JP3990549B2 - High stretch flangeability steel sheet with excellent shape freezing property and method for producing the same - Google Patents

High stretch flangeability steel sheet with excellent shape freezing property and method for producing the same Download PDF

Info

Publication number
JP3990549B2
JP3990549B2 JP2001170083A JP2001170083A JP3990549B2 JP 3990549 B2 JP3990549 B2 JP 3990549B2 JP 2001170083 A JP2001170083 A JP 2001170083A JP 2001170083 A JP2001170083 A JP 2001170083A JP 3990549 B2 JP3990549 B2 JP 3990549B2
Authority
JP
Japan
Prior art keywords
less
steel sheet
rolling
shape freezing
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001170083A
Other languages
Japanese (ja)
Other versions
JP2002363693A (en
JP2002363693A5 (en
Inventor
夏子 杉浦
直樹 吉永
学 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2001170083A priority Critical patent/JP3990549B2/en
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to US10/380,844 priority patent/US6962631B2/en
Priority to KR1020037004171A priority patent/KR100543956B1/en
Priority to CNB018160859A priority patent/CN1208490C/en
Priority to PCT/JP2001/008277 priority patent/WO2002024968A1/en
Priority to CA002422753A priority patent/CA2422753C/en
Priority to EP01970195A priority patent/EP1327695B1/en
Publication of JP2002363693A publication Critical patent/JP2002363693A/en
Publication of JP2002363693A5 publication Critical patent/JP2002363693A5/ja
Application granted granted Critical
Publication of JP3990549B2 publication Critical patent/JP3990549B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、形状凍結性に優れた高伸びフランジ性鋼板及びその製造方法に関するもので、自動車部品等が主たる用途である。本発明の鋼板は熱延鋼板と冷延鋼板の双方を含有する。
【0002】
【従来の技術】
自動車からの炭酸ガスの排出量を抑えるために、高強度鋼板を使用して自動車車体の軽量化が進められている。また、搭乗者の安全性確保のためにも、自動車車体には軟鋼板の他に高強度鋼板が多く使用されるようになってきている。更に自動車車体の軽量化を今後進めていくために、従来以上に高強度鋼板の使用強度レベルを高めたいという新たな要請が非常に高まりつつある。
【0003】
しかしながら、高強度鋼板に曲げ変形を加えると、加工後の形状がその高強度ゆえに、加工冶具の形状から離れて加工前の形状の方向にもどりやすくなるスプリング・バック現象や成形中の曲げ−曲げ戻しからの弾性回復により側壁部の平面が曲率を持った面になってしまう壁そり現象が起こり、狙いとする加工部品の形状が得られない寸法精度不良が生じる。従って、従来の自動車の車体では、主として440MPa以下の高強度鋼板に限って使用されてきた。
【0004】
すなわち、自動車車体にとっては、490MPa以上の高強度鋼板を使用して車体の軽量化を進めていく必要があるにもかかわらず、スプリング・バックや壁そりが起こりにくく寸法精度が良好、すなわち、形状凍結性の良い高強度鋼板が存在しないのが実状である。付け加えるまでもなく、440MPa以下の高強度鋼板や軟鋼板の加工後の形状凍結性を高めることも、自動車や家電製品などの製品の形状精度を高める上で極めて重要である。
【0005】
特開平10−72644号公報には、圧延面に平行な面における{200}集合組織の集積度が1.5以上であることを特徴とするスプリング・バック量(本発明での寸法精度)が小さいオーステナイト系ステンレス冷延鋼板が開示されている。しかし、フェライト系鋼板のスプリングバック現象や壁そり現象を低減する技術については何ら記載されていない。
【0006】
また、フェライト系ステンレス鋼のスプリングバック量を小さくする技術として、特開2001−32050号公報に、板厚中央部の集合組織において板面に平行な{100}面の反射X線強度比を2以上とする発明が開示されている。しかし、この公報には、壁そりの低減に関しては何ら記載がなく、{100}<011>〜{223}<110>方位群及び壁そり低減のために重要な方位である{112}<110>についても何ら記載がない。
【0007】
また、本発明者らの一部は、WO00/06791号にて形状凍結性の向上を目的として、{100}面と{111}面の比が1以上であるフェライト系薄鋼板を開示したが、この公報には、本発明のように{100}<011>〜{223}<110>方位群及び{112}<110>のX線ランダム強度比の値については記載されていない。
【0008】
また、本発明者らの一部は、特開2001−64750号公報にて、スプリングバック量を小さくする技術として、板面に平行な{100}面の反射X線強度比が3以上である冷延鋼板を開示したが、この発明は板厚最表面での{100}面反射X線強度比を規定することを特徴としており、本発明での規定である板厚1/2tでの{100}<011>〜{223}<110>方位群の平均X線強度比とはX線の測定位置が異なる。また、{112}<110>方位についても上記公報には何ら記載されていない。
【0009】
また、特開2000−297349号公報には、形状凍結性の良好な鋼板として、r値の面内異方性Δrの絶対値が0.2以下である熱延鋼板が開示されている。しかし、この発明は低降伏比化することによって形状凍結性を向上させることを特徴としており、本発明で述べているような思想に基づいた形状凍結性の向上を目的とした集合組織制御に関しては、上記公報に記載されていない。
【0010】
一方、伸びフランジ性も、鋼板を自動車用部品等へ加工する際に、欠くことのできない特性であるが、以上に述べた特許公開公報には、いずれも、伸びフランジ性と形状凍結性との両立の観点からの記載はない。高伸びフランジ性鋼板の形状凍結性が向上することで、自動車車体への高強度鋼板の適用範囲が一層広範なものとなる。
【0011】
【発明が解決しようとする課題】
軟鋼板や高強度鋼板に曲げ加工を施すと、鋼板の強度に依存しながら大きなスプリング・バックや壁そりなどの形状不良が発生し、加工成形部品の形状凍結性が悪いのが現状である。また、伸びフランジ性は、鋼板の加工の際に欠くことができない特性であり、高強度鋼板を自動車部品等に適用するためには、形状凍結性と伸びフランジ性の両方に優れていることが望まれる。
【0012】
本発明は、この問題を抜本的に解決して、形状凍結性に優れた高伸びフランジ性鋼板及びその製造方法を提供するものである。
【0013】
【課題を解決するための手段】
従来の知見によれば、スプリング・バックや壁そり等の形状不良を抑えるための方策として、鋼板の変形応力を低くすることが、とりあえず重要であると考えられていた。そして、変形応力を低くするためには、引張強さの低い鋼板を使用せざるをえなかった。しかし、これだけでは、鋼板の曲げ加工性を向上させ、スプリング・バック量を低く抑えるための根本的な解決にはならない。
【0014】
そこで、本発明者らは、曲げ加工性を向上させてスプリング・バックや壁そりの発生を根本的に解決するため、新たに、鋼板の集合組織の曲げ加工性への影響に着目して、その作用効果を詳細に調査、研究した。そして、曲げ加工性に優れた鋼板を見いだしたものである。
すなわち、{100}<011>〜{223}<110>方位群と、{554}<225>、{111}<112>、{111}<110>の3つの結晶方位、更に、{112}<110>または{100}<011>の各方位の強度を制御すること、更には、圧延方向のr値および圧延方向と直角方向のr値のうち少なくとも1つをできるだけ低い値にすることで、曲げ加工性が飛躍的に向上することを明らかにしたものである。
【0015】
また、高伸びフランジ性と形状凍結性の両立のためには、フェライト相またはベイナイト相を最大相とし、伸びフランジ性を阻害する粒界の粗大セメンタイトをできるだけ低減することが重要であることを、新たに見いだした。
本発明は、前述の知見に基づいて構成されており、その主旨とするところは、以下のとおりである。
【0016】
(1)質量%で、
C:0.034%以上、0.15%以下、
Si:0.001%以上、3.5%以下、
Mn:0.05%以上、3.0%以下、
P:0.2%以下、
S:0.03%以下、
Al:0.01%以上、3.0%以下、
N:0.01%以下、
O:0.01%以下を含有し、
更に、
Ti:0.01%以上、2.0%以下、
Nb:0.01%以上、2.0%以下
の1種または2種を含有し、残部は鉄および不可避的不純物よりなり、フェライトまたはベイナイトを面積率で最大相とし、粒界における鉄炭化物の占有率が0.1以下で、かつ、この鉄炭化物の最大粒子径が1μm以下であり、1/2板厚における板面の{100}<011>〜{223}<110>方位群のX線ランダム強度比の平均値が3.0以上で、かつ、これらの方位群の中で{112}<110>方位のX線ランダム強度比が最大かつ4.0以上を満足し、更に、{554}<225>、{111}<112>および{111}<110>の3つの結晶方位のX線ランダム強度比の平均値が3.5以であり、加えて、圧延方向のr値および圧延方向と直角方向のr値のうち少なくとも1つが0.7以下であることを特徴とする形状凍結性に優れた高伸びフランジ性鋼板。
【0019】
(2)更に、質量%で、B:0.01%以下を含有することを特徴とする(1)に記載の形状凍結性に優れた高伸びフランジ性鋼板。
(3)更に、質量%で、Cr:3%以下を含有することを特徴とする(1)または(2)に記載の形状凍結性に優れた高伸びフランジ性鋼板。
【0020】
(4)更に、質量%で、
Ca:0.0005%以上、0.005%以下を含有することを特徴とする(1)〜(3)の何れか1項に記載の形状凍結性に優れた高伸びフランジ性鋼板。
【0021】
)前記(1)〜()の何れか1項に記載の鋼板にめっきをしたことを特徴とする形状凍結性に優れた高伸びフランジ性鋼板。
