more of pearlite and bainite or martensite is less than 1%, it is difficult to obtain a TS exceeding 440 MPa, and if it exceeds 25%, the strength is more than necessary. As ductility increases, ductility decreases significantly. For this reason, the total amount of any one or more of pearlite, bainite, and martensite is limited to a range of 1 to 25% in terms of area fraction.
The microstructure may be obtained by taking a sample with the cross section of the plate thickness parallel to the rolling direction as the observation surface, polishing the observation surface, performing nital etching, and if necessary, repeller etching, and observing with an optical microscope. By analyzing an image of a microstructure photograph obtained by an optical microscope, it is possible to obtain a total amount of one or more area fractions of pearlite, bainite or martensite.

一方、上記フェライト相は、焼鈍により再結晶したフェライトと再結晶しなかった未再結晶フェライトから成る。未再結晶フェライトは、強度の向上には有効であるものの、延性の劣化要因にもなる。フェライト相の内、再結晶フェライト相の面積分率が80%未満であると、良好な延性が得られないので、その分率を80%以上に限定した。より好ましくは90%以上である。なお、強度が要求されない場合は、再結晶フェライトの分率が100%でも良い。   On the other hand, the ferrite phase is composed of ferrite recrystallized by annealing and non-recrystallized ferrite not recrystallized. Although non-recrystallized ferrite is effective for improving the strength, it also causes deterioration of ductility. Among the ferrite phases, if the area fraction of the recrystallized ferrite phase is less than 80%, good ductility cannot be obtained, so the fraction was limited to 80% or more. More preferably, it is 90% or more. If strength is not required, the recrystallized ferrite fraction may be 100%.

ここで示す再結晶フェライトは、Electron Back Scattering Pattern(EBSPという。)の結晶方位測定データをKernel Average Misorientation法(KAM法)で解析することにより定義される。
EBSPの結晶方位測定は、焼鈍後の試料の平均結晶粒径の10分の1の測定間隔で、任意の板断面の板厚方向の1/4厚の位置で100×100μmの範囲において行い、測定点はピクセルとして出力される。EBSPの結晶方位測定に供する試料は、機械研磨などによって鋼板を所定の板厚まで減厚し、次いで電解研磨などによって歪みを除去すると同時に板厚1/4面が測定面となるように作製する。冷延直後の結晶粒(未再結晶粒)内では、塑性変形により生じた比較的連続的な結晶方位変化が粒内に存在するのに対して、再結晶が完了した粒内の結晶方位変化は極めて小さくなる。KAM法では、隣接したピクセル(測定点)との結晶方位差を定量的に示すことが出来るので、ここでは隣接測定点との平均結晶方位差が1°以内である領域を再結晶フェライトと定義する。
The recrystallized ferrite shown here is defined by analyzing crystal orientation measurement data of Electron Back Scattering Pattern (referred to as EBSP) by the Kernel Average Misoration method (KAM method).
The crystal orientation measurement of EBSP is performed at a measurement interval of 1/10 of the average crystal grain size of the sample after annealing in a range of 100 × 100 μm at a 1/4 thickness position in the plate thickness direction of any plate cross section, Measurement points are output as pixels. A sample to be used for EBSP crystal orientation measurement is prepared such that the steel plate is reduced to a predetermined plate thickness by mechanical polishing or the like, and then the strain is removed by electrolytic polishing or the like, and at the same time, the plate thickness ¼ surface becomes the measurement surface. . In a crystal grain immediately after cold rolling (unrecrystallized grain), a relatively continuous crystal orientation change caused by plastic deformation exists in the grain, whereas a crystal orientation change in the grain after recrystallization is completed. Is extremely small. In the KAM method, the crystal orientation difference between adjacent pixels (measurement points) can be quantitatively shown, so here, the region where the average crystal orientation difference between adjacent measurement points is within 1 ° is defined as recrystallized ferrite. To do.

再結晶フェライト相の面積率は、再結晶フェライト相の総面積をフェライト相の総面積で除した値を百分率で表したものである。
フェライト相の総面積と再結晶フェライト相の総面積は、次のようにして求めることができる。フェライト相の総面積は、EBSPの結晶方位測定に使用した試料をナイタールエッチし、該測定を行った視野の光学顕微鏡写真を同一の倍率で撮影し、得られた組織写真を画像解析して求めれば良い。更に、光学顕微鏡写真とEBSPの結晶方位測定とを照合し、画像解析することによって、再結晶フェライトの総面積を求めることができる。
なお、フェライト相の総面積は、再結晶フェライト相の総面積と未再結晶フェライト相の総面積の和である。
The area ratio of the recrystallized ferrite phase is a percentage obtained by dividing the total area of the recrystallized ferrite phase by the total area of the ferrite phase.
The total area of the ferrite phase and the total area of the recrystallized ferrite phase can be obtained as follows. The total area of the ferrite phase was obtained by performing nital etching on the sample used for measuring the crystal orientation of EBSP, taking an optical microscope photograph of the field of view where the measurement was performed at the same magnification, and analyzing the resulting structure photograph. Just ask. Furthermore, the total area of the recrystallized ferrite can be obtained by collating the optical micrograph with the crystal orientation measurement of EBSP and analyzing the image.
The total area of the ferrite phase is the sum of the total area of the recrystallized ferrite phase and the total area of the non-recrystallized ferrite phase.

「引張強度TS(MPa)×全伸びEL(%)=17000(MPa・%)以上」
本発明の冷延鋼板は、上述のような結晶方位、組織を満足するものであり、形状凍結性に優れるだけでなく、延性にも極めて優れている。さらに、成形性の観点から、延性の指標である引張強度TS(MPa)と全伸び×EL(%)の積、すなわちTS×EL(MPa・%)が、17000(MPa・%)以上であることが好ましい。また、TS×ELは、成形性の観点から17500(MPa・%)以上であることがより好ましい。
“Tensile strength TS (MPa) × Total elongation EL (%) = 17000 (MPa ·%) or more”
The cold-rolled steel sheet of the present invention satisfies the crystal orientation and structure as described above, and is not only excellent in shape freezing properties but also extremely excellent in ductility. Furthermore, from the viewpoint of formability, the product of tensile strength TS (MPa), which is an index of ductility, and total elongation × EL (%), that is, TS × EL (MPa ·%) is 17000 (MPa ·%) or more. It is preferable. Further, TS × EL is more preferably 17500 (MPa ·%) or more from the viewpoint of moldability.

