JP4126007B2 - Cold-rolled steel sheet excellent in shape freezing property and bake hardenability and method for producing the same - Google Patents

Cold-rolled steel sheet excellent in shape freezing property and bake hardenability and method for producing the same Download PDF

Info

Publication number
JP4126007B2
JP4126007B2 JP2003359788A JP2003359788A JP4126007B2 JP 4126007 B2 JP4126007 B2 JP 4126007B2 JP 2003359788 A JP2003359788 A JP 2003359788A JP 2003359788 A JP2003359788 A JP 2003359788A JP 4126007 B2 JP4126007 B2 JP 4126007B2
Authority
JP
Japan
Prior art keywords
cold
steel sheet
less
rolled steel
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003359788A
Other languages
Japanese (ja)
Other versions
JP2005120459A (en
Inventor
夏子 杉浦
直樹 吉永
学 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003359788A priority Critical patent/JP4126007B2/en
Publication of JP2005120459A publication Critical patent/JP2005120459A/en
Application granted granted Critical
Publication of JP4126007B2 publication Critical patent/JP4126007B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、曲げ加工を主とする形状凍結性が優れた冷延鋼板(以下、単に鋼板又は薄鋼板ともいう)に関するもので、自動車部品等が主たる用途である。   The present invention relates to a cold-rolled steel sheet (hereinafter, also simply referred to as a steel sheet or a thin steel sheet) having excellent shape freezing properties, mainly bending, and is mainly used for automobile parts.

自動車からの炭酸ガスの排出量を抑えるために、高強度鋼板を使用して自動車車体の軽量化が進められている。また、搭乗者の安全確保のためにも、自動車車体には軟鋼板の他に高強度鋼板が多く使用されるようになってきている。更に、自動車車体の軽量化を今後進めていくために、従来以上に高強度鋼板の使用強度レベルを高めたいという新たな要請が非常に高まりつつある。   In order to reduce carbon dioxide emissions from automobiles, the weight of automobile bodies is being reduced using high-strength steel sheets. In addition, in order to ensure the safety of passengers, high strength steel plates are often used in automobile bodies in addition to mild steel plates. Furthermore, in order to further reduce the weight of automobile bodies in the future, new demands for increasing the strength level of use of high-strength steel sheets are increasing.

しかしながら、高強度鋼板に曲げ変形を加えると、加工後の形状はその高強度ゆえに、加工冶具の形状から離れて加工前の形状の方向にもどりやすくなるスプリング・バック現象や、成形中の曲げ−曲げ戻しからの弾性回復により側壁部の平面が曲率を持った面になってしまう壁そり現象が起こり、狙いとする加工部品の形状が得られないという寸法精度不良が生じる。   However, when bending deformation is applied to a high-strength steel plate, the shape after processing is high-strength, so it is easy to return to the direction of the shape before processing away from the shape of the processing jig, Due to the elastic recovery from the bending back, a wall warp phenomenon occurs in which the flat surface of the side wall becomes a curved surface, resulting in a poor dimensional accuracy that the shape of the target processed part cannot be obtained.

従って、従来の自動車の車体では、主として、440MPa以下の高強度鋼板に限って使用されてきた。自動車車体にとっては、490MPa以上の高強度鋼板を使用して車体の軽量化を進めていく必要があるにもかかわらず、スプリング・バックや壁そりが少なく形状凍結性の良い高強度鋼板が存在しないのが実状である。   Therefore, the conventional automobile body has been mainly used only for high-strength steel sheets of 440 MPa or less. For automobile bodies, there is no high-strength steel sheet with low spring back and wall warpage and good shape freezing, despite the need to reduce the weight of the body using high-strength steel sheets of 490 MPa or higher. This is the actual situation.

付け加えるまでもなく、440MPa以下の高強度鋼板や軟鋼板の加工後の形状凍結性を高めることは、自動車や家電製品などの製品の形状精度を高める上で、極めて重要である。   Needless to say, increasing the shape freezing property after processing of a high strength steel plate or mild steel plate of 440 MPa or less is extremely important for improving the shape accuracy of products such as automobiles and home appliances.

また、近年、高強度鋼板への焼付硬化(BH:Bake Hardening)能の付与の要望も大きい。従来、ボディー外板用軟鋼板の耐デント性向上のために付与されていた焼付硬化能であるが、衝撃吸収能の向上の観点から、高強度鋼板への安定付与が期待されている。   In recent years, there has been a great demand for imparting bake hardening (BH) ability to high-strength steel sheets. Conventionally, it is the bake hardenability imparted to improve the dent resistance of the mild steel sheet for body outer plates, but from the viewpoint of improving the impact absorbing ability, it is expected to be stably imparted to the high strength steel sheet.

本発明者らは、特許文献1にて、板厚中心での集合組織を制御することによって形状凍結性に優れた熱延鋼板及び冷延鋼板を製造する方法を開示している。しかし、この方法で冷延鋼板を製造するためには、熱延鋼板の段階で集合組織を集積させるために、低温+大圧下熱延を指向せざるを得ず、熱延工程に大きな負荷をかける。加えて、冷間圧延中に形状凍結性を劣化させる結晶方位が発達する傾向にあることから、圧延率を低くする必要がある。   In the patent document 1, the present inventors have disclosed a method for producing a hot-rolled steel sheet and a cold-rolled steel sheet having excellent shape freezing properties by controlling the texture at the center of the sheet thickness. However, in order to manufacture a cold-rolled steel sheet by this method, in order to accumulate the texture at the stage of the hot-rolled steel sheet, it must be directed to low-temperature + large-pressure hot-rolling, which places a heavy load on the hot-rolling process. Call. In addition, since the crystal orientation that deteriorates the shape freezeability tends to develop during cold rolling, it is necessary to reduce the rolling rate.

一方、本発明者らの一部は、特許文献2にて,スプリングバック量を小さくする技術として、板面に平行な{100}面の反射X線強度比が3以上である冷延鋼板を開示したが、この発明は、板厚最表面でのX線強度比の規定を特徴としており、1/2板厚におけるX線強度比を規定する本発明とは全く異なるものである。   On the other hand, some of the present inventors in Japanese Patent Application Laid-Open No. H11-228561 have disclosed a cold-rolled steel sheet in which the reflected X-ray intensity ratio of the {100} plane parallel to the plate surface is 3 or more as a technique for reducing the amount of springback. Although disclosed, the present invention is characterized by the definition of the X-ray intensity ratio at the outermost surface of the plate thickness, and is completely different from the present invention that defines the X-ray intensity ratio at 1/2 plate thickness.

また、いずれの技術も、焼付硬化能については、全く規定しておらず、形状凍結性と焼付硬化能の両立についても、全く言及していない。   In addition, none of the techniques regulates the bake hardenability at all, and makes no mention of the compatibility between the shape freezeability and the bake hardenability.

特開2001−303175号公報JP 2001-303175 A 特開2001−64750号公報JP 2001-64750 A

軟鋼板や高強度鋼板に曲げ加工を施すと、鋼板の強度に依存しながら大きなスプリング・バックが発生し、加工成形部品の形状凍結性が悪いのが現状である。本発明は、この問題を、集合組織制御と固溶C制御によって抜本的に解決し、形状凍結性と焼付硬化性に優れた冷延鋼板及びその製造方法を提供するものである。   When a mild steel plate or a high strength steel plate is bent, a large spring back is generated depending on the strength of the steel plate, and the shape freezing property of the processed molded part is poor. The present invention fundamentally solves this problem by texture control and solid solution C control, and provides a cold-rolled steel sheet excellent in shape freezing property and bake hardenability, and a method for producing the same.

従来の知見によれば、スプリング・バックを抑えるための方策としては、鋼板の降伏点を低くすることがとりあえず重要であると考えられていた。そして、降伏点を低くするためには、引張強さの低い鋼板を使用せざるをえなかった。しかし、これだけでは、鋼板の曲げ加工性を向上させ、スプリング・バック量を低く抑えるための根本的な解決にはならない。   According to the conventional knowledge, it has been considered to be important for the time being to lower the yield point of the steel sheet as a measure for suppressing the spring back. In order to lower the yield point, a steel plate having a low tensile strength has to be used. However, this alone is not the fundamental solution for improving the bending workability of the steel sheet and keeping the amount of spring back low.

そこで、本発明者らは、曲げ加工性を向上させてスプリング・バックの発生を根本的に解決するために、新たに、鋼板の集合組織の曲げ加工性への影響に着目して、その作用効果を詳細に調査、研究した。そして、曲げ加工性に優れた鋼板を見いだした。   Therefore, in order to improve the bending workability and fundamentally solve the occurrence of spring back, the present inventors have newly paid attention to the influence on the bending workability of the texture of the steel sheet, and its action. The effect was investigated and studied in detail. And the steel plate excellent in bending workability was found.

その結果、{100}<011>〜{223}<110>方位群と{554}<225>、{111}<112>、{111}<110>の各方位の強度を制御すること、更には、圧延方向のr値及び圧延方向と直角方向のr値のうち少なくとも1つを、できるだけ低い値にすることで、曲げ加工性が飛躍的に向上することを明らかにしてきた。   As a result, controlling the intensity of each of {100} <011> to {223} <110> orientation group and {554} <225>, {111} <112>, {111} <110>, Has shown that the bending workability is dramatically improved by setting at least one of the r value in the rolling direction and the r value in the direction perpendicular to the rolling direction as low as possible.

今回、更に鋭意研究の結果、冷延鋼板において、このような形状凍結性に優位な結晶方位を更に高めるためには、冷延母材としての熱延板に固溶Cを残存させることが極めて重要であることを新たに見いだした。   As a result of further earnest research, in order to further enhance the crystal orientation superior in shape freezing property in cold-rolled steel sheets, it is extremely important to leave solute C in the hot-rolled sheet as a cold-rolled base material. I found something new.

加えて、適切な冷延・焼鈍によって固溶Cを製品板の状態まで残存させることによって、更に形状凍結性が向上するのと同時に焼付硬化性が付与され、衝撃吸収能が著しく向上することを新たに見いだした。   In addition, by allowing solid solution C to remain in the state of the product plate by appropriate cold rolling and annealing, it is possible to further improve the shape freezing property and at the same time bake hardenability, remarkably improve the shock absorption capacity. Newly found.