)前記(1))の何れか1項に記載の鋼板を製造する方法であって、()〜()の何れか1項に記載の成分からなる鋼片を熱間圧延するに当たり、1150〜1350℃に加熱しAr3変態温度〜(Ar3+100)℃の温度範囲における圧下率の合計が25%以上となるように熱間圧延し、Ar3変態以上で熱間圧延を終了し、熱間圧延終了温度から(1)式に示す鋼の化学成分(質量%)で決まる臨界温度To(℃)まで平均冷却速度10℃/s以上で冷却し450〜750℃で巻き取ることを特徴とする形状凍結性に優れた高伸びフランジ性鋼板の製造方法。
【0022】
To=−650.4×C%+B (1)
ここで、
B=−50.6×Mneq+894.3
Mneq=Mn%+0.13×Si%+0.55×Cr%−0.50×Al
(7)前記Ar変態温度〜(Ar+100)℃の温度範囲において、少なくとも1パス以上を摩擦係数が0.2以下となるように圧延することを特徴とする(6)に記載の形状凍結性に優れた高伸びフランジ性鋼板の製造方法。
【0024】
)前記(または(7)に記載の鋼板を酸洗し、80%未満の冷間圧延を施した後、600℃〜800℃の温度範囲に加熱し、冷却することを特徴とする形状凍結性に優れた高伸びフランジ性鋼板の製造方法。
【0025】
【発明の実施の形態】
以下に本発明の内容を詳細に説明する。
1/2板厚における板面の{100}<011>〜{223}<110>方位群のX線ランダム強度比の平均値、{554}<225>、{111}<112>および{111}<110>の3つの結晶方位のX線ランダム強度比の平均値ならびに、{112}<110>又は{100}<011>方位のX線ランダム強度比:
これらの値は、本発明で特に重要な特性値である。板厚中心位置での板面のX線回折を行い、ランダム試料に対する各方位の強度比を求めたときの、{100}<011>〜{223}<110>方位群の平均値が3.0以上でなくてはならない。これが3.0未満では形状凍結性が劣悪となる。
【0026】
この方位群に含まれる主な方位は、{100}<011>、{116}<110>、{114}<110>、{113}<110>、{112}<110>、{335}<110>および{223}<110>である。これら各方位のX線ランダム強度比は、{110}極点図に基づきベクトル法により計算した3次元集合組織や、{110}、{100}、{211}、{310}極点図のうち複数の極点図(好ましくは3つ以上)を用いて級数展開法で計算した3次元集合組織から求めればよい。
【0027】
例えば、後者の方法における上記各結晶方位のX線ランダム強度比には、3次元集合組織のφ2=45゜断面における(001)[1−10]、(116)[1−10]、(114)[1−10]、(113)[1−10]、(112)[1−10]、(335)[1−10]、(223)[1−10]の強度をそのまま用ればよい。
【0028】
{100}<011>〜{223}<110>方位群の平均値とは、上記の各方位の相加平均である。上記の全ての方位の強度を得ることができない場合には、{100}<011>、{116}<110>、{114}<110>、{112}<110>、{223}<110>の各方位の相加平均で代替しても良い。
【0029】
これらの方位群の中で{100}<011>と{112}<110>方位は、壁そりの低減に極めて効果的な方位である、したがって、これらの方位群の中で、{100}<011>又は{112}<110>方位のX線ランダム強度比が最大かつ4.0以上になると形状凍結性は更に向上するので好ましい。
更に、1/2板厚における板面の{554}<225>、{111}<112>および{111}<110>の3つの結晶方位のX線ランダム強度比の平均値は3.5以下でなくてはならない。これが3.5超であると、{100}<011>〜{223}<110>方位群の強度が適正であっても、良好な形状凍結性を得ることが困難となる。{554}<225>、{111}<112>および{111}<110>のX線ランダム強度比も、上記の方法に従って計算した3次元集合組織から求めれば良い。
【0030】
より望ましくは、{100}<011>〜{223}<110>方位群のX線ランダム強度比の平均値が4.0以上、{100}<011>または{112}<110>方位のX線ランダム強度比が5.0以上、{554}<225>、{111}<112>および{111}<110>のX線ランダム強度比の相加平均値が2.5未満である。
【0031】
以上述べた結晶方位のX線強度が曲げ加工時の形状凍結性に対して重要であることの理由は必ずしも明らかではないが、曲げ変形時の結晶のすべり挙動と関係があるものと推測される。
X線回折に供する試料は、機械研磨などによって鋼板を所定の板厚まで減厚し、次いで、化学研磨や電解研磨などによって歪みを除去すると同時に、板厚1/2面が測定面となるように作製する。鋼板の板厚中心層に偏析帯や欠陥などが存在し測定上不都合が生ずる場合には、板厚の3/8〜5/8の範囲で適当な面が測定面となるように、上述の方法に従って試料を調整して測定すればよい。
【0032】
当然のことであるが、上述のX線強度の限定が板厚1/2近傍だけでなく、なるべく多くの厚みについて満たされることで、より一層形状凍結性が良好になる。なお、{hkl}<uvw>で表される結晶方位とは、板面の法線方向が<hkl>に平行で、圧延方向が<uvw>と平行であることを示している。
圧延方向のr値(rL)および圧延方向と直角方向のr値(rC):
r値は、本発明において重要である。すなわち、本発明者等が鋭意検討の結果、上述した種々の結晶方位のX線強度が適正であっても、必ずしも良好な形状凍結性が得られないことが判明した。上記のX線強度と同時に、rLおよびrCのうち少なくとも1つが0.7以下であることが必須である。より好ましくは0.55以下である。
【0033】
rLおよびrCの下限は特に定めることなく本発明の効果を得ることができるが、r値はJIS5号引張試験片を用いた引張試験により評価する。引張歪みは、通常、15%であるが、均一伸びが15%を下回る場合には、均一伸びの範囲でできるだけ15%に近い歪みで評価すればよい。
なお、曲げ加工を施す方向は加工部品によって異なるので特に限定するものではないが、r値が小さい方向に対して垂直もしくは垂直に近い方向に折り曲げる加工を主とすることが好ましい。
【0034】
ところで、一般に集合組織とr値とは相関があることが知られているが、本発明においては、既述の結晶方位のX線強度比に関する限定と、r値に関する限定とは互いに同義ではなく、両方の限定が同時に満たされなくては、良好な形状凍結性を得ることはできない。
組織:
穴拡げ性と形状凍結性の観点から、組織はフェライトまたはベイナイト相を最大相とする。ただし、フェライトとベイナイトの各々の集合組織を比べると、ベイナイト部分で、形状凍結に有利な{100}<011>〜{223}<110>方位の集合組織が発達しやすい。この理由は明らかではないが、ベイナイト組織が熱延中に形成される形状凍結性に優位なオーステナイト集合組織を受け継ぎやすいためと考えられる。
【0035】
したがって、ベイナイトの占積率が大きい方がより望ましい。この観点からはベイナイトの面積率は35%超であることが望ましい。
フェライトまたはベイナイトの面積率は、板厚中央部を光学顕微鏡により100〜500倍で5視野以上観察し、その平均値より求めることとする。また、加工ままのフェライトは成形性を著しく損なうことから、ここで述べる面積率には含まないものとする。
【0036】
また、粒界における鉄炭化物の占有率が0.1超または鉄炭化物の最大粒子径が1μm超になると、粒界でこれらの鉄炭化物が連結し、伸びフランジ性が著しく劣化する。したがって、粒界における鉄炭化物の占有率を0.1以下、かつ、この鉄炭化物の最大粒子径を1μm以下にする必要がある。
鉄炭化物の占有率および最大粒子径は小さいほど望ましいことから下限は特に規定しない。鉄炭化物による粒界の占有率(−)は、鉄材の断面サンプルにおいてある領域での粒界の総長さLと、鉄炭化物によって占有されている粒界の長さの総和dの比d/Lで与えられる。測定は200倍以上の倍率の光学顕微鏡観察写真において、画像処理によってLおよびdを直接求めてもよい。
【0037】
より簡便な方法としては、上記写真上に描いたn本の直線と粒界との交点の数Nと、N個の交点の中でその交点の位置に鉄炭化物が存在した場合の数Mを用いてM/Nで求めてもよい。この時採用する直線の数Nを3以上とすることで十分な精度が確保できる。また、写真の倍率はこの1本の直線と粒界の交点の数が10以上になるように選択することで十分な精度が確保できる。
【0038】
次に、成分範囲の限定条件について述べる。Cの下限を0.001%としたのは、実用鋼で得られる下限値を用いることにしたためである。0.15%超になると伸びフランジ性が劣化するので、上限を0.15%に設定する。なお、Cの下限は実施例の表1の鋼種BのC量に基づいて、0.034%とした。
Siは鋼板の機械的強度を高めるのに有効な元素であるが、3.5%超となると加工性が劣化したり、表面疵が発生したりするので、3.5%を上限とする。一方、実用鋼でSiを0.001%未満とするのは困難であるので、0.001%を下限とする。
【0039】
Mnも鋼板の機械的強度を高めるのに有効な元素であるが、3.0%超となると加工性が劣化するので、3.0%を上限とする。一方、実用鋼でMnを0.05%未満とするのはコスト高となり、材質上のメリットもないので、0.05%を下限とする。また、Mn以外に、Sによる熱間割れの発生を抑制するTiなどの元素が十分に添加されない場合には、質量%で、Mn/S≧20となるMn量を添加することが望ましい。
【0040】
PとSは、それぞれ0.2%以下、0.03%以下とする。これは加工性の劣化や熱間圧延または冷間圧延時の割れを防ぐためである。
Alは脱酸のために0.01%以上添加する。しかし、多すぎると加工性が低下したり、表面性状が劣悪となるため、上限を3.0%とする。
NとOは不純物であり、加工性を悪くさせないように、それぞれ、0.01%以下、0.01%以下とする。
【0041】
Ti、Nbは、本発明において重要な元素である。これらの元素は、炭化物、窒化物として微細析出し、強度上昇に効果があるとともに鉄炭化物を低減させることから、伸びフランジ性も改善される。また、これらの元素がオーステナイト域において固溶状態で存在すると、形状凍結性向上に寄与する集合組織、特に、{112}<110>方位を先鋭化する効果がある。したがって、所望される強度に応じて、それぞれ0.01%以上添加する。ただし過度に添加しても格段の効果はなく、むしろ加工性や表面性状を劣化させるので、それぞれ2.0%を上限とした。
【0042】
Crは、機械的強度を高めたり材質を改善する効果があるので、必要に応じて、0.001%以上を添加することが望ましい。しかし、過度の添加は逆に加工性を劣化させるので、上限を3%とする。
aは硫化物の形態を制御することで伸びフランジ性を改善するので、必要に応じて、0.0005%以上添加することが望ましい。しかし、過度に添加しても格段の効果はなく、コスト高となるので、上限を0.005%と設定した。
【0043】
なお、本発明では特に限定しないが、脱酸の目的や硫化物の形態制御の目的でMgを0.01%以下添加しても構わない。
メッキ:
メッキの種類は特に限定するものではなく、電気めっき、溶融めっき、蒸着めっき等の何れでも本発明の効果が得られる。
【0044】
次に製造方法について説明する。
熱間圧延に先行する製造方法は特に限定するものではない。すなわち、高炉、転炉や電炉等による溶製に引き続き各種の2次製錬を行い、次いで、通常の連続鋳造、インゴット法による鋳造の他、薄スラブ鋳造などの方法で鋳造すればよい。連続鋳造の場合には一度低温まで冷却したのち、再度加熱してから熱間圧延しても良いし、鋳造スラブを連続的に熱延しても良い。原料にはスクラップを使用しても構わない。
【0045】