「形状凍結性及び延性に優れた高強度冷延鋼板の製造方法」
以下に、本発明の形状凍結性及び延性に優れた高強度冷延鋼板の製造方法について詳述する。
"Method for producing high-strength cold-rolled steel sheets with excellent shape freezing and ductility"
Below, the manufacturing method of the high intensity | strength cold-rolled steel plate excellent in the shape freezing property and ductility of this invention is explained in full detail.

本発明の高強度冷延鋼板の製造方法は、上記化学成分を有するスラブを、Ar変態温度〜900℃の温度範囲における圧下率の合計を25%以上、仕上圧延温度をAr変態温度以上として熱間圧延し、次いで700℃以下の温度で巻き取り、酸洗後、2〜80%の冷間圧延を施し、更に15℃/sec以下の昇温速度で700℃〜900℃の温度範囲に加熱した後、当該温度で3sec以上保持した後に冷却する方法で、概略構成されている。 The manufacturing method of the high-strength cold-rolled steel sheet according to the present invention is such that the slab having the above chemical components has a total rolling reduction in the temperature range of Ar 3 transformation temperature to 900 ° C. of 25% or more, and the finish rolling temperature is Ar 3 transformation temperature or more. And then rolled up at a temperature of 700 ° C. or lower, pickled, cold-rolled at 2 to 80%, and further at a temperature increase rate of 15 ° C./sec or lower at a temperature range of 700 ° C. to 900 ° C. After the heating, the method is generally constituted by a method of cooling after holding at the temperature for 3 seconds or more.

熱間圧延(以下、熱延ともいう)に先行する製造方法は特に限定するものではない。すなわち、高炉や電炉等による溶製に引き続き各種の2次製錬を行い、次いで通常の連続鋳造、インゴット法による鋳造の他、薄スラブ鋳造などの方法で鋳造すればよい。連続鋳造の場合には一度低温まで冷却した後、再度加熱してから熱間圧延しても良いし、鋳造スラブを連続的に熱延しても良い。
なお、原料にはスクラップを使用しても構わない。
The production method preceding hot rolling (hereinafter also referred to as hot rolling) is not particularly limited. That is, various secondary smelting may be performed following smelting in a blast furnace, electric furnace, etc., and then cast by a method such as thin continuous slab casting in addition to normal continuous casting and casting by an ingot method. In the case of continuous casting, after cooling to a low temperature once, it may be heated again and then hot rolled, or the cast slab may be continuously hot rolled.
In addition, you may use a scrap for a raw material.

(熱延圧下率)
熱間圧延の開始温度は特に限定しないが、熱延中にAr変態温度〜900℃の温度範囲における熱延圧下率の合計は25%以上とすることが必要である。これは、該温度範囲における熱延圧下率の合計が25%未満であると、圧延されたオーステナイトの集合組織が十分に発達しにくくなり、この後、如何様な冷却を施しても{100}<011>〜{223}<110>方位群の平均値が低下し、本発明の効果が得られない場合があるためである。Ar変態温度〜900℃の温度範囲における熱延圧下率の合計の上限は、高いほど好ましく、パススケジュールに応じて決めれば良い。
なお、Ar変態温度〜900℃の温度範囲における熱延圧下率の合計とは、900℃における板厚とAr変態温度における板厚との差を、900℃における板厚で除した値を百分率で表したものである。本発明の製造方法において、Ar変態温度における板厚は、仕上圧延後の板厚と同じである。
(Hot rolling reduction ratio)
The starting temperature of hot rolling is not particularly limited, but the total hot rolling reduction in the temperature range of Ar 3 transformation temperature to 900 ° C. during hot rolling needs to be 25% or more. This is because when the sum of the hot rolling reductions in the temperature range is less than 25%, the texture of rolled austenite is not sufficiently developed, and after that, whatever cooling is applied, {100} This is because the average value of the <011> to {223} <110> orientation groups decreases, and the effects of the present invention may not be obtained. The upper limit of the total hot rolling reduction in the temperature range of Ar 3 transformation temperature to 900 ° C. is preferably as high as possible, and may be determined according to the pass schedule.
Incidentally, the hot rolling reduction rate sum and the in a temperature range from Ar 3 transformation temperature to 900 ° C., the difference between the thickness in the sheet thickness and the Ar 3 transformation temperature at 900 ° C., the value obtained by dividing the thickness at 900 ° C. It is expressed as a percentage. In the production method of the present invention, the plate thickness at the Ar 3 transformation temperature is the same as the plate thickness after finish rolling.