本発明は、前述の知見に基づいて構成されており、その主旨とするところは、以下のとおりである。   The present invention is configured based on the above-mentioned knowledge, and the main points thereof are as follows.

(1) 質量%で、C:0.001%以上、0.25%以下、
Si:0.001%以上、2.5%以下、
Mn:0.01%以上、2.5%以下、
P:0.15%以下、
S:0.03%以下、
Al:0.01%以上、2.0%以下、
N:0.01%以下、及び、
O:0.01%以下
を含有し、更に、Nbを含有し、
Ti、Nbを合計で0.01%以上、0.40%以下
を含有し、かつ、(式1)の関係を満足し、残部が鉄及び不可避的不純物からなり、少なくとも1/2板厚における板面の
(1){100}<011>〜{223}<110>方位群のX線ランダム強度比の平均値(A)が4.0以上、
(2){554}<225>、{111}<112>及び{111}<110>の結晶方位のX線ランダム強度比の平均値(B)が6.0以下、
(3)(A)/(B)≧1.2
を満足し、更に、圧延方向及びそれと直角方向のr値のうち少なくとも1つが0.7以下、BH量が50MPa以上であることを特徴とする形状凍結性と焼付硬化性に優れた冷延鋼板。
C%−{(Ti%−48/32S%−48/14N%)+48/93Nb%}/4
>0.001 ・・・(式1)
(1) By mass%, C: 0.001% or more, 0.25% or less,
Si: 0.001% or more, 2.5% or less,
Mn: 0.01% or more, 2.5% or less,
P: 0.15% or less,
S: 0.03% or less,
Al: 0.01% or more, 2.0% or less,
N: 0.01% or less, and
O: 0.01% or less
Further containing Nb,
Ti and Nb in total 0.01% or more and 0.40% or less
(1) {100} <011> to {223} <of the plate surface at least ½ plate thickness , and the balance of (Formula 1) is satisfied and the balance is made of iron and inevitable impurities. 110> The average value (A) of the X-ray random intensity ratio of the orientation group is 4.0 or more,
(2) The average value (B) of X-ray random intensity ratios of crystal orientations of {554} <225>, {111} <112> and {111} <110> is 6.0 or less,
(3) (A) / (B) ≧ 1.2
Further, at least one of the r values in the rolling direction and the direction perpendicular to the rolling direction is 0.7 or less, and the BH amount is 50 MPa or more. .
C%-{(Ti% -48 / 32S% -48 / 14N%) + 48 / 93Nb%} / 4
> 0.001 (Formula 1)

) 更に、質量%で、V:0.20%以下、
Cr:1.5%以下及び
B:0.007%以下
の1種又は2種以上を含有することを特徴とする(1)に記載の形状凍結性と焼付硬化性に優れた冷延鋼板。
( 2 ) Furthermore, in mass%, V: 0.20% or less,
Cr: 1.5% or less and
B: A cold-rolled steel sheet excellent in shape freezing property and bake hardenability as described in (1 ), containing one or more of 0.007% or less.

) 更に、質量%で、Mo≦1%、
Cu≦2%、
Ni≦1%、及び
Sn≦0.2%
の1種又は2種以上を含有することを特徴とする(1)又は(2)に記載の形状凍結性と焼付硬化性に優れた冷延鋼板の製造方法。
( 3 ) Furthermore, in mass%, Mo ≦ 1%,
Cu ≦ 2%,
Ni ≦ 1%, and
Sn ≦ 0.2%
The manufacturing method of the cold-rolled steel plate excellent in the shape freezing property and bake hardenability as described in (1) or (2) characterized by containing 1 type (s) or 2 or more types.

) (1)〜()のいずれかに記載の化学成分を有するスラブを1150〜1350℃に再加熱し、Ar3変態温度〜(Ar3変態温度+100)℃温度範囲における圧下率の合計を25%以上とする熱間圧延を行い、Ar3変態温度以上で熱間圧延を終了し、巻取までの平均冷却速度が20℃/s以上になるように冷却し、600℃以下で巻き取り、酸洗後、25%以上80%以下の冷間圧延を施し、更に、3〜100℃/sで700℃〜(Ac3+100)℃の温度範囲に加熱した後、平均冷却速度3〜250℃/sで冷却することを特徴とする形状凍結性と焼付硬化性に優れた冷延鋼板の製造方法。 ( 4 ) The slab having the chemical component according to any one of (1) to ( 3 ) is reheated to 1150 to 1350 ° C., and the total rolling reduction in the temperature range of Ar 3 transformation temperature to (Ar 3 transformation temperature +100) ° C. Perform hot rolling to 25% or more, finish hot rolling at the Ar3 transformation temperature or higher, cool so that the average cooling rate until winding is 20 ° C / s or higher, wind up at 600 ° C or lower, After pickling, cold rolling at 25% or more and 80% or less is performed, and further heating is performed at a temperature range of 3O <0> C to (Ac3 + 100) [deg.] C. at 3 to 100 [deg.] C. The manufacturing method of the cold-rolled steel plate excellent in the shape freezing property and bake hardenability characterized by cooling by.

) (4)に記載の形状凍結性と焼付硬化性に優れた冷延鋼板の製造方法により製造した冷延鋼板に、冷延後、焼鈍温度550℃以下の過時効処理を施すことを特徴とする形状凍結性と焼付硬化性に優れた冷延鋼板の製造方法。 ( 5 ) The cold-rolled steel sheet produced by the method for producing a cold-rolled steel sheet having excellent shape freezing property and bake hardenability described in ( 4) is subjected to an overaging treatment at an annealing temperature of 550 ° C. or less after cold rolling. A method for producing a cold-rolled steel sheet having excellent shape freezeability and bake hardenability.

) 前記熱間圧延で得た熱延鋼板中のパーライトの体積分率が5%以下であることを特徴とする(又は5)に記載の形状凍結性と焼付硬化性に優れた冷延鋼板の製造方法。 ( 6 ) The pearlite volume fraction in the hot-rolled steel sheet obtained by hot rolling is 5% or less, and is excellent in shape freezing property and bake hardenability as described in ( 4 ) or ( 5) A method for manufacturing cold rolled steel sheets.

) 前記熱間圧延で得た熱延鋼板の時効指数A.I.が20MPa以上であることを特徴とする()〜()のいずれかに記載の形状凍結性と焼付硬化性に優れた冷延鋼板の製造方法。 ( 7 ) Aging index A. of hot-rolled steel sheet obtained by hot rolling. I. The manufacturing method of the cold-rolled steel plate excellent in the shape freezing property and bake hardenability in any one of ( 4 )-( 6 ) characterized by the above-mentioned.

) 前記熱間圧延で得た熱延鋼板の集合組織と冷延圧下率が、次式(2)と(3)を満足することを特徴とする()〜()のいずれかに記載の形状凍結性と焼付硬化性に優れた冷延鋼板の製造方法。 ( 8 ) The texture and hot rolling reduction ratio of the hot-rolled steel sheet obtained by the hot rolling satisfy the following formulas ( Formula 2) and ( Formula 3): ( 4 ) to ( 7 ) The manufacturing method of the cold-rolled steel plate excellent in the shape freezing property and bake hardenability in any one.

(a)+0.02×CR≧3.5 ・・・(2)
(b)+0.04×exp(0.05×CR)≦5.5 ・・・(3)
ここで
(a):熱延板の少なくとも1/2板厚における板面の{100}<011>〜{223}<110>方位群のX線ランダム強度比の平均値
(b):熱延板の少なくとも1/2板厚における板面の{554}<225>、{111}<112>及び{111}<110>の結晶方位のX線ランダム強度比の平均値
CR:冷延圧下率(%)
) 前記冷間圧延時の通板温度を50〜400℃にすることを特徴とする()〜()のいずれかに記載の形状凍結性と焼付硬化性に優れた冷延鋼板の製造方法。
(A) + 0.02 × CR ≧ 3.5 ( Expression 2)
(B) + 0.04 × exp (0.05 × CR) ≦ 5.5 ( Formula 3)
Here, (a): average value of X-ray random intensity ratio of {100} <011> to {223} <110> orientation group on the plate surface at at least 1/2 of the thickness of the hot rolled plate (b): hot rolled Average value CR of cold-rolling reduction ratio of X-ray random intensity ratio of crystal orientations of {554} <225>, {111} <112> and {111} <112> and {111} <110> on at least half the plate thickness (%)
( 9 ) The cold-rolled steel sheet having excellent shape freezing property and bake hardenability according to any one of ( 4 ) to ( 8 ), wherein the sheet passing temperature during cold rolling is 50 to 400 ° C. Manufacturing method.

10) ()〜()のいずれかに記載の形状凍結性と焼付硬化性に優れた冷延鋼板の製造方法により製造した冷延鋼板にめっきを施すことを特徴とする形状凍結性と焼付硬化性に優れた冷延鋼板の製造方法。 ( 10 ) Shape freezing property, characterized in that the cold rolled steel plate produced by the method for producing a cold rolled steel plate having excellent shape freezing property and bake hardenability according to any one of ( 4 ) to ( 9 ) is plated. And cold rolled steel sheet manufacturing method with excellent bake hardenability.

11) ()〜(10)のいずれかに記載の形状凍結性と焼付硬化性に優れた冷延鋼板の製造方法により製造した冷延鋼板に0.4%以上5%以下のスキンパス圧延を施すことを特徴とする形状凍結性と焼付硬化性に優れた冷延鋼板の製造方法。 ( 11 ) Skin pass rolling at 0.4% or more and 5% or less on a cold-rolled steel sheet produced by the method for producing a cold-rolled steel sheet having excellent shape freezing property and bake hardenability according to any one of ( 4 ) to ( 10 ). A method for producing a cold-rolled steel sheet having excellent shape freezing property and bake hardenability, characterized by applying the above.

本発明により、スプリング・バック量が少なく、曲げ加工を主体とする形状凍結性に優れ、かつ、高いBH量を有する薄鋼板を提供できる。特に、従来は形状不良の問題から高強度鋼板の適用が難しかった部品にも、高強度鋼板を使用できるようになる。   According to the present invention, it is possible to provide a thin steel sheet having a small amount of spring back, an excellent shape freezing property mainly composed of bending, and a high BH amount. In particular, high strength steel plates can be used for parts that have conventionally been difficult to apply to high strength steel plates due to shape problems.