本発明の形状凍結性に優れた鋼板は、上記成分の鋼を鋳造した後、熱間圧延後冷却まま、熱間圧延後熱処理、熱間圧延後冷却・酸洗し冷延した後に焼鈍、あるいは、熱延鋼板もしくは冷延鋼板にめっきを施しもしくは溶融めっきラインにて熱処理を施したまま、更には、これらの鋼板に別途表面処理を施すことによっても得られる。
【0046】
熱延の加熱温度は、いずれの場合も1150〜1350℃の温度範囲で行う。加熱温度が1150℃未満ではTiやNbの炭化物が再固溶しないことから、集合組織を先鋭化させる効果が低減するとともに、熱延後粗大炭化物として穴拡げ性を劣化させる。また、加熱温度を1350℃超にしても効果が飽和するばかりでコスト、設備上デメリットが大きいことから、上限を1350℃とする。
【0047】
前記(1)で述べた所定のX線強度レベルの各結晶方位を達成するためには、Ar3変態温度以上で熱間圧延を行う。熱間圧延の後半に、Ar3変態温度以上(Ar3+100)℃以下で合計25%以上の圧延が行われないと、圧延されたオーステナイトの集合組織が十分に発達しないために、この様な冷却を施しても、最終的に得られる熱延鋼板の板面に、前記(1)の発明で述べた所定のX線強度レベルの各結晶方位が得られない。したがって、Ar3変態温度以上(Ar3+100)℃以下での圧下率合計の下限値を25%とした。
【0048】
Ar3変態温度以上(Ar3+100)℃以下での合計圧下率は高いほどよりシャープな集合組織形成が期待されるので、35%以上とすることが好ましいが、この圧下率合計が97.5%を越えると、圧延機の剛性を過剰に高める必要があり、経済上のデメリットを生じるので、望ましくは97.5%以下とする。
熱間圧延終了温度はAr3変態温度より低いと、{100}<011>〜{223}<110>方位群の中で{112}<110>方位が特に発達するという現象が発現しなくなり、(Ar3変態温度+100)℃を超えると、集合組織全体がランダム化することから形状凍結性が劣化する。したがってAr3変態温度〜(Ar3変態温度+100)℃に規定する。この観点から熱延終了温度の上限は(Ar3変態温度+50)℃が望ましい。
【0049】
Ar3変態温度以上(Ar3+100)℃以下の熱間圧延時の熱間圧延ロールと鋼板との摩擦係数が0.2を越えている場合には、鋼板表面近傍における板面に{110}面を主とする結晶方位が発達し、形状凍結性が劣化するので、より良好な形状凍結性を指向する場合には、Ar3変態温度以上(Ar3+100)℃以下の熱間圧延時における少なくとも1パスについて、熱間圧延ロールと鋼板との摩擦係数を0.2以下とすることが望ましい。
【0050】
この摩擦係数は低ければ低いほど好ましく下限は定めないが、更に良好な形状凍結性が要求される場合には、Ar3変態温度以上(Ar3+100)℃以下の熱間圧延の全パスについて、摩擦係数を0.15以下とすることが望ましい。摩擦係数の測定方法は特に規定しないが、一般によく知られているように、先進率と圧延加重から求めるのが望ましい。
【0051】
このようにして形成されたオーステナイトの集合組織を最終的な熱延鋼板に受け継がせるためには、熱間圧延終了後、下記(1)式に示すTo温度以下まで、平均冷却速度10℃/s以上で冷却する必要がある。
従って、鋼の成分(質量%)で決まるToを巻き取り温度の上限とした。このTo温度は、オーステナイトとオーステナイトと同一成分のフェライトが同一の自由エネルギーを持つ温度として熱力学的に定義され、C以外の成分の影響も考慮して、(1)式を用いて鋼板の化学成分(質量%)で簡易的に計算することができる。To(℃)に及ぼす本発明に規定されたこれら以外の成分の影響はそれほど大きくないので、ここでは無視した。
【0052】
To=−650.4×C%+B (1)
ここで、
B=−50.6×Mneq+894.3
Mneq=Mn%+0.13×Si%+0.55×Cr%−0.50×Al
平均冷却速度が大きくなると、巻取中のTiCまたはNbCの析出の駆動力が増加することから、平均冷却速度は、好ましくは30℃/s以上、更に好ましくは50℃/s以上である。一方、平均冷却速度を200℃/s超にすることは実用上困難なことから、200℃/s以下とするのが望ましい。
【0053】
冷却後の巻取は450〜750℃の温度範囲で行う。巻取温度が450℃未満になると、TiCまたはNbCの微細析出が低減し、穴拡げ性を劣化させる鉄炭化物が増加する。また、750℃超ではTiCまたはNbCが粒界にて粗大化し、穴拡げ性を劣化させる。以上の観点から、望ましくは500〜700℃の温度範囲で巻き取る。
【0054】
1/2板厚における板面の{100}<011>〜{223}<110>方位群のX線ランダム強度比の平均値が3.0以上で、かつ、これらの方位群の中で{100}<011>方位のX線ランダム強度比が最大かつ4.0以上を満足し、更に、{554}<225>、{111}<112>および{111}<110>の3つの結晶方位のX線ランダム強度比の平均値が3.5以下の、X線強度レベルの各結晶方位を達成するためには(Ar3+50)℃以上(Ar3+150)℃以下で合計25%以上の圧延を行う必要がある。この条件を満足しないと、オーステナイトの加工が不十分で集合組織が十分に発達しない。(Ar3+50)〜(Ar3+150)℃での合計圧下率は高いほど、よりシャープな集合組織形成が期待されるので、35%以上とすることが好ましいが、この圧下率合計が97.5%を越えると、圧延機の剛性を過剰に高める必要があり、経済上のデメリットを生じるので、望ましくは97.5%以下とする。
【0055】
{100}<011>方位への集合組織の集積を著しく高めるためには、引き続き、(Ar3−100)〜(Ar3+30)℃で5〜35%の圧下を加えることが極めて重要である。なぜならば、高温域で十分に加工されたオーステナイトが、少なくとも部分的に再結晶した段階で、更に適量の圧下を加え、その直後にフェライト変態させることが、{100}<011>方位の発達に極めて重要だからである。
【0056】
したがって、(Ar3−100)℃未満で圧下しても、既にフェライト変態が完了した領域が大きすぎるために、{100}<011>が発達しない。
(Ar3+30)℃超で圧下を加えると、フェライト変態までに導入した歪みが回復してしまうために、{100}<011>が発達しない。
また、圧下率が5%未満では、{100}<011>〜{223}<110>を含む集合組織全体がランダム化してしまい、35%を超えると、{100}<011>方位への集積が低くなるので、(Ar3−100)〜(Ar3+30)℃の温度範囲での圧下率は5〜35%とする。上述の観点から圧下率は、望ましくは10〜25%とする。
【0057】
熱間圧延は(Ar3−100)〜(Ar3+30)℃の温度範囲で終了する。熱延終了温度が(Ar3−100)未満になると加工性が著しく劣化し、(Ar3+30)℃超になると集合組織の集積が不十分なため形状凍結性が劣化する。
ここで熱間圧延時の熱間圧延ロールと鋼板との摩擦係数が0.2を越えている場合には、鋼板表面近傍における板面に、{110}面を主とする結晶方位が発達し、形状凍結性が劣化するために、より良好な形状凍結性を指向する場合には、(Ar3−100)〜(Ar3+150)℃の温度範囲において、少なくとも1パスについては、ロールと鋼板との摩擦係数を0.2以下とする圧延を行うことが好ましい。
【0058】
この摩擦係数は低ければ低いほど望ましく、特に厳しい形状凍結性が要求される場合には、(Ar3−100)〜(Ar3+150)℃の熱間圧延の全パスについて摩擦係数を0.15以下とすることが望ましい。
巻取は450〜750℃の温度範囲で行う。巻取温度が450℃未満になると、TiCまたはNbCの微細析出が低減し、穴拡げ性を劣化させる鉄炭化物が増加する。また、750℃超ではTiCまたはNbCが粒界にて粗大化し、穴拡げ性を劣化させる。以上の観点から、望ましくは500〜700℃の温度範囲で巻き取る。
【0059】
熱間圧延においては粗圧延後にシートバーを接合し、連続的に仕上げ圧延をしても良い。その際に粗バーを、一旦コイル状に巻き、必要に応じて、保温機能を有するカバーに格納し、再度巻き戻してから接合を行ってもよい。熱延鋼板には、必要に応じてスキンパス圧延を施してもよい。スキンパス圧延には、加工成形時に発生するストレッチャーストレインの防止や形状矯正の効果があることは言うまでもない。
【0060】
このようにして得られた熱延鋼板を冷間圧延し、焼鈍して最終的な薄鋼板とする際に、冷間圧延の全圧下率が80%以上となる場合には、一般的な冷間圧延−再結晶集合組織である板面に平行な結晶面のX線回折積分面強度比の{111}面や{554}面成分が高くなり、本発明の特徴である前記(1)に係る発明の結晶方位の規定を満たさなくなるので、冷間圧延の圧下率の上限を80%未満とした。形状凍結性を高めるためには、冷間圧下率を70%以下に制限することが望ましい。
【0061】
冷間圧延率の下限は特に定めることなく本発明の効果を得ることができるが、結晶方位の強度を適当な範囲に制御するためには、3%以上とすることが好ましい。
このような範囲で冷間加工された冷延鋼板を焼鈍する際に、焼鈍温度が600℃未満の場合には、加工組織が残留し成形性を著しく劣化させるので、焼鈍温度の下限を600℃とする。一方、焼鈍温度が800℃超になると、TiCおよびNbCが粗大化して、穴拡げ性が劣化するとともに形状凍結性も低下する。従って焼鈍温度は800℃以下とする。冷延鋼板には、必要に応じてスキンパス圧延を施してもよい。
【0062】
なお、本発明に係る鋼板は曲げ加工だけでなく、曲げ、張り出し、絞り等、曲げ加工を主体とする複合成形にも適用できる。
【0063】
【実施例】
(実施例)
本発明の実施例を挙げながら、本発明の技術的内容について説明する。
まず、表1に示した成分組成を有するAからKまでの鋼を用いて検討した結果について説明する。これらの鋼は、鋳造後、そのままもしくは一旦室温まで冷却された後に再加熱し、1250℃に加熱され、その後熱間圧延が施され、最終的には1.4mm、3mmもしくは8.0mm厚の熱延鋼板とした。3.0mmおよび8.0mm厚の熱延鋼板は冷間圧延することによって1.4mm厚とし、その後連続焼鈍工程にて焼鈍を行った。
【0064】
これら1.4mm厚の鋼板から50mm幅、270mm長さの試験片を作成し、ポンチ幅78mm、ポンチ肩R5、ダイ肩R5の金型を用いてハット曲げ試験を行った。
曲げ試験を行った試験片は三次元形状測定装置にて板幅中心部の形状を測定し、図1に示した様に、点(1)と点(2)の接線と点(3)と点(4)の接線の交点の角度から90°を引いた値の左右での平均値をスプリング・バック量、点(3)と点(5)間の曲率の逆数を左右で平均化した値を壁そり量、左右の点(5)間の長さからポンチ幅を引いた値を寸法精度として形状凍結性を評価した。なお、曲げは、r値の低い方向と垂直に折れ線が入るように行った。
【0065】
ところで、図2および図3に示した様にスプリング・バック量や壁そり量は、BHF(しわ押さえ力)によっても変化する。本発明の効果は、いずれのBHFで評価を行ってもその傾向は変わらないが、実機で実部品をプレスする際には、あまり高いBHFはかけられないことから、今回は、BHF29kNで各鋼種のハット曲げ試験を行った。
X線の測定は鋼板の代表値として板厚の7/16厚の位置で板面に平行なサンプルを調整し、実施した。
【0066】
穴拡げ試験は、1辺100mmの試験片の中央に径10mmの打ち抜き穴を加工し、その初期穴を頂角60°の円錐ポンチにて押し広げ、割れが鋼板を貫通した時点での穴径dの初期穴径10mmに対する穴広げ率λ(次式)で評価した。
λ={(d−10)/10}×100(%)
鉄炭化物の粒界占有率は200倍の光学顕微鏡観察写真上に4本の直線を引き、その直線と粒界との交点の数NとN個の交点のうちその交点の位置に鉄炭化物が存在した場合の数Mを用いてM/Nから求めた。
【0067】
【表1】