ここで、Ar変態温度は下記(1)式により計算する。
Ar=901−325×C%+33×Si%+287×P%+40×Al%−92(Mn%+Mo%+Cu%)−46×(Cr%+Ni%) ・・・(1)
Here, the Ar 3 transformation temperature is calculated by the following equation (1).
Ar 3 = 901-325 × C% + 33 × Si% + 287 × P% + 40 × Al% −92 (Mn% + Mo% + Cu%) − 46 × (Cr% + Ni%) (1)

(仕上圧延温度)
熱間圧延を終了する温度、すなわち仕上圧延温度(FT)はAr変態温度以上とする。これは、仕上圧延温度がAr変態温度よりも低いと、焼鈍後の{100}<011>方位が発達しなくなって、{100}<011>〜{223}<110>方位群の他の方位よりもX線ランダム強度比が低下し、又は{100}<011>方位のX線ランダム強度比が5.0未満となり、形状凍結性が劣化し、圧延中に析出したフェライトに加工組織が残留して延性が低下することがあるためである。一方、熱間圧延の仕上圧延温度が900℃を超えると、本発明の効果が得られず、鋼板の表面に生成する酸化物層により表面品位も低下してしまう。
なお、900℃で熱間圧延を終了する場合は、900℃で圧下率を25%以上とする1パスの圧延を行えば良い。
(Finish rolling temperature)
The temperature at which the hot rolling is finished, that is, the finish rolling temperature (FT) is set to the Ar 3 transformation temperature or higher. This is because when the finish rolling temperature is lower than the Ar 3 transformation temperature, the {100} <011> orientation after annealing does not develop, and the other {100} <011> to {223} <110> orientation groups The X-ray random intensity ratio is lower than the orientation, or the X-ray random intensity ratio of the {100} <011> orientation is less than 5.0, the shape freezing property is deteriorated, and the processed structure is formed in the ferrite precipitated during rolling. This is because the remaining ductility may decrease. On the other hand, when the finish rolling temperature of hot rolling exceeds 900 ° C., the effect of the present invention cannot be obtained, and the surface quality is also lowered by the oxide layer generated on the surface of the steel sheet.
In addition, what is necessary is just to perform the rolling of 1 pass which makes rolling reduction 25% or more at 900 degreeC, when finishing hot rolling at 900 degreeC.

(巻取温度)
巻取温度(CT)は700℃以下とする。巻取温度が700℃超になると、焼鈍後において形状凍結性に有利な{100}<011>〜{223}<110>方位群の集合組織が発達しないため、700℃を巻取温度の上限値とした。また、より優れた形状凍結性と延性の両立を得るために、630℃以下であることが好ましい。
巻取温度の下限は特に規定することなく、本発明の効果を得ることができるが、鋼板の加工性を劣化させる恐れがあるため、300℃以上とすることが好ましい。
(Winding temperature)
The coiling temperature (CT) is 700 ° C. or less. When the coiling temperature exceeds 700 ° C., the texture of {100} <011> to {223} <110> orientation groups advantageous for shape freezing properties after annealing does not develop, so 700 ° C. is the upper limit of the coiling temperature. Value. Further, in order to obtain both excellent shape freezing property and ductility, the temperature is preferably 630 ° C. or lower.
The lower limit of the coiling temperature is not particularly specified, and the effects of the present invention can be obtained. However, the workability of the steel sheet may be deteriorated, so that the temperature is preferably set to 300 ° C. or higher.

(冷間圧下率)
上記で得られた熱延鋼板の冷間圧延は、圧下率2〜80%の範囲で行う。冷間圧延の圧下率(冷延率)が2%未満では、形状凍結性に有効な{100}<011>方位が強く発達しないため、2%を下限とした。なお、板厚精度確保の観点から下限は5%以上であることがより好ましい。一方、冷間圧下率が80%を超えると、{111}方位が急激に発達し、{554}<225>、{111}<112>及び{111}<110>の結晶方位のX線ランダム強度比の平均値が6.0超となって、形状凍結性が劣化することから、80%を上限とした。また、形状凍結性を高めるためには、冷間圧下率を70%以下に制限することが好ましい。更に好ましくは60%以下である。
冷間圧延後、冷延鋼板に、以下に述べるような加熱保持を行なう焼鈍を施し、冷却する。
(Cold reduction ratio)
Cold rolling of the hot-rolled steel sheet obtained above is performed in a range of a reduction rate of 2 to 80%. If the rolling reduction (cold rolling ratio) of cold rolling is less than 2%, the {100} <011> orientation effective for shape freezing properties does not develop strongly, so 2% was made the lower limit. The lower limit is more preferably 5% or more from the viewpoint of securing the plate thickness accuracy. On the other hand, when the cold rolling reduction exceeds 80%, the {111} orientation rapidly develops, and the X-ray randomness of crystal orientations of {554} <225>, {111} <112> and {111} <110> Since the average value of the strength ratio exceeds 6.0 and the shape freezing property deteriorates, the upper limit is set to 80%. In order to improve the shape freezing property, it is preferable to limit the cold rolling reduction to 70% or less. More preferably, it is 60% or less.
After cold rolling, the cold-rolled steel sheet is subjected to annealing for heating and holding as described below and cooled.

(昇温速度)
冷間圧延後の焼鈍における加熱速度を15℃/s超とすると、十分にフェライトの再結晶が進行する前に二相域に加熱されてしまうため、再結晶フェライトの分率が80%未満となる。このため、できるだけゆっくり加熱することが好ましい。従って、昇温速度の上限を15℃/secとした。更に、再結晶フェライトの分率を90%以上とするために、昇温速度の上限は、より好ましくは10℃/secである。
(Temperature increase rate)
If the heating rate in annealing after cold rolling is more than 15 ° C./s, it is heated to the two-phase region before the recrystallization of the ferrite sufficiently proceeds, so the fraction of recrystallized ferrite is less than 80%. Become. For this reason, it is preferable to heat as slowly as possible. Therefore, the upper limit of the heating rate is set to 15 ° C./sec. Furthermore, in order to make the fraction of recrystallized ferrite 90% or more, the upper limit of the heating rate is more preferably 10 ° C./sec.