以下に本発明の内容を詳細に説明する。   The contents of the present invention will be described in detail below.

1/2板厚における板面の{100}<011>〜{223}<110>方位群のX線ランダム強度比の平均値(A):
本発明で特に重要な特性値である。板厚中心位置での板面のX線回折を行い、ランダム試料に対する各方位の強度比を求めたときの、{100}<011>〜{223}<110>方位群の平均値は4.0以上でなくてはならない。
Average value (A) of X-ray random intensity ratio of {100} <011> to {223} <110> orientation groups on the plate surface at 1/2 plate thickness:
This is a particularly important characteristic value in the present invention. The average value of {100} <011> to {223} <110> orientation groups when the X-ray diffraction of the plate surface at the plate thickness center position and the intensity ratio of each orientation with respect to the random sample is obtained is 4. Must be greater than or equal to zero.

これが4.0未満では形状凍結性が劣悪となる。この観点から、X線ランダム強度比の平均値は、より望ましくは4.5以上、更に望ましくは5.0以上である。   If this is less than 4.0, the shape freezing property is poor. In this respect, the average value of the X-ray random intensity ratio is more preferably 4.5 or more, and further preferably 5.0 or more.

この方位群に含まれる主な方位は、{100}<011>、{116}<110>、{114}<110>、{113}<110>、{112}<110>、{335}<110>及び{223}<110>である。   The main orientations included in this orientation group are {100} <011>, {116} <110>, {114} <110>, {113} <110>, {112} <110>, {335} < 110> and {223} <110>.

これら各方位のX線ランダム強度比は、{110}極点図に基づきベクトル法により計算した3次元集合組織や、{110}、{100}、{211}、{310}極点図のうち複数の極点図(好ましくは3つ以上)を用いて級数展開法で計算した3次元集合組織から求めればよい。   The X-ray random intensity ratio of each of these orientations can be calculated by using a three-dimensional texture calculated by the vector method based on the {110} pole figure, and a plurality of {110}, {100}, {211}, {310} pole figures. What is necessary is just to obtain | require from the three-dimensional texture calculated | required by the series expansion method using the pole figure (preferably 3 or more).

例えば、後者の方法における上記各結晶方位のX線ランダム強度比には、3次元集合組織のφ2=45゜断面における(001)[1−10]、(116) [1−10]、(114) [1−10]、(113) [1−10]、(112) [1−10]、(335) [1−10]、(223) [1−10]の強度をそのまま用いればよい。   For example, the X-ray random intensity ratio of each crystal orientation in the latter method includes (001) [1-10], (116) [1-10], (114) in the φ2 = 45 ° cross section of the three-dimensional texture. ) [1-10], (113) [1-10], (112) [1-10], (335) [1-10], (223) The intensity of [1-10] may be used as it is.

{100}<011>〜{223}<110>方位群の平均値とは、上記の各方位の相加平均である。上記の全ての方位の強度を得ることができない場合には、{100}<011>、{116}<110>、{114}<110>、{112}<110>、{223}<110>の各方位の相加平均で代替してもよい。   The average value of {100} <011> to {223} <110> orientation group is an arithmetic average of each of the above-mentioned orientations. When the strengths of all the above directions cannot be obtained, {100} <011>, {116} <110>, {114} <110>, {112} <110>, {223} <110> Alternatively, an arithmetic average of each direction may be substituted.

1/2板厚における板面の{554}<225>、{111}<112>及び{111}<110>の結晶方位のX線ランダム強度比の平均値(B):
1/2板厚における板面の{554}<225>、{111}<112>及び{111}<110>の結晶方位のX線ランダム強度比の平均値は、6.0以下でなくてはならない。これが6.0超であると、{100}<011>〜{223}<110>方位群の強度が適正であっても、良好な形状凍結性を得ることが困難となる。
Average value (B) of X-ray random intensity ratios of crystal orientations of {554} <225>, {111} <112> and {111} <110> on the plate surface at 1/2 plate thickness:
The average value of the X-ray random intensity ratios of {554} <225>, {111} <112> and {111} <110> crystal orientations of the plate surface at 1/2 plate thickness is not less than 6.0. Must not. If this is over 6.0, it is difficult to obtain good shape freezing property even if the strength of the {100} <011> to {223} <110> orientation groups is appropriate.

{554}<225>、{111}<112>及び{111}<110>のX線ランダム強度比も、上記の方法に従って計算した3次元集合組織から求めればよい。更に望ましくは、{554}<225>、{111}<112>及び{111}<110>のX線ランダム強度比の相加平均値が5.0未満、より望ましくは3.5未満である。   The X-ray random intensity ratio of {554} <225>, {111} <112>, and {111} <110> may be obtained from the three-dimensional texture calculated according to the above method. More preferably, the arithmetic average value of the X-ray random intensity ratios of {554} <225>, {111} <112> and {111} <110> is less than 5.0, more preferably less than 3.5. .

(A)/(B):
上記の二つの結晶方位群の平均値の比は1.2以上でなければならない。この比が1.2未満では、(A)、(B)それぞれの値が適正な範囲に入っていても形状凍結性が確保できない。
(A) / (B):
The ratio of the average values of the above two crystal orientation groups must be 1.2 or more. If this ratio is less than 1.2, the shape freezing property cannot be ensured even if each of the values (A) and (B) is within an appropriate range.

一方、この比が大きくなるほど形状凍結性は向上することから、この比の上限は規定しない。   On the other hand, as the ratio increases, the shape freezing property is improved, so the upper limit of the ratio is not specified.

なお、当然のことであるが、上述のX線強度の限定が板厚1/2近傍だけでなく、なるべく多くの厚みについて満たされることで、より一層形状凍結性が良好になる。   As a matter of course, the above-mentioned limitation of the X-ray intensity is satisfied not only in the vicinity of the plate thickness ½ but also as much as possible, so that the shape freezing property is further improved.

以上述べた冷延板のX線強度が曲げ加工時の形状凍結性に重要であることの理由は必ずしも明らかではないが、曲げ変形時の結晶のすべり挙動と関係があるものと推測される。   The reason why the X-ray intensity of the cold-rolled sheet described above is important for the shape freezing property at the time of bending is not necessarily clear, but is presumed to be related to the sliding behavior of the crystal at the time of bending deformation.

X線回折に供する試料は、機械研磨などによって鋼板を所定の板厚まで減厚し、次いで、化学研磨や電解研磨などによって歪みを除去すると同時に、板厚1/2面が測定面となるように作製する。   The sample to be subjected to X-ray diffraction is thinned to a predetermined plate thickness by mechanical polishing or the like, and then the distortion is removed by chemical polishing or electrolytic polishing, and at the same time, the 1/2 plate thickness becomes the measurement surface. To make.

鋼板の板厚中心層に偏析帯や欠陥などが存在し、測定上不都合が生ずる場合には、板厚の3/8〜5/8の範囲で、適当な面が測定面となるように上述の方法に従って試料を調整して測定すればよい。   When there is a segregation zone or a defect in the thickness center layer of the steel plate, which causes inconvenience in measurement, the above-described method is adopted so that an appropriate surface becomes the measurement surface in the range of 3/8 to 5/8 of the plate thickness. The sample may be adjusted according to the above method.

当然のことであるが、上述のX線強度の限定が板厚1/2近傍だけでなく、なるべく多くの厚み(特に最表層〜板厚の1/4)について満たされることで、より一層形状凍結性が良好になる。   Naturally, the above-mentioned limitation of the X-ray intensity is satisfied not only in the vicinity of the plate thickness ½ but also as much as possible (especially the outermost layer to ¼ of the plate thickness), thereby further increasing the shape. Freezing property is improved.

なお、{hkl}<uvw>で表される結晶方位とは、板面の法線方向が<hkl>に平行で、圧延方向が<uvw>と平行であることを示している。   The crystal orientation represented by {hkl} <uvw> indicates that the normal direction of the plate surface is parallel to <hkl> and the rolling direction is parallel to <uvw>.

圧延方向のr値(rL)及び圧延方向と直角方向のr値(rC):
本発明において重要である。すなわち、本発明者等が鋭意検討の結果、上述した種々の結晶方位のX線強度が適正であっても、必ずしも良好な形状凍結性が得られないことが判明した。上記のX線強度と同時に、rL及びrCのうち少なくとも1つが0.7以下であることが必須である。より好ましくは0.55以下である。なお、rL及びrCの下限は特に定めることなく、本発明の効果を得ることができる。
R value (rL) in the rolling direction and r value (rC) in the direction perpendicular to the rolling direction:
Important in the present invention. That is, as a result of intensive studies by the present inventors, it has been found that even if the X-ray intensities of the various crystal orientations described above are appropriate, good shape freezing properties cannot always be obtained. At the same time as the above X-ray intensity, it is essential that at least one of rL and rC is 0.7 or less. More preferably, it is 0.55 or less. The lower limit of rL and rC is not particularly defined, and the effects of the present invention can be obtained.

r値はJIS5号引張試験片を用いた引張試験により評価する。引張歪みは、通常15%であるが、均一伸びが15%を下回る場合には、均一伸びの範囲で、できるだけ15%に近い歪みで評価すればよい。   The r value is evaluated by a tensile test using a JIS No. 5 tensile test piece. The tensile strain is usually 15%, but if the uniform elongation is less than 15%, the strain may be evaluated as close to 15% as possible within the range of uniform elongation.

なお、曲げ加工を施す方向は加工部品によって異なるので、特に限定するものではないが、r値が小さい方向に対して垂直もしくは垂直に近い方向に折り曲げる加工を主とすることが好ましい。   The direction in which the bending process is performed differs depending on the processed part, and is not particularly limited. However, it is preferable that the bending process is mainly performed in a direction perpendicular to or close to the perpendicular to the direction in which the r value is small.