Figure 0003990549
【0068】
【表2】
Figure 0003990549
【0069】
表2には、各鋼板の製造条件が本発明の範囲内にあるか否かを示している。「熱延条件1」は熱延がAr3変態温度以上で完了する場合にAr3変態温度以上(Ar3+100)℃以下での圧下率の合計が25%以上で熱間圧延終了温度もその温度範囲にある場合について「○」、その温度域での圧下率の合計が25%未満の場合に「×」とした。
【0070】
「熱延条件2−1」は(Ar3+50)〜(Ar3+150)℃の温度範囲における圧下率の合計が25%以上の場合に「○」、圧下率の合計が25%未満の場合に「×」「熱延条件2−2」は、引き続き、(Ar3−100)〜(Ar3+30)℃の温度範囲で圧下率の合計が5〜35%である場合について「○」、この条件を満たさない場合を「×」とした。
【0071】
以上のいずれの場合にも、それぞれの温度範囲で、少なくとも1パス以上についての摩擦係数が0.2以下の場合には「潤滑」の欄に「○」、全パスにおける摩擦係数が0.2超の場合には「△」とした。熱延巻取は全て(1)式で求まるTo温度以下とした。
このような熱延鋼板を1.4mm厚に冷延する場合、冷延圧下率が80%以上の場合には「冷延圧下率」を「×」とし、「80%未満」の場合に「○」とした。
【0072】
また、焼鈍温度が600℃以上(Ac3+100)℃以下の場合に「焼鈍温度」を「○」とし、それ以外の場合を「×」と記した。製造の条件として関係のない項目は「―」とした。熱延鋼板および冷延鋼板のいずれに対しても、スキンパス圧延を0.5〜1.5%の範囲で施した。
表3に、前記の方法によって製造された1.4mm厚の熱延鋼板と冷延鋼板の鉄炭化物粒界占有率M/N、鉄炭化物の最大粒子径d、機械的特性値を、表4および表5(表4の続き)にX線ランダム強度比、寸法精度、スプリング・バック量、壁そり量および穴拡げ率を示した。なお、本発明の条件を満たしている鋼板の組織はいずれもフェライト又はベイナイトが主相であった。
【0073】
【表3】
Figure 0003990549
【0074】
【表4】
Figure 0003990549
【0075】
【表5】
Figure 0003990549
【0076】
本発明の番号のものは、発明外の番号のものに比べて、スプリング・バック量、壁そり量が小さくなり、結果として、寸法精度が向上していることがわかる。本発明のものは、いずれのケースも伸びフランジ性も良好である。
一方、鉄炭化物の粒界占有率M/N、鉄炭化物の最大粒子径dが本発明の規定を満足していないIおよびJは、形状凍結性は良好なものの、伸びフランジ性が劣化している。鋼Hに関しては形状凍結性も伸びフランジ性も劣化している。
【0077】
即ち、本発明で限定される成分、各結晶方位のX線ランダム強度比、r値、組織を満たして、初めて良好な形状凍結性を有する高伸びフランジ性鋼板の製造が可能になるのである。
図4には、それぞれ引張強度で規格化した寸法精度と穴拡げ率の関係を示す。これからも、本発明の条件を満足したものは、寸法精度と伸びフランジ性のいずれにも優れていることが明らかである。
【0078】
各結晶方位のX線ランダム強度比やr値が形状凍結性に重要であることの機構については、現在のところ、必ずしも明らかとはなっていない。おそらく、曲げ変形時にすべり変形の進行を容易にすることで、結果的に曲げ変形時のスプリング・バック量、壁そり量が小さくなり、その結果、寸法精度、すなわち形状凍結性が向上したものと理解される。
【0079】
【発明の効果】
本発明により薄鋼板の集合組織とr値を制御することにより、その曲げ加工性は著しく向上し、また、組織と炭化物を制御することによって穴拡げ性と曲げ加工性を両立でき、スプリング・バック量、壁そり量が少なく、曲げ加工を主体とする形状凍結性と、穴拡げ性に優れた薄鋼板が提供できるようになった。特に、従来は形状不良の問題から高強度鋼板の適用が難しかった部品にも高強度鋼板が使用できるようになる。自動車の軽量化を推進するためには、高強度鋼板の使用は是非とも必要である。スプリング・バック量、壁そり量が少なく、形状凍結性と穴拡げ性に優れた高強度鋼板が適用できるようになると、自動車車体の軽量化をより一層推進することができる。従って、本発明は、工業的に極めて高い価値のある発明である。
【図面の簡単な説明】
【図1】ハット曲げ試験に用いた試験片の断面図である。
【図2】スプリングバック量とBHF(しわ押さえ力)の関係を示す図である。
【図3】壁そり量とBHF(しわ押さえ力)の関係を示す図である。
【図4】引張強度で規格化された寸法精度と穴拡げ率の関係を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high stretch flangeability steel sheet excellent in shape freezing property and a method for producing the same, and is mainly used for automobile parts and the like. The steel sheet of the present invention contains both hot-rolled steel sheets and cold-rolled steel sheets.
[0002]
[Prior art]
In order to reduce carbon dioxide emissions from automobiles, the weight of automobile bodies is being reduced using high-strength steel sheets. In addition, in order to ensure the safety of passengers, high strength steel plates are often used in automobile bodies in addition to mild steel plates. Furthermore, in order to reduce the weight of automobile bodies in the future, new demands for increasing the strength level of use of high-strength steel sheets are increasing.
[0003]
However, when bending deformation is applied to a high-strength steel sheet, because the shape after processing is high-strength, the spring-back phenomenon that makes it easy to return to the direction of the shape before processing away from the shape of the processing jig or bending-bending during forming Due to the elastic recovery from the return, a wall warp phenomenon occurs in which the plane of the side wall becomes a curved surface, resulting in a defective dimensional accuracy in which the shape of the target processed part cannot be obtained. Therefore, the conventional automobile body has been mainly used only for high-strength steel sheets of 440 MPa or less.
[0004]
In other words, for automobile bodies, it is necessary to use a high-strength steel plate of 490 MPa or higher to reduce the weight of the vehicle body, but spring back and wall warpage are unlikely to occur, and dimensional accuracy is good. The fact is that there is no high-strength steel sheet with good freezing properties. Needless to say, increasing the shape freezing property after processing of a high-strength steel plate or mild steel plate of 440 MPa or less is also extremely important for improving the shape accuracy of products such as automobiles and home appliances.
[0005]
Japanese Patent Application Laid-Open No. 10-72644 discloses a spring back amount (dimensional accuracy in the present invention) characterized in that the degree of accumulation of {200} texture in a plane parallel to the rolling surface is 1.5 or more. A small austenitic stainless cold rolled steel sheet is disclosed. However, there is no description about a technique for reducing the springback phenomenon and the wall warp phenomenon of the ferritic steel sheet.
[0006]
As a technique for reducing the springback amount of ferritic stainless steel, Japanese Patent Laid-Open No. 2001-32050 discloses a reflection X-ray intensity ratio of 2 in the {100} plane parallel to the plate surface in the texture at the center of the plate thickness. The invention as described above is disclosed. However, this publication does not describe any reduction of wall warp, and {100} <011> to {223} <110> orientation groups and {112} <110 which are important for wall warp reduction. There is no description about>.
[0007]
In addition, some of the present inventors disclosed a ferritic thin steel sheet in which the ratio of the {100} plane to the {111} plane is 1 or more for the purpose of improving the shape freezing property in WO 00/06971. In this publication, as in the present invention, the values of {100} <011> to {223} <110> orientation group and {112} <110> are not described.
[0008]
Further, some of the present inventors have disclosed in Japanese Patent Application Laid-Open No. 2001-64750 that the reflected X-ray intensity ratio of the {100} plane parallel to the plate surface is 3 or more as a technique for reducing the amount of springback. Although a cold-rolled steel sheet has been disclosed, this invention is characterized in that it defines a {100} plane reflection X-ray intensity ratio at the outermost surface of the sheet thickness, and { 100} <011> to {223} <110> The average X-ray intensity ratio of the orientation group differs from the X-ray measurement position. Also, the {112} <110> orientation is not described in the above publication.
[0009]
Japanese Patent Application Laid-Open No. 2000-297349 discloses a hot-rolled steel sheet having an r-value in-plane anisotropy Δr of 0.2 or less as a steel sheet having a good shape freezing property. However, this invention is characterized by improving the shape freezing property by lowering the yield ratio, and regarding texture control for the purpose of improving the shape freezing property based on the idea described in the present invention. It is not described in the above publication.
[0010]
Stretch flangeability, on the other hand, is an indispensable characteristic when processing steel sheets into automotive parts, etc., but in the above-mentioned patent publications, both stretch flangeability and shape freezing properties are provided. There is no description from the viewpoint of compatibility. By improving the shape freezing property of the high-stretch flangeable steel sheet, the range of application of the high-strength steel sheet to the automobile body becomes even wider.
[0011]
[Problems to be solved by the invention]
When a mild steel plate or a high strength steel plate is subjected to bending, a shape failure such as a large spring back or wall warp occurs depending on the strength of the steel plate, and the shape freezing property of the processed molded part is poor. Stretch flangeability is an indispensable characteristic when processing steel sheets. In order to apply high-strength steel sheets to automobile parts, etc., it must be excellent in both shape freezing properties and stretch flangeability. desired.
[0012]
The present invention fundamentally solves this problem and provides a high stretch flangeability steel sheet having excellent shape freezing property and a method for producing the same.
[0013]
[Means for Solving the Problems]
According to the conventional knowledge, it has been considered to be important for the time being to lower the deformation stress of the steel sheet as a measure for suppressing shape defects such as spring back and wall sled. And in order to make a deformation stress low, the steel plate with low tensile strength had to be used. However, this alone is not the fundamental solution for improving the bending workability of the steel sheet and keeping the amount of spring back low.
[0014]
Therefore, in order to fundamentally solve the occurrence of spring back and wall warp by improving the bending workability, the present inventors newly pay attention to the influence on the bending workability of the texture of the steel sheet, The effects were investigated and studied in detail. And it discovered the steel plate excellent in bending workability.
That is, {100} <011> to {223} <110> orientation group, three crystal orientations of {554} <225>, {111} <112>, {111} <110>, and {112} By controlling the strength of each orientation of <110> or {100} <011>, and further by setting at least one of the r value in the rolling direction and the r value in the direction perpendicular to the rolling direction as low as possible It is clarified that the bending workability is remarkably improved.
[0015]
Also, in order to achieve both high stretch flangeability and shape freezing properties, it is important that the ferrite phase or bainite phase be the maximum phase and that coarse cementite at the grain boundaries that hinder stretch flangeability be reduced as much as possible. Newly found.
The present invention is configured based on the above-described knowledge, and the main points thereof are as follows.
[0016]
      (1) In mass%,
            C:0.034%Or more, 0.15% or less,
          Si: 0.001% or more, 3.5% or less,
          Mn: 0.05% or more, 3.0% or less,
            P: 0.2% or less,
            S: 0.03% or less,
          Al: 0.01% or more, 3.0% or less,
            N: 0.01% or less,
          O: 0.01% or less,
Furthermore,
      Ti: 0.01% or more, 2.0% or less,
      Nb: 0.01% or more and 2.0% or less
And the balance is composed of iron and inevitable impurities, ferrite or bainite is the largest phase in area ratio, the occupation ratio of iron carbide at grain boundaries is 0.1 or less, and this iron The maximum particle diameter of carbide is 1 μm or less, and the average value of the X-ray random intensity ratios of {100} <011> to {223} <110> orientation groups on the plate surface at 1/2 plate thickness is 3.0 or more. And, among these orientation groups, the X-ray random intensity ratio of {112} <110> orientation is maximum and satisfies 4.0 or more, and {554} <225>, {111} <112> and The average value of the X-ray random intensity ratio of the three crystal orientations of {111} <110> is 3.5 or more, and in addition, at least one of the r value in the rolling direction and the r value in the direction perpendicular to the rolling direction is Shape characterized by being 0.7 or less High elongation flange of steel sheet excellent in fixability.
[0019]
(2) The high elongation flangeable steel sheet having excellent shape freezing property according to (1), further containing B: 0.01% or less in mass%.
(3) Furthermore, in mass%, Cr: 3% or moreDownA high-stretch flangeable steel sheet having excellent shape freezing properties as described in (1) or (2).
[0020]
(4) Furthermore, in mass%,
Ca: 0.0005% or more, 0.005% or moreDownThe high stretch flangeability steel sheet excellent in shape freezing property according to any one of (1) to (3), characterized in that it is contained.
[0021]
    (5) (1) to (4A high-stretch flangeable steel plate excellent in shape freezing property, wherein the steel plate according to any one of 1) is plated.
    (6) (1)~(5The method for producing a steel sheet according to any one of (1),1) ~ (4) When hot-rolling a steel slab composed of the component according to any one of items 1) to 1150-1350 ° C., ArThreeTransformation temperature ~ (ArThreeHot rolling is performed so that the total reduction ratio in the temperature range of +100) ° C. is 25% or more, and ArThreeHot rolling is completed at the transformation or higher, and the cooling is performed at an average cooling rate of 10 ° C./s or higher from the hot rolling completion temperature to the critical temperature To (° C.) determined by the chemical composition (mass%) of the steel shown in the formula (1). A method for producing a high-stretch flangeable steel sheet having excellent shape freezing property, characterized by winding at 450 to 750 ° C.
[0022]
      To = −650.4 × C% + B (1)
here,
      B = −50.6 × Mneq + 894.3
      Mneq = Mn% +0.13 x Si% +0.55 x Cr%-0.50 × Al%
(7) Ar3Transformation temperature ~ (Ar3In the temperature range of +100) ° C., at least one pass or more is rolled so that the coefficient of friction is 0.2 or less. The production of a high stretch flangeability steel sheet having excellent shape freezing property according to (6) Method.
[0024]
    (8) (6)Or (7)The steel sheet described above is pickled, cold-rolled to less than 80%, heated to a temperature range of 600 ° C. to 800 ° C. and cooled, and is a high stretch flangeability steel plate having excellent shape freezing property Manufacturing method.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
The contents of the present invention will be described in detail below.
Average values of X-ray random intensity ratios of {100} <011> to {223} <110> orientation groups on the plate surface at 1/2 plate thickness, {554} <225>, {111} <112> and {111 } The average value of the X-ray random intensity ratio of the three crystal orientations of <110> and the X-ray random intensity ratio of the {112} <110> or {100} <011> orientation:
These values are particularly important characteristic values in the present invention. The average value of {100} <011> to {223} <110> orientation groups when the X-ray diffraction of the plate surface at the plate thickness center position and the intensity ratio of each orientation with respect to the random sample is obtained is 3. Must be greater than or equal to zero. If this is less than 3.0, the shape freezing property is poor.
[0026]
The main orientations included in this orientation group are {100} <011>, {116} <110>, {114} <110>, {113} <110>, {112} <110>, {335} < 110> and {223} <110>. The X-ray random intensity ratio in each of these directions is obtained by calculating a three-dimensional texture calculated by the vector method based on the {110} pole figure, or a plurality of pole figures of {110}, {100}, {211}, {310} pole figures. What is necessary is just to obtain | require from the three-dimensional texture calculated | required by the series expansion method using the pole figure (preferably 3 or more).
[0027]
For example, the X-ray random intensity ratio of each crystal orientation in the latter method includes (001) [1-10], (116) [1-10], (114 in the φ2 = 45 ° cross section of the three-dimensional texture. ) [1-10], (113) [1-10], (112) [1-10], (335) [1-10], (223) [1-10] strengths may be used as they are. .
[0028]
The average value of {100} <011> to {223} <110> orientation group is an arithmetic average of each of the above-mentioned orientations. When the strengths of all the above directions cannot be obtained, {100} <011>, {116} <110>, {114} <110>, {112} <110>, {223} <110> Alternatively, an arithmetic average of each direction may be substituted.
[0029]
Among these orientation groups, {100} <011> and {112} <110> orientations are extremely effective orientations for reducing wall warpage. Therefore, among these orientation groups, {100} < It is preferable that the X-ray random intensity ratio in the 011> or {112} <110> orientation is maximum and 4.0 or more because the shape freezing property is further improved.