(加熱温度)
加熱温度が700℃未満の場合には、未再結晶フェライト組織が残存することから延性が劣化する。従って、再結晶フェライトの分率を80%以上とするために、加熱温度の下限を700℃とする。再結晶フェライトの分率を90%以上とするために、好ましい加熱温度の下限は750℃である。一方、加熱温度が過度に高い場合には、再結晶によって生成したフェライトの集合組織が、オーステナイトへ変態後、オーステナイトの粒成長によってランダム化され、最終的に得られるフェライトの集合組織もランダム化される。特に、加熱温度が900℃を越える場合には、そのような傾向が顕著となる。従って、加熱温度は900℃以下とする。また、より優れた形状凍結性を確保する観点から、加熱温度の上限は860℃とすることがより好ましい。
(Heating temperature)
When the heating temperature is less than 700 ° C., ductility deteriorates because an unrecrystallized ferrite structure remains. Therefore, in order to make the fraction of recrystallized ferrite 80% or more, the lower limit of the heating temperature is set to 700 ° C. In order to make the fraction of recrystallized ferrite 90% or more, the preferable lower limit of the heating temperature is 750 ° C. On the other hand, when the heating temperature is excessively high, the ferrite texture formed by recrystallization is randomized by austenite grain growth after transformation to austenite, and the finally obtained ferrite texture is also randomized. The In particular, when the heating temperature exceeds 900 ° C., such a tendency becomes remarkable. Therefore, the heating temperature is 900 ° C. or less. Further, from the viewpoint of ensuring better shape freezeability, the upper limit of the heating temperature is more preferably 860 ° C.

(保持時間)
700〜900℃の温度範囲における保持時間が3sec未満の場合、組織の不均一が生じ易く、鋼板の長手方向あるいは幅方向での形状凍結性及び延性のバラツキに繋がる。このため、保持時間の下限は3secとする。
焼鈍後の冷却条件は、焼鈍工程に応じて適宜決定すればよいが、通常は空冷である。
なお、焼鈍工程は、連続焼鈍工程、BAF工程、及び連続焼鈍−めっき(−合金化)工程の何れのプロセスを用いても構わない。連続焼鈍工程後の冷却条件、過時効条件は、必要とするTSレベルに応じて選択すればよい。
また、溶融めっき、あるいはめっき合金化条件についても特に限定する必要はなく、常法に従えばよい。なお、めっきの種類も特に限定するものではない。
(Retention time)
When the holding time in the temperature range of 700 to 900 ° C. is less than 3 seconds, the structure is likely to be non-uniform, which leads to variations in shape freezing property and ductility in the longitudinal direction or width direction of the steel sheet. For this reason, the lower limit of the holding time is 3 sec.
The cooling conditions after annealing may be appropriately determined according to the annealing process, but are usually air cooling.
In addition, the annealing process may use any process of a continuous annealing process, a BAF process, and a continuous annealing-plating (alloying) process. What is necessary is just to select the cooling conditions after a continuous annealing process, and overaging conditions according to the required TS level.
Moreover, it is not necessary to specifically limit the conditions for hot dipping or plating alloying, and it may follow a conventional method. The type of plating is not particularly limited.

(スキンパス)
以上の方法で製造された冷延鋼板にスキンパス圧延を施してもよい。スキンパス圧延における圧下率が0.1%未満では鋼板の形状制御効果が小さいので、0.1%を下限とすることが好ましい。また、圧下率が5.0%超になると、鋼板の延性を著しく劣化させるので、5.0%を上限とすることが好ましい。
(Skin pass)
Skin pass rolling may be applied to the cold-rolled steel sheet produced by the above method. If the rolling reduction in skin pass rolling is less than 0.1%, the shape control effect of the steel sheet is small, so 0.1% is preferably set as the lower limit. Further, if the rolling reduction exceeds 5.0%, the ductility of the steel sheet is remarkably deteriorated, so 5.0% is preferable as the upper limit.

本発明の形状凍結性、延性及び塗装焼付硬化性に優れた高強度冷延鋼板は、上述の構成により、440MPa以上の引張強度を有し、スプリングバック量が少なく、衝撃吸収能が高いので、形状凍結性及び延性に優れている。これにより、従来、形状不良及び割れの問題から高強度鋼板の適用が難しかった、自動車車体等の主に曲げ加工主体の成形が施される部品にも高強度鋼板が使用できるようになる上、相反する特性であることから両立が困難であった、曲げ加工性と耐衝突特性の両立が可能となるため、自動車車体の軽量化をより一層推進することが可能となる。   The high-strength cold-rolled steel sheet having excellent shape freezing property, ductility and paint bake hardenability according to the present invention has a tensile strength of 440 MPa or more, a small amount of springback, and a high shock absorption capacity due to the above-described configuration. Excellent shape freezing and ductility. This makes it difficult to apply high-strength steel sheets due to problems of shape defects and cracks, and high-strength steel sheets can be used for parts that are mainly molded by bending, such as automobile bodies. It is possible to achieve both bending workability and anti-collision properties, which are difficult to achieve because of conflicting characteristics, and thus it is possible to further reduce the weight of the automobile body.

以下、本発明に係る高強度冷延鋼板の実施例を挙げ、本発明をより具体的に説明するが、本発明は、もとより下記実施例に限定されるものではなく、前、後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれるものである。   Hereinafter, examples of the high-strength cold-rolled steel sheet according to the present invention will be given and the present invention will be described more specifically, but the present invention is not originally limited to the following examples, and the purpose described above and below It is also possible to carry out with appropriate modifications within a range that can be adapted, and these are all included in the technical scope of the present invention.

[サンプル作製]
下記表1に示す化学成分組成を有する符号AからNまでの鋼を用い、鋳造後そのまま、もしくは一旦室温まで冷却して再加熱した後に、下記表2に示す条件で熱間圧延を施し、No.1〜29に示すような種々の厚みの熱延鋼板とした。
そして、この熱延鋼板に、下記表2に示す冷延率の冷間圧延を施して1.4mm厚とし、その後、連続焼鈍ライン(No.1、3〜20)、BAF焼鈍工程(No.2)及び連続焼鈍―亜鉛めっき−合金化ライン(No.21〜29)にて、下記表2に示した昇温速度、加熱温度、保持時間で焼鈍した後、冷却した。
これら1.4mm厚の各鋼板から、25mm幅、130mm長さの試験片を作製し、ポンチ幅40mm、ポンチ肩R5、ダイス幅43.4mm、ダイ肩R3の金型を用いて、種々のしわ押さえ圧で、40mm高さのハット型に成形した後、壁部の反り量を曲率半径ρ(mm)として測定し、その逆数1000/ρを求めた。ここで、1000/ρが小さいほど形状凍結性は良好となる。
その後、以下に説明する評価試験において諸性質を調査した。
[Sample preparation]
Using steels of symbols A to N having the chemical composition shown in Table 1 below, after casting or after cooling to room temperature and reheating, hot rolling was performed under the conditions shown in Table 2 below. . It was set as the hot-rolled steel plate of various thickness as shown to 1-29.
And this hot-rolled steel sheet is subjected to cold rolling at a cold rolling rate shown in Table 2 below to a thickness of 1.4 mm, and then a continuous annealing line (No. 1, 3 to 20) and a BAF annealing step (No. In 2) and continuous annealing-zinc plating-alloying line (Nos. 21 to 29), annealing was performed at the heating rate, heating temperature, and holding time shown in Table 2 below, followed by cooling.
A test piece having a width of 25 mm and a length of 130 mm was prepared from each steel plate having a thickness of 1.4 mm, and various wrinkles were made using a die having a punch width of 40 mm, a punch shoulder R5, a die width of 43.4 mm, and a die shoulder R3. After forming into a hat shape with a pressing pressure of 40 mm, the amount of warpage of the wall was measured as the curvature radius ρ (mm), and the reciprocal number 1000 / ρ was determined. Here, the smaller the 1000 / ρ, the better the shape freezing property.
Thereafter, various properties were investigated in the evaluation test described below.

[評価試験]
上記方法によって製造された1.4mm厚の冷延鋼板のミクロ組織、集合組織、機械的特性値及び形状凍結性の評価を下記方法で行い、結果を下記表3に示した。
ミクロ組織の観察は光学顕微鏡で行い、パーライト、ベイナイト、マルテンサイトの面積率の合計は、光学顕微鏡による組織写真を画像解析して求めた。また、フェライト再結晶率は、EBSPの結晶方位測定と光学顕微鏡組織写真を照合し、画像解析によってフェライト相及び再結晶フェライト相の総面積を求めて計算した。また、集合組織はX線回折法によって測定した。
また、引張試験は、JIS Z 2201に準拠し、長手方向が圧延方向と平行になるように5号試験片を採取し、JIS Z 2241に準拠して行った。なお、表3に示すTS(MPa)は引張強度、EL(%)は全伸びであり、YRは降伏強度YS(MPa)と引張強度の比YS/TSである。
[Evaluation test]
Evaluation of the microstructure, texture, mechanical property value, and shape freezing property of the cold-rolled steel sheet having a thickness of 1.4 mm manufactured by the above method was carried out by the following methods, and the results are shown in Table 3 below.
The microstructure was observed with an optical microscope, and the total area ratio of pearlite, bainite, and martensite was obtained by image analysis of a structure photograph taken with an optical microscope. Further, the ferrite recrystallization rate was calculated by comparing the crystal orientation measurement of EBSP with an optical microscope structure photograph, and obtaining the total area of the ferrite phase and the recrystallized ferrite phase by image analysis. The texture was measured by X-ray diffraction.
In addition, the tensile test was performed in accordance with JIS Z 2201, and a No. 5 test piece was collected so that the longitudinal direction was parallel to the rolling direction, and in accordance with JIS Z 2241. TS (MPa) shown in Table 3 is the tensile strength, EL (%) is the total elongation, and YR is the yield strength YS (MPa) to tensile strength ratio YS / TS.

下記表3において、何れもパーライト、ベイナイト及びマルテンサイトの残部組織はフェライトである。また、焼鈍後の鋼板の集合組織の値は何れも板厚7/16面と1/4面で測定した値の平均値を用いた。また、下記表3の「形状凍結性の評価」の欄には、1000/ρ≦0.017×TS(MPa)−4.13になる場合を「○」、それ以外の場合を「×」で示した。
本実施例(実施例1)の各鋼の化学成分組成を表1に示し、また、鋼板の製造条件を表2に示すとともに、評価結果を表3に示す。
In Table 3 below, the remaining structure of pearlite, bainite, and martensite is ferrite. Moreover, as for the value of the texture of the steel plate after annealing, the average value of the values measured on the plate thickness 7/16 plane and 1/4 plane was used. In the column of “Evaluation of shape freezing property” in Table 3 below, “○” indicates that 1000 / ρ ≦ 0.017 × TS (MPa) −4.13, and “×” indicates other cases. It showed in.
The chemical composition of each steel of this example (Example 1) is shown in Table 1, the production conditions of the steel sheet are shown in Table 2, and the evaluation results are shown in Table 3.

Figure 0004740099
Figure 0004740099

Figure 0004740099
Figure 0004740099

Figure 0004740099
Figure 0004740099

表1〜3に示す結果から明らかなように、本発明で規定する範囲内の化学成分の鋼を用い、本発明で規定する範囲内の製造条件によって鋼板を製造した場合には、良好な延性と共に極めて良好な形状凍結性を有する高強度冷延鋼板が得られることが分かる。   As is apparent from the results shown in Tables 1 to 3, when steel sheets having chemical components within the range specified by the present invention were used and the steel sheet was manufactured under the manufacturing conditions within the range specified by the present invention, good ductility was achieved. It can also be seen that a high-strength cold-rolled steel sheet having a very good shape freezing property can be obtained.

[サンプル作製及び評価試験]
下記表4に示す化学成分組成を有する符号AAからANまでの鋼を用い、鋳造後そのまま、もしくは一旦室温まで冷却して再加熱した後に、下記表5に示す条件で熱間圧延を施し、No.100〜133に示すような種々の厚みの熱延鋼板とした。なお、表5において、圧下率は、Ar〜900℃における圧下率の合計であり、仕上圧延温度がAr以上の場合は、900℃における板厚と仕上圧延後の板厚によって求めた。なお、仕上圧延温度が900℃を超えるものは、該圧下率を求めることができないことを、表中に「−」で示した。
そして、この熱延鋼板に、下記表5に示す冷延率の冷間圧延を施して1.4mm厚とし、その後、連続焼鈍ライン(No.101〜103、105〜120、127〜133)、BAF焼鈍工程(No.104)及び連続焼鈍―亜鉛めっき−合金化ライン(No.121〜126)にて、下記表5に示した昇温速度、加熱温度、保持時間で焼鈍した後、冷却した。
[Sample preparation and evaluation test]
Using steel from the symbols AA to AN having the chemical composition shown in Table 4 below, after casting, or once cooled to room temperature and reheated, it was hot-rolled under the conditions shown in Table 5 below. . Hot rolled steel sheets having various thicknesses as shown in 100 to 133 were used. In Table 5, the rolling reduction is the total rolling reduction at Ar 3 to 900 ° C. When the finish rolling temperature is Ar 3 or higher, the rolling reduction was obtained from the plate thickness at 900 ° C and the thickness after finish rolling. In addition, it showed with "-" in the table | surface that the rolling reduction temperature exceeds 900 degreeC that this reduction rate cannot be calculated | required.
And this hot-rolled steel sheet is cold rolled at a cold rolling rate shown in Table 5 below to obtain a thickness of 1.4 mm, and then a continuous annealing line (No. 101 to 103, 105 to 120, 127 to 133), In the BAF annealing step (No. 104) and continuous annealing-zinc plating-alloying line (No. 121-126), after annealing at the heating rate, heating temperature, and holding time shown in Table 5 below, it was cooled. .

これらの各鋼板から、実施例1と同様に試験片を作製し、ハット型に成形した後、壁部の反り量を曲率半径ρ(mm)の逆数1000/ρを求め、ミクロ組織、集合組織、機械的特性値を調査した。
更に、JIS G 3135の附属書に記載された塗装焼付硬化試験方法に準拠してBH量を評価した。なお、表6に示すTS(MPa)は引張強度、EL(%)は全伸び、YRは降伏強度YS(MPa)と引張強度の比YS/TSであり、UBH(MPa)はBH量である。
A test piece was prepared from each of these steel plates in the same manner as in Example 1 and formed into a hat shape. Then, the amount of warpage of the wall portion was obtained by reciprocal 1000 / ρ of the radius of curvature ρ (mm), and the microstructure and texture The mechanical property values were investigated.
Furthermore, the amount of BH was evaluated in accordance with the paint bake hardening test method described in the appendix of JIS G 3135. In Table 6, TS (MPa) is tensile strength, EL (%) is total elongation, YR is the yield strength YS (MPa) to tensile strength ratio YS / TS, and UBH (MPa) is the amount of BH. .

下記表6において、何れもパーライト、ベイナイト及びマルテンサイトの残部組織はフェライトである。また、焼鈍後の鋼板の集合組織の値は何れも板厚7/16面と1/4面で測定した値の平均値を用いた。また、下記表6の「形状凍結性の評価」の欄には、1000/ρ≦0.017×TS(MPa)−4.13になる場合を「○」、それ以外の場合を「×」で示した。
本実施例(実施例2)の各鋼の化学成分組成を表4に示し、また、鋼板の製造条件を表5に示すとともに、評価結果を表6に示す。
In Table 6 below, the remaining structure of pearlite, bainite, and martensite is ferrite. Moreover, as for the value of the texture of the steel plate after annealing, the average value of the values measured on the plate thickness 7/16 plane and 1/4 plane was used. In the column of “Evaluation of shape freezing property” in Table 6 below, “O” indicates that 1000 / ρ ≦ 0.017 × TS (MPa) −4.13, and “X” indicates other cases. It showed in.
The chemical composition of each steel of this example (Example 2) is shown in Table 4, the production conditions of the steel sheet are shown in Table 5, and the evaluation results are shown in Table 6.

Figure 0004740099
Figure 0004740099

Figure 0004740099
Figure 0004740099

Figure 0004740099
Figure 0004740099

表4〜6に示す結果から明らかなように、本発明で規定する範囲内の化学成分の鋼を用い、本発明で規定する範囲内の製造条件によって鋼板を製造した場合には、形状凍結性、延性及び塗装焼付硬化性に優れた高強度冷延鋼板が得られることが分かる。

As is apparent from the results shown in Tables 4 to 6, when a steel sheet having a chemical composition within the range specified by the present invention was manufactured under the manufacturing conditions within the range specified by the present invention, the shape freezing property was obtained. It can be seen that a high-strength cold-rolled steel sheet excellent in ductility and paint bake hardenability can be obtained.

Claims (8)

質量%で、
C:0.005%以上0.25%以下、
Si:0.001%以上2.5%以下、
Mn:0.01%以上2.5%以下、
P:0.15%以下、
S:0.03%以下、
Al:2.0%以下、
N:0.01%以下、
O:0.01%以下、
B:0.0003%以上0.007%以下
をそれぞれ含有し、更に、
Ti:0.005%以上0.04%以下、
Nb:0.005%以上0.04%以下
の双方を合計で0.01%以上0.04%以下の量で含有し、更に、Mo、Wの内の何れか1種又は2種の合計を0.001%以上1.0%以下の量で含有し、
残部が鉄及び不可避的不純物からなり、
面積分率で1%以上25%以下のパーライト、ベイナイト又はマルテンサイトの内の何れか1種又は2種以上を含み、残部が再結晶率80%以上のフェライトからなる複合組織鋼であり、
1/2板厚における板面の{100}<011>〜{223}<110>方位群のX線ランダム強度比の平均値が3.0以上であり、且つこれらの方位群の中で{100}<011>方位のX線ランダム強度比が最大且つ5.0以上を満足し、更に{554}<225>、{111}<112>及び{111}<110>の結晶方位のX線ランダム強度比の平均値が6.0以下であることを特徴とする高強度冷延鋼板。
% By mass
C: 0.005% or more and 0.25% or less,
Si: 0.001% to 2.5%,
Mn: 0.01% or more and 2.5% or less,
P: 0.15% or less,
S: 0.03% or less,
Al: 2.0% or less,
N: 0.01% or less,
O: 0.01% or less,
B: 0.0003% or more and 0.007% or less, respectively,
Ti: 0.005% or more and 0.04% or less,
Nb: 0.005% or more and 0.04% or less in total in an amount of 0.01% or more and 0.04% or less, and further one or two of Mo and W in total In an amount of 0.001% to 1.0%,
The balance consists of iron and inevitable impurities,
1% or more and 25% or less of pearlite, bainite or martensite in an area fraction, or a composite structure steel composed of ferrite having a recrystallization rate of 80% or more.
The average value of the X-ray random intensity ratio of {100} <011> to {223} <110> orientation groups on the plate surface at ½ thickness is 3.0 or more, and among these orientation groups, { 100} <011> orientation X-ray random intensity ratio is maximum and satisfies 5.0 or more, and X-rays of crystal orientation of {554} <225>, {111} <112> and {111} <110> A high-strength cold-rolled steel sheet having an average random strength ratio of 6.0 or less.
前記Alの含有量が、質量%で、0.0005%以上0.02%以下であることを特徴とする請求項1に記載の高強度冷延鋼板。   The high-strength cold-rolled steel sheet according to claim 1, wherein the Al content is 0.0005% or more and 0.02% or less by mass%. 更に、質量%で、
V:0.20%以下、
Cr:1.5%以下、
Cu:2.0%以下、
Ni:1.0%以下、
Sn:0.20%以下
の内、少なくとも1種又は2種以上を含有することを特徴とする請求項1又は2に記載の高強度冷延鋼板。
Furthermore, in mass%,
V: 0.20% or less,
Cr: 1.5% or less,
Cu: 2.0% or less,
Ni: 1.0% or less,
The high-strength cold-rolled steel sheet according to claim 1 or 2, characterized by containing at least one or more of Sn: 0.20% or less.
Al含有量とN含有量が、次式
Al/N=2以下
を満足することを特徴とする請求項1〜3の何れか1項に記載の高強度冷延鋼板。
The high-strength cold-rolled steel sheet according to any one of claims 1 to 3, wherein the Al content and the N content satisfy the following formula: Al / N = 2 or less.
引張強度TS[MPa]と全伸びEL[%]との積TS×EL[MPa・%]が、17000[MPa・%]以上であることを特徴とする請求項1〜4の何れか1項に記載の高強度冷延鋼板。   5. The product TS × EL [MPa ·%] of the tensile strength TS [MPa] and the total elongation EL [%] is 17000 [MPa ·%] or more. The high-strength cold-rolled steel sheet as described in 1. 請求項1〜5の何れか1項に記載の高強度冷延鋼板にめっきを施したことを特徴とする高強度冷延鋼板。   A high-strength cold-rolled steel sheet obtained by plating the high-strength cold-rolled steel sheet according to any one of claims 1 to 5. 請求項1〜4の何れか1項に記載の化学成分を有するスラブを、Ar変態温度〜900℃の温度範囲における圧下率の合計を25%以上、仕上圧延温度をAr変態温度以上として熱間圧延し、次いで700℃以下の温度で巻き取り、酸洗後、2〜80%の冷間圧延を施し、更に15℃/sec以下の昇温速度で700℃〜900℃の温度範囲に加熱した後、当該温度で3sec以上保持した後に冷却することを特徴とする高強度冷延鋼板の製造方法。 The slab having the chemical component according to any one of claims 1 to 4, wherein the total rolling reduction in the temperature range of Ar 3 transformation temperature to 900 ° C is 25% or more, and the finish rolling temperature is Ar 3 transformation temperature or more. Hot-rolled, then wound up at a temperature of 700 ° C. or lower, pickled, cold-rolled at 2 to 80%, and further brought to a temperature range of 700 ° C. to 900 ° C. at a heating rate of 15 ° C./sec or lower. A method for producing a high-strength cold-rolled steel sheet, wherein the steel sheet is cooled after being heated for 3 seconds or more after being heated. 請求項7に記載の製造方法によって製造した高強度冷延鋼板に、0.1%以上5%以下のスキンパス圧延を施すことを特徴とする高強度冷延鋼板の製造方法。

A method for producing a high-strength cold-rolled steel sheet, comprising subjecting the high-strength cold-rolled steel sheet produced by the production method according to claim 7 to skin pass rolling of 0.1% to 5%.

JP2006340069A 2006-03-20 2006-12-18 High-strength cold-rolled steel sheet and manufacturing method thereof Active JP4740099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006340069A JP4740099B2 (en) 2006-03-20 2006-12-18 High-strength cold-rolled steel sheet and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006076462 2006-03-20
JP2006076462 2006-03-20
JP2006340069A JP4740099B2 (en) 2006-03-20 2006-12-18 High-strength cold-rolled steel sheet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007284783A JP2007284783A (en) 2007-11-01
JP4740099B2 true JP4740099B2 (en) 2011-08-03

Family

ID=38756840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006340069A Active JP4740099B2 (en) 2006-03-20 2006-12-18 High-strength cold-rolled steel sheet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4740099B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170118929A (en) 2015-03-25 2017-10-25 제이에프이 스틸 가부시키가이샤 High-strength steel sheet and method for manufacturing same
KR20170118928A (en) 2015-03-25 2017-10-25 제이에프이 스틸 가부시키가이샤 High-strength steel sheet and method for manufacturing same

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5157375B2 (en) * 2007-11-08 2013-03-06 新日鐵住金株式会社 High-strength cold-rolled steel sheet excellent in rigidity, deep drawability and hole expansibility, and method for producing the same
JP4995109B2 (en) * 2008-02-07 2012-08-08 新日本製鐵株式会社 High-strength cold-rolled steel sheet excellent in workability and impact resistance and method for producing the same
KR101130837B1 (en) * 2008-04-10 2012-03-28 신닛뽄세이테쯔 카부시키카이샤 High-strength steel sheets which are extreamely excellent in the balance between burring workability and ductility and excellent in fatigue endurance, zinc-coated steel sheets, and processes for production of both
CN103459646B (en) 2011-04-13 2015-07-29 新日铁住金株式会社 High-strength cold-rolled steel sheet having excellent local deformability and method for manufacturing same
KR101310795B1 (en) * 2011-06-29 2013-09-25 현대제철 주식회사 Hot rolled steel sheet and method for manufacturing the same
JP5908936B2 (en) 2014-03-26 2016-04-26 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet for flange, manufacturing method thereof and flange part
JP6702357B2 (en) * 2017-06-29 2020-06-03 Jfeスチール株式会社 Low yield ratio type high strength steel sheet and method for producing the same
CN109576591B (en) * 2019-02-12 2020-03-31 鞍钢股份有限公司 700 MPa-grade cold-rolled corrosion-resistant dual-phase steel and manufacturing method thereof
CN109628840B (en) * 2019-02-12 2020-03-31 鞍钢股份有限公司 550 MPa-grade cold-rolled corrosion-resistant dual-phase steel and manufacturing method thereof
CN115349029B (en) * 2020-04-07 2024-02-09 日本制铁株式会社 Steel plate
KR20240092658A (en) * 2022-12-14 2024-06-24 주식회사 포스코 Steel sheet and method for manufacturing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4126007B2 (en) * 2003-10-20 2008-07-30 新日本製鐵株式会社 Cold-rolled steel sheet excellent in shape freezing property and bake hardenability and method for producing the same
JP4384523B2 (en) * 2004-03-09 2009-12-16 新日本製鐵株式会社 Low yield ratio type high-strength cold-rolled steel sheet with excellent shape freezing property and manufacturing method thereof
JP4464748B2 (en) * 2004-07-06 2010-05-19 新日本製鐵株式会社 High-strength steel sheet, high-strength hot-dip galvanized steel sheet, high-strength alloyed hot-dip galvanized steel sheet excellent in shape freezing property and stretch flangeability, and methods for producing them
CA2575241C (en) * 2004-07-27 2011-07-12 Nippon Steel Corporation Steel sheet having high young's modulus, hot-dip galvanized steel sheet using the same, alloyed hot-dip galvanized steel sheet, steel pipe having high young's modulus, and methodsfor manufacturing these

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170118929A (en) 2015-03-25 2017-10-25 제이에프이 스틸 가부시키가이샤 High-strength steel sheet and method for manufacturing same
KR20170118928A (en) 2015-03-25 2017-10-25 제이에프이 스틸 가부시키가이샤 High-strength steel sheet and method for manufacturing same
US10494693B2 (en) 2015-03-25 2019-12-03 Jfe Steel Corporation High-strength steel sheet and method for producing the same
US10655194B2 (en) 2015-03-25 2020-05-19 Jfe Steel Corporation High-strength steel sheet and method for producing the same

Also Published As

Publication number Publication date
JP2007284783A (en) 2007-11-01

Similar Documents

Publication Publication Date Title
JP4740099B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
EP2589678B1 (en) High-strength steel sheet with excellent processability and process for producing same
KR101621639B1 (en) Steel sheet, plated steel sheet, method for producing steel sheet, and method for producing plated steel sheet
WO2015080242A1 (en) Hot-formed steel sheet member, method for producing same, and steel sheet for hot forming
TW201938816A (en) High strength cold rolled steel sheet and manufacturing method thereof
JP5316634B2 (en) High-strength steel sheet with excellent workability and method for producing the same
JP5126844B2 (en) Steel sheet for hot pressing, manufacturing method thereof, and manufacturing method of hot pressed steel sheet member
CA2762935A1 (en) High-strength galvannealed steel sheet having excellent formability and fatigue resistance and method for manufacturing the same
TWI705143B (en) Hot rolled steel plate and manufacturing method thereof
WO2016031165A1 (en) High-strength hot-dip galvanized steel sheet having superb stretch-flangeability, in-plane stability of stretch-flangeability, and bendability, and method for producing same
WO2014061270A1 (en) High-strength cold-rolled steel sheet and method for manufacturing same
JP4959418B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JPWO2012073538A1 (en) High-strength bake-hardening cold-rolled steel sheet and manufacturing method thereof
JP2008106351A (en) High strength cold rolled steel sheet excellent in workability and its production method
JP4384523B2 (en) Low yield ratio type high-strength cold-rolled steel sheet with excellent shape freezing property and manufacturing method thereof
WO2012060294A1 (en) High-strength cold-rolled steel sheet having excellent deep-drawability and bake hardenability, and method for manufacturing same
EP3705592A1 (en) High-strength cold-rolled steel sheet, high-strength plated steel sheet, and production methods therefor
JP3990553B2 (en) High stretch flangeability steel sheet with excellent shape freezing property and method for producing the same
EP2578714B1 (en) Hot-rolled high-strength steel sheet and process for production thereof
WO2016113781A1 (en) High-strength steel sheet and production method therefor
KR20170095977A (en) High-strength steel sheet and production method therefor
JP3990549B2 (en) High stretch flangeability steel sheet with excellent shape freezing property and method for producing the same
JP5811725B2 (en) High-tensile cold-rolled steel sheet excellent in surface distortion resistance, bake hardenability and stretch flangeability, and method for producing the same
JP4062961B2 (en) High tensile hot-rolled steel sheet excellent in mold galling resistance and fatigue resistance and method for producing the same
JP4102284B2 (en) {100} &lt;011&gt; Cold rolled steel sheet manufacturing method with excellent shape freezing property with developed orientation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110428

R151 Written notification of patent or utility model registration

Ref document number: 4740099

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350