ところで、一般に、集合組織とr値とは相関があることが知られているが、本発明においては、既述の結晶方位のX線強度比に関する限定とr値に関する限定とは互いに同義ではなく、両方の限定が同時に満たされなくては、良好な形状凍結性と加工性を得ることはできない。   Incidentally, it is generally known that there is a correlation between the texture and the r value, but in the present invention, the above-described limitation on the X-ray intensity ratio of the crystal orientation and the limitation on the r value are not synonymous with each other. Unless both limitations are satisfied at the same time, good shape freezing property and workability cannot be obtained.

本発明は、引張強度レベルの低い軟鋼板から高強度鋼板にいたる全ての冷延鋼板に適用できるものであり、上記の限定が満たされれば、冷延鋼板の曲げ加工性は飛躍的に向上する。換言すれば、冷延鋼板の機械的強度レベルの制約を越えた、曲げ加工変形に関する基本的材料指標であるということである。   The present invention can be applied to all cold-rolled steel sheets ranging from mild steel sheets having low tensile strength levels to high-strength steel sheets, and the bending workability of cold-rolled steel sheets can be dramatically improved if the above-mentioned limitations are satisfied. . In other words, it is a basic material index related to bending deformation that exceeds the constraints of the mechanical strength level of the cold-rolled steel sheet.

BH量:
BH量が50MPa未満では焼付硬化能付与による衝撃吸収エネルギーの上昇、形状凍結性の向上のいずれも十分ではない。そこで、BH量の下限を50MPaとする。望ましくはBH量は60MPa以上とする。焼付硬化能の付与、すなわち、固溶Cの残存が形状凍結性を向上させる理由については明らかではないが、固溶Cの存在が、曲げ変形時のすべりに何らかの影響を及ぼしていると考えられる。
BH amount:
If the amount of BH is less than 50 MPa, neither an increase in impact absorption energy due to the provision of bake hardening ability nor an improvement in shape freezing property is sufficient. Therefore, the lower limit of the BH amount is 50 MPa. Desirably, the amount of BH is 60 MPa or more. Although it is not clear why the bake hardenability is imparted, that is, the remaining solid solution C improves the shape freezing property, the presence of the solid solution C is considered to have some influence on the slip during bending deformation. .

なお、本発明中で述べるBH量とは、圧延直角方向に切り出したJIS5号引張試験片に2%の予ひずみを与えた後に、一旦除荷し、170℃、20分間の熱処理を施した後、再度引張試験を行った際の時効後降伏荷重から予ひずみ荷重を引いた値を予ひずみ前の試験片平行部断面積で割ったものとする。   The amount of BH described in the present invention means that after applying a pre-strain of 2% to a JIS No. 5 tensile specimen cut in the direction perpendicular to the rolling, the load is once unloaded and subjected to heat treatment at 170 ° C. for 20 minutes. The value obtained by subtracting the pre-strain load from the yield load after aging when the tensile test is performed again is divided by the cross-sectional area of the parallel part of the test piece before the pre-strain.

次に、成分の限定条件について述べる。なお。%は、質量%を意味する。   Next, the component limiting conditions will be described. Note that. % Means mass%.

C:
Cの下限を0.001%としたのは、0.001%未満では固溶Cを残すのが難しくなり、集合組織、BH量ともに劣化するためである。Cが0.25%超になると加工性が悪くなるので、0.25%を上限とする。
C:
The reason why the lower limit of C is set to 0.001% is that if it is less than 0.001%, it is difficult to leave the solid solution C, and both the texture and the amount of BH deteriorate. If C exceeds 0.25%, workability deteriorates, so 0.25% is made the upper limit.

Si:
Siは鋼板の機械的強度を高めるのに有効な元素であるが、2.5%超となると加工性が劣化したり、表面疵が発生したりするので、2.5%を上限とする。一方、実用鋼でSiを0.001%未満とするのは困難であるので、0.001%を下限とする。
Si:
Si is an effective element for increasing the mechanical strength of the steel sheet, but if it exceeds 2.5%, workability deteriorates or surface flaws occur, so 2.5% is made the upper limit. On the other hand, since it is difficult to make Si less than 0.001% in practical steel, 0.001% is made the lower limit.

Mn:
Mnも鋼板の機械的強度を高めるのに有効な元素であるが、2.5%超となると加工性が劣化するので、2.5%を上限とする。一方、実用鋼でMnを0.01%未満とするのは困難であるので、0.01%を下限とする。また、Mn以外に、Sによる熱間割れの発生を抑制するTiなどの元素が十分に添加されない場合には、質量%で、Mn/S≧20となるMnを添加することが望ましい。
Mn:
Mn is also an effective element for increasing the mechanical strength of the steel sheet, but if it exceeds 2.5%, the workability deteriorates, so 2.5% is made the upper limit. On the other hand, since it is difficult to make Mn less than 0.01% in practical steel, 0.01% is made the lower limit. In addition to Mn, when an element such as Ti that suppresses the occurrence of hot cracking due to S is not sufficiently added, it is desirable to add Mn that satisfies Mn / S ≧ 20 by mass%.

P、S:
これらは不純物であり、それぞれ0.15%以下、0.03%以下とする。これは、加工性の劣化や熱間圧延又は冷間圧延時の割れを防ぐためである。
P, S:
These are impurities, and are 0.15% or less and 0.03% or less, respectively. This is for preventing deterioration of workability and cracking during hot rolling or cold rolling.

Al:
Alは脱酸のために0.01%以上添加する。しかし、多すぎると加工性が低下したり、表面性状が劣悪となるので、上限を2.0%とする。
Al:
Al is added in an amount of 0.01% or more for deoxidation. However, if the amount is too large, the workability deteriorates or the surface properties become poor, so the upper limit is made 2.0%.

NとOは不純物であり、加工性を悪化させないように、ともに0.01%以下とする。   N and O are impurities, and both are made 0.01% or less so as not to deteriorate the workability.

Ti、Nb:
これらの元素は本発明において非常に重要である。すなわち、Nb単独であるいはNbとTiを複合で添加することによって、焼鈍中の再結晶及び粒成長が抑制され、熱延・冷延中に形成された形状凍結性に有利な集合組織が破壊されることなく保存される。
Ti, Nb:
These elements are very important in the present invention. That is, by adding Nb alone or in combination with Nb and Ti, recrystallization and grain growth during annealing are suppressed, and the texture advantageous to shape freezing formed during hot rolling and cold rolling is destroyed. It is saved without.

したがって、1種又は2種を合計で0.01%以上添加する。ただし、過度の添加は加工性を劣化させるだけでなく、炭化物を形成して固溶Cを低減することで集合組織の形成を阻害することから、上限を1種又は2種の合計で0.40%と設定した。   Therefore, 0.01% or more of 1 type or 2 types is added in total. However, excessive addition not only deteriorates the workability but also prevents the formation of texture by forming carbides and reducing the solid solution C, so the upper limit is set to 0. Set to 40%.

加えて、C、Ti、Nb、S、Nは、(式1)の関係を満足しなければならない。この関係を満足できない場合には、熱延板及び製品板に固溶Cを残存させることができず、その結果、集合組織が劣化し、形状凍結性が向上しない。また、焼付硬化能を付与することもできない。 In addition, C, Ti, Nb, S, and N must satisfy the relationship of (Formula 1). When this relationship cannot be satisfied, the solid solution C cannot remain in the hot-rolled sheet and the product sheet. As a result, the texture is deteriorated and the shape freezing property is not improved. Moreover, bake hardening ability cannot be provided.

C%−{(Ti%−48/32S%−48/14N%)+48/93Nb%}/4
>0.001 ・・・(1)
V、Cr、B:
炭素、窒素の固定、析出強化、組織制御、細粒強化などの機構を通じて材質を改善するので、必要に応じて、各成分とも0.0001%以上添加することが望ましい。ただし、過度に添加しても格段の効果はなく、むしろ加工性や表面性状を劣化させるので、それぞれ、0.20%,1.5%,0.007%を上限として設定した。
C%-{(Ti% -48 / 32S% -48 / 14N%) + 48 / 93Nb%} / 4
> 0.001 ( Formula 1)
V, Cr, B:
Since the material is improved through mechanisms such as carbon and nitrogen fixation, precipitation strengthening, structure control, and fine grain strengthening, it is desirable to add 0.0001% or more of each component as necessary. However, even if added excessively, there is no remarkable effect, but rather the workability and surface properties are deteriorated, so 0.20%, 1.5%, and 0.007% were set as upper limits, respectively.

Mo、Cu、Ni、Sn:
これらの元素は機械的強度を高めたり、材質を改善する効果があるので、必要に応じて、各成分とも0.001%以上を添加することが望ましい。しかし、過度の添加は、逆に、加工性を劣化させるので、上限を、それぞれ1%、2%、1%、0.2%とする。
Mo, Cu, Ni, Sn:
Since these elements have the effect of increasing the mechanical strength and improving the material, it is desirable to add 0.001% or more of each component as necessary. However, excessive addition conversely degrades the workability, so the upper limit is made 1%, 2%, 1%, and 0.2%, respectively.

なお、本発明では特に限定しないが、脱酸の目的や硫化物の形態制御の目的で、CaやMg、Ceを適量添加しても構わない。   Although not particularly limited in the present invention, an appropriate amount of Ca, Mg, or Ce may be added for the purpose of deoxidation or the control of sulfide morphology.

次に、製造方法について詳細に述べる。   Next, the manufacturing method will be described in detail.

熱間圧延に先行する製造方法は特に限定するものではない。すなわち、高炉や電炉等による溶製に引き続き各種の2次製錬を行い、次いで、通常の連続鋳造、インゴット法による鋳造の他、薄スラブ鋳造などの方法で鋳造すればよい。連続鋳造の場合には、一度低温まで冷却したのち、再度加熱してから熱間圧延してもよいし、鋳造スラブを連続的に熱延してもよい。原料にはスクラップを使用しても構わない。   The production method preceding hot rolling is not particularly limited. That is, various secondary smelting may be performed following the smelting by a blast furnace or an electric furnace, and then the casting may be performed by a method such as a thin slab casting in addition to a normal continuous casting and an ingot method. In the case of continuous casting, after cooling to a low temperature once, it may be heated again and then hot rolled, or the cast slab may be continuously hot rolled. Scrap may be used as a raw material.

スラブ再加熱温度:
スラブを再加熱して熱間圧延を行う場合には再加熱温度は1150〜1350℃の範囲に限定する。スラブ再加熱温度が1150℃未満では、Nb、Tiの再固溶が不十分で熱延中に集合組織が発達しない。この観点から、スラブ再加熱温度の下限は望ましくは1200℃、更に望ましくは1250℃である。
Slab reheating temperature:
When the slab is reheated and hot rolling is performed, the reheating temperature is limited to a range of 1150 to 1350 ° C. When the slab reheating temperature is less than 1150 ° C., the re-solution of Nb and Ti is insufficient, and the texture does not develop during hot rolling. From this viewpoint, the lower limit of the slab reheating temperature is desirably 1200 ° C., and more desirably 1250 ° C.

また、スラブ再加熱温度を1350℃超にしても特段の効果が得られないばかりでなく、設備への負荷が高くなることから、1350℃を上限とする。   Further, even if the slab reheating temperature exceeds 1350 ° C., not only a special effect is obtained, but also the load on the equipment becomes high, so 1350 ° C. is made the upper limit.

熱延圧下率:
熱延中にAr3変態温度℃〜(Ar3変態温度+100)℃の温度範囲における圧下率の合計は20%以上とするのが望ましい。20%未満では、熱延中の集合組織の発達が不十分で形状凍結性が向上しにくい。この観点から、望ましくは圧下率の合計は25%以上、更に望ましくは30%以上とする。
Hot rolling reduction ratio:
The total rolling reduction in the temperature range of Ar3 transformation temperature C to (Ar3 transformation temperature +100) C during hot rolling is desirably 20% or more. If it is less than 20%, the development of the texture during hot rolling is insufficient and the shape freezing property is difficult to improve. From this viewpoint, the total rolling reduction is desirably 25% or more, and more desirably 30% or more.

圧下率の合計の上限は特に規定しないが、90%超にするためには設備の増強が不可欠で、かつ、特段の効果が得られないことから、90%以下とすることが望ましい。   The upper limit of the total rolling reduction is not particularly specified, but in order to increase it to over 90%, it is indispensable to reinforce the equipment, and a special effect cannot be obtained.

熱延終了温度:
熱間圧延の終了温度がAr3変態温度未満になると形状凍結性に好ましくない方位が熱延中に発達する場合があることから、熱延終了温度はAr3変態温度以上とする。熱延終了温度の上限は特に規定しないが、集合組織発達の観点から、(Ar3変態温度+100)℃以下とすることが望ましい。
Hot rolling end temperature:
When the end temperature of hot rolling becomes less than the Ar3 transformation temperature, an orientation unfavorable for shape freezing property may develop during hot rolling, so the hot rolling end temperature is set to the Ar3 transformation temperature or higher. The upper limit of the hot rolling end temperature is not particularly defined, but is preferably (Ar3 transformation temperature + 100) ° C. or lower from the viewpoint of texture development.

平均冷却速度:
熱延終了から巻取りまでの平均冷却速度は20℃/s以上とする。平均冷却速度が20℃/s未満では、冷却中に固溶C量が低減し、熱延板の固溶C量が確保できないため、形状凍結性が劣化する。この観点から、30℃/s以上で冷却することが望ましい。更に望ましくは50℃/s以上である。
Average cooling rate:
The average cooling rate from the end of hot rolling to winding is 20 ° C./s or more. When the average cooling rate is less than 20 ° C./s, the solid solution C amount is reduced during cooling, and the solid solution C amount of the hot-rolled sheet cannot be secured, so that the shape freezing property is deteriorated. From this viewpoint, it is desirable to cool at 30 ° C./s or more. More desirably, it is 50 ° C./s or more.

冷却速度が早いほど固溶Cを確保できることから、上限は特に規定しないが、250℃/s超で冷却しても格段の効果は得られず、新たな冷却設備投資が必要となることから、250℃/sを上限とすることが望ましい。   The higher the cooling rate, the more solid C can be secured, so the upper limit is not specified. However, even if it is cooled at over 250 ° C./s, no significant effect is obtained, and new cooling equipment investment is required. The upper limit is preferably 250 ° C./s.

巻取温度:
巻取温度が600℃超では巻取り中にパーライト変態が起こり固溶C量が低下し、その後の冷延・焼鈍集合組織の発達が不十分となることから、巻取温度の上限は600℃とする。この観点から、望ましくは580℃、更に望ましくは550℃を上限とする。
Winding temperature:
When the coiling temperature exceeds 600 ° C., pearlite transformation occurs during winding and the amount of dissolved C decreases, and the subsequent cold rolling / annealing texture development becomes insufficient. Therefore, the upper limit of the coiling temperature is 600 ° C. And From this viewpoint, the upper limit is preferably 580 ° C., and more preferably 550 ° C.

下限は特に規定しないが、室温以下にすることに特段のメリットがないことから、室温以上で巻き取ることが望ましい。   The lower limit is not particularly defined, but it is desirable to wind up at room temperature or higher because there is no particular merit in setting it to room temperature or lower.

冷間圧下率:
この様にして得られた熱延鋼板を冷間圧延し、焼鈍して最終的な薄鋼板とする際に、冷間圧延の全圧下率が80%を超えると、一般的な冷間圧延−再結晶集合組織である板面に平行な結晶面のX線回折積分面強度比の{111}面や{554}面成分が高くなり、本発明の特徴である結晶方位の規定を満たさなくなるので、冷間圧延の圧下率の上限を80%とした。
Cold reduction rate:
When the hot-rolled steel sheet thus obtained is cold-rolled and annealed to obtain a final thin steel sheet, if the total rolling reduction of the cold-rolling exceeds 80%, a general cold-rolling- Since the {111} plane and {554} plane components of the X-ray diffraction integration plane intensity ratio of the crystal plane parallel to the plate surface, which is the recrystallized texture, become high, and the crystal orientation characteristic that is the feature of the present invention is not satisfied. The upper limit of the cold rolling reduction was 80%.

形状凍結性を高めるためには、冷間圧下率を70%以下に制限することが望ましい。更に望ましくは冷間圧延率の上限は60%である。   In order to increase the shape freezing property, it is desirable to limit the cold rolling reduction to 70% or less. More desirably, the upper limit of the cold rolling rate is 60%.

一方、冷間圧延率を25%未満にするためには熱延板の板厚を薄くする必要があることから、熱延工程に大きな負荷をかかる。したがって、冷間圧延の圧下率の下限は25%とする。この観点から、30%以上に制限することが望ましい。更に望ましくは35%以上である。   On the other hand, in order to reduce the cold rolling rate to less than 25%, it is necessary to reduce the thickness of the hot-rolled sheet, which places a heavy load on the hot-rolling process. Therefore, the lower limit of the cold rolling reduction is 25%. From this viewpoint, it is desirable to limit to 30% or more. More desirably, it is 35% or more.

加熱速度:
上記の範囲で冷間加工された冷延鋼板を焼鈍する際に、加熱速度が3℃/s未満では、加熱中に再結晶が進行し集合組織が破壊されることから、加熱速度の下限を3℃/sとした。この観点からは、5℃/s以上に制限することが望ましい。更に望ましくは10℃/s以上である。
Heating rate:
When annealing a cold-rolled steel sheet cold-worked in the above range, if the heating rate is less than 3 ° C / s, recrystallization proceeds during heating and the texture is destroyed, so the lower limit of the heating rate is set. The temperature was 3 ° C / s. From this viewpoint, it is desirable to limit to 5 ° C./s or more. More desirably, it is 10 ° C./s or more.

一方、加熱速度を100℃/s以上にすることは過剰な設備投資を必要とすることから、100℃/sを加熱速度の上限とした。   On the other hand, since increasing the heating rate to 100 ° C./s or more requires excessive capital investment, 100 ° C./s was set as the upper limit of the heating rate.

焼鈍温度:
焼鈍温度が700℃未満の場合には加工組織が残存することから、加工性が劣化する。したがって、焼鈍温度の下限を700℃とする。一方、焼鈍温度が過度に高い場合には、再結晶によって生成したフェライトの集合組織が、オーステナイトへ変態後、オーステナイトの粒成長によってランダム化され、最終的に得られるフェライトの集合組織もランダム化される。
Annealing temperature:
When the annealing temperature is less than 700 ° C., the work structure remains, so that workability deteriorates. Therefore, the lower limit of the annealing temperature is set to 700 ° C. On the other hand, when the annealing temperature is excessively high, the ferrite texture formed by recrystallization is randomized by austenite grain growth after transformation into austenite, and the finally obtained ferrite texture is also randomized. The

特に、焼鈍温度が(Ac3+100)℃を越える場合には、そのような傾向が顕著となる。したがって、焼鈍温度は(Ac3+100)℃以下とする。この観点からは焼鈍温度の上限はAc3変態温度以下とすることが望ましい。   In particular, when the annealing temperature exceeds (Ac3 + 100) ° C., such a tendency becomes remarkable. Therefore, the annealing temperature is set to (Ac3 + 100) ° C. or lower. From this viewpoint, it is desirable that the upper limit of the annealing temperature is not more than the Ac3 transformation temperature.

冷却速度:
焼鈍後、冷却する際に、平均冷却速度が3℃/s未満の場合には、最終的に得られる冷延鋼板の集合組織の発達が十分でなく、良好な形状凍結性が得られないため、3℃/sを冷却速度の下限とした。この観点からは、冷却速度の下限は5℃/sとすることが望ましい。更に望ましくは10℃/s以上である。
Cooling rate:
When cooling after annealing, if the average cooling rate is less than 3 ° C / s, the texture of the cold-rolled steel sheet finally obtained is not sufficiently developed, and good shape freezing property cannot be obtained. The lower limit of the cooling rate was 3 ° C./s. From this viewpoint, it is desirable that the lower limit of the cooling rate is 5 ° C./s. More desirably, it is 10 ° C./s or more.

また、冷却速度を250℃/s超とすることは、過剰の設備投資を必要とするので、250℃/sを冷却速度の上限とした。   In addition, setting the cooling rate to more than 250 ° C./s requires excessive capital investment, so 250 ° C./s was set as the upper limit of the cooling rate.

ここで述べた冷却速度は、一時冷却停止温度までの平均冷却速度のことであり、低冷却速度での冷却と高冷却速度での冷却の組み合わせによって上述の冷却速度を達成してもかまわない。   The cooling rate described here is an average cooling rate up to the temporary cooling stop temperature, and the above-described cooling rate may be achieved by a combination of cooling at a low cooling rate and cooling at a high cooling rate.