Furthermore, the average value of the X-ray random intensity ratio of the three crystal orientations of {554} <225>, {111} <112> and {111} <110> on the plate surface at 1/2 plate thickness is 3.5 or less. It must be. If this exceeds 3.5, it will be difficult to obtain good shape freezing properties even if the strength of the {100} <011> to {223} <110> orientation groups is appropriate. The X-ray random intensity ratio of {554} <225>, {111} <112>, and {111} <110> may be obtained from the three-dimensional texture calculated according to the above method.
[0030]
More preferably, the average value of the X-ray random intensity ratio of the {100} <011> to {223} <110> orientation group is 4.0 or more, and the {100} <011> or {112} <110> orientation X The linear random intensity ratio is 5.0 or more, and the arithmetic average value of the X-ray random intensity ratios of {554} <225>, {111} <112> and {111} <110> is less than 2.5.
[0031]
The reason why the X-ray intensity of the crystal orientation described above is important for the shape freezing property during bending is not necessarily clear, but it is presumed to be related to the sliding behavior of the crystal during bending deformation. .
The sample to be subjected to X-ray diffraction is thinned to a predetermined plate thickness by mechanical polishing or the like, and then the distortion is removed by chemical polishing or electrolytic polishing, and at the same time, the 1/2 plate thickness becomes the measurement surface. To make. When there is a segregation zone or a defect in the thickness center layer of the steel plate, which causes inconvenience in measurement, the above-described surface is set so that an appropriate surface becomes the measurement surface in the range of 3/8 to 5/8 of the plate thickness. The sample may be prepared and measured according to the method.
[0032]
As a matter of course, the above-described limitation of the X-ray intensity is satisfied not only in the vicinity of the plate thickness ½ but also as much as possible, so that the shape freezing property is further improved. The crystal orientation represented by {hkl} <uvw> indicates that the normal direction of the plate surface is parallel to <hkl> and the rolling direction is parallel to <uvw>.
R value (rL) in the rolling direction and r value (rC) in the direction perpendicular to the rolling direction:
The r value is important in the present invention. That is, as a result of intensive studies by the present inventors, it has been found that even if the X-ray intensities of the various crystal orientations described above are appropriate, good shape freezing properties cannot always be obtained. At the same time as the above X-ray intensity, it is essential that at least one of rL and rC is 0.7 or less. More preferably, it is 0.55 or less.
[0033]
The lower limit of rL and rC is not particularly defined, and the effect of the present invention can be obtained. The r value is evaluated by a tensile test using a JIS No. 5 tensile test piece. The tensile strain is usually 15%. However, when the uniform elongation is less than 15%, the tensile strain may be evaluated as close to 15% as possible within the range of uniform elongation.
The direction in which the bending process is performed is not particularly limited because it varies depending on the processed part. However, it is preferable that the bending process is mainly performed in a direction that is perpendicular or nearly perpendicular to the direction in which the r value is small.
[0034]
By the way, it is generally known that there is a correlation between the texture and the r value. However, in the present invention, the above-described limitation on the X-ray intensity ratio of the crystal orientation and the limitation on the r value are not synonymous with each other. If both limitations are satisfied at the same time, good shape freezing property cannot be obtained.
Organization:
From the viewpoint of hole expansibility and shape freezing property, the structure has a maximum phase of ferrite or bainite phase. However, when the textures of ferrite and bainite are compared, the texture of {100} <011> to {223} <110> orientation, which is advantageous for shape freezing, easily develops in the bainite portion. The reason for this is not clear, but it is considered that the bainite structure easily inherits the austenite texture that is superior in shape freezing property formed during hot rolling.
[0035]
Therefore, it is more desirable that the bainite space factor is large. From this viewpoint, it is desirable that the area ratio of bainite is more than 35%.
The area ratio of ferrite or bainite is determined from an average value obtained by observing the central part of the plate thickness with an optical microscope at 100 to 500 times at least 5 views. Further, as-processed ferrite remarkably impairs formability, so it is not included in the area ratio described here.
[0036]
Further, when the occupation ratio of iron carbide at the grain boundary exceeds 0.1 or the maximum particle diameter of the iron carbide exceeds 1 μm, these iron carbides are connected at the grain boundary, and the stretch flangeability is remarkably deteriorated. Therefore, it is necessary that the occupation ratio of iron carbide at the grain boundary is 0.1 or less and the maximum particle diameter of the iron carbide is 1 μm or less.
Since it is desirable that the iron carbide occupancy and the maximum particle size be smaller, the lower limit is not particularly defined. The grain boundary occupation ratio (-) by iron carbide is a ratio d / L of the total length L of grain boundaries in a certain region in the cross-sectional sample of iron material and the sum d of the lengths of grain boundaries occupied by iron carbide. Given in. In the measurement, L and d may be directly obtained by image processing in an optical microscope observation photograph having a magnification of 200 times or more.
[0037]
As a simpler method, the number N of the intersections of the n straight lines drawn on the photograph and the grain boundary, and the number M when iron carbide exists at the position of the intersections among the N intersections are as follows. It may be obtained by M / N. Sufficient accuracy can be ensured by setting the number N of straight lines to be 3 or more. In addition, sufficient accuracy can be ensured by selecting the magnification of the photograph so that the number of intersections of the one straight line and the grain boundary is 10 or more.
[0038]
  Next, the limiting conditions of the component range will be described. The reason why the lower limit of C is set to 0.001% is that the lower limit value obtained from practical steel is used. If it exceeds 0.15%, the stretch flangeability deteriorates, so the upper limit is set to 0.15%.In addition, the lower limit of C was set to 0.034% based on the C amount of steel type B in Table 1 of the Examples.
Si is an effective element for increasing the mechanical strength of the steel sheet, but if it exceeds 3.5%, workability deteriorates or surface flaws occur, so 3.5% is made the upper limit. On the other hand, since it is difficult to make Si less than 0.001% in practical steel, 0.001% is made the lower limit.
[0039]
Mn is also an effective element for increasing the mechanical strength of the steel sheet. However, if it exceeds 3.0%, the workability deteriorates, so 3.0% is made the upper limit. On the other hand, if Mn is less than 0.05% in practical steel, the cost is high and there is no merit in material, so 0.05% is made the lower limit. In addition to Mn, when an element such as Ti that suppresses the occurrence of hot cracking due to S is not sufficiently added, it is desirable to add an amount of Mn that satisfies Mn / S ≧ 20 by mass%.
[0040]
P and S are 0.2% or less and 0.03% or less, respectively. This is to prevent workability deterioration and cracking during hot rolling or cold rolling.
Al is added in an amount of 0.01% or more for deoxidation. However, if the amount is too large, the workability deteriorates or the surface properties become poor, so the upper limit is made 3.0%.
N and O are impurities, and are 0.01% or less and 0.01% or less, respectively, so as not to deteriorate the workability.
[0041]
Ti and Nb are important elements in the present invention. These elements are finely precipitated as carbides and nitrides, and are effective in increasing strength and reduce iron carbides, so that stretch flangeability is also improved. Further, when these elements exist in a solid solution state in the austenite region, there is an effect of sharpening the texture that contributes to the improvement of the shape freezing property, particularly the {112} <110> orientation. Therefore, 0.01% or more is added depending on the desired strength. However, even if added excessively, there is no remarkable effect, but rather the workability and surface properties are deteriorated, so 2.0% was made the upper limit respectively.
[0042]
  CrHas the effect of increasing the mechanical strength and improving the material., 0. It is desirable to add 001% or more. However, excessive addition adversely degrades workability, so the upper limit3%And
  Ca isControlling the form of sulfide improves stretch flangeability, so if necessary, 0. 0005% or moreSuperordinateIt is desirable to add. However, adding too much will not have a significant effect and will increase the cost.0. 005%WhenSet.
[0043]
In the present invention, although not particularly limited, 0.01% or less of Mg may be added for the purpose of deoxidation or the control of the form of sulfide.
plating:
The type of plating is not particularly limited, and the effects of the present invention can be obtained by any of electroplating, hot dipping, vapor deposition plating and the like.
[0044]
Next, a manufacturing method will be described.
The production method preceding hot rolling is not particularly limited. That is, various secondary smelting may be performed following smelting by a blast furnace, converter, electric furnace or the like, and then cast by a method such as thin slab casting in addition to normal continuous casting and casting by an ingot method. In the case of continuous casting, after cooling to low temperature once, it may be heated again and then hot rolled, or the cast slab may be continuously hot rolled. Scrap may be used as a raw material.
[0045]
The steel sheet having excellent shape freezing property of the present invention is cast after steel of the above components, and after cooling after hot rolling, after hot rolling, heat treatment after hot rolling, cooling after hot rolling, annealing after cold rolling, or It can also be obtained by subjecting the hot-rolled steel sheet or cold-rolled steel sheet to plating or heat treatment in a hot dipping line, and further subjecting these steel sheets to surface treatment.
[0046]
In any case, the heating temperature for hot rolling is 1150 to 1350 ° C. When the heating temperature is less than 1150 ° C., the carbides of Ti and Nb are not re-dissolved, so that the effect of sharpening the texture is reduced and the hole expandability is deteriorated as coarse carbides after hot rolling. Further, even if the heating temperature exceeds 1350 ° C., the effect is saturated and the cost and equipment are disadvantageous, so the upper limit is set to 1350 ° C.
[0047]
In order to achieve each crystal orientation of the predetermined X-ray intensity level described in (1) above, ArThreeHot rolling is performed above the transformation temperature. In the second half of hot rolling, ArThreeAbove transformation temperature (ArThreeIf a total of 25% or more is not rolled at +100) ° C. or lower, the rolled austenite texture does not develop sufficiently. Therefore, even if such cooling is applied, the finally obtained hot rolled steel sheet Each crystal orientation of the predetermined X-ray intensity level described in the invention of (1) cannot be obtained on the plate surface. Therefore, ArThreeAbove transformation temperature (ArThreeThe lower limit of the total rolling reduction at +100) ° C. or lower was set to 25%.
[0048]
ArThreeAbove transformation temperature (ArThreeThe higher the total rolling reduction at +100) ° C. or less, the sharper the texture formation is expected. Therefore, it is preferable to set it to 35% or more, but if the total rolling reduction exceeds 97.5%, Since it is necessary to increase the rigidity excessively and cause economic disadvantages, it is desirably 97.5% or less.
Hot rolling finish temperature is ArThreeIf the temperature is lower than the transformation temperature, the phenomenon that the {112} <110> orientation is particularly developed in the {100} <011> to {223} <110> orientation groups does not develop, and (ArThreeWhen the transformation temperature exceeds +100) ° C., the shape freezing property deteriorates because the entire texture is randomized. Therefore ArThreeTransformation temperature ~ (ArThreeThe transformation temperature is defined as +100) ° C. From this viewpoint, the upper limit of the hot rolling end temperature is (ArThreeThe transformation temperature +50) ° C. is desirable.
[0049]
ArThreeAbove transformation temperature (ArThreeWhen the friction coefficient between the hot rolling roll and the steel plate at the time of hot rolling at +100) ° C. or less exceeds 0.2, the crystal orientation mainly consisting of {110} plane is present on the plate surface in the vicinity of the steel plate surface. As it develops and the shape freezing property deteriorates, when aiming for a better shape freezing property, ArThreeAbove transformation temperature (ArThreeIt is desirable that the friction coefficient between the hot rolling roll and the steel plate is 0.2 or less for at least one pass during hot rolling at +100) ° C. or less.
[0050]
The lower the friction coefficient, the lower the limit is preferably not set. However, when better shape freezing properties are required, ArThreeAbove transformation temperature (ArThreeThe friction coefficient is desirably 0.15 or less for all passes of hot rolling at +100) ° C. or less. The method for measuring the friction coefficient is not particularly defined, but it is desirable to obtain it from the advanced rate and the rolling load, as is generally well known.
[0051]
In order to transfer the austenite texture formed in this way to the final hot-rolled steel sheet, the average cooling rate of 10 ° C./s until the To temperature shown in the following formula (1) is reached after the end of hot rolling. It is necessary to cool by the above.
Therefore, To determined by the steel component (mass%) was taken as the upper limit of the coiling temperature. This To temperature is thermodynamically defined as the temperature at which the same component of austenite and austenite ferrite have the same free energy, and considering the influence of components other than C, the chemistry of the steel sheet using equation (1) It can be simply calculated by the component (mass%). The influence of the other components defined in the present invention on To (° C.) is not so great and thus ignored here.
[0052]
      To = −650.4 × C% + B (1)
here,
      B = −50.6 × Mneq + 894.3
      Mneq = Mn% +0.13 x Si% +0.55 x Cr%-0.50 × Al%
  When the average cooling rate increases, the driving force for precipitation of TiC or NbC during winding increases, so the average cooling rate is preferably 30 ° C./s or more, more preferably 50 ° C./s or more. On the other hand, since it is practically difficult to set the average cooling rate to more than 200 ° C./s, it is desirable that the average cooling rate be 200 ° C./s or less.
[0053]
Winding after cooling is performed in a temperature range of 450 to 750 ° C. When the coiling temperature is less than 450 ° C., fine precipitation of TiC or NbC is reduced, and iron carbide that deteriorates hole expansibility increases. On the other hand, when the temperature exceeds 750 ° C., TiC or NbC becomes coarse at the grain boundaries, and the hole expandability is deteriorated. From the above viewpoint, it is desirably wound up in a temperature range of 500 to 700 ° C.
[0054]
  The average value of the X-ray random intensity ratios of {100} <011> to {223} <110> orientation groups on the plate surface at 1/2 plate thickness is 3.0 or more, and among these orientation groups, { 100} <011> orientation has a maximum X-ray random intensity ratio of 4.0 or more, and three crystal orientations {554} <225>, {111} <112> and {111} <110> The average value of the X-ray random intensity ratio is 3.5 or less,To achieve each crystal orientation at the X-ray intensity level (ArThree+50) ° C. or higher (ArThreeIt is necessary to perform rolling of a total of 25% or more at +150) ° C. or less. If this condition is not satisfied, the processing of austenite is insufficient and the texture is not sufficiently developed. (ArThree+50) to (ArThreeAs the total rolling reduction at +150) ° C. is higher, sharper texture formation is expected. Therefore, it is preferable to set the rolling reduction to 35% or more. However, if the total rolling reduction exceeds 97.5%, Since it is necessary to increase the rigidity excessively and cause economic disadvantages, it is desirably 97.5% or less.
[0055]
In order to significantly increase the texture accumulation in the {100} <011> orientation, (ArThree−100) to (ArThreeIt is very important to apply a reduction of 5 to 35% at +30) ° C. This is because, when austenite sufficiently processed in a high temperature region is at least partially recrystallized, a further appropriate amount of reduction is applied, and immediately after that, ferrite transformation is performed, thereby developing the {100} <011> orientation. Because it is extremely important.
[0056]
Therefore, (ArThreeEven when the rolling is performed at a temperature lower than −100) ° C., {100} <011> does not develop because the region where the ferrite transformation has already been completed is too large.
(ArThreeWhen the reduction is applied above +30) ° C., the strain introduced before the ferrite transformation is recovered, and {100} <011> does not develop.
When the rolling reduction is less than 5%, the entire texture including {100} <011> to {223} <110> is randomized, and when it exceeds 35%, accumulation in the {100} <011> orientation is performed. (Ar)Three−100) to (ArThreeThe rolling reduction in the temperature range of +30) ° C. is 5 to 35%. From the above viewpoint, the rolling reduction is desirably 10 to 25%.
[0057]
Hot rolling (ArThree−100) to (ArThreeEnd in the temperature range of +30) ° C. Hot rolling end temperature is (ArThreeWhen it is less than −100), the workability is remarkably deteriorated, and (ArThreeWhen the temperature exceeds +30) ° C., the shape freezing property deteriorates due to insufficient accumulation of texture.
Here, when the friction coefficient between the hot rolling roll and the steel plate during hot rolling exceeds 0.2, the crystal orientation mainly consisting of {110} plane develops on the plate surface near the steel plate surface. When the shape freezing property is deteriorated and the better shape freezing property is directed, (ArThree−100) to (ArThreeIn the temperature range of +150) ° C., it is preferable to perform rolling with a coefficient of friction between the roll and the steel sheet being 0.2 or less for at least one pass.
[0058]
The lower the coefficient of friction, the better. Especially when severe shape freezing properties are required, (ArThree−100) to (ArThreeThe friction coefficient is desirably 0.15 or less for all passes of hot rolling at +150) ° C.
Winding is performed in a temperature range of 450 to 750 ° C. When the coiling temperature is less than 450 ° C., fine precipitation of TiC or NbC is reduced, and iron carbide that deteriorates hole expansibility increases. On the other hand, when the temperature exceeds 750 ° C., TiC or NbC becomes coarse at the grain boundaries, and the hole expandability is deteriorated. From the above viewpoint, it is desirably wound up in a temperature range of 500 to 700 ° C.
[0059]
In hot rolling, sheet bars may be joined after rough rolling, and finish rolling may be performed continuously. At that time, the coarse bar may be wound once in a coil shape, stored in a cover having a heat retaining function, if necessary, and rewound again before joining. The hot-rolled steel sheet may be subjected to skin pass rolling as necessary. Needless to say, the skin pass rolling has the effect of preventing stretcher strain generated during processing and shape correction.
[0060]
When the hot-rolled steel sheet thus obtained is cold-rolled and annealed to obtain a final thin steel sheet, when the total rolling reduction of the cold-rolling is 80% or more, a general cold-rolled steel sheet is used. The {111} plane and {554} plane components of the X-ray diffraction integral plane intensity ratio of the crystal plane parallel to the plate surface, which is a cold-rolled and recrystallized texture, are increased. Since the crystal orientation of the invention is not satisfied, the upper limit of the cold rolling reduction is set to less than 80%. In order to increase the shape freezing property, it is desirable to limit the cold rolling reduction to 70% or less.
[0061]
The lower limit of the cold rolling rate is not particularly defined, and the effects of the present invention can be obtained. However, in order to control the strength of the crystal orientation within an appropriate range, it is preferably 3% or more.
When annealing a cold-rolled steel sheet cold-worked in such a range, if the annealing temperature is less than 600 ° C, the processed structure remains and the formability deteriorates significantly, so the lower limit of the annealing temperature is 600 ° C. And On the other hand, when the annealing temperature exceeds 800 ° C., TiC and NbC are coarsened, the hole expandability is deteriorated and the shape freezing property is also lowered. Accordingly, the annealing temperature is set to 800 ° C. or less. The cold-rolled steel sheet may be subjected to skin pass rolling as necessary.
[0062]
Note that the steel sheet according to the present invention can be applied not only to bending, but also to composite forming mainly composed of bending, such as bending, overhanging, drawing, and the like.
[0063]
【Example】
(Example)
The technical contents of the present invention will be described with reference to examples of the present invention.
First, the results of studies using steels A to K having the composition shown in Table 1 will be described. After casting, these steels are either reheated as they are or once cooled to room temperature, heated to 1250 ° C., and then hot-rolled to a final thickness of 1.4 mm, 3 mm, or 8.0 mm. A hot-rolled steel sheet was obtained. The 3.0 mm and 8.0 mm thick hot-rolled steel sheets were cold rolled to a thickness of 1.4 mm, and then annealed in a continuous annealing process.
[0064]
Test pieces having a width of 50 mm and a length of 270 mm were prepared from these 1.4 mm thick steel plates, and a hat bending test was performed using a die having a punch width of 78 mm, a punch shoulder R5, and a die shoulder R5.
The test piece subjected to the bending test was measured for the shape of the central part of the plate width with a three-dimensional shape measuring device, and as shown in FIG. 1, the tangent of point (1) and point (2) and point (3) The value obtained by subtracting 90 ° from the angle of the intersection of the tangent of point (4) is the average value on the left and right, and the value obtained by averaging the reciprocal of the curvature between points (3) and (5) on the left and right The shape freezing property was evaluated using the value obtained by subtracting the punch width from the wall warp amount and the length between the left and right points (5) as the dimensional accuracy. The bending was performed so that a polygonal line was inserted perpendicular to the direction of low r value.
[0065]
By the way, as shown in FIG. 2 and FIG. 3, the amount of spring back and the amount of wall warp also change depending on BHF (wrinkle pressing force). The effect of the present invention does not change even if the evaluation is performed with any BHF, but when pressing an actual part with an actual machine, a very high BHF cannot be applied. The hat bending test was performed.
The X-ray measurement was performed by adjusting a sample parallel to the plate surface at a position of 7/16 thickness of the plate thickness as a representative value of the steel plate.
[0066]
In the hole expansion test, a punched hole with a diameter of 10 mm is processed in the center of a test piece with a side of 100 mm, the initial hole is expanded with a conical punch with an apex angle of 60 °, and the hole diameter when the crack penetrates the steel plate. Evaluation was made with a hole expansion ratio λ (the following formula) for an initial hole diameter of 10 mm of d.
λ = {(d−10) / 10} × 100 (%)
The grain boundary occupancy of iron carbide draws four straight lines on a 200 × optical microscope observation photograph, and the number of intersections between the straight lines and the grain boundaries is N, and iron carbide is located at the position of the N intersections. It calculated | required from M / N using the number M when it exists.
[0067]
[Table 1]
Figure 0003990549
[0068]
[Table 2]
Figure 0003990549
[0069]
Table 2 shows whether the manufacturing conditions of each steel sheet are within the scope of the present invention. “Hot-rolling condition 1” means that hot-rolling is ArThreeAr when completed above the transformation temperatureThreeAbove transformation temperature (ArThreeWhen the sum of the rolling reductions at +100) ° C. or lower is 25% or more and the hot rolling end temperature is also in that temperature range, “◯”, and when the total rolling reductions in that temperature range is less than 25%, “× "
[0070]
“Hot rolling condition 2-1” is (ArThree+50) to (ArThreeWhen the sum of the rolling reductions in the temperature range of +150) ° C. is 25% or more, “O”, and when the sum of the rolling reductions is less than 25%, “x” and “hot rolling condition 2-2” continue to be (ArThree−100) to (ArThreeIn the temperature range of +30) ° C., the case where the total rolling reduction was 5 to 35% was indicated as “◯”, and the case where this condition was not satisfied was indicated as “X”.
[0071]
In any of the above cases, in each temperature range, when the friction coefficient for at least one pass is 0.2 or less, “O” in the “Lubrication” column, and the friction coefficient in all passes is 0.2. In the case of exceeding, “△” was given. All the hot rolling operations were performed at a temperature equal to or lower than the To temperature determined by equation (1).
When such a hot-rolled steel sheet is cold-rolled to a thickness of 1.4 mm, when the cold-rolling reduction ratio is 80% or more, the “cold-rolling reduction ratio” is “x”, and when it is “less than 80%” ○ ”.
[0072]
  Also, the annealing temperature is 600 ° C. or higher (AcThreeIn the case of +100) ° C. or lower, the “annealing temperature” was “◯”, and the other cases were marked “X”. Items that have no relation to manufacturing conditions were marked with “-”. Skin pass rolling was performed in a range of 0.5 to 1.5% for both hot-rolled steel sheets and cold-rolled steel sheets.
  Table 3 shows the iron carbide grain boundary occupancy M / N, the maximum particle diameter d of iron carbide, and the mechanical characteristic values of 1.4 mm thick hot-rolled steel sheet and cold-rolled steel sheet manufactured by the above method. And Table 5 (continuation of Table 4) shows the X-ray random intensity ratio, dimensional accuracy, spring back amount, wall warp amount and hole expansion rate.. NaThe structure of the steel sheet satisfying the conditions of the present invention was mainly composed of ferrite or bainite.
[0073]
[Table 3]
Figure 0003990549
[0074]
[Table 4]
Figure 0003990549
[0075]
[Table 5]
Figure 0003990549
[0076]
  The present inventionTurn ofNo.Turn ofIt can be seen that the amount of spring back and the amount of wall warp are smaller than those of No. 1, and as a result, the dimensional accuracy is improved. The present invention has good stretch flangeability in any case.
  On the other hand, I and J in which the grain boundary occupancy M / N of iron carbide and the maximum particle diameter d of iron carbide do not satisfy the provisions of the present invention are good in shape freezing property, but stretch flangeability deteriorates. Yes. Regarding steel H, both the shape freezing property and stretch flangeability are deteriorated.
[0077]
That is, the high-strength flangeable steel sheet having good shape freezing property can be produced only after satisfying the components limited by the present invention, the X-ray random intensity ratio of each crystal orientation, the r value, and the structure.
FIG. 4 shows the relationship between the dimensional accuracy normalized by the tensile strength and the hole expansion rate. It is clear from this that those satisfying the conditions of the present invention are excellent in both dimensional accuracy and stretch flangeability.
[0078]
At present, the mechanism that the X-ray random intensity ratio and the r value of each crystal orientation are important for the shape freezing property is not necessarily clear at present. Probably, by facilitating the progress of slip deformation at the time of bending deformation, the amount of spring back and wall warpage at the time of bending deformation is reduced, resulting in improved dimensional accuracy, that is, shape freezing. Understood.
[0079]
【The invention's effect】
By controlling the texture and r value of the thin steel sheet according to the present invention, the bending workability is remarkably improved, and by controlling the structure and carbide, both the hole expandability and bending workability can be achieved. It has become possible to provide a thin steel plate with a small amount of wall warpage and a shape freezing property mainly composed of bending and a hole expandability. In particular, a high-strength steel sheet can be used even for parts that have conventionally been difficult to apply a high-strength steel sheet due to the problem of shape defects. In order to promote the weight reduction of automobiles, the use of high-strength steel sheets is absolutely necessary. If a high-strength steel sheet having a small amount of spring back and wall warpage and having excellent shape freezing properties and hole expandability can be applied, the weight reduction of the automobile body can be further promoted. Therefore, the present invention is industrially extremely valuable.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a test piece used in a hat bending test.
FIG. 2 is a diagram showing a relationship between a springback amount and BHF (wrinkle pressing force).
FIG. 3 is a diagram showing the relationship between the amount of wall warpage and BHF (wrinkle holding force).
FIG. 4 is a diagram showing the relationship between dimensional accuracy normalized by tensile strength and hole expansion rate.

Claims (8)

質量%で、
C:0.034%以上、0.15%以下、
Si:0.001%以上、3.5%以下、
Mn:0.05%以上、3.0%以下、
P:0.2%以下、
S:0.03%以下、
Al:0.01%以上、3.0%以下、
N:0.01%以下、
O:0.01%以下を含有し、
更に、
Ti:0.01%以上、2.0%以下、
Nb:0.01%以上、2.0%以下
の1種または2種を含有し、残部は鉄および不可避的不純物よりなり、フェライトまたはベイナイトを面積率で最大相とし、粒界における鉄炭化物の占有率が0.1以下で、かつ、この鉄炭化物の最大粒子径が1μm以下であり、1/2板厚における板面の{100}<011>〜{223}<110>方位群のX線ランダム強度比の平均値が3.0以上で、かつ、これらの方位群の中で{112}<110>方位のX線ランダム強度比が最大かつ4.0以上を満足し、更に、{554}<225>、{111}<112>および{111}<110>の3つの結晶方位のX線ランダム強度比の平均値が3.5以下であり、加えて、圧延方向のr値および圧延方向と直角方向のr値のうち少なくとも1つが0.7以下であることを特徴とする形状凍結性に優れた高伸びフランジ性鋼板。
% By mass
C: 0.034% or more, 0.15% or less,
Si: 0.001% or more, 3.5% or less,
Mn: 0.05% or more, 3.0% or less,
P: 0.2% or less,
S: 0.03% or less,
Al: 0.01% or more, 3.0% or less,
N: 0.01% or less,
O: 0.01% or less,
In addition,
Ti: 0.01% or more, 2.0% or less,
Nb: 0.01% or more and 2.0% or less of one or two kinds, the balance is made of iron and unavoidable impurities, ferrite or bainite is the maximum phase in area ratio, and iron carbide at the grain boundary The occupation ratio is 0.1 or less, the maximum particle diameter of this iron carbide is 1 μm or less, and the {100} <011> to {223} <110> orientation group X of the plate surface at 1/2 plate thickness The average value of the line random intensity ratio is 3.0 or more, and among these azimuth groups, the X-ray random intensity ratio of the {112} <110> azimuth satisfies the maximum value of 4.0 or more, and { 554} <225>, {111} <112> and {111} <110>, the average value of the X-ray random intensity ratio of the three crystal orientations is 3.5 or less, in addition, the r value in the rolling direction and At least one of r-values perpendicular to the rolling direction High stretch-flange formability steel sheet excellent in shape fixability characterized in that is 0.7 or less.
更に、質量%で、
B:0.01%以下を含有することを特徴とする請求項1記載の形状凍結性に優れた高伸びフランジ性鋼板。
Furthermore, in mass%,
B: 0.01% or less is contained, The high elongation flangeability steel plate excellent in the shape freezing property of Claim 1 characterized by the above-mentioned.
更に、質量%で
r:3%以下を含有することを特徴とする請求項1または2記載の形状凍結性に優れた高伸びフランジ性鋼板。
Furthermore, in mass% ,
C r: 3% or less claim 1 or 2 high stretch-flange formability steel sheet excellent in shape fixability according to characterized in that it contains under.
更に、質量%で、
Ca:0.0005%以上、0.005%以下を含有することを特徴とする請求項1〜3の何れか1項に記載の形状凍結性に優れた高伸びフランジ性鋼板。
Furthermore, in mass%,
Ca: 0.0005% or more, high stretch flangeability steel sheet excellent in shape fixability according to any one of claims 1 to 3, characterized in that it contains hereinafter 0.005%.
請求項1〜4の何れか1項に記載の鋼板にめっきをしたことを特徴とする形状凍結性に優れた高伸びフランジ性鋼板。  A steel sheet according to any one of claims 1 to 4, which is plated with the steel sheet according to any one of claims 1 to 4, and a high stretch flangeability steel sheet excellent in shape freezing property. 請求項1〜5の何れか1項に記載の鋼板を製造する方法であって、請求項1〜4の何れか1項に記載の成分からなる鋼片を熱間圧延するに当たり、1150〜1350℃に加熱し、Ar変態温度〜(Ar+100)℃の温度範囲における圧下率の合計が25%以上となるように熱間圧延し、Ar変態温度以上で熱間圧延を終了し、熱間圧延終了温度から(1)式に示す鋼の化学成分(質量%)で決まる臨界温度To(℃)まで平均冷却速度10℃/s以上で冷却し、450〜750℃で巻き取ることを特徴とする形状凍結性に優れた高伸びフランジ性鋼板の製造方法。
To=−650.4×C%+B (1)
ここで、
B=−50.6×Mneq+894.3
Mneq=Mn%+0.13×Si%+0.55×Cr%−0.50×Al
It is a method of manufacturing the steel plate of any one of Claims 1-5, Comprising: In hot-rolling the steel slab which consists of a component of any one of Claims 1-4, 1150-1350 Heated to 0 ° C., hot-rolled so that the total rolling reduction in the temperature range of Ar 3 transformation temperature to (Ar 3 +100) ° C. is 25% or more, and the hot rolling is finished at the Ar 3 transformation temperature or higher, From the hot rolling end temperature to the critical temperature To (° C.) determined by the chemical composition (mass%) of the steel shown in the formula (1), cooling at an average cooling rate of 10 ° C./s or more and winding at 450 to 750 ° C. A method for producing a high stretch flangeability steel sheet having excellent shape freezing characteristics.
To = −650.4 × C% + B (1)
here,
B = −50.6 × Mneq + 894.3
Mneq = Mn % + 0.13 × Si % + 0.55 × Cr % − 0.50 × Al %
前記Ar変態温度〜(Ar+100)℃の温度範囲において、少なくとも1パス以上を摩擦係数が0.2以下となるように圧延することを特徴とする請求項6に記載の形状凍結性に優れた高伸びフランジ性鋼板の製造方法。In the temperature range of the Ar 3 transformation temperature to (Ar 3 +100) ° C., at least one pass is rolled so that the friction coefficient is 0.2 or less. A method for producing an excellent high stretch flangeability steel sheet. 請求項6または7に記載の鋼板を酸洗し、80%未満の冷間圧延を施した後、600〜800℃の温度範囲に加熱し、冷却することを特徴とする形状凍結性に優れた高伸びフランジ性鋼板の製造方法。  The steel sheet according to claim 6 or 7 is pickled and subjected to cold rolling of less than 80%, and then heated to a temperature range of 600 to 800 ° C and cooled, and has excellent shape freezing property. Manufacturing method of high stretch flangeability steel sheet.
JP2001170083A 2000-09-21 2001-06-05 High stretch flangeability steel sheet with excellent shape freezing property and method for producing the same Expired - Fee Related JP3990549B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2001170083A JP3990549B2 (en) 2001-06-05 2001-06-05 High stretch flangeability steel sheet with excellent shape freezing property and method for producing the same
KR1020037004171A KR100543956B1 (en) 2000-09-21 2001-09-21 Steel plate excellent in shape freezing property and method for production thereof
CNB018160859A CN1208490C (en) 2000-09-21 2001-09-21 Steel plaster excellent in shape freezing property and method for production thereof
PCT/JP2001/008277 WO2002024968A1 (en) 2000-09-21 2001-09-21 Steel plate excellent in shape freezing property and method for production thereof
US10/380,844 US6962631B2 (en) 2000-09-21 2001-09-21 Steel plate excellent in shape freezing property and method for production thereof
CA002422753A CA2422753C (en) 2000-09-21 2001-09-21 Steel plate excellent in shape freezing property and method for production thereof
EP01970195A EP1327695B1 (en) 2000-09-21 2001-09-21 Steel plate excellent in shape freezing property and method for production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001170083A JP3990549B2 (en) 2001-06-05 2001-06-05 High stretch flangeability steel sheet with excellent shape freezing property and method for producing the same

Publications (3)

Publication Number Publication Date
JP2002363693A JP2002363693A (en) 2002-12-18
JP2002363693A5 JP2002363693A5 (en) 2007-01-25
JP3990549B2 true JP3990549B2 (en) 2007-10-17

Family

ID=19012064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001170083A Expired - Fee Related JP3990549B2 (en) 2000-09-21 2001-06-05 High stretch flangeability steel sheet with excellent shape freezing property and method for producing the same

Country Status (1)

Country Link
JP (1) JP3990549B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5212126B2 (en) * 2008-04-10 2013-06-19 新日鐵住金株式会社 Cold-rolled steel sheet excellent in deep drawability and manufacturing method thereof
JP5051247B2 (en) * 2010-01-15 2012-10-17 Jfeスチール株式会社 Cold-rolled steel sheet excellent in formability and shape freezing property and its manufacturing method
JP5678695B2 (en) * 2011-01-31 2015-03-04 Jfeスチール株式会社 High strength steel plate and manufacturing method thereof
EP2698440B1 (en) 2011-04-13 2018-05-30 Nippon Steel & Sumitomo Metal Corporation High-strength hot-rolled steel sheet with excellent local deformability, and manufacturing method therefor
KR101405489B1 (en) 2011-12-23 2014-06-12 주식회사 포스코 Enameling steel sheet with surface defect free and manufacturing method thereof
JP5838796B2 (en) 2011-12-27 2016-01-06 Jfeスチール株式会社 High-strength hot-rolled steel sheet excellent in stretch flangeability and manufacturing method thereof
JP2013227656A (en) 2012-03-30 2013-11-07 Nisshin Steel Co Ltd Cold rolled steel sheet and method for producing the same
JP5618432B2 (en) 2013-01-31 2014-11-05 日新製鋼株式会社 Cold rolled steel sheet and method for producing the same
JP5618431B2 (en) 2013-01-31 2014-11-05 日新製鋼株式会社 Cold rolled steel sheet and method for producing the same
JP5618433B2 (en) 2013-01-31 2014-11-05 日新製鋼株式会社 Clutch plate for wet multi-plate clutch and manufacturing method thereof
JP6152782B2 (en) * 2013-11-19 2017-06-28 新日鐵住金株式会社 Hot rolled steel sheet
JP6060914B2 (en) * 2014-02-05 2017-01-18 Jfeスチール株式会社 Cold rolled steel sheet and method for producing the same
JP5908936B2 (en) 2014-03-26 2016-04-26 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet for flange, manufacturing method thereof and flange part
JP6156260B2 (en) * 2014-06-12 2017-07-05 Jfeスチール株式会社 Cold rolled steel sheet and method for producing the same
JP7160184B2 (en) * 2019-03-29 2022-10-25 日本製鉄株式会社 Steel plate and its manufacturing method

Also Published As

Publication number Publication date
JP2002363693A (en) 2002-12-18

Similar Documents

Publication Publication Date Title
US6290784B1 (en) Hot rolled steel sheet having an ultrafine grain structure and process for producing steel sheet
JP3821036B2 (en) Hot rolled steel sheet, hot rolled steel sheet and cold rolled steel sheet
US7503984B2 (en) High-strength thin steel sheet drawable and excellent in shape fixation property and method of producing the same
EP1327695A1 (en) Steel plate excellent in shape freezing property and method for production thereof
JP4740099B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP3990549B2 (en) High stretch flangeability steel sheet with excellent shape freezing property and method for producing the same
JP3990553B2 (en) High stretch flangeability steel sheet with excellent shape freezing property and method for producing the same
JP4384523B2 (en) Low yield ratio type high-strength cold-rolled steel sheet with excellent shape freezing property and manufacturing method thereof
JP6597938B1 (en) High-strength cold-rolled steel sheet, high-strength plated steel sheet, and methods for producing them
JP4276482B2 (en) High-strength hot-rolled steel sheet with excellent ultimate deformability and shape freezing property and its manufacturing method
JP3898954B2 (en) Ferritic thin steel sheet with excellent shape freezing property and manufacturing method thereof
JP4102284B2 (en) {100} &lt;011&gt; Cold rolled steel sheet manufacturing method with excellent shape freezing property with developed orientation
JP4126007B2 (en) Cold-rolled steel sheet excellent in shape freezing property and bake hardenability and method for producing the same
JP4464748B2 (en) High-strength steel sheet, high-strength hot-dip galvanized steel sheet, high-strength alloyed hot-dip galvanized steel sheet excellent in shape freezing property and stretch flangeability, and methods for producing them
JP4028719B2 (en) Squeezable burring high-strength thin steel sheet having excellent shape freezing property and manufacturing method thereof
JP3990550B2 (en) Low yield ratio type high strength steel plate with excellent shape freezing property and its manufacturing method
JP3532138B2 (en) Ferrite thin steel sheet excellent in shape freezing property and method for producing the same
JP4438614B2 (en) High-strength hot-rolled steel sheet and manufacturing method thereof
JP3908954B2 (en) Ferritic thin steel sheet with excellent shape freezing property and manufacturing method thereof
JP4189209B2 (en) Steel plate with excellent shape freezing property and method for producing the same
JP5071125B2 (en) High-strength cold-rolled steel sheet excellent in square tube drawing formability and shape freezing property, manufacturing method thereof, and automotive parts excellent in product shape
JP3911226B2 (en) Method for producing cold-rolled steel sheet with excellent shape freezing property
JP4189194B2 (en) Cold-rolled steel sheet excellent in workability and shape freezing property and manufacturing method thereof
JP3990554B2 (en) Steel sheet with excellent shape freezing property and method for producing the same
JP3742559B2 (en) Steel plate excellent in workability and manufacturing method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070720

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 3990549

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees