JP4959418B2 - High-strength cold-rolled steel sheet and manufacturing method thereof - Google Patents

High-strength cold-rolled steel sheet and manufacturing method thereof Download PDF

Info

Publication number
JP4959418B2
JP4959418B2 JP2007136784A JP2007136784A JP4959418B2 JP 4959418 B2 JP4959418 B2 JP 4959418B2 JP 2007136784 A JP2007136784 A JP 2007136784A JP 2007136784 A JP2007136784 A JP 2007136784A JP 4959418 B2 JP4959418 B2 JP 4959418B2
Authority
JP
Japan
Prior art keywords
steel sheet
ferrite
rolled steel
cold
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007136784A
Other languages
Japanese (ja)
Other versions
JP2008106350A (en
Inventor
登志男 小川
直紀 丸山
夏子 杉浦
学 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007136784A priority Critical patent/JP4959418B2/en
Publication of JP2008106350A publication Critical patent/JP2008106350A/en
Application granted granted Critical
Publication of JP4959418B2 publication Critical patent/JP4959418B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、自動車用途等に好適な高強度冷延鋼板及びその製造方法に関するものである。   The present invention relates to a high-strength cold-rolled steel sheet suitable for automobile applications and the like and a method for producing the same.

炭酸ガスの排出量を低減させるため、自動車の燃費の向上を目的とする自動車車体の軽量化が進められている。そのため、自動車の部材には、板厚の低減が可能な高強度鋼板の適用が増えつつある。また、搭乗者の安全性確保のためにも、高強度鋼板が自動車車体に多く使用されるようになってきている。   In order to reduce the amount of carbon dioxide emissions, the weight reduction of automobile bodies for the purpose of improving the fuel efficiency of automobiles is being promoted. Therefore, the application of high-strength steel sheets capable of reducing the plate thickness is increasing for automobile members. Further, in order to ensure the safety of passengers, high-strength steel plates are increasingly used in automobile bodies.

一方、高強度鋼板を自動車車体に適用するには、優れた加工性も要求され、強度と加工性、具体的には、伸びの向上に加えて、降伏強度を引張強度で除した降伏比を低下させた鋼板が必要とされている。降伏比の低下、即ち低降伏比化は、高強度化で悪化する形状凍結性の改善、プレス荷重の低減、しわ発生の抑制等の効果がある。   On the other hand, in order to apply high-strength steel sheets to automobile bodies, excellent workability is also required. In addition to improving strength and workability, specifically, yield ratio obtained by dividing yield strength by tensile strength. There is a need for reduced steel sheets. Lowering the yield ratio, that is, lowering the yield ratio has the effects of improving the shape freezing property, which is worsened by increasing the strength, reducing the press load, and suppressing the generation of wrinkles.

これまでに、鋼板の低降伏比化と高強度化とを両立させるために、金属組織をフェライトと硬質第2相、具体的には、マルテンサイト、ベイナイト、残留オーステナイトとの複合組織とする技術が、例えば、特許文献1〜3により提案されている。しかし、特許文献1〜3に提案されている冷延鋼板は、降伏比は低いものの、形状凍結性との相関が極めて大きい集合組織について考慮したものではなかった。   Up to now, in order to achieve both low yield ratio and high strength of steel sheet, the metal structure is a composite structure of ferrite and hard second phase, specifically martensite, bainite and retained austenite. However, for example, Patent Documents 1 to 3 have proposed. However, although the cold-rolled steel sheets proposed in Patent Documents 1 to 3 have a low yield ratio, they do not consider a texture that has a very high correlation with the shape freezing property.

一方、形状凍結性を高めるために、{554}<225>、{111}<112>及び{111}<110>方位の発達を抑制した冷延鋼板の製造方法が、例えば、特許文献4により提案されている。しかし、特許文献4に提案されている冷延鋼板は形状凍結性には優れているものの、低降伏比化が不十分であった。   On the other hand, in order to enhance the shape freezing property, a method for producing a cold-rolled steel sheet in which the development of the {554} <225>, {111} <112> and {111} <110> orientations is suppressed is disclosed in Patent Document 4, for example. Proposed. However, although the cold-rolled steel sheet proposed in Patent Document 4 is excellent in shape freezing property, the low yield ratio is insufficient.

これに対して、金属組織をフェライトと硬質第2相との複合組織とし、更に{554}<225>、{111}<112>及び{111}<110>方位の発達を抑制した冷延鋼板が、例えば、特許文献5により提案されている。しかし、特許文献5に提案されている冷延鋼板でも、降伏比を0.55以下とすることはできていない。   On the other hand, a cold-rolled steel sheet in which the metal structure is a composite structure of ferrite and a hard second phase, and further, the development of {554} <225>, {111} <112> and {111} <110> orientations is suppressed. However, it is proposed by patent document 5, for example. However, even with the cold-rolled steel sheet proposed in Patent Document 5, the yield ratio cannot be 0.55 or less.

また、特許文献6には、未再結晶フェライトと硬質第2相からなる高強度の冷延鋼板が提案されているが、強度が高いものの、降伏比が高く、また伸びも低いため、成形性が不十分であった。   Patent Document 6 proposes a high-strength cold-rolled steel sheet composed of non-recrystallized ferrite and a hard second phase. However, although the strength is high, the yield ratio is high and the elongation is low. Was insufficient.

更に、特許文献7には、{001}<011>〜{223}<110>方位群のうち、特に、{112}<110>方位や{001}<110>方位を発達させ、微細な析出物を分散させた鋼板が提案されている。しかしながら、特許文献7に提案されている鋼板は、形状凍結性と伸びフランジ加工性は良好であるものの、降伏比が高くなっている。   Furthermore, in Patent Document 7, among the {001} <011> to {223} <110> orientation groups, in particular, the {112} <110> orientation and the {001} <110> orientation are developed to produce fine precipitation. Steel sheets in which objects are dispersed have been proposed. However, although the steel sheet proposed in Patent Document 7 has good shape freezing property and stretch flangeability, the yield ratio is high.

ところで、耐衝突特性の向上には、降伏強度を高くすることが有効である。しかしながら、上述のように、形状凍結性の向上には降伏強度を低くすることが有効である。そのため、耐衝突特性と形状凍結性の両立のためには、成形後の塗装焼付処理による部材の降伏強度の上昇が極めて重要となり、鋼板の塗装焼付硬化性(Bake Hardenability:BH性ともいう。)の向上が望ましい。   Incidentally, it is effective to increase the yield strength in order to improve the collision resistance. However, as described above, it is effective to reduce the yield strength in order to improve the shape freezing property. For this reason, in order to achieve both the impact resistance and the shape freezing property, it is extremely important to increase the yield strength of the member by the paint baking process after forming, and the paint bake hardenability (also called Bake Hardness: BH property) of the steel sheet. It is desirable to improve.

このような、形状凍結性と塗装焼付硬化性の両立を図った鋼板として、{001}<011>〜{223}<110>方位群を発達させ、{554}<225>方位、{111}<112>方位及び{111}<110>方位の発達を抑制した冷延鋼板が特許文献8に提案されている。しかしながら、特許文献8に提案されている鋼板は、曲げ成形時の成形余裕度が若干劣っている。   As such a steel sheet that achieves both shape freezing property and paint bake hardenability, the {001} <011> to {223} <110> orientation groups are developed, and the {554} <225> orientation, {111} Patent Document 8 proposes a cold-rolled steel sheet in which the development of <112> orientation and {111} <110> orientation is suppressed. However, the steel sheet proposed in Patent Document 8 is slightly inferior in forming margin during bending.

また、本発明者らの一部は、特許文献9に、Mo又はW、更にBを含有し、{001}<011>〜{223}<110>方位群、特に、{100}<011>方位を発達させ、{554}<225>方位、{111}<112>方位及び{111}<110>方位の発達を抑制して形状凍結性の向上を図った鋼板、更に、固溶Nを活用して塗装焼付硬化性の両立を図った鋼板を提案した。しかし、特許文献9に提案した鋼板は、未再結晶フェライトを活用したものではない。   Further, some of the present inventors include Mo or W and further B in Patent Document 9, and {001} <011> to {223} <110> orientation group, particularly {100} <011>. A steel plate that has been developed to improve shape freezeability by suppressing the development of the {554} <225>, {111} <112>, and {111} <110> orientations, and further, solid solution N. We proposed a steel plate that was used to achieve both paint bake hardenability. However, the steel sheet proposed in Patent Document 9 does not utilize unrecrystallized ferrite.

特開昭57−2840号公報JP-A-57-2840 特開昭62−74024号公報JP-A-62-74024 特開2001−220641号公報Japanese Patent Laid-Open No. 2001-220461 特開2004−131771号公報JP 2004-131771 A 特開2005−256020号公報JP 2005-256020 A 特開昭53−5018号公報Japanese Patent Laid-Open No. 53-5018 特開2006−22349号公報JP 2006-22349 A 特開2005−120459号公報JP 2005-12059 A 特願2006−340069号Japanese Patent Application No. 2006-340069

本発明は、引張強度が590MPa以上という高強度を有し、降伏比が好ましくは0.55以下であり、形状凍結性にも優れ、更に好ましくは塗装焼付硬化性をも兼備した高強度冷延鋼板及びその製造方法を提供することを課題とするものである。   The present invention has a high strength cold rolling with a tensile strength of 590 MPa or more, a yield ratio of preferably 0.55 or less, excellent shape freezing properties, and more preferably also a paint bake hardenability. It is an object of the present invention to provide a steel plate and a method for manufacturing the steel plate.

本発明者らは、再結晶を抑制する元素であるNb、Tiを添加し、冷延率及び焼鈍条件を最適化し、形状凍結性を劣化させる結晶方位の発達を抑制した集合組織を有する未再結晶フェライトの積極的な活用を検討し、形状凍結性を損なうことなく、冷延鋼板を高強度化及び低降伏比化させることに成功した。更に、形状凍結性に加えてBH性を向上させるため、Alの添加量を極力抑えることにより、AlNの析出を抑制して固溶N量を増加させた。その結果、形状凍結性を劣化させることなく優れたBH性を得ることが出来ることを見出した。また、本発明者らは、更に、未再結晶フェライトを残留させるための製造条件について検討し、焼鈍工程において再結晶温度からAc1変態温度までの昇温速度を速くすることによって再結晶を抑制し、更にフェライトとオーステナイトが共存する領域であるα+γ二相域、即ち、Ac1変態温度以上に加熱した際に、オーステナイトへの変態が進み過ぎないように、鋼板の温度がAc1変態温度以上である滞留時間及び焼鈍の最高到達温度を最適化することが重要であることを見出した。 The present inventors added Nb and Ti, which are elements that suppress recrystallization, optimized the cold rolling rate and annealing conditions, and had a texture that has a texture that suppresses the growth of crystal orientation that deteriorates shape freezeability. We examined the active use of crystalline ferrite and succeeded in increasing the strength and reducing the yield ratio of cold-rolled steel sheets without impairing the shape freezeability. Furthermore, in order to improve the BH property in addition to the shape freezing property, by suppressing the addition amount of Al as much as possible, precipitation of AlN was suppressed and the amount of solid solution N was increased. As a result, it was found that an excellent BH property can be obtained without deteriorating the shape freezing property. In addition, the present inventors further studied production conditions for leaving unrecrystallized ferrite, and suppressed recrystallization by increasing the rate of temperature rise from the recrystallization temperature to the Ac 1 transformation temperature in the annealing process. Further, the temperature of the steel sheet is changed to the Ac 1 transformation so that the transformation to the austenite does not proceed excessively when heated to the α + γ two-phase region where the ferrite and austenite coexist, that is, the Ac 1 transformation temperature or higher. It has been found that it is important to optimize the residence time that is above the temperature and the highest temperature reached for annealing.

本発明は、このような知見に基づいてなされたものであり、その要旨は以下の通りである。
(1) 質量%で、C:0.05〜0.25%、Mn:0.50〜3.50%を含有し、Si:1.00%以下、P:0.150%以下、S:0.0150%以下、Al:0.200%以下、N:0.0100%以下に制限し、更に、Ti:0.005〜0.100%、Nb:0.005〜0.100%の一方又は双方を含有し、残部が鉄及び不可避的不純物からなり、金属組織がフェライトと硬質第2相からなり、前記フェライトが再結晶フェライト、変態フェライトの一方又は双方と未再結晶フェライトからなり、前記未再結晶フェライトの面積率が10〜70%であり、前記再結晶フェライト、前記変態フェライトの一方又は双方の面積率が10〜70%であり、前記硬質第2相の面積率が1〜30%であり、板厚1/2層における{554}<225>、{111}<112>及び{111}<110>の3つの結晶方位のX線ランダム強度比の平均値が3.5以下であることを特徴とする高強度冷延鋼板。
The present invention has been made based on such findings, and the gist thereof is as follows.
(1) By mass%, C: 0.05 to 0.25%, Mn: 0.50 to 3.50%, Si: 1.00% or less, P: 0.150% or less, S: It is limited to 0.0150% or less, Al: 0.200% or less, N: 0.0100% or less, and Ti: 0.005 to 0.100%, Nb: 0.005 to 0.100% Or containing both, the balance is made of iron and inevitable impurities, the metal structure is made of ferrite and a hard second phase, the ferrite is made of recrystallized ferrite, one or both of transformation ferrite and unrecrystallized ferrite, The area ratio of non-recrystallized ferrite is 10 to 70%, the area ratio of one or both of the recrystallized ferrite and the transformed ferrite is 10 to 70%, and the area ratio of the hard second phase is 1 to 30%. %, And {5 in thickness 1/2 layer 54} <225>, {111} <112>, and {111} <110>, the average value of the X-ray random intensity ratios of the three crystal orientations is 3.5 or less. .

(2) 質量%で、Mo:0.1〜1.5%、B:0.0005〜0.0100%、Cr:0.10〜1.50%、Ni:0.10〜1.50%のうち、1種又は2種を含有することを特徴とする上記(1)に記載の高強度冷延鋼板。
(3) 質量%で、Al:0.0200%以下に制限し、N:0.0010〜0.0100%を含有することを特徴とする上記(1)又は(2)に記載の高強度冷延鋼板。
(4) Al含有量とN含有量が、Al/N≦2を満足することを特徴とする上記(3)に記載の高強度冷延鋼板。
(2) By mass%, Mo: 0.1 to 1.5%, B: 0.0005 to 0.0100%, Cr: 0.10 to 1.50%, Ni: 0.10 to 1.50% Among them, the high-strength cold-rolled steel sheet according to (1) above, which contains one or two kinds.
(3) The high-strength cooling according to (1) or (2) above, characterized in that Al is limited to 0.0200% or less and N: 0.0010 to 0.0100% in mass%. Rolled steel sheet.
(4) The high-strength cold-rolled steel sheet according to (3), wherein the Al content and the N content satisfy Al / N ≦ 2.

(5) 上記(1)〜(4)の何れか1項に記載の冷延鋼板の表面に溶融Znめっきを設けたことを特徴とする高強度冷延鋼板。
(6) 上記(1)〜(4)の何れか1項に記載の冷延鋼板の表面に合金化溶融Znめっきを設けたことを特徴とする高強度冷延鋼板。
(5) A high-strength cold-rolled steel sheet characterized by providing hot-dip Zn plating on the surface of the cold-rolled steel sheet according to any one of (1) to (4).
(6) A high-strength cold-rolled steel sheet characterized by providing alloyed hot-dip Zn plating on the surface of the cold-rolled steel sheet according to any one of (1) to (4).

(7) 上記(1)〜(4)の何れか1項に記載の化学成分を有する鋼片を熱間圧延し、300〜500℃の温度範囲で巻取り、酸洗後、60%以下の圧下率で冷間圧延を施し、鋼板を、(Ac1[℃]−100℃)からAc1[℃]までの昇温速度を10℃/s以上としてAc1[℃]〜{Ac1[℃]+2/3×(Ac3[℃]−Ac1[℃])}の温度範囲内に昇温し、前記鋼板の温度が該温度範囲内である滞留時間を10〜200sとして焼鈍することを特徴とする高強度冷延鋼板の製造方法。
ここで、Ac1[℃]及びAc3[℃]は質量%で表されるC、Mn、Siの含有量である(%C)、(%Mn)、(%Si)によって下記(式1)及び(式2)式から求めたAc1変態温度及びAc3変態温度である。
Ac1=761.3+212(%C)−45.8(%Mn)+16.7(%Si)
・・・(式1)
Ac3=915−325.9(%C)−35.9(%Mn)+31.4(%Si)
・・・(式2)
(7) A steel slab having the chemical component according to any one of (1) to (4) above is hot-rolled, wound up in a temperature range of 300 to 500 ° C., pickled, and 60% or less. Cold rolling is performed at a reduction rate, and the steel sheet is heated at a rate of temperature increase from (Ac 1 [° C.]-100 ° C.) to Ac 1 [° C.] of 10 ° C./s or more, from Ac 1 [° C.] to {Ac 1 [ [° C.] + 2/3 × (Ac 3 [° C.] − Ac 1 [° C.])}, and annealing is performed with the residence time within the temperature range of the steel sheet being 10 to 200 s. A method for producing a high-strength cold-rolled steel sheet.
Here, Ac 1 [° C.] and Ac 3 [° C.] are the contents of C, Mn, and Si expressed in mass% (% C), (% Mn), and (% Si) according to the following (formula 1 ) and (a Ac 1 transformation temperature was determined from equation 2) and Ac 3 transformation temperature.
Ac 1 = 761.3 + 212 (% C) -45.8 (% Mn) +16.7 (% Si)
... (Formula 1)
Ac 3 = 915-325.9 (% C) -35.9 (% Mn) +31.4 (% Si)
... (Formula 2)

(8) 上記(7)に記載の焼鈍後、350〜500℃まで冷却し、次いで溶融Znめっきを施すことを特徴とする高強度冷延鋼板の製造方法。
(9) 上記(8)に記載の溶融Znめっきを施した後に450〜600℃の温度範囲で10s以上の熱処理を行うことを特徴とする高強度冷延鋼板の製造方法。
(10) 上記(7)〜(9)の何れか1項に記載の方法により製造した冷延鋼板に0.1〜5.0%のスキンパス圧延を施すことを特徴とする高強度冷延鋼板の製造方法。
(8) A method for producing a high-strength cold-rolled steel sheet, which is cooled to 350 to 500 ° C. and then subjected to hot-dip Zn plating after the annealing described in (7).
(9) A method for producing a high-strength cold-rolled steel sheet, comprising performing heat treatment for 10 seconds or more in a temperature range of 450 to 600 ° C. after performing the hot-dip Zn plating according to (8).
(10) A high-strength cold-rolled steel sheet characterized by subjecting the cold-rolled steel sheet produced by the method according to any one of (7) to (9) above to 0.1 to 5.0% skin pass rolling. Manufacturing method.

本発明により、形状凍結性に優れ、好ましくは降伏強度が低く、更に好ましくは塗装焼付硬化性をも兼備した、引張強度が高い冷延鋼板及びその製造方法の提供が可能になる。   According to the present invention, it is possible to provide a cold-rolled steel sheet having a high tensile strength, which has excellent shape freezing property, preferably has a low yield strength, and more preferably has a paint bake hardenability, and a method for producing the same.

従来、冷延鋼板の金属組織のフェライトの一部を未再結晶フェライトとして残留させて、高強度化などに積極的に活用するという発想は皆無であった。これは、再結晶が不完全であると冷延鋼板の材質が不均一になると考えられていたためであり、未再結晶フェライトの残留を可能な限り抑制していた。
したがって、従来の未再結晶フェライトと硬質第2相からなる冷延鋼板は、未再結晶フェライトの外に焼鈍の加熱時に再結晶したフェライト(再結晶フェライトという。)や焼鈍後の冷却時にオーステナイトから変態したフェライト(変態フェライトという。)が混在したものではなく、フェライトは均質な未再結晶フェライトのみであると考えられる。
Conventionally, there has been no idea that a part of ferrite in the metal structure of a cold-rolled steel sheet is left as non-recrystallized ferrite and actively used for high strength. This is because if the recrystallization is incomplete, the material of the cold-rolled steel sheet is considered to be non-uniform, and the residual non-recrystallized ferrite is suppressed as much as possible.
Therefore, the conventional cold-rolled steel sheet composed of non-recrystallized ferrite and a hard second phase is composed of ferrite recrystallized during annealing heating (called recrystallized ferrite) in addition to non-recrystallized ferrite and austenite during cooling after annealing. Transformed ferrite (called transformed ferrite) is not mixed, and it is considered that the ferrite is only homogeneous unrecrystallized ferrite.

また、従来、焼鈍の昇温速度を速くし、鋼板の結晶粒径を微細化する製造方法が提案されているが、この方法は、α+γ二相域での保持によって未再結晶フェライトを完全にオーステナイトに変態させるものであったと考えられる。即ち、この従来技術は、焼鈍により未再結晶フェライトを完全にオーステナイトに変態させた後、冷却時にオーステナイトから再変態したフェライトと硬質第2相からなるDP鋼を、未再結晶フェライトを残留させることなく得るものであると推定される。   Conventionally, a manufacturing method has been proposed in which the temperature rise rate of annealing is increased and the crystal grain size of the steel sheet is reduced, but this method completely eliminates unrecrystallized ferrite by holding in the α + γ two-phase region. It is thought that it was transformed into austenite. That is, in this prior art, after non-recrystallized ferrite is completely transformed to austenite by annealing, DP steel composed of ferrite re-transformed from austenite and a hard second phase during cooling remains unrecrystallized ferrite. It is estimated that it can be obtained without.

しかし、焼鈍後の冷却時にオーステナイトをフェライトに変態させると、オーステナイトはフェライトとセメンタイトに分解する。そのため、ベイナイト、マルテンサイト、残留オーステナイトからなる硬質第2相とセメンタイトを含むフェライトからなるDP鋼となる。そのため、焼鈍時の昇温速度を速くして得られた従来のDP鋼は、局部延性の低下がセメンタイトによって更に助長されていると考えられる。   However, when austenite is transformed into ferrite during cooling after annealing, austenite decomposes into ferrite and cementite. Therefore, a DP steel made of ferrite containing hard second phase made of bainite, martensite and retained austenite and cementite is obtained. Therefore, it is considered that the conventional DP steel obtained by increasing the rate of temperature increase during annealing is further promoted by cementite in reducing the local ductility.

一方、模式的に図1に示した本発明のように、未再結晶フェライトを積極的に残留させると、軟質のフェライト、即ち、再結晶フェライト及び変態フェライトと硬質第2相の間に、中間の強度を有する未再結晶フェライトを存在させることができる。この、軟質のフェライトと硬質第2相との中間の強度を有する未再結晶フェライトの存在によって、フェライトと硬質第2相の界面への歪みの集中が緩和される。   On the other hand, when unrecrystallized ferrite is actively left as in the present invention schematically shown in FIG. 1, a soft ferrite, that is, between recrystallized ferrite and transformed ferrite and the hard second phase, Unrecrystallized ferrite having the following strength can be present. The presence of non-recrystallized ferrite having intermediate strength between the soft ferrite and the hard second phase alleviates the concentration of strain at the interface between the ferrite and the hard second phase.

したがって、未再結晶フェライトを積極的に活用する本発明の冷延鋼板は、軟質のフェライトと硬質第2相との界面に生じるボイドの発生が抑制される。更に、未再結晶フェライトを積極的に残留させ、変態フェライトの生成を抑制すると、ボイドの起点となるセメンタイトの生成も抑制される。そのため、局部延性が顕著に向上し、伸びフランジ成形性が改善され、厳しいバーリング加工が可能になる。   Therefore, in the cold-rolled steel sheet of the present invention in which non-recrystallized ferrite is actively used, generation of voids generated at the interface between the soft ferrite and the hard second phase is suppressed. Furthermore, when non-recrystallized ferrite is actively left to suppress the formation of transformation ferrite, the generation of cementite that is the starting point of voids is also suppressed. Therefore, local ductility is remarkably improved, stretch flange formability is improved, and severe burring is possible.

未再結晶フェライトは、冷間圧延によって圧延方向に延伸されたフェライトの結晶粒が再結晶せず、粒内の転位が回復したものである。そのため、図2に模式的に示したように、未再結晶フェライトの粒内には転位の回復によって形成されたサブグレインを有することが多い。また、未再結フェライトの粒内では、冷間圧延による塑性変形のため結晶方位が連続的に変化している。一方、再結晶フェライト及び変態フェライトは、再結晶又は変態によって、粒内の結晶方位はほぼ均一となり、隣接する結晶粒同士の結晶方位は大きく異なっている。   Non-recrystallized ferrite is one in which the crystal grains of ferrite stretched in the rolling direction by cold rolling are not recrystallized, and dislocations in the grains are recovered. Therefore, as schematically shown in FIG. 2, the grains of unrecrystallized ferrite often have subgrains formed by dislocation recovery. Further, in the grains of unrecombined ferrite, the crystal orientation continuously changes due to plastic deformation by cold rolling. On the other hand, in the recrystallized ferrite and the transformed ferrite, the crystal orientation in the grains becomes almost uniform by recrystallization or transformation, and the crystal orientations of adjacent crystal grains are greatly different.

また、本発明者らは、未再結晶フェライトを残留させる方法について検討を行い、
(x)フェライトの再結晶温度が、フェライトからオーステナイトへの変態(α−γ変態という。)が開始する温度であるAc1変態温度(以下、Ac1ともいう。)よりも低い場合には、再結晶温度からAc1までの昇温速度を速くすること、
(y)フェライトの再結晶温度が、Ac1よりも高い場合には、昇温速度に依らず、再結晶が進行しないこと、
(z)焼鈍温度の上限が高すぎる場合や、Ac1以上での滞留時間が長すぎる場合には、α−γ変態が進行して未再結晶フェライトが残留しないこと、
を見出した。
In addition, the inventors have studied a method for leaving unrecrystallized ferrite,
(X) When the recrystallization temperature of the ferrite is lower than the Ac 1 transformation temperature (hereinafter also referred to as Ac 1 ), which is the temperature at which transformation from ferrite to austenite (referred to as α-γ transformation) starts, Increasing the rate of temperature rise from the recrystallization temperature to Ac 1 ;
(Y) When the recrystallization temperature of ferrite is higher than Ac 1 , recrystallization does not proceed regardless of the rate of temperature increase,
(Z) When the upper limit of the annealing temperature is too high, or when the residence time at Ac 1 or higher is too long, the α-γ transformation proceeds and no unrecrystallized ferrite remains,
I found.

なお、未再結晶フェライトを残留させるためには、焼鈍の条件は本発明において極めて重要であり、特にAc1以下での昇温速度、最高到達温度及びAc1以上での保持時間を制限する必要がある。 In order to leave unrecrystallized ferrite, annealing conditions are extremely important in the present invention, and it is particularly necessary to limit the rate of temperature rise below Ac 1 , the maximum temperature reached, and the holding time above Ac 1. There is.

焼鈍における(Ac1[℃]−100℃)からAc1[℃]までの昇温速度は10℃/s以上とする。昇温速度を10℃/s以上とする温度の下限を(Ac1[℃]−100℃)以上としたのは、本発明のDP鋼の再結晶温度の下限が成分の含有量によって上昇しており、低くとも(Ac1[℃]−100℃)以上になるためである。また、昇温速度を10℃/s以上とする温度の上限をAc1[℃]としたのは、Ac1[℃]以上の温度ではα−γ変態を生じて、再結晶がほぼ停止するためである。 The temperature increase rate from (Ac 1 [° C.] − 100 ° C.) to Ac 1 [° C.] in annealing is 10 ° C./s or more. The lower limit of the temperature at which the rate of temperature increase is 10 ° C./s or higher is set to (Ac 1 [° C.] − 100 ° C.) or higher. The lower limit of the recrystallization temperature of the DP steel of the present invention is increased by the content of components. This is because it is at least (Ac 1 [° C.] − 100 ° C.). Further, the upper limit of the temperature of the heating rate and 10 ° C. / s or more was Ac 1 [° C.] is the Ac 1 [° C.] or higher temperatures occurs the alpha-gamma transformation, recrystallization is substantially stopped Because.

一方、昇温速度が10℃/s未満の場合、再結晶が十分に進行することにより、未再結晶フェライトの面積率が著しく減少する。なお、再結晶フェライトの粗大化を抑制するには、昇温速度を20℃/s超とすることが好ましい。更に、成分の含有量が少ない鋼は、Ac1が低くなるため、より再結晶が進行し易い。このようなAc1が低い鋼を製造する場合、未再結晶フェライトを確保するためには、昇温速度を30℃/s超とすることが好ましい。 On the other hand, when the rate of temperature rise is less than 10 ° C./s, the area ratio of non-recrystallized ferrite is remarkably reduced by sufficiently proceeding recrystallization. In order to suppress the coarsening of the recrystallized ferrite, it is preferable to set the rate of temperature rise to more than 20 ° C./s. Furthermore, since steel with a low content of component has a low Ac 1 , recrystallization proceeds more easily. When manufacturing such a steel with low Ac 1, it is preferable to set the rate of temperature rise to more than 30 ° C./s in order to ensure non-recrystallized ferrite.

更に、焼鈍における最高到達温度の下限はAc1[℃]以上とし、上限は、{Ac1[℃]+2/3×(Ac3[℃]−Ac1[℃])}とする。最高到達温度がAc1未満の場合、フェライトからオーステナイトに変態しないため、硬質第2相の量が不十分であり、強度−延性バランスを損なう。一方、最高到達温度が{Ac1[℃]+2/3×(Ac3[℃]−Ac1[℃])}超になると、オーステナイト変態が進行しすぎるため、未再結晶フェライトの確保が困難になる。 Further, the lower limit of the maximum temperature achieved in annealing is set to Ac 1 [° C.] or more, and the upper limit is set to {Ac 1 [° C.] + 2/3 × (Ac 3 [° C.] − Ac 1 [° C.])}. When the maximum temperature reached is less than Ac 1 , the ferrite does not transform to austenite, so the amount of the hard second phase is insufficient, and the strength-ductility balance is impaired. On the other hand, when the maximum temperature reaches {Ac 1 [° C.] + 2/3 × (Ac 3 [° C.] − Ac 1 [° C.])}, the austenite transformation proceeds too much, so it is difficult to secure unrecrystallized ferrite. become.

また、鋼板の温度がAc1[℃]以上である温度範囲での滞留時間は10〜200sとする。これは、以下の理由による。即ち、鋼板の温度がAc1[℃]以上になる時間が10s未満であると、α−γ変態が十分に進行しないため、硬質第2相を確保できず、強度−延性バランスを損なう。一方、Ac1[℃]以上での滞留時間が200sを超えると、オーステナイト変態が進行しすぎるため、未再結晶フェライトの確保が困難になる。 Also, the residence time in the temperature range the temperature of the steel sheet is Ac 1 [° C.] or higher and 10~200S. This is due to the following reason. That is, if the time for the temperature of the steel sheet to be Ac 1 [° C.] or more is less than 10 s, the α-γ transformation does not proceed sufficiently, so that the hard second phase cannot be secured and the strength-ductility balance is impaired. On the other hand, if the residence time at Ac 1 [° C.] or more exceeds 200 s, the austenite transformation proceeds too much, so that it is difficult to secure unrecrystallized ferrite.

なお、Ac1[℃]及びAc3[℃]は、それぞれAc1変態点及びAc3変態点であり、質量%で表されるC、Mn、Siの含有量である(%C)、(%Mn)、(%Si)により、下記(式1)及び(式2)から求めた温度である。 Ac 1 [° C.] and Ac 3 [° C.] are the Ac 1 transformation point and Ac 3 transformation point, respectively, and are the contents of C, Mn, and Si expressed in mass% (% C), ( % Mn) and (% Si) are temperatures obtained from the following (formula 1) and (formula 2).

Ac1=761.3+212(%C)−45.8(%Mn)+16.7(%Si)・・・(式1)
Ac3=915−325.9(%C)−35.9(%Mn)+31.4(%Si) ・・・(式2)
Ac 1 = 761.3 + 212 (% C) −45.8 (% Mn) +16.7 (% Si) (Formula 1)
Ac 3 = 915-325.9 (% C) -35.9 (% Mn) +31.4 (% Si) ··· ( Equation 2)

以下、本発明の限定理由について順次説明する。   Hereinafter, the reasons for limitation of the present invention will be described sequentially.

まず、鋼成分について説明する。なお、%は質量%を意味する。
Ti、Nbは本発明において最も重要な元素であり、一方又は双方を含有させる。Ti、Nbの一方又は双方を添加すると、熱延後の鋼板に形状凍結性に有利な集合組織が発達し易くなり、また、冷間圧延後の焼鈍工程において、加工フェライトの再結晶が抑制され、未再結晶フェライトを残留させることができる。これにより、形状凍結性が向上し、高強度が得られる。このような効果を得るために、Ti量、Nb量の下限は、何れも、0.005%以上とする必要がある。一方、Ti量、Nb量の上限は、0.100%を超えると延性が低下するため、0.100%以下とすることが必要である。また、合金コストの観点から、Ti量、Nb量の好ましい上限は0.040%である。
First, steel components will be described. In addition,% means the mass%.
Ti and Nb are the most important elements in the present invention, and one or both of them are contained. When one or both of Ti and Nb are added, a texture advantageous to shape freezing property is easily developed in the steel sheet after hot rolling, and recrystallization of processed ferrite is suppressed in the annealing process after cold rolling. Unrecrystallized ferrite can be left. Thereby, shape freezing property improves and high intensity | strength is obtained. In order to obtain such an effect, the lower limits of the Ti content and the Nb content must both be 0.005% or more. On the other hand, the upper limit of the Ti content and the Nb content is required to be 0.100% or less because the ductility is lowered when it exceeds 0.100%. From the viewpoint of alloy cost, the preferable upper limit of the Ti amount and the Nb amount is 0.040%.

Cは、硬質第2相の生成を促進し、強度の増加に寄与する元素であり、狙いとする強度レベルに応じて適量を添加する。C量は、0.05%未満であると、高強度を得るのが困難となるため、下限を0.05%とする。一方、C量が0.25%を超えると、成形性や溶接性の劣化を招くため、0.25%を上限とする。   C is an element that promotes the formation of the hard second phase and contributes to an increase in strength, and an appropriate amount is added according to the target strength level. If the amount of C is less than 0.05%, it is difficult to obtain high strength, so the lower limit is made 0.05%. On the other hand, if the amount of C exceeds 0.25%, deterioration of formability and weldability is caused, so 0.25% is made the upper limit.

Siは脱酸元素であり、Si量の下限は規定しないが、0.01%未満とするには製造コストが高くなるため、下限を0.01%とすることが好ましい。また、Siは、固溶体強化元素として強度を増加させる働きがある上、硬質第2相を得るためにも有効である。しかし、Si量が1.00%を超えるとAc1が高くなり過ぎ、焼鈍温度を高くする必要が生じ、変態が促進されて未再結晶フェライトの確保が困難になるため、上限を1.00%以下とする。また、Siを0.50%超添加すると溶融Znめっきを施す際のめっき密着性の低下及び合金化反応の遅延による生産性の低下という問題が生ずることがある。そのため、Si量の上限を0.50%以下とすることが好ましい。 Si is a deoxidizing element, and the lower limit of the amount of Si is not specified, but if it is less than 0.01%, the manufacturing cost increases, so the lower limit is preferably made 0.01%. In addition, Si serves to increase the strength as a solid solution strengthening element and is also effective for obtaining a hard second phase. However, if the amount of Si exceeds 1.00%, Ac 1 becomes too high, and it is necessary to increase the annealing temperature, and the transformation is promoted to make it difficult to secure unrecrystallized ferrite. % Or less. Further, if Si is added in excess of 0.50%, there may be a problem that the plating adhesion is deteriorated when performing hot dip Zn plating and the productivity is lowered due to the delay of the alloying reaction. Therefore, it is preferable that the upper limit of the Si amount is 0.50% or less.

MnはAc1及び、α−γ変態が完了してオーステナイト単相となる温度であるAc3変態温度(以下、Ac3ともいう。)を低下させる元素であり、本発明において極めて重要である。即ち、Mn量が少ないと、焼鈍温度を高くする必要が生じ、変態が促進されて未再結晶フェライトの確保が困難になる。また、Mnは、Siと同様、固溶強化に寄与する元素として強度を増加させる働きがある上、硬質第2相を得るためにも有効である。これらの観点から、Mn量の下限を0.50%とする。一方、Mn量が3.50%を超えると、成形性や溶接性の劣化を招くため、3.50%を上限とする。 Mn is an element that lowers Ac 1 and the Ac 3 transformation temperature (hereinafter also referred to as Ac 3 ), which is the temperature at which the α-γ transformation is completed and becomes an austenite single phase, and is extremely important in the present invention. That is, when the amount of Mn is small, it is necessary to increase the annealing temperature, the transformation is promoted, and it becomes difficult to secure unrecrystallized ferrite. Mn, like Si, has an effect of increasing strength as an element contributing to solid solution strengthening, and is also effective for obtaining a hard second phase. From these viewpoints, the lower limit of the amount of Mn is 0.50%. On the other hand, if the amount of Mn exceeds 3.50%, the formability and weldability are deteriorated, so 3.50% is made the upper limit.

Pは不純物であり、粒界に偏析するため、鋼板の靭性の低下や溶接性の劣化を招く。更に、溶融Znめっき時に合金化反応が極めて遅くなり、生産性が低下する。これらの観点から、P量の上限を0.150%とする。下限は特に限定しないが、Pは安価に強度を高める元素であるため、P量を0.005%以上とすることが好ましい。   P is an impurity and segregates at the grain boundary, which causes a reduction in toughness and weldability of the steel sheet. Furthermore, the alloying reaction is extremely slow during hot-dip Zn plating, and productivity is reduced. From these viewpoints, the upper limit of the P content is 0.150%. The lower limit is not particularly limited, but P is an element that enhances the strength at a low cost, so the P content is preferably 0.005% or more.

Sは不純物であり、その含有量が0.0150%を超えると、熱間割れを誘発したり、加工性を劣化させるので、上限を0.0150%とする。   S is an impurity, and if its content exceeds 0.0150%, hot cracking is induced or workability is deteriorated, so the upper limit is made 0.0150%.

Alは脱酸剤であり、下限は規定しないが、変態点を著しく高める元素であるため、上限を0.200%とする。なお、製造コストの観点からは、Al量の下限を0.0005%以上とすることが好ましい。また、脱酸の効果を十分に得るためには、Alを0.010%以上添加することが好ましい。更に、固溶N量を確保してBH性を兼備させるには、Al量の上限を0.0200%とすることが好ましい。これは、AlがAlNを形成して固溶N量を低減させる元素であるためである。   Al is a deoxidizer and does not define a lower limit, but is an element that remarkably increases the transformation point, so the upper limit is made 0.200%. From the viewpoint of manufacturing cost, it is preferable that the lower limit of the amount of Al is 0.0005% or more. Further, in order to obtain a sufficient deoxidation effect, it is preferable to add Al by 0.010% or more. Furthermore, in order to ensure the amount of dissolved N and to have BH properties, the upper limit of the Al amount is preferably 0.0200%. This is because Al is an element that forms AlN to reduce the amount of dissolved N.

Nは不純物であり、N量が0.0100%を超えると、靭性や延性の劣化、鋼片の割れの発生が顕著になる。なお、Nは、硬質第2相を得るためには有効であるため、上限を0.0100%として積極的に添加しても良い。更に、固溶N量を確保してBH性を兼備させるためには、Nを0.0010%以上添加することが好ましい。   N is an impurity, and when the amount of N exceeds 0.0100%, the deterioration of toughness and ductility and the occurrence of cracks in the steel slab become remarkable. Note that N is effective for obtaining the hard second phase, and therefore may be positively added with an upper limit of 0.0100%. Furthermore, in order to secure the amount of dissolved N and to have BH properties, it is preferable to add N at 0.0010% or more.

更に、Nの含有量に対してAlを過剰に含有させると、AlNの生成が促進されて、固溶N量の確保が難しくなることがある。したがって、BH性を向上させるためには、Alの含有量とNの含有量との比Al/Nを2以下とすることが好ましい。なお、上述のように、BH性を向上させるためには、Nを0.0010%以上添加することが好ましく、Alを含有させないこと、即ち含有量を0%とすることが望ましい。したがって、Al/Nの下限は、0とすることが望ましい。しかし、製造コストの観点から、好ましいAlの下限は、上述のように、0.0005%である。また、N量の上限は0.0100%であることから、Al/Nの下限は0.05が最適である。   Furthermore, when Al is contained excessively with respect to the N content, the generation of AlN is promoted, and it may be difficult to secure the solid solution N amount. Therefore, in order to improve the BH property, the ratio Al / N between the Al content and the N content is preferably 2 or less. As described above, in order to improve the BH property, N is preferably added in an amount of 0.0010% or more, and it is desirable not to contain Al, that is, to make the content 0%. Therefore, it is desirable that the lower limit of Al / N be 0. However, from the viewpoint of manufacturing cost, the preferable lower limit of Al is 0.0005% as described above. Moreover, since the upper limit of N amount is 0.0100%, 0.05 is optimal as the lower limit of Al / N.

なお、Ac1が700℃以上の高温になると、α+γ二相域での焼鈍の際に、短時間でα−γ変態が進行してしまうため、本発明においてはAc1が700℃以下であることが好ましい。 In addition, when Ac 1 reaches a high temperature of 700 ° C. or higher, the α-γ transformation proceeds in a short time during annealing in the α + γ two-phase region. Therefore, in the present invention, Ac 1 is 700 ° C. or lower. It is preferable that

Mo、B、Cr及びNiは、いずれも焼入れ性を高める元素であるため、必要に応じて1種又は2種以上を添加しても良い。焼入れ性の向上により、高強度とするには、それぞれ、Mo:0.1%以上、B:0.0005%以上、Cr:0.1%以上、Ni:0.1%以上添加することが好ましい。一方、過剰な添加は合金コストの増加を招くため、Mo:1.5%以下、B:0.01%以下、Cr:1.5%以下、Ni:1.5%以下とすることが好ましい。   Since all of Mo, B, Cr and Ni are elements that enhance the hardenability, one or more of them may be added as necessary. In order to obtain high strength by improving hardenability, Mo: 0.1% or more, B: 0.0005% or more, Cr: 0.1% or more, Ni: 0.1% or more are added. preferable. On the other hand, excessive addition leads to an increase in alloy cost, so it is preferable that Mo: 1.5% or less, B: 0.01% or less, Cr: 1.5% or less, Ni: 1.5% or less. .

次に、ミクロ組織及び集合組織について説明する。
本発明によって得られる鋼板のミクロ組織は、フェライトと硬質第2相からなり、そのフェライトは、未再結晶フェライト、再結晶フェライト及び変態フェライトの総称である。なお、光学顕微鏡による組織観察では、再結晶フェライトと変態フェライトとの差異は明確ではなく、両者を区別することは困難である。
Next, the microstructure and texture will be described.
The microstructure of the steel sheet obtained by the present invention is composed of ferrite and a hard second phase, and the ferrite is a general term for non-recrystallized ferrite, recrystallized ferrite and transformed ferrite. In addition, in the structure observation with an optical microscope, the difference between recrystallized ferrite and transformed ferrite is not clear, and it is difficult to distinguish them.

硬質第2相は、マルテンサイト、ベイナイト及びパーライトからなり、3%未満の残留オーステナイトを含むことがある。硬質第2相は、高強度化に寄与する一方で、過剰に存在すると著しく延性が低下するため、下限を1%、上限を30%とする。   The hard second phase consists of martensite, bainite and pearlite and may contain less than 3% retained austenite. While the hard second phase contributes to high strength, if it is present in excess, the ductility is remarkably lowered, so the lower limit is 1% and the upper limit is 30%.

ミクロ組織は、圧延方向に平行な板厚断面を観察面として試料を採取し、観察面を研磨、ナイタールエッチ、必要に応じてレペラーエッチし、光学顕微鏡で観察すれば良い。光学顕微鏡によって得られたミクロ組織写真を画像解析することによって、パーライト、ベイナイト又はマルテンサイトの内のいずれか1種又は2種以上の面積率の合計量を、フェライト以外の相の面積率として求めることができる。残留オーステナイトは、光学顕微鏡ではマルテンサイトとの区別が困難であるが、X線回折法によって体積率の測定を行うことができる。なお、ミクロ組織から求めた面積率は、体積率と同じである。   The microstructure may be obtained by taking a sample with the cross section of the plate thickness parallel to the rolling direction as the observation surface, polishing the observation surface, performing nital etching, and if necessary, repeller etching, and observing with an optical microscope. By analyzing the microstructure image obtained by the optical microscope, the total amount of one or more of pearlite, bainite and martensite is obtained as the area ratio of the phase other than ferrite. be able to. Although it is difficult to distinguish residual austenite from martensite with an optical microscope, the volume ratio can be measured by an X-ray diffraction method. Note that the area ratio obtained from the microstructure is the same as the volume ratio.

再結晶フェライトと変態フェライトの一方又は双方の面積率は、10〜70%とする。これは、再結晶フェライトと変態フェライトの一方又は双方の面積率が、10%未満では延性が低下し、70%を超えると強度が低下するためである。   The area ratio of one or both of the recrystallized ferrite and the transformed ferrite is 10 to 70%. This is because the ductility decreases when the area ratio of one or both of the recrystallized ferrite and the transformed ferrite is less than 10%, and the strength decreases when the area ratio exceeds 70%.

未再結晶フェライトは高強度化に寄与することから、その効果を得るためには10%以上の未再結晶フェライトを含んでいる必要がある。一方、未再結晶フェライトの面積率が70%を超えると、著しく延性が低下するため、上限を70%とする。   Since non-recrystallized ferrite contributes to high strength, it is necessary to contain 10% or more of non-recrystallized ferrite in order to obtain the effect. On the other hand, if the area ratio of non-recrystallized ferrite exceeds 70%, the ductility is remarkably lowered, so the upper limit is made 70%.

未再結晶フェライトとそれ以外のフェライト、即ち再結晶フェライト及び変態フェライトとは、電子後方散乱解析像(Electron back scattering pattern、EBSPという。)の結晶方位測定データをKernel Average Misorientation法(KAM法)で解析することにより判別することができる。   Non-recrystallized ferrite and other ferrites, that is, recrystallized ferrite and transformed ferrite, are obtained by analyzing the crystal orientation measurement data of an electron back scattering pattern (EBSP) by the Kernel Average Misoration method (KAM method). It can be determined by analysis.

未再結晶フェライトの粒内には、転位は回復しているものの、冷延時の塑性変形により生じた結晶方位の連続的な変化が存在する。一方、未再結晶フェライトを除くフェライト粒内の結晶方位変化は極めて小さくなる。これは、再結晶及び変態により、隣接する結晶粒の結晶方位は大きく異なるものの、1つの結晶粒内では結晶方位が変化していないためである。KAM法では、隣接したピクセル(測定点)との結晶方位差を定量的に示すことができるので、本発明では隣接測定点との平均結晶方位差が1°以内且つ、平均結晶方位差が2°以上あるピクセル間を粒界と定義した時に、結晶粒径が3μm以上である粒を未再結晶フェライト以外のフェライト、即ち再結晶フェライト及び変態フェライトと定義する。   In the grains of unrecrystallized ferrite, although dislocations are recovered, there is a continuous change in crystal orientation caused by plastic deformation during cold rolling. On the other hand, the crystal orientation change in the ferrite grains excluding non-recrystallized ferrite becomes extremely small. This is because the crystal orientation does not change in one crystal grain, although the crystal orientation of adjacent crystal grains varies greatly due to recrystallization and transformation. In the KAM method, the crystal orientation difference between adjacent pixels (measurement points) can be quantitatively shown. Therefore, in the present invention, the average crystal orientation difference between adjacent measurement points is within 1 ° and the average crystal orientation difference is 2 When a pixel boundary is defined as a grain boundary, a grain having a crystal grain size of 3 μm or more is defined as ferrite other than unrecrystallized ferrite, that is, recrystallized ferrite and transformed ferrite.

EBSP測定は、焼鈍後の試料の平均結晶粒径の10分の1の測定間隔で、任意の板断面の板厚方向の1/4厚の位置で100×100μmの範囲において行えば良い。このEBSP測定の結果、得られた測定点はピクセルとして出力される。EBSPの結晶方位測定に供する試料は、機械研磨等によって鋼板を所定の板厚まで減厚し、次いで電解研磨等によって歪みを除去すると同時に、板厚1/4面が測定面となるように作製する。   The EBSP measurement may be performed in a range of 100 × 100 μm at a 1/4 thickness position in the plate thickness direction of any plate cross section at a measurement interval of 1/10 of the average crystal grain size of the sample after annealing. As a result of the EBSP measurement, the measurement points obtained are output as pixels. Samples to be used for EBSP crystal orientation measurement are prepared so that the steel plate is reduced to a predetermined thickness by mechanical polishing, etc., and then the strain is removed by electrolytic polishing, etc., and at the same time, the 1/4 thickness is the measurement surface. To do.

未再結晶フェライトを含むフェライトの総面積率は、硬質第2相の面積率の残部であるから、EBSPの結晶方位測定に使用した試料をナイタールエッチし、該測定を行った視野の光学顕微鏡写真を同一の倍率で撮影し、得られた組織写真を画像解析して求めれば良い。更に、この組織写真とEBSPの結晶方位測定の結果を対比させることによって、未再結晶フェライト及び未再結晶フェライト以外のフェライト、即ち、再結晶フェライトと変態フェライトの面積率の合計を求めることもできる。   Since the total area ratio of ferrite including non-recrystallized ferrite is the remainder of the area ratio of the hard second phase, the sample used for measuring the crystal orientation of EBSP was nital etched, and the optical microscope of the field of view where the measurement was performed The photograph may be taken at the same magnification, and the obtained tissue photograph may be obtained by image analysis. Furthermore, by comparing the result of the crystal orientation measurement of this structural photograph and EBSP, the total area ratio of non-recrystallized ferrite and ferrite other than non-recrystallized ferrite, that is, recrystallized ferrite and transformed ferrite can be obtained. .

本発明鋼の板厚1/2層における{554}<225>、{111}<112>及び{111}<110>の3つの結晶方位のX線ランダム強度比の平均値は3.5以下であることが好ましい。この方位が発達することによって、形状凍結性が劣化してしまうため、上限を3.5とする。   The average value of the X-ray random intensity ratios of the three crystal orientations of {554} <225>, {111} <112> and {111} <110> in the 1/2 layer thickness of the steel of the present invention is 3.5 or less. It is preferable that As this orientation develops, the shape freezeability deteriorates, so the upper limit is set to 3.5.

なお、X線ランダム強度比とは、特定の方位への集積を持たない標準試料と供試材のX線強度を同条件でX線回折法等により測定し、得られた供試材のX線強度を標準試料のX線強度で除した数値である。   Note that the X-ray random intensity ratio means that the X-ray intensity of a standard sample that does not accumulate in a specific orientation and the test material is measured under the same conditions by the X-ray diffraction method or the like. It is a numerical value obtained by dividing the line intensity by the X-ray intensity of the standard sample.

{554}<225>、{111}<112>及び{111}<110>方位のX線ランダム強度比は、X線回折によって測定される{110}、{100}、{211}、{310}極点図のうち、複数の極点図を用いて級数展開法で計算した3次元集合組織(ODF)から求めれば良い。すなわち、{554}<225>、{111}<112>及び{111}<110>方位のX線ランダム強度比を求めるには、ODFのφ2=45°断面における(554)[1−10]及び(111)[1−10]の強度で代表させる。   The X-ray random intensity ratio in the {554} <225>, {111} <112> and {111} <110> orientations is measured by X-ray diffraction {110}, {100}, {211}, {310 } Of the pole figures, a three-dimensional texture (ODF) calculated by a series expansion method using a plurality of pole figures may be used. That is, in order to obtain the X-ray random intensity ratio of the {554} <225>, {111} <112> and {111} <110> orientations, (554) [1-10] in the φ2 = 45 ° cross section of the ODF And the intensity of (111) [1-10].

X線回折に供する試料は、機械研磨などによって鋼板を所定の板厚まで減厚し、次いで化学研磨や電解研磨などによって歪みを除去すると同時に板厚1/2面が測定面となるように作製する。鋼板の板厚中心層に偏析帯や欠陥などが存在し測定上不都合が生ずる場合には、板厚の3/8〜5/8の範囲で適当な面が測定面となるように上述の方法に従って試料を調整して測定すればよい。更にX線回折が困難な場合には、EBSP法やECP(lectron hanneling attern)法により統計的に十分な数の測定を行う。 Samples to be subjected to X-ray diffraction are prepared so that the steel plate is reduced to a predetermined thickness by mechanical polishing, etc., and then distortion is removed by chemical polishing, electrolytic polishing, etc., and at the same time, the 1/2 surface thickness becomes the measurement surface To do. When there is a segregation zone or a defect in the thickness center layer of the steel plate, causing inconvenience in measurement, the above method is used so that an appropriate surface becomes the measurement surface in the range of 3/8 to 5/8 of the plate thickness. The sample may be adjusted according to the above and measured. If more difficult X-ray diffraction performs a statistical measure sufficient number of the EBSP method or ECP (E lectron C hanneling P attern ) method.

ここで、{hkl}<uvw>とは、上述の方法でX線用試料を採取した時、板面の法線方向が{hkl}に平行で、圧延方向が<uvw>と平行であることを示している。なお結晶の方位は通常、板面に垂直な方位を[hkl]又は{hkl}、圧延方向に平行な方位を(uvw)又は<uvw>で表示する。{hkl}、<uvw>は等価な面の総称であり、[hkl]、(uvw)は個々の結晶面を指す。すなわち、本発明においてはb.c.c.構造を対象としているため、例えば(111)、(−111)、(1−11)、(11−1)、(−1−11)、(−11−1)、(1−1−1)、(−1−1−1)面は等価であり区別がつかない。このような場合、これらの方位を総称して{111}と称する。ODF表示では他の対称性の低い結晶構造の方位表示にも用いられるため、個々の方位を[hkl](uvw)で表示するのが一般的であるが、本文中においては[hkl](uvw)と{hkl}<uvw>は同義である。   Here, {hkl} <uvw> means that the normal direction of the plate surface is parallel to {hkl} and the rolling direction is parallel to <uvw> when an X-ray sample is collected by the above-described method. Is shown. The crystal orientation is usually indicated by [hkl] or {hkl}, which is perpendicular to the plate surface, and (uvw) or <uvw>, which is parallel to the rolling direction. {Hkl} and <uvw> are generic terms for equivalent planes, and [hkl] and (uvw) indicate individual crystal planes. That is, in the present invention, b. c. c. Since the structure is targeted, for example, (111), (−111), (1-11), (11-1), (−1-11), (-11-1), (1-1-1) , (-1-1-1) planes are equivalent and indistinguishable. In such a case, these orientations are collectively referred to as {111}. Since the ODF display is also used to display the orientation of other crystal structures with low symmetry, the individual orientation is generally displayed as [hkl] (uvw). However, in the text, [hkl] (uvw) ) And {hkl} <uvw> are synonymous.

次に、製造条件の限定理由について説明する。
熱間圧延に供するスラブは特に限定するものではない。すなわち、連続鋳造スラブや薄スラブキャスター等で製造したものであれば良い。また、鋳造後直ちに熱間圧延を行う連続鋳造―直接圧延のようなプロセスにも適合する。
Next, the reason for limiting the manufacturing conditions will be described.
The slab used for hot rolling is not particularly limited. That is, what was manufactured with the continuous casting slab, the thin slab caster, etc. should just be used. It is also compatible with processes such as continuous casting-direct rolling, in which hot rolling is performed immediately after casting.

熱間圧延の圧延温度や圧下率等の条件は特に規定する必要はなく、常法にしたがって行えば良い。熱延後、巻取りまでの冷却は、水等、冷媒の吹付け、送風、ミスト等による強制冷却など、適宜行えば良い。   Conditions such as the rolling temperature and rolling reduction in hot rolling need not be specified, and may be performed according to a conventional method. Cooling up to winding after hot rolling may be performed as appropriate, such as forced cooling with water, refrigerant, blowing, mist, or the like.

仕上圧延後の巻取り温度は本発明において重要であり、300〜500℃とする。これにより、熱延後の鋼板の組織が、軟質なポリゴナルフェライトの中にマルテンサイトやパーライト等の硬質相が分散したものとなり、冷延中に{554}<225>、{111}<112>及び{111}<110>方位が発達するのを抑制することができる。巻取り温度が500℃超の場合、マルテンサイトやパーライト等の硬質相が得られず、冷延焼鈍後の集合組織が劣化するため、巻取り温度の上限を500℃とする。一方、300℃未満で巻き取ると熱延板中のTiの炭窒化物の析出量が減少することにより、再結晶抑制効果が小さくなってしまうため、巻取り温度の下限を300℃とする。   The winding temperature after finish rolling is important in the present invention, and is set to 300 to 500 ° C. Thereby, the structure of the steel sheet after hot rolling becomes a structure in which hard phases such as martensite and pearlite are dispersed in soft polygonal ferrite, and {554} <225>, {111} <112 during cold rolling. > And {111} <110> orientation can be prevented from developing. When the coiling temperature exceeds 500 ° C., a hard phase such as martensite or pearlite cannot be obtained, and the texture after cold rolling annealing deteriorates. Therefore, the upper limit of the coiling temperature is set to 500 ° C. On the other hand, if the winding is performed at a temperature lower than 300 ° C., the precipitation amount of Ti carbonitride in the hot-rolled sheet is reduced, so that the recrystallization suppressing effect is reduced. Therefore, the lower limit of the winding temperature is set to 300 ° C.

このようにして製造した熱延鋼板を酸洗後、60%以下の圧下率で冷間圧延を行う。これは、冷間圧延率が60%を超えると、形状凍結性に不利な{554}<225>、{111}<112>及び{111}<110>方位が発達してしまうためである。   The hot-rolled steel sheet thus manufactured is pickled and then cold-rolled at a rolling reduction of 60% or less. This is because if the cold rolling rate exceeds 60%, the {554} <225>, {111} <112>, and {111} <110> orientations that are disadvantageous to shape freezing properties develop.

焼鈍は、本発明において最も重要な工程であり、その条件については上述した通りである。焼鈍は、昇温速度、加熱時間を制御するため、連続焼鈍設備によって行うことが好ましい。また、昇温速度を速くするために、高周波加熱装置、通電加熱装置を併用しても良い。焼鈍において、Ac1以上での滞留時間は、鋼板の温度がAc1以上である時間の合計であり、加熱炉の設定温度と炉の長さ、通板速度によって制御することができる。 Annealing is the most important step in the present invention, and the conditions are as described above. Annealing is preferably performed by continuous annealing equipment in order to control the rate of temperature rise and the heating time. Further, in order to increase the rate of temperature rise, a high-frequency heating device or an electric heating device may be used in combination. In annealing, the residence time in the Ac 1 or more, the sum of the time the temperature of the steel sheet is Ac 1 or more, the length of the set temperature and the furnace of the heating furnace can be controlled by the sheet passing speed.

また、焼鈍後の冷却速度は特に規定しないが、冷却速度が1℃/s未満の場合、十分に硬質第2相が得られなくなることがある。この観点から、冷却速度の下限は1℃/sとすることが好ましい。一方、冷却速度を250℃/s超とするには、特殊な設備の導入などが必要になるため、250℃/sを冷却速度の上限とすることが好ましい。焼鈍後の冷却速度は、水等、冷媒の吹付け、送風、ミスト等による強制冷却により、適宜制御すれば良い。   Further, the cooling rate after annealing is not particularly specified, but if the cooling rate is less than 1 ° C./s, a sufficiently hard second phase may not be obtained. From this viewpoint, the lower limit of the cooling rate is preferably 1 ° C./s. On the other hand, in order to make the cooling rate over 250 ° C./s, it is necessary to introduce special equipment and the like, so it is preferable to set the upper limit of the cooling rate to 250 ° C./s. The cooling rate after annealing may be appropriately controlled by forced cooling with water or the like, blowing of refrigerant, blowing air, mist, or the like.

焼鈍後には必要に応じて、過時効処理、溶融Znめっき又は合金化溶融Znめっきを施しても良い。Znめっきの組成は特に限定するものではなく、Znの他、Fe、Al、Mn、Cr、Mg、Pb、Sn、Ni等を必要に応じて添加しても構わない。なお、めっきは、焼鈍と別工程で行っても良いが、生産性の観点から、焼鈍とめっきを連続して行う、連続焼鈍−溶融Znめっきラインによって行うことが好ましい。この場合も、未再結晶フェライトを確保するためには、焼鈍を上記の条件で行うことが必要である。   After annealing, an overaging treatment, hot dip Zn plating, or alloyed hot dip Zn plating may be performed as necessary. The composition of the Zn plating is not particularly limited, and in addition to Zn, Fe, Al, Mn, Cr, Mg, Pb, Sn, Ni, or the like may be added as necessary. The plating may be performed in a separate process from the annealing, but from the viewpoint of productivity, it is preferable that the plating is performed by a continuous annealing-hot Zn plating line in which annealing and plating are continuously performed. Also in this case, in order to ensure non-recrystallized ferrite, it is necessary to perform annealing under the above conditions.

合金化処理を行う場合は、450〜600℃の温度範囲で行うことが好ましい。450℃未満では合金化が十分に進行せず、また、600℃超では過度に合金化が進行し、めっき層が脆化するため、プレス等の加工によってめっきが剥離する等の問題を誘発する。合金化処理の時間は、10s未満では合金化が十分に進行しないことがあるため、10s以上とすることが好ましい。また、合金化処理の時間の上限は特に規定しないが、生産効率の観点から100s以内とすることが好ましい。   When performing an alloying process, it is preferable to carry out in the temperature range of 450-600 degreeC. If it is less than 450 ° C, alloying does not proceed sufficiently, and if it exceeds 600 ° C, alloying proceeds excessively and the plating layer becomes brittle, which causes problems such as peeling of the plating by processing such as pressing. . When the alloying treatment time is less than 10 s, alloying may not proceed sufficiently. Further, the upper limit of the alloying time is not particularly defined, but is preferably within 100 s from the viewpoint of production efficiency.

また、生産性の観点から、連続焼鈍−溶融Znめっきラインに合金化処理炉を連続して設け、焼鈍、めっき及び合金化処理を連続して行うことが好ましい。   Further, from the viewpoint of productivity, it is preferable to continuously provide an alloying treatment furnace in the continuous annealing-hot Zn plating line and to perform annealing, plating, and alloying treatment continuously.

表1に示す組成を有する鋼を真空溶解炉にて溶製し、表2に示す条件で熱間圧延、冷間圧延及び焼鈍を行った。なお、均熱温度から500℃まで、もしくは過時効処理温度までの平均冷却速度はいずれも50℃/sとした。ここで、表1の[−]は、成分の分析値が検出限界未満であったことを意味する。また、表1には、Ac1[℃]とAc3[℃]の計算値も示した。 Steel having the composition shown in Table 1 was melted in a vacuum melting furnace, and hot rolling, cold rolling and annealing were performed under the conditions shown in Table 2. The average cooling rate from the soaking temperature to 500 ° C. or the overaging temperature was 50 ° C./s. Here, [-] in Table 1 means that the analysis value of the component was less than the detection limit. Table 1 also shows the calculated values of Ac 1 [° C.] and Ac 3 [° C.].

表2において、CT[℃]は熱延工程の巻取り温度である。表2の昇温速度は、(Ac1[℃]−100℃)からAc1[℃]までの温度の上昇に要した時間によって計算した。表2の滞留時間は、焼鈍時に、Ac1[℃]以上の温度域に加熱された時間である。 In Table 2, CT [° C.] is a coiling temperature in the hot rolling process. The heating rate in Table 2 was calculated according to the time required for the temperature increase from (Ac 1 [° C.]-100 ° C.) to Ac 1 [° C.]. The residence time in Table 2 is the time during which annealing was performed in a temperature range of Ac 1 [° C.] or higher.

表2に示す冷延鋼板のうち、製造No.2及び6については、焼鈍工程後、Znめっき浴に浸漬後500℃で20s間の合金化処理を施した。更に、表2に示す冷延鋼板のうち、製造No.11については、均熱温度から300℃まで上述の通り50℃/sの冷却速度で冷却し、その温度で400s保持した後、10℃/sで室温まで冷却し、機械特性を測定した。   Among the cold-rolled steel sheets shown in Table 2, production No. 2 and 6 were subjected to an alloying treatment at 500 ° C. for 20 s after immersion in a Zn plating bath after the annealing step. Furthermore, among the cold-rolled steel sheets shown in Table 2, the production No. No. 11 was cooled from a soaking temperature to 300 ° C. at a cooling rate of 50 ° C./s as described above, held at that temperature for 400 s, then cooled to room temperature at 10 ° C./s, and mechanical properties were measured.

焼鈍後の冷延鋼板から、圧延方向と垂直の幅方向(TD方向)を長手方向として、JIS Z 2201の5号引張試験片を採取し、JIS Z 2241に準拠して、TD方向の引張特性を評価した。また、{554}<225>、{111}<112>及び{111}<110>方位のX線ランダム強度比はX線回折により測定し、3つの結晶方位の平均値を求めた。以下、{554}<225>、{111}<112>、{111}<110>の結晶方位のX線ランダム強度比の平均値を平均ランダム強度比という。X線回折の試料は、機械研磨及び電解研磨よって、板厚1/2面が測定面となるようにして作製した。   From the annealed cold-rolled steel sheet, a No. 5 tensile test piece of JIS Z 2201 was taken with the width direction (TD direction) perpendicular to the rolling direction as the longitudinal direction, and in accordance with JIS Z 2241, tensile properties in the TD direction Evaluated. Further, the X-ray random intensity ratio of {554} <225>, {111} <112> and {111} <110> orientations was measured by X-ray diffraction, and an average value of three crystal orientations was obtained. Hereinafter, the average value of the X-ray random intensity ratios of crystal orientations of {554} <225>, {111} <112>, and {111} <110> is referred to as an average random intensity ratio. A sample for X-ray diffraction was prepared by mechanical polishing and electrolytic polishing so that the half-thickness surface was the measurement surface.

断面ミクロ組織観察は、光学顕微鏡で行い、パーライト、ベイナイト、マルテンサイトの面積率の合計は、光学顕微鏡による組織写真を画像解析して求めた。また、未再結晶フェライトの面積率及び未再結晶フェライトを除くフェライトの面積率は、EBSPの結晶方位測定及びその測定結果と光学顕微鏡組織写真を照合し、画像解析によって求めた。   The cross-sectional microstructure was observed with an optical microscope, and the total area ratio of pearlite, bainite, and martensite was obtained by image analysis of a structural photograph taken with an optical microscope. Moreover, the area ratio of the non-recrystallized ferrite and the area ratio of the ferrite excluding the non-recrystallized ferrite were obtained by collating the crystal orientation measurement of EBSP, the measurement result, and the optical microscope structure photograph, and image analysis.

形状凍結性の評価は、焼鈍後の冷延鋼板から25mm幅、130mm長さの試験片を作成し、ポンチ幅40mm、ポンチ肩R5、ダイス幅43.4mm、ダイ肩R3の金型を用いて、種々のしわ押さえ圧で、40mm高さのハット型に成形した後、壁部の反り量を局率半径ρ(mm)として測定し、その逆数1000/ρにて行った。1000/ρが小さいほど形状凍結性は良好である。   The evaluation of the shape freezing property was made from a cold-rolled steel sheet after annealing by preparing a test piece having a width of 25 mm and a length of 130 mm and using a die having a punch width of 40 mm, a punch shoulder R5, a die width of 43.4 mm and a die shoulder R3 After forming into a hat shape having a height of 40 mm with various wrinkle holding pressures, the amount of warpage of the wall was measured as a local radius ρ (mm), and the reciprocal was 1000 / ρ. The smaller the 1000 / ρ, the better the shape freezing property.

ミクロ組織の面積率、平均X線ランダム強度比、機械特性及び形状凍結性の評価を表3に示す。なお、「形状凍結性の評価」の欄には、1000/ρ≦0.017×TS(MPa)−4.13になる場合を「○」、それ以外の場合を「×」として評価結果を記載した。   Table 3 shows the evaluation of the area ratio of the microstructure, the average X-ray random intensity ratio, the mechanical properties, and the shape freezing property. In the column of “Evaluation of shape freezing property”, the evaluation result is expressed as “O” when 1000 / ρ ≦ 0.017 × TS (MPa) −4.13, and “X” in other cases. Described.

本発明の化学成分を有する鋼を適正な条件で熱延及び冷延し、適切な焼鈍工程を経ることで、過時効処理、Znめっき、更に合金化処理を施しても低降伏比の高強度冷延鋼板を得ることが可能である。   The steel having the chemical composition of the present invention is hot-rolled and cold-rolled under appropriate conditions, and after an appropriate annealing process, it has a high strength with a low yield ratio even if it is over-aged, Zn plated, and further alloyed. It is possible to obtain a cold-rolled steel sheet.

一方、鋼No.BはC量が少ないため、強度が低下している。 また、鋼No.DはSi量が多く、鋼No.FはMnが少なく、高温で焼鈍を行う必要が生じ、鋼No.JはTiが少ないため、未再結晶フェライトが少なくなり、平均ランダム強度比が高くなり、降伏比が低下している。   On the other hand, Steel No. Since B has a small amount of C, its strength is lowered. Steel No. D has a large amount of Si. F has less Mn and needs to be annealed at a high temperature. Since J has less Ti, non-recrystallized ferrite is reduced, the average random strength ratio is increased, and the yield ratio is decreased.

また、製造No.3は、熱延工程において巻取り温度が高く、製造No.5は、冷間圧延の圧下率が高く、平均ランダム強度比が高くなり、降伏比が大きくなっている。   In addition, production No. No. 3 has a high winding temperature in the hot rolling process, and the production No. 3 No. 5 has a high cold rolling reduction ratio, a high average random strength ratio, and a high yield ratio.

製造No.10は(Ac1[℃]−100℃)からAc1[℃]までの昇温速度が遅く、未再結晶フェライトが少なくなったため、平均ランダム強度比が高くなり、降伏比が大きくなっている。製造No.14は、Ac1[℃]以上での滞留時間が長いため、未再結晶フェライトが少なく、高強度ではあるものの、局部伸びが低下し、平均ランダム強度比が高くなり、降伏比が大きくなっている。 Production No. No. 10 has a slow rate of temperature increase from (Ac 1 [° C.] − 100 ° C.) to Ac 1 [° C.] and less unrecrystallized ferrite, resulting in a higher average random strength ratio and a higher yield ratio. . Production No. No. 14 has a long residence time at Ac 1 [° C.] or higher, so that there is little unrecrystallized ferrite and high strength, but the local elongation is lowered, the average random strength ratio is increased, and the yield ratio is increased. Yes.

製造No.15は焼鈍の最高到達温度が低く、硬質第2相が得られなかったため、強度が低下し、降伏比が大きくなっている。製造No.18は、焼鈍の最高到達温度が高く、未再結晶フェライトが少なく、硬質第2相が増加し、高強度ではあるものの、局部伸びが低下し、平均ランダム強度比が高くなり、降伏比が大きくなっている。   Production No. No. 15 has a low maximum temperature for annealing and a hard second phase could not be obtained, so the strength was reduced and the yield ratio was large. Production No. No. 18 has a high maximum temperature for annealing, less unrecrystallized ferrite, increased hard second phase, high strength, but reduced local elongation, increased average random strength ratio, and increased yield ratio It has become.

Figure 0004959418
Figure 0004959418

Figure 0004959418
Figure 0004959418

Figure 0004959418
Figure 0004959418

表4に示す組成を有する鋼を真空溶解炉にて溶製し、表5に示す条件で熱間圧延、冷間圧延及び焼鈍を行った。なお、均熱温度から500℃まで、又は過時効処理温度までの平均冷却速度は何れも50℃/sとした。ここで、表4の[−]は、成分の分析値が検出限界未満であったことを意味する。また、表4には、Ac1[℃]とAc3[℃]の計算値も示した。 Steel having the composition shown in Table 4 was melted in a vacuum melting furnace, and hot rolling, cold rolling and annealing were performed under the conditions shown in Table 5. The average cooling rate from the soaking temperature to 500 ° C or the overaging temperature was 50 ° C / s. Here, [-] in Table 4 means that the analysis value of the component was less than the detection limit. Table 4 also shows the calculated values of Ac 1 [° C.] and Ac 3 [° C.].

表5において、CT[℃]は熱延工程の巻取り温度である。表5の昇温速度は、(Ac1[℃]−100℃)からAc1[℃]までの温度の上昇に要した時間によって計算した。表5の滞留時間は、焼鈍時に、Ac1[℃]以上の温度域に加熱された時間である。 In Table 5, CT [° C.] is the coiling temperature in the hot rolling process. The heating rate in Table 5 was calculated according to the time required for the temperature increase from (Ac 1 [° C.]-100 ° C.) to Ac 1 [° C.]. The residence time in Table 5 is the time during which annealing was performed in a temperature range of Ac 1 [° C.] or higher.

表5に示す冷延鋼板のうち、製造No.21及び24については、焼鈍工程後、Znめっき浴に浸漬後500℃で20s間の合金化処理を施した。更に、表5に示す冷延鋼板のうち、製造No.28については、均熱温度から300℃まで上述の通り50℃/sの冷却速度で冷却し、その温度で400s保持した後、10℃/sで室温まで冷却し、機械特性を測定した。   Among the cold-rolled steel sheets shown in Table 5, the production No. About 21 and 24, the alloying process was performed for 20 s at 500 degreeC after immersion in Zn plating bath after the annealing process. Furthermore, among the cold-rolled steel sheets shown in Table 5, the production No. As for No. 28, it was cooled from the soaking temperature to 300 ° C. at the cooling rate of 50 ° C./s as described above, held at that temperature for 400 s, then cooled to room temperature at 10 ° C./s, and the mechanical properties were measured.

焼鈍後、実施例1と同様に、TD方向の引張特性及び形状凍結性を評価し、{554}<225>、{111}<112>、{111}<110>の結晶方位のX線ランダム強度比を測定して、平均ランダム強度比を求めた。また、パーライト、ベイナイト、マルテンサイトの面積率の合計、未再結晶フェライトの面積率及び未再結晶フェライトを除くフェライトの面積率も、実施例1と同様にして求めた。更に、JIS G 3135の附属書に記載された塗装焼付硬化試験に準拠してBH量を評価した。   After annealing, the tensile properties and shape freezing properties in the TD direction were evaluated in the same manner as in Example 1, and X-ray randomization of crystal orientations of {554} <225>, {111} <112>, {111} <110> The intensity ratio was measured to determine the average random intensity ratio. Further, the total area ratio of pearlite, bainite and martensite, the area ratio of unrecrystallized ferrite, and the area ratio of ferrite excluding non-recrystallized ferrite were also determined in the same manner as in Example 1. Furthermore, the amount of BH was evaluated based on the paint bake hardening test described in the annex of JIS G 3135.

ミクロ組織の面積率、平均X線ランダム強度比、機械特性、BH性及び形状凍結性の評価を表6に示す。   Table 6 shows the evaluation of the area ratio of the microstructure, the average X-ray random intensity ratio, the mechanical properties, the BH property, and the shape freezing property.

本発明の化学成分を有する鋼を適正な条件で熱延及び冷延し、適切な焼鈍工程を経ることで、過時効処理、Znめっき、更に合金化処理を施しても、低降伏比の高強度冷延鋼板を得ることが可能である。更に、Al量及びAl/Nの低減によって、塗装焼付硬化性も向上している。なお、本発明例のうち、製造No.33は、Al/Nが2を超える鋼No.AFの例であり、製造No.35及び36は、Al量が0.020%を超える鋼No.AGの例である。これらは、ミクロ組織の面積率及び平均X線ランダム強度比は本発明の範囲内であり、機械特性に優れているが、BH量は、若干、低下している。   The steel having the chemical components of the present invention is hot-rolled and cold-rolled under appropriate conditions and subjected to an appropriate annealing step, so that even if it is over-aged, Zn plated, and further alloyed, it has a high low yield ratio. It is possible to obtain a strength cold-rolled steel sheet. Furthermore, the bake hardenability is also improved by reducing the Al amount and Al / N. Of the examples of the present invention, the production No. No. 33 is a steel no. This is an example of AF. Nos. 35 and 36 are steel Nos. With an Al content exceeding 0.020%. It is an example of AG. In these, the area ratio of the microstructure and the average X-ray random intensity ratio are within the scope of the present invention, and the mechanical properties are excellent, but the BH amount is slightly decreased.

一方、製造No.22は、熱延工程において巻取り温度が高く、製造No.34は、冷間圧延の圧下率が高く、平均ランダム強度比が高くなり、降伏比が大きくなっている。製造No.24は(Ac1[℃]−100℃)からAc1[℃]までの昇温速度が遅く、未再結晶フェライトが少なくなったため、平均ランダム強度比が高くなり、降伏比が大きくなっている。製造No.29は、Ac1[℃]以上での滞留時間が長いため、未再結晶フェライトが少なく、高強度ではあるものの、局部伸びが低下し、平均ランダム強度比が高くなり、降伏比が大きくなっている。 On the other hand, production No. No. 22 has a high winding temperature in the hot rolling step, and the production No. 22 No. 34 has a high cold rolling reduction ratio, a high average random strength ratio, and a high yield ratio. Production No. In No. 24, the rate of temperature increase from (Ac 1 [° C.] − 100 ° C.) to Ac 1 [° C.] was slow and the amount of unrecrystallized ferrite decreased, so the average random strength ratio increased and the yield ratio increased. . Production No. No. 29 has a long residence time at Ac 1 [° C.] or higher, so that there is little unrecrystallized ferrite and high strength, but the local elongation is lowered, the average random strength ratio is increased, and the yield ratio is increased. Yes.

製造No.30は焼鈍の最高到達温度が低く、硬質第2相が得られなかったため、強度が低下し、降伏比が大きくなっている。製造No.26は、焼鈍の最高到達温度が高く、未再結晶フェライトが少なく、硬質第2相が増加し、高強度ではあるものの、局部伸びが低下し、平均ランダム強度比が高くなり、降伏比が大きくなっている。   Production No. No. 30 has a low maximum temperature for annealing and a hard second phase could not be obtained, so the strength was lowered and the yield ratio was increased. Production No. No. 26 has a high maximum temperature for annealing, less unrecrystallized ferrite, increased hard second phase, and high strength, but reduced local elongation, increased average random strength ratio, and increased yield ratio It has become.

また、製造No.37は、C及びMn量が少ない鋼No.AHの例であり、強度が低下している。また、製造No.38は、Si量が多い鋼No.AIの例であり、高温で焼鈍を行う必要が生じ、製造No.39は、Nbが少ない鋼No.AJの例であり、何れも未再結晶フェライトが少なくなり、平均ランダム強度比が高くなり、降伏比が低下している。更に、鋼No.AH、AI及びAJは、Al量が多いため、製造No.37〜39は、固溶N量が十分に確保出来ず、BH性も劣化している。   In addition, production No. No. 37 is a steel No. having a small amount of C and Mn. This is an example of AH, and the strength is reduced. In addition, production No. No. 38 is a steel no. This is an example of AI, and it is necessary to perform annealing at a high temperature. No. 39 is a steel no. These are examples of AJ, each of which has less unrecrystallized ferrite, an average random strength ratio is increased, and a yield ratio is decreased. Furthermore, steel no. Since AH, AI, and AJ have a large amount of Al, production No. In Nos. 37 to 39, the solute N amount cannot be sufficiently secured, and the BH property is also deteriorated.

Figure 0004959418
Figure 0004959418

Figure 0004959418
Figure 0004959418

Figure 0004959418
Figure 0004959418

本発明の鋼の金属組織の模式図である。It is a schematic diagram of the metal structure of the steel of this invention. 本発明の未再結晶フェライトの模式図である。It is a schematic diagram of the non-recrystallized ferrite of the present invention.

符号の説明Explanation of symbols

1 未再結晶フェライト
2 硬質第2相
3 再結晶フェライト又は変態フェライト
4 サブグレイン
1 Unrecrystallized ferrite 2 Hard second phase 3 Recrystallized ferrite or transformation ferrite 4 Subgrain

Claims (10)

質量%で、
C :0.05〜0.25%、
Mn:0.50〜3.50%
を含有し、
Si:1.00%以下、
P :0.150%以下、
S :0.0150%以下、
Al:0.200%以下、
N :0.0100%以下
に制限し、更に、
Ti:0.005〜0.100%、
Nb:0.005〜0.100%
の一方又は双方を含有し、残部が鉄及び不可避的不純物からなり、金属組織がフェライトと硬質第2相からなり、前記フェライトが再結晶フェライト、変態フェライトの一方又は双方と未再結晶フェライトからなり、前記未再結晶フェライトの面積率が10〜70%であり、前記再結晶フェライト、前記変態フェライトの一方又は双方の面積率が10〜70%であり、前記硬質第2相の面積率が1〜30%であり、板厚1/2層における{554}<225>、{111}<112>及び{111}<110>の3つの結晶方位のX線ランダム強度比の平均値が3.5以下であることを特徴とする高強度冷延鋼板。
% By mass
C: 0.05 to 0.25%,
Mn: 0.50 to 3.50%
Containing
Si: 1.00% or less,
P: 0.150% or less,
S: 0.0150% or less,
Al: 0.200% or less,
N: limited to 0.0100% or less, and
Ti: 0.005 to 0.100%,
Nb: 0.005 to 0.100%
One or both of the above, the balance being composed of iron and inevitable impurities, the metallographic structure is composed of ferrite and a hard second phase, and the ferrite is composed of recrystallized ferrite, one or both of transformed ferrite and unrecrystallized ferrite The area ratio of the non-recrystallized ferrite is 10 to 70%, the area ratio of one or both of the recrystallized ferrite and the transformed ferrite is 10 to 70%, and the area ratio of the hard second phase is 1 The average value of the X-ray random intensity ratios of the three crystal orientations of {554} <225>, {111} <112> and {111} <110> in the ½ layer thickness is 30%. A high-strength cold-rolled steel sheet characterized by being 5 or less.
質量%で、
Mo:0.1〜1.5%、
B :0.0005〜0.0100%、
Cr:0.10〜1.50%、
Ni:0.10〜1.50%
のうち、1種又は2種以上をさらに含有することを特徴とする請求項1に記載の高強度冷延鋼板。
% By mass
Mo: 0.1 to 1.5%,
B: 0.0005 to 0.0100%,
Cr: 0.10 to 1.50%,
Ni: 0.10 to 1.50%
Among them, the high-strength cold-rolled steel sheet according to claim 1, further comprising one or more of them.
質量%で、
Al:0.0200%以下
に制限し、
N :0.0010〜0.0100%
を含有することを特徴とする請求項1又は2に記載の高強度冷延鋼板。
% By mass
Al: limited to 0.0200% or less,
N: 0.0010 to 0.0100%
The high-strength cold-rolled steel sheet according to claim 1 or 2, characterized by comprising:
Al含有量とN含有量が、
Al/N≦2
を満足することを特徴とする請求項3に記載の高強度冷延鋼板。
Al content and N content are
Al / N ≦ 2
The high-strength cold-rolled steel sheet according to claim 3, wherein:
請求項1〜4の何れか1項に記載の冷延鋼板の表面に溶融Znめっきを設けたことを特徴とする高強度冷延鋼板。   A high-strength cold-rolled steel sheet, wherein hot-dip Zn plating is provided on the surface of the cold-rolled steel sheet according to any one of claims 1 to 4. 請求項1〜4の何れか1項に記載の冷延鋼板の表面に合金化溶融Znめっきを設けたことを特徴とする高強度冷延鋼板。   A high-strength cold-rolled steel sheet characterized by providing alloyed hot-dip Zn plating on the surface of the cold-rolled steel sheet according to any one of claims 1 to 4. 請求項1〜4の何れか1項に記載の化学成分を有する鋼片を熱間圧延し、300〜500℃の温度範囲で巻取り、酸洗後、60%以下の圧下率で冷間圧延を施し、得られた鋼板を、(Ac1[℃]−100℃)からAc1[℃]までの昇温速度を10℃/s以上としてAc1[℃]〜{Ac1[℃]+2/3×(Ac3[℃]−Ac1[℃])}の温度範囲内に昇温し、前記鋼板の温度が該温度範囲内である滞留時間を10〜200sとして焼鈍することを特徴とする高強度冷延鋼板の製造方法。
ここで、Ac1[℃]及びAc3[℃]は質量%で表されるC、Mn、Siの含有量である(%C)、(%Mn)、(%Si)によって下記(式1)及び(式2)式から求めたAc1変態温度及びAc3変態温度である。
Ac1=761.3+212(%C)−45.8(%Mn)+16.7(%Si)
・・・(式1)
Ac3=915−325.9(%C)−35.9(%Mn)+31.4(%Si)
・・・(式2)
A steel slab having the chemical composition according to any one of claims 1 to 4 is hot-rolled, wound in a temperature range of 300 to 500 ° C, pickled, and then cold-rolled at a reduction rate of 60% or less. And the obtained steel sheet was heated at a rate of temperature increase from (Ac 1 [° C.] − 100 ° C.) to Ac 1 [° C.] of 10 ° C./s or more, from Ac 1 [° C.] to {Ac 1 [° C.] + 2 / 3 × (Ac 3 [° C.] − Ac 1 [° C.])}, and annealing is performed with the residence time within which the temperature of the steel sheet is within the temperature range being 10 to 200 s. A method for producing a high-strength cold-rolled steel sheet.
Here, Ac 1 [° C.] and Ac 3 [° C.] are the contents of C, Mn, and Si expressed in mass% (% C), (% Mn), and (% Si) according to the following (formula 1 ) and (a Ac 1 transformation temperature was determined from equation 2) and Ac 3 transformation temperature.
Ac 1 = 761.3 + 212 (% C) -45.8 (% Mn) +16.7 (% Si)
... (Formula 1)
Ac 3 = 915-325.9 (% C) -35.9 (% Mn) +31.4 (% Si)
... (Formula 2)
請求項7に記載の焼鈍後、350〜500℃まで冷却し、次いで溶融Znめっきを施すことを特徴とする高強度冷延鋼板の製造方法。   A method for producing a high-strength cold-rolled steel sheet, characterized by cooling to 350 to 500 ° C after the annealing according to claim 7 and then applying hot-dip Zn plating. 請求項8に記載の溶融Znめっきを施した後に450〜600℃の温度範囲で10s以上の熱処理を行うことを特徴とする高強度冷延鋼板の製造方法。   A method for producing a high-strength cold-rolled steel sheet, comprising performing heat treatment for 10 seconds or more in a temperature range of 450 to 600 ° C after the hot-dip Zn plating according to claim 8 is performed. 請求項7〜9の何れか1項に記載の方法により製造した冷延鋼板に0.1〜5.0%のスキンパス圧延を施すことを特徴とする形状凍結性に優れた低降伏比高強度冷延鋼板の製造方法。   A low yield ratio and high strength excellent in shape freezing property, characterized by subjecting a cold-rolled steel sheet produced by the method according to any one of claims 7 to 9 to 0.1 to 5.0% skin pass rolling. A method for producing a cold-rolled steel sheet.
JP2007136784A 2006-09-28 2007-05-23 High-strength cold-rolled steel sheet and manufacturing method thereof Active JP4959418B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007136784A JP4959418B2 (en) 2006-09-28 2007-05-23 High-strength cold-rolled steel sheet and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006264253 2006-09-28
JP2006264253 2006-09-28
JP2007136784A JP4959418B2 (en) 2006-09-28 2007-05-23 High-strength cold-rolled steel sheet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008106350A JP2008106350A (en) 2008-05-08
JP4959418B2 true JP4959418B2 (en) 2012-06-20

Family

ID=39439957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007136784A Active JP4959418B2 (en) 2006-09-28 2007-05-23 High-strength cold-rolled steel sheet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4959418B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5157375B2 (en) * 2007-11-08 2013-03-06 新日鐵住金株式会社 High-strength cold-rolled steel sheet excellent in rigidity, deep drawability and hole expansibility, and method for producing the same
MX363636B (en) 2009-11-09 2019-03-28 Nippon Steel & Sumitomo Metal Corp High-strength steel sheet having excellent processability and paint bake hardenability, and method for producing same.
JP5636347B2 (en) 2011-08-17 2014-12-03 株式会社神戸製鋼所 High strength steel sheet with excellent formability at room temperature and warm, and its warm forming method
EP3214199B1 (en) * 2014-10-30 2019-06-12 JFE Steel Corporation High-strength steel sheet, high-strength hot-dip galvanized steel sheet, high-strength hot-dip aluminum-coated steel sheet, and high-strength electrogalvanized steel sheet, and methods for manufacturing same
CN107406931B (en) * 2015-03-27 2019-04-05 杰富意钢铁株式会社 High-strength steel sheet and its manufacturing method
JP5987999B1 (en) * 2015-03-27 2016-09-07 Jfeスチール株式会社 High strength steel plate and manufacturing method thereof
JP6540245B2 (en) * 2015-06-04 2019-07-10 日本製鉄株式会社 High strength steel plate excellent in shape freezing property and method for manufacturing the same
JP6806101B2 (en) * 2018-02-06 2021-01-06 Jfeスチール株式会社 High-strength steel sheet with low yield strength and its manufacturing method
KR102098478B1 (en) * 2018-07-12 2020-04-07 주식회사 포스코 Hot rolled coated steel sheet having high strength, high formability, excellent bake hardenability and method of manufacturing the same
WO2023052814A1 (en) * 2021-09-29 2023-04-06 Arcelormittal Cold rolled and heat treated steel sheet and a method of manufacturing thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63143223A (en) * 1986-12-04 1988-06-15 Kawasaki Steel Corp Manufacture of high tension cold rolled steel sheet
JP4265545B2 (en) * 2000-02-29 2009-05-20 Jfeスチール株式会社 High tensile cold-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same
JP3951789B2 (en) * 2002-04-26 2007-08-01 Jfeスチール株式会社 Method for producing hot-dip galvanized cold-rolled steel sheet with excellent strain age hardening characteristics
JP4384523B2 (en) * 2004-03-09 2009-12-16 新日本製鐵株式会社 Low yield ratio type high-strength cold-rolled steel sheet with excellent shape freezing property and manufacturing method thereof
JP5088041B2 (en) * 2006-09-27 2012-12-05 新日本製鐵株式会社 High Young's modulus, high strength cold-rolled steel sheet with excellent local ductility and method for producing the same

Also Published As

Publication number Publication date
JP2008106350A (en) 2008-05-08

Similar Documents

Publication Publication Date Title
JP4995109B2 (en) High-strength cold-rolled steel sheet excellent in workability and impact resistance and method for producing the same
JP4959418B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
KR101621639B1 (en) Steel sheet, plated steel sheet, method for producing steel sheet, and method for producing plated steel sheet
JP5088023B2 (en) High-strength cold-rolled steel sheet with excellent workability and method for producing the same
JP5157375B2 (en) High-strength cold-rolled steel sheet excellent in rigidity, deep drawability and hole expansibility, and method for producing the same
JP5549307B2 (en) Cold-rolled steel sheet excellent in aging and bake hardenability and method for producing the same
JP5347738B2 (en) Method for producing precipitation strengthened cold rolled steel sheet
WO2012014926A1 (en) Hot-rolled steel sheet, cold-rolled steel sheet, galvanized steel sheet, and processes for producing these
JP5088041B2 (en) High Young&#39;s modulus, high strength cold-rolled steel sheet with excellent local ductility and method for producing the same
JP4740099B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP5151468B2 (en) High-strength cold-rolled steel sheet excellent in workability and impact resistance and method for producing the same
JP5712771B2 (en) Steel sheet with excellent Young&#39;s modulus in the direction perpendicular to rolling and method for producing the same
JP6610749B2 (en) High strength cold rolled steel sheet
WO2013121953A1 (en) Cold-rolled steel sheet, plated steel sheet, method for producing cold-rolled steel sheet, and method for producing plated steel sheet
JP5239562B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
JP2011214073A (en) Cold-rolled steel sheet, and method for producing the same
JP5835624B2 (en) Steel sheet for hot pressing, surface-treated steel sheet, and production method thereof
WO2020148948A1 (en) High-strength hot-dip galvanized steel sheet and method for manufacturing same
JP2016074967A (en) Method for manufacturing cold rolled steel sheet
JP5533145B2 (en) Cold rolled steel sheet and method for producing the same
JP6007571B2 (en) High-strength cold-rolled steel sheet and high-strength galvanized steel sheet
JP5533765B2 (en) High-strength cold-rolled steel sheet with excellent local deformability and its manufacturing method
JP2011214070A (en) Cold-rolled steel sheet, and method for producing same
JP5776762B2 (en) Cold rolled steel sheet and method for producing the same
JP5776761B2 (en) Cold rolled steel sheet and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4959418

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350