再加熱温度(過時効処理):
焼鈍・冷却の後に連続焼鈍工程や、連続溶融亜鉛めっき工程での温度履歴に相当するような徐冷もしくは等温保持、又は、連続溶融めっき工程の合金化処理工程での再加熱の過程を採用してもよい。ただし、その場合の平均焼鈍温度は550℃以下とする。平均焼鈍温度が550℃超になると炭化物が析出し、固溶Cが減少することから形状凍結性、焼付硬化能が低下する。
Reheating temperature (overaging treatment):
After annealing / cooling, adopt a continuous annealing process, slow cooling or isothermal holding corresponding to the temperature history in the continuous hot dip galvanizing process, or reheating process in the alloying process of the continuous hot dip plating process. May be. However, the average annealing temperature in that case shall be 550 degrees C or less. When the average annealing temperature exceeds 550 ° C., carbide precipitates and the solid solution C decreases, so that the shape freezing property and the bake hardenability decrease.

一方、平均焼鈍温度の下限は特に規定しないが、200℃未満にすることは特段の効果をもたらさないことから、200℃を下限とすることが望ましい。なお、ここで述べる焼鈍温度とは平均焼鈍温度のことであり、最高到達温度が550℃を超えてもかまわない。   On the other hand, the lower limit of the average annealing temperature is not particularly specified, but it is desirable to set the lower limit to 200 ° C. because it does not bring about a special effect. In addition, the annealing temperature described here is an average annealing temperature, and the maximum temperature reached may exceed 550 ° C.

次に、熱延板の条件について述べる。   Next, conditions for hot-rolled sheets will be described.

熱延板の時効指数A.I.:
冷延母材となる熱延板の時効指数A.I.(Aging Index)は20MPa以上とすることが望ましい。20MPa未満では、冷延中に形状凍結性に良くない結晶方位である{111}及び{554}が発達しやすくなるためである。この観点からA.I.の下限は30MPaとするのが望ましい。更に望ましくは40MPa以上である。
Aging index of hot-rolled sheet I. :
Aging index of hot-rolled sheet used as cold-rolled base material I. (Aging Index) is preferably 20 MPa or more. This is because if it is less than 20 MPa, {111} and {554}, which are crystal orientations that are not good in shape freezing property, tend to develop during cold rolling. From this viewpoint, A.I. I. The lower limit is preferably 30 MPa. More desirably, it is 40 MPa or more.

また、熱延中のA.I.が高い方が形状凍結性、焼付硬化性の観点から望ましいため、A.I.の上限は特に規定しない。   In addition, A. I. Is preferable from the viewpoint of shape freezing property and bake hardenability. I. There is no specific upper limit.

本発明におけるA.I.とは、圧延直角方向に切り出したJIS5号引張試験片に10%の予ひずみを与えた後に、一旦除荷し、100℃、60分間の熱処理を施した後、再度引張試験を行った際の時効後降伏荷重から予ひずみ荷重を引いた値を予ひずみ前の試験片平行部断面積で割ったものとする。   A. in the present invention. I. Means that after applying 10% pre-strain to a JIS No. 5 tensile specimen cut in the direction perpendicular to the rolling direction, it was unloaded once, subjected to a heat treatment at 100 ° C. for 60 minutes, and then subjected to a tensile test again. The value obtained by subtracting the prestrain load from the yield load after aging is divided by the cross-sectional area of the parallel part of the specimen before prestrain.

なお、均一伸びが10%を下回る場合には、均一伸びの範囲で、できるだけ10%に近い歪で評価すればよい。   When the uniform elongation is less than 10%, the strain may be evaluated as close to 10% as possible within the uniform elongation range.

熱延板のミクロ組織:
冷延母材となる熱延板はフェライト又はベイナイトを体積分率最大の相とし、パーライトの体積分率は5%以下とすることが望ましい。パーライトの体積分率が5%超になると、熱延板中の固溶C量が低下し、冷延・焼鈍中に形状凍結性によくない{111}、{554}方位が発達することから、5%を上限とした。これらの相以外にマルテンサイトやオーステナイトをそれぞれ20%以下含んでいてもよい。
Hot rolled sheet microstructure:
The hot-rolled sheet serving as the cold-rolled base material preferably has ferrite or bainite as the phase with the largest volume fraction, and the pearlite volume fraction is preferably 5% or less. When the pearlite volume fraction exceeds 5%, the amount of dissolved C in the hot-rolled sheet decreases, and the {111} and {554} orientations that are not good for shape freezing during cold rolling and annealing develop. The upper limit was 5%. In addition to these phases, 20% or less of martensite and austenite may be included.

冷間圧延率と熱延板集合組織の関係:
形状凍結性向上の観点から、熱延板の集合組織とその後行う冷間圧延の圧下率は、次式(式2)と(式3)を満足するのが望ましい。
(a)+0.02×CR≧3.5 ・・・(式2
(b)+0.04×exp(0.05×CR)≦5.5 ・・・(式3
ここで
(a):熱延板の少なくとも1/2板厚における板面の{100}<011>〜{223}<110>方位群のX線ランダム強度比の平均値
(b):熱延板の少なくとも1/2板厚における板面の{554}<225>、{111}<112>及び{111}<110>の3つの結晶方位のX線ランダム強度比の平均値
CR:冷延圧下率(%)
Relationship between cold rolling rate and hot rolled sheet texture:
From the viewpoint of improving the shape freezing property, it is desirable that the texture of the hot-rolled sheet and the rolling reduction of the subsequent cold rolling satisfy the following expressions ( Expression 2 ) and ( Expression 3 ).
(A) + 0.02 × CR ≧ 3.5 ( Expression 2 )
(B) + 0.04 × exp (0.05 × CR) ≦ 5.5 ( Expression 3 )
Here, (a): average value of X-ray random intensity ratio of {100} <011> to {223} <110> orientation group on the plate surface at at least 1/2 of the thickness of the hot rolled plate (b): hot rolled Average value CR of X-ray random intensity ratios of three crystal orientations of {554} <225>, {111} <112> and {111} <110> on the plate surface at at least half the plate thickness CR: cold rolling Reduction ratio (%)

冷間圧延温度:
冷間圧延を行う際に、通板温度を50℃〜400℃に制御すると固溶Cによるひずみ時効が促進され、圧延中に形状凍結性に有利な集合組織の形成が進むことから、上述の温度範囲に制御することが望ましい。通板温度を50℃未満にしても、集合組織形成の観点で室温での圧延と何ら変わりがないことから、50℃を下限とした。
Cold rolling temperature:
When performing cold rolling, if the sheet passing temperature is controlled to 50 ° C. to 400 ° C., strain aging by solid solution C is promoted, and formation of a texture advantageous to shape freezing progresses during rolling. It is desirable to control the temperature range. Even if the sheet passing temperature is less than 50 ° C., there is no difference from rolling at room temperature from the viewpoint of texture formation, so 50 ° C. was set as the lower limit.

また、ひずみ時効の温度依存性は300〜400℃近傍で最大となり、それ以上に加熱しても、逆に、集合組織が劣化することから、400℃を上限とした。この観点からは、300℃以下にすることが更に望ましい。   Further, the temperature dependence of strain aging is maximum in the vicinity of 300 to 400 ° C., and even when heated to a higher temperature, the texture deteriorates conversely, so 400 ° C. is set as the upper limit. From this viewpoint, it is more desirable to set the temperature to 300 ° C. or lower.

加熱方法については特に規定せず、通電過熱、雰囲気炉加熱、ロールと板の摩擦による発熱、いずれでも同様の効果が得られる。   The heating method is not particularly defined, and the same effect can be obtained by any of current heating, atmospheric furnace heating, and heat generation due to friction between the roll and the plate.

めっき:
本発明によって製造された冷延鋼板にメッキを施す場合、メッキの種類は特に限定するものではなく、電気めっき、溶融めっき、蒸着めっき等のいずれでも本発明の効果が得られる。
Plating:
When the cold-rolled steel sheet produced according to the present invention is plated, the type of plating is not particularly limited, and the effects of the present invention can be obtained by any of electroplating, hot dipping, vapor deposition plating, and the like.

スキンパス:
以上の方法で製造された冷延鋼板にスキンパス圧延を施してもよい。スキンパス圧延を施すと、鋼板の形状を良好にするばかりでなく、鋼板の衝突エネルギー吸収能を高めることになる。この時、スキンパス圧延における圧下率が0.4%未満ではこの効果が小さいので、0.4%を下限とする。
Skin pass:
Skin pass rolling may be applied to the cold-rolled steel sheet produced by the above method. When the skin pass rolling is performed, not only the shape of the steel sheet is improved, but also the impact energy absorbing ability of the steel sheet is increased. At this time, if the rolling reduction in skin pass rolling is less than 0.4%, this effect is small, so 0.4% is made the lower limit.

また、圧下率が5%超になると通常、スキンパス圧延機の改造が必要となり、経済的なデメリットを生じるとともに、鋼板の加工性を著しく劣化させるので、5%を上限とする。   Further, if the rolling reduction exceeds 5%, it is usually necessary to modify the skin pass rolling mill, resulting in economic demerits and significant deterioration of the workability of the steel sheet, so the upper limit is 5%.

以上のような方法によって製造される冷延鋼板のミクロ組織はフェライトを主体とするが、目的に応じてベイナイト、オーステナイト、マルテンサイト、パーライト、炭化物等の析出物を含んでいてもよい。   The microstructure of the cold-rolled steel sheet produced by the above method is mainly composed of ferrite, but may contain precipitates such as bainite, austenite, martensite, pearlite, and carbide depending on the purpose.

本発明の実施例を挙げながら、本発明の技術的内容について説明する。   The technical contents of the present invention will be described with reference to examples of the present invention.

実施例として、表1に示した成分組成を有するAからLまでの鋼を用いて検討した結果について説明する。これらの鋼は、鋳造後そのまま、もしくは、一旦室温まで冷却された後に再加熱され、1200℃〜1330℃の温度範囲に加熱された後、表2に示す条件で熱間圧延され、種々の厚みの熱延鋼板とされた。   As an Example, the result examined using the steel from A to L which has the component composition shown in Table 1 is demonstrated. These steels are either as they are after casting or once cooled to room temperature and then reheated, heated to a temperature range of 1200 ° C. to 1330 ° C., and then hot rolled under the conditions shown in Table 2 to obtain various thicknesses. The hot-rolled steel sheet.

その後、この熱延鋼板に表2に示した冷延率の冷間圧延を施すことによって1.0mm厚とし、その後連続焼鈍工程にて焼鈍を行った。   Thereafter, the hot-rolled steel sheet was subjected to cold rolling at a cold rolling rate shown in Table 2 to obtain a thickness of 1.0 mm, and thereafter annealed in a continuous annealing process.

これら1.0mm厚の鋼板から45mm幅,270mm長さの試験片を作成し、ポンチ幅78mm、ポンチ肩R5、ダイス幅81mm、ダイ肩R4の金型を用いてハット曲げ試験を行った。成型高さは75mmとした。   Test pieces having a width of 45 mm and a length of 270 mm were prepared from these 1.0 mm-thick steel plates, and a hat bending test was performed using a die having a punch width of 78 mm, a punch shoulder R5, a die width of 81 mm, and a die shoulder R4. The molding height was 75 mm.

曲げ試験を行った試験片は、三次元形状測定装置にて板幅中心部の形状を測定し、図1に示した様に、点(i)と点(ii)の接線と点(iii)と点(iv)の接線の交点の角度から90°を引いた値の左右での平均値をスプリング・バック量、点(iii)と点(v)間の曲率の逆数を左右で平均化した値を1000倍したものを壁そり量、左右の点(v)間の長さからポンチ幅を引いた値を寸法精度として形状凍結性を評価した。なお曲げはr値の低い方向と垂直に折れ線が入るように行った。   The test piece subjected to the bending test was measured for the shape of the central part of the plate width with a three-dimensional shape measuring device, and as shown in FIG. 1, the tangent line of point (i) and point (ii) and point (iii) The average value on the left and right of the value obtained by subtracting 90 ° from the angle of the intersection of the tangent line with point (iv) and the inverse of the curvature between point (iii) and point (v) were averaged on the left and right A value obtained by multiplying the value by 1000 was evaluated by measuring the shape freezing property using the value obtained by subtracting the punch width from the length between the left and right points (v) as the dimensional accuracy. The bending was performed so that a polygonal line entered perpendicular to the direction of low r value.

ところで、スプリングバック量や壁そり量は、BHF(しわ押さえ力)によっても変化する。本発明の効果は、いずれのBHFで評価を行ってもその傾向は変わらないが、実機で実部品をプレスする際には、設備上の制約からあまり高いBHFはかけられないため、今回は、BHF28kNで各鋼種のハット曲げ試験を行った。なお、曲げは、r値の低い方向と垂直に折れ線が入るように行った。   By the way, the amount of springback and the amount of wall warp also change depending on BHF (wrinkle pressing force). The effect of the present invention does not change its tendency even if it is evaluated with any BHF, but when pressing an actual part with an actual machine, a very high BHF cannot be applied due to equipment limitations. A hat bending test of each steel type was performed at BHF 28 kN. The bending was performed so that a polygonal line was inserted perpendicular to the direction of low r value.

表2及び表3(表2の続き)には、各鋼板の製造条件が、本発明の範囲内にあるか否かを示している。   Tables 2 and 3 (continuation of Table 2) show whether or not the manufacturing conditions of each steel sheet are within the scope of the present invention.

表4には、前記の方法によって製造した1.0mm厚の冷延鋼板のr値、集合組織、BH量、及び、形状凍結性の指標が示されている。これから明らかなように、本発明で限定された条件を満たしているものは、いずれも良好な形状凍結性と焼付硬化能が両立している。   Table 4 shows the r-value, texture, BH content, and shape freezing index of the cold-rolled steel sheet having a thickness of 1.0 mm manufactured by the above method. As is apparent from the above, any one satisfying the conditions limited in the present invention has both good shape freezing property and bake hardenability.

Figure 0004126007
Figure 0004126007

Figure 0004126007
Figure 0004126007

Figure 0004126007
Figure 0004126007

Figure 0004126007
Figure 0004126007

自動車の軽量化を推進するためには、高強度鋼板の使用は是非とも必要である。本発明により、スプリング・バック量が少なく、形状凍結性に優れ、かつ、焼付硬化能を有する高強度鋼板が適用できるようになると、自動車車体の軽量化をより一層推進することができる。従って、本発明は、工業的に極めて高い価値のある発明である。   In order to promote the weight reduction of automobiles, the use of high-strength steel sheets is absolutely necessary. According to the present invention, when a high-strength steel sheet having a small amount of spring-back, excellent shape freezing property, and bake hardenability can be applied, the weight reduction of an automobile body can be further promoted. Therefore, the present invention is industrially extremely valuable.

ハット曲げ試験に用いた試験片の断面を示す図である。It is a figure which shows the cross section of the test piece used for the hat bending test.

Claims (11)

質量%で、C:0.001%以上、0.25%以下、
Si:0.001%以上、2.5%以下、
Mn:0.01%以上、2.5%以下、
P:0.15%以下、
S:0.03%以下、
Al:0.01%以上、2.0%以下、
N:0.01%以下、及び、
O:0.01%以下
を含有し、更に、Nbを含有し、
Ti、Nbを合計で0.01%以上、0.40%以下
を含有し、かつ、(式1)の関係を満足し、残部が鉄及び不可避的不純物からなり、少なくとも1/2板厚における板面の
(1){100}<011>〜{223}<110>方位群のX線ランダム強度比の平均値(A)が4.0以上、
(2){554}<225>、{111}<112>及び{111}<110>の結晶方位のX線ランダム強度比の平均値(B)が6.0以下、
(3)(A)/(B)≧1.2
を満足し、更に、圧延方向及びそれと直角方向のr値のうち少なくとも1つが0.7以下、BH量が50MPa以上であることを特徴とする形状凍結性と焼付硬化性に優れた冷延鋼板。
C%−{(Ti%−48/32S%−48/14N%)+48/93Nb%}/4
>0.001 ・・・(式1)
% By mass, C: 0.001% or more, 0.25% or less,
Si: 0.001% or more, 2.5% or less,
Mn: 0.01% or more, 2.5% or less,
P: 0.15% or less,
S: 0.03% or less,
Al: 0.01% or more, 2.0% or less,
N: 0.01% or less, and
O: 0.01% or less
Further containing Nb,
Ti and Nb in total 0.01% or more and 0.40% or less
(1) {100} <011> to {223} <of the plate surface at least ½ plate thickness , and the balance of (Formula 1) is satisfied and the balance is made of iron and inevitable impurities. 110> The average value (A) of the X-ray random intensity ratio of the orientation group is 4.0 or more,
(2) The average value (B) of X-ray random intensity ratios of crystal orientations of {554} <225>, {111} <112> and {111} <110> is 6.0 or less,
(3) (A) / (B) ≧ 1.2
Further, at least one of the r values in the rolling direction and the direction perpendicular to the rolling direction is 0.7 or less and the BH amount is 50 MPa or more, and the cold-rolled steel sheet having excellent shape freezing property and bake hardenability .
C%-{(Ti% -48 / 32S% -48 / 14N%) + 48 / 93Nb%} / 4
> 0.001 (Formula 1)
更に、質量%で、V:0.20%以下、
Cr:1.5%以下、及び
B:0.007%以下
の1種又は2種以上を含有することを特徴とする請求項1に記載の形状凍結性と焼付硬化性に優れた冷延鋼板。
Furthermore, in mass%, V: 0.20% or less,
Cr: 1.5% or less, and
B: One or more of 0.007% or less is contained, The cold-rolled steel sheet having excellent shape freezing property and bake hardenability according to claim 1 .
更に、質量%で、Mo≦1%、
Cu≦2%、
Ni≦1%、及び
Sn≦0.2%
の1種又は2種以上を含有することを特徴とする請求項1又は請求項2に記載の形状凍結性と焼付硬化性に優れた冷延鋼板。
Furthermore, by mass%, Mo ≦ 1%,
Cu ≦ 2%,
Ni ≦ 1%, and
Sn ≦ 0.2%
The cold-rolled steel sheet excellent in shape freezing property and bake hardenability according to claim 1 or 2, characterized by containing one or more of the following.
請求項1〜のいずれか1項に記載の化学成分を有するスラブを1150〜1350℃に再加熱し、Ar3変態温度〜(Ar3変態温度+100)℃温度範囲における圧下率の合計を25%以上とする熱間圧延を行い、Ar3変態温度以上で熱間圧延を終了し、巻取までの平均冷却速度が20℃/s以上になるように冷却し、600℃以下で巻き取り、酸洗後、25%以上80%以下の冷間圧延を施し、更に、3〜100℃/sで700℃〜(Ac3+100)℃の温度範囲に加熱した後、平均冷却速度3〜250℃/sで冷却することを特徴とする形状凍結性と焼付硬化性に優れた冷延鋼板の製造方法。 The slab having the chemical component according to any one of claims 1 to 3 is reheated to 1150 to 1350 ° C, and a total rolling reduction in the temperature range of Ar3 transformation temperature to (Ar3 transformation temperature +100) ° C is 25% or more. subjected to hot rolling to, and terminating the hot rolling at Ar3 transformation temperature or more, cooling so the average cooling rate until the winding is equal to or higher than 20 ° C. / s, and wound at 600 ° C. or less, pickling Thereafter, cold rolling at 25% or more and 80% or less is performed, and further heating at a temperature range of 700 ° C. to (Ac 3 +100) ° C. at 3 to 100 ° C./s, followed by cooling at an average cooling rate of 3 to 250 ° C./s. A method for producing a cold-rolled steel sheet having excellent shape freezing property and bake hardenability. 請求項に記載の形状凍結性と焼付硬化性に優れた冷延鋼板の製造方法により製造した冷延鋼板に、冷延後、焼鈍温度550℃以下で過時効処理を施すことを特徴とする形状凍結性と焼付硬化性に優れた冷延鋼板の製造方法。 A cold-rolled steel sheet produced by the method for producing a cold-rolled steel sheet having excellent shape freezing property and bake hardenability according to claim 4 is subjected to an overaging treatment at an annealing temperature of 550 ° C. or lower after cold rolling. A method for producing a cold-rolled steel sheet having excellent shape freezing properties and bake hardenability. 前記熱間圧延で得た熱延鋼板中のパーライトの体積分率が5%以下であることを特徴とする請求項4又は請求項5に記載の形状凍結性と焼付硬化性に優れた冷延鋼板の製造方法。 The cold rolling excellent in shape freezing property and bake hardenability according to claim 4 or 5, wherein a volume fraction of pearlite in the hot rolled steel sheet obtained by hot rolling is 5% or less. A method of manufacturing a steel sheet. 前記熱間圧延で得た熱延鋼板の時効指数A.I.が20MPa以上であることを特徴とする請求項のいずれか1項に記載の形状凍結性と焼付硬化性に優れた冷延鋼板の製造方法。 Aging index A. of hot-rolled steel sheet obtained by hot rolling. I. It claims 4-6 or method of manufacturing a superior cold-rolled steel sheet shape fixability and bake hardenability according to one of, characterized in that but not less than 20 MPa. 前記熱間圧延で得た熱延鋼板の集合組織と冷延圧下率が、次式(2)と(3)を満足することを特徴とする請求項のいずれか1項に記載の形状凍結性と焼付硬化性に優れた冷延鋼板の製造方法。
(a)+0.02×CR≧3.5 ・・・(2)
(b)+0.04×exp(0.05×CR)≦5.5 ・・・(3)
ここで
(a):熱延板の少なくとも1/2板厚における板面の{100}<011>〜{223}<110>方位群のX線ランダム強度比の平均値
(b):熱延板の少なくとも1/2板厚における板面の{554}<225>、{111}<112>及び{111}<110>の結晶方位のX線ランダム強度比の平均値
CR:冷延圧下率(%)
The texture and the cold rolling reduction ratio of the hot-rolled steel sheet obtained by the hot rolling satisfy the following formulas ( Formula 2) and ( Formula 3), according to any one of claims 4 to 7 : The manufacturing method of the cold-rolled steel plate excellent in the shape freezing property and bake hardenability of description.
(A) + 0.02 × CR ≧ 3.5 ( Expression 2)
(B) + 0.04 × exp (0.05 × CR) ≦ 5.5 ( Formula 3)
Here, (a): average value of X-ray random intensity ratio of {100} <011> to {223} <110> orientation group on the plate surface at at least 1/2 of the thickness of the hot rolled plate (b): hot rolled Average value CR of cold-rolling reduction ratio of X-ray random intensity ratio of crystal orientations of {554} <225>, {111} <112> and {111} <112> and {111} <110> on at least half the plate thickness (%)
前記冷間圧延時の通板温度を50〜400℃にすることを特徴とする請求項のいずれか1項に記載の形状凍結性と焼付硬化性に優れた冷延鋼板の製造方法。 The method for producing a cold-rolled steel sheet having excellent shape freezing property and bake hardenability according to any one of claims 4 to 8 , wherein a sheet passing temperature during the cold rolling is set to 50 to 400 ° C. . 請求項〜9のいずれか1項に記載の形状凍結性と焼付硬化性に優れた冷延鋼板の製造方法により製造した冷延鋼板にめっきを施すことを特徴とする形状凍結性と焼付硬化性に優れた冷延鋼板の製造方法。 Shape fixability and bake hardenability, characterized in that plating the cold rolled steel sheet manufactured by the method for producing a cold-rolled steel sheet excellent in shape fixability and bake hardenability according to any one of claims 4-9 A method for producing cold-rolled steel sheets with excellent properties. 請求項10のいずれか1項に記載の形状凍結性と焼付硬化性に優れた冷延鋼板の製造方法により製造した冷延鋼板に0.4%以上5%以下のスキンパス圧延を施すことを特徴とする形状凍結性と焼付硬化性に優れた冷延鋼板の製造方法。 Applying skin pass rolling of 0.4% or more and 5% or less to a cold-rolled steel sheet produced by the method for producing a cold-rolled steel sheet having excellent shape freezing property and bake hardenability according to any one of claims 4 to 10. A method for producing a cold-rolled steel sheet having excellent shape freezeability and bake hardenability.
JP2003359788A 2003-10-20 2003-10-20 Cold-rolled steel sheet excellent in shape freezing property and bake hardenability and method for producing the same Expired - Fee Related JP4126007B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003359788A JP4126007B2 (en) 2003-10-20 2003-10-20 Cold-rolled steel sheet excellent in shape freezing property and bake hardenability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003359788A JP4126007B2 (en) 2003-10-20 2003-10-20 Cold-rolled steel sheet excellent in shape freezing property and bake hardenability and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005120459A JP2005120459A (en) 2005-05-12
JP4126007B2 true JP4126007B2 (en) 2008-07-30

Family

ID=34615898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003359788A Expired - Fee Related JP4126007B2 (en) 2003-10-20 2003-10-20 Cold-rolled steel sheet excellent in shape freezing property and bake hardenability and method for producing the same

Country Status (1)

Country Link
JP (1) JP4126007B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4867258B2 (en) * 2005-09-29 2012-02-01 Jfeスチール株式会社 High-strength thin steel sheet with excellent rigidity and workability and manufacturing method thereof
JP4542515B2 (en) * 2006-03-01 2010-09-15 新日本製鐵株式会社 High strength cold-rolled steel sheet excellent in formability and weldability, high-strength hot-dip galvanized steel sheet, high-strength galvannealed steel sheet, manufacturing method of high-strength cold-rolled steel sheet, and manufacturing method of high-strength hot-dip galvanized steel sheet , Manufacturing method of high strength galvannealed steel sheet
JP4740099B2 (en) * 2006-03-20 2011-08-03 新日本製鐵株式会社 High-strength cold-rolled steel sheet and manufacturing method thereof
JP5212126B2 (en) * 2008-04-10 2013-06-19 新日鐵住金株式会社 Cold-rolled steel sheet excellent in deep drawability and manufacturing method thereof
JP5365181B2 (en) * 2008-12-24 2013-12-11 Jfeスチール株式会社 Steel sheet and manufacturing method thereof
JP5543814B2 (en) * 2010-03-24 2014-07-09 日新製鋼株式会社 Steel plate for heat treatment and method for producing steel member
JP5691563B2 (en) * 2011-01-28 2015-04-01 Jfeスチール株式会社 Method for producing member having excellent shape freezing property
RU2557862C1 (en) * 2011-07-29 2015-07-27 Ниппон Стил Энд Сумитомо Метал Корпорейшн High strength steel plate and high strength galvanised steel plate with good formability, and methods of their manufacturing
KR101405489B1 (en) * 2011-12-23 2014-06-12 주식회사 포스코 Enameling steel sheet with surface defect free and manufacturing method thereof
MX365928B (en) * 2012-07-31 2019-06-20 Nippon Steel Corp Star Cold-rolled steel sheet, electrolytic zinc-coated cold-rolled steel sheet, hot-dip zinc-coated cold-rolled steel sheet, alloyed hot-dip zinc-coated cold-rolled steel sheet, and methods for producing said steel sheets.

Also Published As

Publication number Publication date
JP2005120459A (en) 2005-05-12

Similar Documents

Publication Publication Date Title
EP2415894B1 (en) Steel sheet excellent in workability and method for producing the same
US7794552B2 (en) Method of producing austenitic iron/carbon/manganese steel sheets having very high strength and elongation characteristics and excellent homogeneity
KR100543956B1 (en) Steel plate excellent in shape freezing property and method for production thereof
EP3372703A1 (en) Ultra-high strength steel plate having excellent formability and hole-expandability, and method for manufacturing same
CN109328241B (en) Ultrahigh-strength and high-ductility steel sheet having excellent yield strength and method for producing same
JP6700398B2 (en) High yield ratio type high strength cold rolled steel sheet and method for producing the same
JP4740099B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP4384523B2 (en) Low yield ratio type high-strength cold-rolled steel sheet with excellent shape freezing property and manufacturing method thereof
JP3990553B2 (en) High stretch flangeability steel sheet with excellent shape freezing property and method for producing the same
EP3561121B1 (en) Cold-rolled steel sheet having excellent bendability and hole expandability and method for manufacturing same
JP3990549B2 (en) High stretch flangeability steel sheet with excellent shape freezing property and method for producing the same
JP4126007B2 (en) Cold-rolled steel sheet excellent in shape freezing property and bake hardenability and method for producing the same
JP4430444B2 (en) Low yield ratio type high strength hot-rolled steel sheet with excellent shape freezing property and manufacturing method thereof
JP3898954B2 (en) Ferritic thin steel sheet with excellent shape freezing property and manufacturing method thereof
JP4102284B2 (en) {100} &lt;011&gt; Cold rolled steel sheet manufacturing method with excellent shape freezing property with developed orientation
JP3569949B2 (en) Method of manufacturing thin steel sheet for processing with excellent bake hardenability and aging resistance
JP3814134B2 (en) High formability, high strength cold-rolled steel sheet excellent in shape freezing property and impact energy absorption ability during processing and its manufacturing method
JP4189192B2 (en) Low yield ratio type high-strength cold-rolled steel sheet excellent in workability and shape freezing property and manufacturing method thereof
JP3532138B2 (en) Ferrite thin steel sheet excellent in shape freezing property and method for producing the same
JP3990550B2 (en) Low yield ratio type high strength steel plate with excellent shape freezing property and its manufacturing method
JP3911226B2 (en) Method for producing cold-rolled steel sheet with excellent shape freezing property
JP4189209B2 (en) Steel plate with excellent shape freezing property and method for producing the same
JP4189194B2 (en) Cold-rolled steel sheet excellent in workability and shape freezing property and manufacturing method thereof
JP3908954B2 (en) Ferritic thin steel sheet with excellent shape freezing property and manufacturing method thereof
JP5071125B2 (en) High-strength cold-rolled steel sheet excellent in square tube drawing formability and shape freezing property, manufacturing method thereof, and automotive parts excellent in product shape

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080422

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080509

R151 Written notification of patent or utility model registration

Ref document number: 4126007

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140516

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees