JP5549307B2 - Cold-rolled steel sheet excellent in aging and bake hardenability and method for producing the same - Google Patents
Cold-rolled steel sheet excellent in aging and bake hardenability and method for producing the same Download PDFInfo
- Publication number
- JP5549307B2 JP5549307B2 JP2010069962A JP2010069962A JP5549307B2 JP 5549307 B2 JP5549307 B2 JP 5549307B2 JP 2010069962 A JP2010069962 A JP 2010069962A JP 2010069962 A JP2010069962 A JP 2010069962A JP 5549307 B2 JP5549307 B2 JP 5549307B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- cold
- rolled
- steel sheet
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000010960 cold rolled steel Substances 0.000 title claims description 57
- 238000004519 manufacturing process Methods 0.000 title claims description 23
- 230000032683 aging Effects 0.000 title description 15
- 229910000831 Steel Inorganic materials 0.000 claims description 73
- 239000010959 steel Substances 0.000 claims description 73
- 238000000137 annealing Methods 0.000 claims description 68
- 238000000034 method Methods 0.000 claims description 60
- 238000005096 rolling process Methods 0.000 claims description 48
- 230000008569 process Effects 0.000 claims description 43
- 238000010438 heat treatment Methods 0.000 claims description 41
- 238000001816 cooling Methods 0.000 claims description 29
- 239000006104 solid solution Substances 0.000 claims description 29
- 229910000859 α-Fe Inorganic materials 0.000 claims description 28
- 238000005246 galvanizing Methods 0.000 claims description 26
- 239000002244 precipitate Substances 0.000 claims description 26
- 238000005097 cold rolling Methods 0.000 claims description 24
- 239000000463 material Substances 0.000 claims description 22
- 239000000203 mixture Substances 0.000 claims description 22
- 238000005098 hot rolling Methods 0.000 claims description 17
- 229910052757 nitrogen Inorganic materials 0.000 claims description 14
- 239000013078 crystal Substances 0.000 claims description 13
- 238000001556 precipitation Methods 0.000 claims description 11
- 230000009467 reduction Effects 0.000 claims description 9
- 238000002791 soaking Methods 0.000 claims description 9
- 238000004804 winding Methods 0.000 claims description 9
- 238000005275 alloying Methods 0.000 claims description 8
- 229910052804 chromium Inorganic materials 0.000 claims description 8
- 229910052759 nickel Inorganic materials 0.000 claims description 8
- 229910052758 niobium Inorganic materials 0.000 claims description 8
- 229910052698 phosphorus Inorganic materials 0.000 claims description 8
- 229910052710 silicon Inorganic materials 0.000 claims description 8
- 239000012535 impurity Substances 0.000 claims description 7
- 230000014509 gene expression Effects 0.000 claims description 4
- 238000005554 pickling Methods 0.000 claims description 4
- 230000000694 effects Effects 0.000 description 18
- 238000012545 processing Methods 0.000 description 16
- 239000004566 building material Substances 0.000 description 8
- 238000009864 tensile test Methods 0.000 description 8
- 230000002411 adverse Effects 0.000 description 7
- 230000007423 decrease Effects 0.000 description 7
- 230000001965 increasing effect Effects 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 7
- 229910052748 manganese Inorganic materials 0.000 description 6
- 239000003973 paint Substances 0.000 description 6
- 238000007747 plating Methods 0.000 description 6
- 230000037303 wrinkles Effects 0.000 description 6
- 229910001566 austenite Inorganic materials 0.000 description 5
- 238000005266 casting Methods 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 4
- 230000003679 aging effect Effects 0.000 description 3
- 238000005452 bending Methods 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 150000001247 metal acetylides Chemical class 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 238000001953 recrystallisation Methods 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229910001563 bainite Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000009931 harmful effect Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229910001562 pearlite Inorganic materials 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 239000013585 weight reducing agent Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000005539 carbonized material Substances 0.000 description 1
- 229910001567 cementite Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000007739 conversion coating Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Coating With Molten Metal (AREA)
Description
本発明は、建材、家電製品向けとして好適な冷延鋼板およびその製造方法に係り、とくに、曲げや浅い張り出しに代表されるような、比較的軽度な加工で成形された部材の焼付け硬化能の向上に関する。ここでいう「鋼板」には、鋼板、鋼帯を含むものとする。また、「冷延鋼板」には、冷延鋼板と、該冷延鋼板に、電気亜鉛めっきや溶融亜鉛めっきなどの表面処理を施した冷延鋼板をも含む。さらには、冷延鋼板の表面、あるいはさらに電気亜鉛めっきや溶融亜鉛めっきなどの表面処理を施した冷延鋼板の表面に化成処理皮膜を有する鋼板をも含む。 The present invention relates to a cold-rolled steel sheet suitable for building materials and home appliances and a method for producing the same, and in particular, the bake-hardening ability of a member formed by relatively mild processing such as bending and shallow overhanging. Regarding improvement. The “steel plate” here includes a steel plate and a steel strip. The “cold-rolled steel sheet” also includes a cold-rolled steel sheet and a cold-rolled steel sheet obtained by subjecting the cold-rolled steel sheet to a surface treatment such as electrogalvanizing or hot dip galvanizing. Further, it includes a steel sheet having a chemical conversion coating on the surface of a cold-rolled steel sheet, or on the surface of a cold-rolled steel sheet further subjected to surface treatment such as electrogalvanizing or hot dip galvanizing.
近年、建材や家電製品においては、製造コストの低減が強く要求され、とくに素材費の低減のために、使用する素材の薄肉化が急速に進み、使用する鋼板の高強度化が望まれている。建材、家電製品用部材で要求されている使用鋼板の高強度化は、引張強さで440MPaレベルまでである。しかも、曲げや浅い張り出し等の比較的軽度の加工が施される部材向けが主である。 In recent years, building materials and household electrical appliances have been strongly required to reduce manufacturing costs. In particular, in order to reduce material costs, the use of thin materials has been rapidly progressing, and the strength of steel plates to be used has been demanded. . The strength of steel sheets used for building materials and household appliances is up to 440MPa in tensile strength. Moreover, it is mainly for members that are subjected to relatively mild processing such as bending and shallow overhang.
このような素材の薄肉化要求に伴う使用鋼板の高強度化は、建材や家電製品用部材に限らず、自動車用部材にも求められている。1989年のCAFE規制以降、自動車燃費向上のため、自動車車体の軽量化が熱望され、使用する鋼板の高強度化が進められてきた。このような背景のもと、自動車用として、P、Si、Mnなどを適量添加した高強度鋼板が、次々と開発され使用されているが、自動車用として開発された高強度鋼板は、引張強さTSが590MPa以上の鋼板が多い。このような高強度鋼板を、建材、家電製品向けとして適用することは、困難である。というのは、このような高強度鋼板は強度が高いため、加工機の能力を超えて加工が困難であったり、加工できたとしても製品の精度が低下するなどの問題があるためである。また、このような高強度鋼板は、添加する合金元素が多く、高価となる場合が多く、素材コストの低減効果を期待できない。 The increase in strength of the steel sheet used in accordance with the demand for reducing the thickness of the material is required not only for building materials and members for home appliances but also for members for automobiles. Since the CAFE regulations in 1989, the weight reduction of automobile bodies has been eagerly desired to improve automobile fuel efficiency, and the strength of steel sheets used has been increased. Against this background, high-strength steel sheets with an appropriate amount of P, Si, Mn, etc. added for automobiles have been developed and used one after another. Many steel plates have a TS of 590 MPa or more. It is difficult to apply such high-strength steel sheets for building materials and home appliances. This is because such a high-strength steel sheet has a high strength, so that it is difficult to process beyond the capacity of the processing machine, and even if it can be processed, the accuracy of the product is lowered. In addition, such high-strength steel sheets have many alloying elements to be added and are often expensive, so that the effect of reducing material costs cannot be expected.
また、自動車の外板用として、焼付硬化型の軟質鋼板が多く提案され、使用されている。例えば、特許文献1には、重量%で、C:0.002〜0.008%、Si:0.5%以下、Mn:0.05〜1.2%、P:0.10%以下、Al:0.01〜0.08%でN%×8以上、Nb:C%×3以上、(C%×8以下+0.02%)以下を含む熱延鋼板を、60%以上の圧下率で冷延し、750〜900℃、10s間以上の条件で連続焼鈍を行ったのち、冷却過程で少なくとも650℃までを平均冷却速度10℃/s以上の冷却を施す、焼付き硬化性に優れる冷延鋼板の製造方法が記載されている。特許文献1に記載された技術で製造された鋼板は、極低炭素系としているため、成形時には軟質で高加工性を有し、成形後に化成処理や塗装焼付処理により、成形時に導入された転位に固溶炭素や固溶窒素が固着して、硬化し、高強度化する。このような鋼板は、引張強さが340MPaから390MPa程度であり、BH(焼付け硬化)鋼板として自動車外板用に多く使用されている。 Further, many bake-hardening type soft steel plates have been proposed and used for automobile outer plates. For example, Patent Document 1 discloses that, by weight, C: 0.002 to 0.008%, Si: 0.5% or less, Mn: 0.05 to 1.2%, P: 0.10% or less, Al: 0.01 to 0.08%, N% × 8 or more. , Nb: C% × 3 or more, (C% × 8 or less + 0.02%) or less hot-rolled steel sheet is cold-rolled at a rolling reduction of 60% or more, under conditions of 750 to 900 ° C. for 10 seconds or more. A method for producing a cold-rolled steel sheet having excellent seizure hardenability is described in which after continuous annealing, cooling is performed at an average cooling rate of 10 ° C./s or more up to at least 650 ° C. in the cooling process. Since the steel sheet manufactured by the technique described in Patent Document 1 is an extremely low carbon type, it has a soft and high workability at the time of forming, and dislocations introduced at the time of forming by chemical conversion treatment or paint baking treatment after forming. Solid solution carbon and solid solution nitrogen adhere to and harden to increase the strength. Such a steel plate has a tensile strength of about 340 MPa to 390 MPa, and is often used as a BH (bake hardening) steel plate for automobile outer plates.
また、特許文献2には、成形後の熱処理による強度上昇能に優れた冷延鋼板の製造方法が記載されている。特許文献2には、C:0.15%以下、Si:0.005〜1.0%、Mn:0.01〜3.0%、Al:0.005〜0.02%、N:0.006〜0.020%、およびP:0.002〜0.10%をN(%)/Al(%)≧0.3を満足する範囲で含有する組成の鋼スラブを熱間圧延し、巻取る際に、[Mn%]×[Si%]が1.0以下の場合には巻取り温度≦700℃、一方、[Mn%]×[Si%]が1.0より大きい場合には、巻取り温度≦ 300+400/([Mn%]×[Si%])とし、再結晶焼鈍工程においては、[Mn%]×[Si%]が1.0以下の場合には、焼鈍温度を650〜950℃とし、[Mn%]×[Si%]が1.0より大きい場合には、950−300/([Mn%]×[Si%])≦焼鈍温度≦950 を満足する温度で焼鈍を行う、冷延鋼板の製造方法が記載されている。これにより、鋼中の析出Mn%と析出Si%の積が0.00010%以下で、固溶Nを0.0015%以上含有し、フェライト相またはフェライト主体の組織を有する冷延鋼板が得られるとしている。特許文献2に記載された技術で製造された鋼板では、固溶Nと成形時に導入された転位との相互作用により、成形後熱処理により引張強さが60MPa以上増加するとしている。 Patent Document 2 describes a method for producing a cold-rolled steel sheet having excellent strength increasing ability by heat treatment after forming. Patent Document 2 includes C: 0.15% or less, Si: 0.005-1.0%, Mn: 0.01-3.0%, Al: 0.005-0.02%, N: 0.006-0.020%, and P: 0.002-0.10% for N ( %) / Al (%) ≧ 0.3 When the steel slab having a composition that satisfies the condition of 0.3 is hot rolled and wound, when [Mn%] × [Si%] is 1.0 or less, the winding temperature ≦ 700 ° C. On the other hand, when [Mn%] × [Si%] is larger than 1.0, the coiling temperature ≦ 300 + 400 / ([Mn%] × [Si%]), and in the recrystallization annealing step, [ When Mn%] × [Si%] is 1.0 or less, the annealing temperature is 650 to 950 ° C., and when [Mn%] × [Si%] is greater than 1.0, 950−300 / ([Mn% ] × [Si%]) ≦ Annealing temperature ≦ 950 A method of manufacturing a cold-rolled steel sheet is described, in which annealing is performed at a temperature satisfying the following condition. Accordingly, it is said that a cold rolled steel sheet having a product of precipitated Mn% and precipitated Si% in steel of 0.00010% or less, containing solute N of 0.0015% or more and having a ferrite phase or a ferrite-based structure is obtained. In the steel sheet manufactured by the technique described in Patent Document 2, the tensile strength is increased by 60 MPa or more due to the heat treatment after forming due to the interaction between the solid solution N and the dislocations introduced during forming.
特許文献1に記載されたような自動車向けのBH鋼板では、2%以上の歪付与と焼付け塗装処理等の熱処理を必要とし、これにより30MPa程度の強度上昇が認められる。また、特許文献2に記載されたような自動車向け鋼板でも、5%以上の歪付与と120〜200℃の低温域での熱処理を必要とし、これにより引張強さTSが60MPa以上増加する、高強度化が得られる。しかし、建材や家電製品等における部材では2%以下の比較的軽度の加工が多い。あるいは、ほとんど加工されず平板状態で使用されるものもある。このため、特許文献1、特許文献2に記載されたような自動車向けの鋼板を、建材や家電製品用部材向けとして使用した場合には、付与される歪量が少なく、その後の焼付け塗装処理等の熱処理を施しても、強度上昇が小さく、所望の高強度化を達成できないという問題がある。また、特許文献1に記載されたような自動車向けのBH鋼板では、長時間の放置により時効硬化し、成形時にはストレッチャーストレインと呼ばれるしわが発生し、製品の外観を著しく損なうという問題もある。また、特許文献2に記載された技術では、所定の固溶N量を確保するために、Al含有量の上限を0.02%としている。Alは、通常、脱酸、すなわち鋼中の酸素をAl2O3として低減するために添加される。Al量が少ないと、脱酸が不十分となり、鋼中の酸素残存量が多くなり、清浄度が低下し、冷間圧延時に割れが発生したり、表面欠陥が発生しやすくなるという問題がある。 The BH steel sheet for automobiles described in Patent Document 1 requires 2% or more of distortion and heat treatment such as baking coating treatment, and as a result, an increase in strength of about 30 MPa is recognized. Moreover, even steel sheets for automobiles such as those described in Patent Document 2 require strain application of 5% or more and heat treatment in a low temperature range of 120 to 200 ° C., thereby increasing the tensile strength TS by 60 MPa or more. Strengthening is obtained. However, members in building materials, home appliances, and the like often have relatively mild processing of 2% or less. Alternatively, there are some that are hardly processed and used in a flat state. For this reason, when the steel plate for automobiles described in Patent Document 1 and Patent Document 2 is used as a building material or a member for home appliances, the amount of distortion applied is small, and subsequent baking coating processing, etc. However, there is a problem in that the increase in strength is small and the desired increase in strength cannot be achieved. In addition, the BH steel sheet for automobiles described in Patent Document 1 is age-hardened by being left for a long time, and there is a problem that wrinkles called stretcher strains are generated at the time of forming, and the appearance of the product is remarkably impaired. Moreover, in the technique described in patent document 2, in order to ensure the predetermined amount of solute N, the upper limit of Al content is 0.02%. Al is usually added to deoxidize, that is, to reduce oxygen in the steel as Al 2 O 3 . If the amount of Al is small, deoxidation becomes insufficient, the amount of oxygen remaining in the steel increases, the cleanliness decreases, cracks occur during cold rolling, and surface defects are likely to occur. .
本発明は、かかる従来技術の問題に鑑み、時効によるしわの発生を防止でき、2%以下程度という比較的低い歪付与で高い焼付硬化量を確保できる、時効性に優れ、焼付硬化性にも優れた冷延鋼板およびその製造方法を提案することを目的とする。
ここで、「焼付硬化性に優れた」とは、2.0%未満(0%を含む)の予歪を付与し、100〜200℃×5〜60minの塗装焼付処理相当の熱処理を施した後の降伏強さYSHTと、予歪付与時の応力YSPSとの差ΔYS(=YSHT−YSPS)が50MPa以上である場合をいうものとする。 また、「時効性に優れた」とは、25℃以下の常温雰囲気中で3ヶ月間保持した後の降伏伸びYElが、圧延方向で2%以下である場合をいうものとする。
In view of the problems of the prior art, the present invention can prevent wrinkles due to aging, can ensure a high bake hardening amount with relatively low strain application of about 2% or less, has excellent aging properties, and also has bake hardenability. It aims at proposing the outstanding cold-rolled steel plate and its manufacturing method.
Here, “excellent bake hardenability” means that after applying a pre-strain of less than 2.0% (including 0%) and performing a heat treatment equivalent to a coating baking process of 100 to 200 ° C. × 5 to 60 min. The difference ΔYS (= YS HT −YS PS ) between the yield strength YS HT and the stress YS PS at the time of prestraining is 50 MPa or more. “Excellent aging” means that the yield elongation YEl after holding for 3 months in a normal temperature atmosphere of 25 ° C. or less is 2% or less in the rolling direction.
本発明者らは、上記した目的を達成するため、焼付硬化性に及ぼす合金元素の影響について鋭意研究した。その結果、低歪量付与でも高い焼付硬化性を付与するために、固溶Nの有効活用に思い至った。また、時効によるしわを発生させないためには、Cは極力析出物として存在させることが重要であることを知見した。
本発明者らの更なる研究により、固溶Cを極力低減するためには、熱間圧延における巻取温度を適正に調整して、結晶粒を微細化するとともに結晶粒内に炭化物を析出させ、さらに残留している固溶Cを、冷間圧延後の焼鈍における加熱速度および焼鈍温度を適正に調整して炭化物として析出させることが肝要であることを知見した。また、適正量の固溶Nを確保するためには、Nと結合し析出物となるAl含有量を適正に調整するとともに、熱間圧延における巻取温度、焼鈍温度を適正化することが重要であることを知見した。またさらに、冷間圧延後に調質圧延を施すことも、時効によるしわの発生を抑制することに有効に寄与することを知見した。
In order to achieve the above-mentioned object, the present inventors diligently studied the influence of alloy elements on bake hardenability. As a result, in order to provide high bake hardenability even with a low strain amount, the inventors have come up with effective use of solid solution N. Moreover, in order not to generate wrinkles due to aging, it has been found that it is important that C exists as a precipitate as much as possible.
In order to reduce solute C as much as possible by further research by the present inventors, the coiling temperature in hot rolling is adjusted appropriately to refine the crystal grains and precipitate carbides in the crystal grains. Further, it has been found that it is important to precipitate the remaining solid solution C as a carbide by appropriately adjusting the heating rate and annealing temperature in annealing after cold rolling. In addition, in order to secure an appropriate amount of solid solution N, it is important to properly adjust the Al content that forms a precipitate by combining with N, and to optimize the coiling temperature and annealing temperature in hot rolling. I found out. Furthermore, it has been found that temper rolling after cold rolling effectively contributes to suppressing wrinkles due to aging.
本発明は、かかる知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は次のとおりである。
(1)質量%で、C:0.020〜0.070%、Si:0.05%以下、Mn:0.1〜0.5%、P:0.05%以下、S:0.02%以下、Al:0.02〜0.08%、N:0.005〜0.02%を含み、固溶Nが0.0010%以上であり、残部Feおよび不可避的不純物からなる組成と、平均結晶粒径が7μm以下のフェライト相を面積率で80%以上含み、該フェライト相の結晶粒内に、平均の円相当径で0.05〜5μmの大きさの析出物が析出、分散した組織と、を有することを特徴とする冷延鋼板。
The present invention has been completed based on such findings and further studies. That is, the gist of the present invention is as follows.
(1) By mass%, C: 0.020 to 0.070%, Si: 0.05% or less, Mn: 0.1 to 0.5%, P: 0.05% or less, S: 0.02% or less, Al: 0.02 to 0.08%, N: 0.005 to Including 0.02%, solid solution N is 0.0010% or more, the composition composed of the balance Fe and inevitable impurities, and the ferrite phase having an average crystal grain size of 7 μm or less in an area ratio of 80% or more. A cold-rolled steel sheet having a structure in which precipitates having an average equivalent circle diameter of 0.05 to 5 μm are precipitated and dispersed in the grains.
(2)(1)において、前記析出物の析出密度が1〜100個/0.01mm2であることを特徴とする冷延鋼板。
(3)(1)または(2)において、前記組成に加えてさらに、質量%で、Ti:0.01%以下、Nb:0.01%以下、B:0.005%以下のうちから選ばれた1種または2種以上含有することを特徴とする冷延鋼板。
(2) The cold-rolled steel sheet according to (1), wherein the precipitate has a precipitation density of 1 to 100 pieces / 0.01 mm 2 .
(3) In (1) or (2), in addition to the above-mentioned composition, by mass%, one or two selected from Ti: 0.01% or less, Nb: 0.01% or less, B: 0.005% or less A cold-rolled steel sheet containing at least seeds.
(4)(1)ないし(3)のいずれかにおいて、前記組成に加えてさらに、質量%で、Mo:0.01%以下、Ni:0.01%以下、Cr:0.01%以下、Cu:0.01%以下のうちから選ばれた1種または2種以上含有することを特徴とする冷延鋼板。
(5)(1)ないし(4)のいずれかにおいて、表面に亜鉛めっき層を有することを特徴とする冷延鋼板。
(4) In any one of (1) to (3), in addition to the above composition, in terms of mass%, Mo: 0.01% or less, Ni: 0.01% or less, Cr: 0.01% or less, Cu: 0.01% or less A cold-rolled steel sheet comprising one or more selected from among them.
(5) The cold rolled steel sheet according to any one of (1) to (4), wherein the surface has a galvanized layer.
(6)鋼素材に、熱延工程と、冷延工程と、焼鈍工程と、調質圧延工程を順次施して、冷延鋼板とするにあたり、前記鋼素材を、質量%で、C:0.020〜0.070%、Si:0.05%以下、Mn:0.1〜0.5%、P:0.05%以下、S:0.02%以下、Al:0.02〜0.08%、N:0.005〜0.02%を含み、残部Feおよび不可避的不純物からなる組成の鋼素材とし、前記熱延工程が、該鋼素材に加熱温度:1150℃以上とする加熱を施したのち、粗圧延してシートバーとし、ついで該シートバーに仕上圧延終了温度:850℃以上とする仕上圧延を施し熱延板とし、ついで該熱延板を次(1)式
[(Al/28)/(N/14)]/CT ≦ 5.5×10−3 ・・・・(1)
(ここで、Al、N:各元素の含有量(質量%)、CT:巻取温度(℃))
を満足する巻取温度CTで巻取る工程であり、前記冷延工程が、該熱延板に酸洗処理を施したのち、冷延圧下率:60〜90%とする冷間圧延を施し冷延板とする工程であり、前記焼鈍工程が、該冷延板に焼鈍処理を施し冷延焼鈍板とする工程で、該焼鈍処理が焼鈍温度Anを次(2)式
1.0 ≦ {[(Al/28)/(N/14)]/CT}/{[(Al/28)/(N/14)]/An} ≦ 1.5・・・・・(2)
(ここで、Al、N:各元素の含有量(質量%)、CT:巻取温度(℃)、An:焼鈍温度(℃))
を満足する温度とし、300℃〜(焼鈍温度−20℃)までの温度域での加熱速度を1〜30℃/s、(焼鈍温度−20℃)〜(焼鈍温度)までの温度域での加熱速度を0.5〜5℃/s、として該焼鈍温度まで加熱し、その後、5℃/s以上の冷却速度で500℃以下まで冷却する焼鈍処理であり、前記調質圧延工程が、前記冷延焼鈍板に伸び率:0.5〜5%の調質圧延を施す工程である、ことを特徴とする冷延鋼板の製造方法。
(6) When a steel material is subjected to a hot rolling step, a cold rolling step, an annealing step, and a temper rolling step in order to obtain a cold rolled steel sheet, the steel material is, in mass%, C: 0.020 to Contains 0.070%, Si: 0.05% or less, Mn: 0.1-0.5%, P: 0.05% or less, S: 0.02% or less, Al: 0.02-0.08%, N: 0.005-0.02%, the balance Fe and inevitable impurities After the hot rolling step, the steel material is heated to a heating temperature of 1150 ° C. or higher, and then roughly rolled into a sheet bar, and then the finish rolling finish temperature on the sheet bar: Finish rolling to 850 ° C or higher to make a hot-rolled sheet, and then the hot-rolled sheet is expressed by the following formula (1)
[(Al / 28) / (N / 14)] / CT ≤ 5.5 × 10 -3 (1)
(Where, Al, N: content of each element (mass%), CT: coiling temperature (° C.))
The cold rolling step is performed by pickling the hot rolled sheet, and then cold rolling to a cold rolling reduction ratio of 60 to 90%. It is a process to make a rolled sheet, and the annealing process is a process in which the cold-rolled sheet is annealed to form a cold-rolled annealed sheet, and the annealing process sets the annealing temperature An to the following formula (2)
1.0 ≦ {[(Al / 28) / (N / 14)] / CT} / {[(Al / 28) / (N / 14)] / An} ≦ 1.5 (2)
(Where, Al, N: content of each element (mass%), CT: coiling temperature (° C), An: annealing temperature (° C))
The heating rate in the temperature range from 300 ° C. to (annealing temperature −20 ° C.) is 1 to 30 ° C./s, and the temperature range from (annealing temperature −20 ° C.) to (annealing temperature) A heating rate is 0.5 to 5 ° C./s, heating to the annealing temperature, and then cooling to 500 ° C. or less at a cooling rate of 5 ° C./s or more, and the temper rolling step is the cold rolling A method for producing a cold-rolled steel sheet, which is a step of subjecting an annealed sheet to temper rolling at an elongation of 0.5 to 5%.
(7)(6)において、前記焼鈍温度で150s以下の均熱を行い、その後冷却することを特徴とする冷延鋼板の製造方法。
(8)(6)または(7)において、前記組成に加えてさらに、質量%で、Ti:0.01%以下、Nb:0.01%以下、B:0.005%以下のうちから選ばれた1種または2種以上含有することを特徴とする冷延鋼板の製造方法。
(7) A method for producing a cold-rolled steel sheet according to (6), wherein the soaking is performed for 150 s or less at the annealing temperature, followed by cooling.
(8) In (6) or (7), in addition to the above composition, in addition to mass, one or two selected from Ti: 0.01% or less, Nb: 0.01% or less, B: 0.005% or less The manufacturing method of the cold-rolled steel plate characterized by including more than seed | species.
(9)(6)ないし(8)のいずれかにおいて、前記組成に加えてさらに、質量%で、Mo:0.01%以下、Ni:0.01%以下、Cr:0.01%以下、Cu:0.01%以下のうちから選ばれた1種または2種以上含有することを特徴とする冷延鋼板の製造方法。
(10)(6)ないし(9)のいずれかにおいて、前記焼鈍工程後で、前記調質圧延工程前に、鋼板表面に亜鉛めっき層を形成する亜鉛めっき処理工程を施すことを特徴とする冷延鋼板の製造方法。
(9) In any one of (6) to (8), in addition to the above composition, in addition to mass, Mo: 0.01% or less, Ni: 0.01% or less, Cr: 0.01% or less, Cu: 0.01% or less A method for producing a cold-rolled steel sheet, comprising one or more selected from among them.
(10) In any one of (6) to (9), a galvanizing treatment step for forming a galvanized layer on a steel sheet surface is performed after the annealing step and before the temper rolling step. A method for producing rolled steel sheets.
(11)(10)において、前記焼鈍工程で前記冷延板を前記5℃/s以上の冷却速度で500℃以下まで冷却したのち、前記亜鉛めっき処理工程として、引き続き、溶融亜鉛めっき浴に浸漬し、鋼板表面に溶融亜鉛めっき層を形成する溶融亜鉛めっき処理、あるいはさらに該溶融亜鉛めっき層を合金化する合金化処理、を施す溶融亜鉛めっき処理工程を施すことを特徴とする冷延鋼板の製造方法。 (11) In (10), after the cold-rolled sheet is cooled to 500 ° C. or less at the cooling rate of 5 ° C./s or more in the annealing step, it is subsequently immersed in a hot dip galvanizing bath as the galvanizing treatment step. And a hot dip galvanizing process for forming a hot dip galvanized layer on the surface of the steel sheet, or an alloying process for alloying the hot dip galvanized layer. Production method.
本発明によれば、時効性を抑制し、低い歪付加でも高い焼付硬化性を示す、時効性および焼付硬化性に優れる冷延鋼板を容易に、しかも安価に提供でき、産業上格段の効果を奏する。また、本発明によれば、曲げや浅い張り出しに代表されるような、比較的軽度な加工で成形される、例えば事務デスク用天板などの事務用部材や、自動販売機、冷蔵庫のパネル、エアコン室外機などの家電製品用部材や、さらには建材用部材向け鋼材として有用で、製品の軽量化、コスト低減等に寄与できるという産業上有効な効果がある。 According to the present invention, it is possible to easily and inexpensively provide a cold-rolled steel sheet excellent in aging and bake hardenability, which suppresses aging and exhibits high bake hardenability even with low strain addition, and has a remarkable industrial effect. Play. Further, according to the present invention, office members such as office desk tops, vending machines, refrigerator panels, etc., which are formed by relatively light processing such as bending and shallow overhang, It is useful as a member for home appliances such as an air conditioner outdoor unit, and further as a steel material for building materials, and has an industrially effective effect that it can contribute to weight reduction and cost reduction of the product.
まず、本発明冷延鋼板の組成限定理由について説明する。以下、とくに断わらない限り質量%は、単に%で記す。
C:0.020〜0.070%
Cは、固溶して鋼の強度を増加させる元素であるが、多量の含有は成形性(加工性)を低下させるという悪影響を及ぼす。とくに固溶C量が多くなると、時効性が助長され、成形時にしわを発生させるなどの悪影響を与えるため、本発明では固溶C量をできるだけ低減することが望ましい。本発明では、巻取時や焼鈍時に、Cをセメンタイトなどの析出物として析出させて、固溶Cを極力低減する。この方法では、予め適量のCを含有させておくことが必要となるため、Cは0.020%以上とした。Cが0.020%未満では、炭化物析出のための過飽和度が小さく、Cが炭化物として十分に析出しない。一方、0.070%を超えて含有すると、加工性が著しく低下する。このため、Cは0.020〜0.070%の範囲に限定した。
First, the reason for limiting the composition of the cold-rolled steel sheet of the present invention will be described. Hereinafter, unless otherwise specified, mass% is simply expressed as%.
C: 0.020-0.070%
C is an element that dissolves to increase the strength of the steel, but a large amount has an adverse effect of reducing formability (workability). In particular, when the amount of dissolved C is increased, aging is promoted and adverse effects such as generation of wrinkles at the time of molding are exerted. Therefore, in the present invention, it is desirable to reduce the amount of dissolved C as much as possible. In the present invention, at the time of winding or annealing, C is precipitated as a precipitate such as cementite to reduce the solid solution C as much as possible. In this method, since it is necessary to contain an appropriate amount of C in advance, C is set to 0.020% or more. If C is less than 0.020%, the degree of supersaturation for carbide precipitation is small, and C does not sufficiently precipitate as carbide. On the other hand, if it exceeds 0.070%, the workability is remarkably lowered. For this reason, C was limited to the range of 0.020 to 0.070%.
Si:0.05%以下
Siは、固溶して鋼の強度を増加させる元素であるが、多量に含有すると硬質化し、加工性が低下する。また、Siを多量に含有すると、とくに焼鈍時にSi酸化物を生成し、メッキ性を阻害するなどの悪影響を及ぼす。また、Siは、フェライト安定化傾向の強い元素であり、例えば熱間圧延時には、オーステナイト(γ)からフェライト(α)への変態温度が上昇し、オーステナイト域で圧延を完了させることが困難となる場合がある。このようなことから、Siは0.05%以下に限定した。
Si: 0.05% or less
Si is an element that dissolves to increase the strength of steel, but if it is contained in a large amount, it hardens and the workability decreases. In addition, when a large amount of Si is contained, an adverse effect such as generation of Si oxide during annealing and inhibition of plating properties is caused. In addition, Si is an element that has a strong tendency to stabilize ferrite. For example, during hot rolling, the transformation temperature from austenite (γ) to ferrite (α) increases, making it difficult to complete rolling in the austenite region. There is a case. For these reasons, Si was limited to 0.05% or less.
Mn:0.1〜0.5%
Mnは、固溶して鋼の強度を増加させる作用を有するとともに、MnSを形成して、熱間割れを誘発し表面性状を著しく劣化させるなどの悪影響を及ぼす有害なSを、無害化する元素である。このような効果を得るためには、0.1%以上の含有を必要とする。一方、0.5%を超えて含有すると、硬質化し加工性が低下したり、さらに焼鈍時のフェライトの再結晶を抑制するなどの悪影響が顕著となる。このため、Mnは0.1〜0.5%の範囲に限定した。なお、好ましくは0.3%以下である。
Mn: 0.1-0.5%
Mn has the effect of increasing the strength of steel by solid solution and forming MnS to detoxify harmful S that has harmful effects such as inducing hot cracking and remarkably deteriorating surface properties. It is. In order to obtain such an effect, the content of 0.1% or more is required. On the other hand, when the content exceeds 0.5%, adverse effects such as hardening and workability deterioration, and suppression of ferrite recrystallization during annealing become remarkable. For this reason, Mn was limited to the range of 0.1 to 0.5%. In addition, Preferably it is 0.3% or less.
P:0.05%以下
Pは、強度増加に寄与する元素であるが、粒界に偏析して、延性や靭性を低下させる悪影響を及ぼす。このため、とくにPによる強度増加を利用する必要がない場合には、できるだけ低減することが望ましいが、0.05%程度以下であれば、上記した悪影響は許容できる。このため、Pは0.05%以下に限定した。なお、好ましくは0.03%以下である。
P: 0.05% or less P is an element that contributes to an increase in strength, but segregates at the grain boundaries and has an adverse effect on reducing ductility and toughness. For this reason, it is desirable to reduce as much as possible, especially when it is not necessary to use the increase in strength due to P. However, if it is about 0.05% or less, the above-described adverse effects are acceptable. For this reason, P was limited to 0.05% or less. In addition, Preferably it is 0.03% or less.
S:0.02%以下
Sは、熱間割れを誘発し表面性状を著しく劣化させる。またさらに、Sは、鋼中ではほとんどが介在物として存在し強度にほとんど寄与しないばかりか、粗大なMnSを形成し、延性を低下させる。このようなことから、Sは不純物として、できるだけ低減することが望ましいが、0.02%以下であれば、上記した悪影響は許容できる。このため、Sは0.02%以下に限定した。
S: 0.02% or less S induces hot cracking and significantly deteriorates the surface properties. Furthermore, S is mostly present as inclusions in steel and contributes little to the strength, but also forms coarse MnS and lowers the ductility. For this reason, it is desirable to reduce S as much as possible as an impurity. However, if it is 0.02% or less, the above-described adverse effects are acceptable. For this reason, S was limited to 0.02% or less.
Al:0.02〜0.08%
Alは、本発明において重要な元素である。Alは、脱酸剤として作用する元素であり、この効果を十分に得るためには0.02%以上の含有を必要とする。なお、より好ましくは0.02%超である。また、Alは、Nと結合してAlNとして、Nを固定する作用を有する。本発明では、焼付硬化性の増加に寄与する固溶Nを所望の範囲内で安定して確保するために、Alを適正範囲に調整する。
Al: 0.02 to 0.08%
Al is an important element in the present invention. Al is an element that acts as a deoxidizer, and in order to obtain this effect sufficiently, it needs to be contained in an amount of 0.02% or more. More preferably, it is over 0.02%. Moreover, Al has the effect | action which couple | bonds with N and fixes N as AlN. In the present invention, Al is adjusted to an appropriate range in order to stably secure solid solution N contributing to an increase in bake hardenability within a desired range.
AlNの析出は、温度に影響される。このため、所望の固溶N量を安定して確保するために、Al含有量を、巻取温度との関係で(1)式を、さらに巻取温度と焼鈍温度との関係で(2)式を満足するように調整する。(1)式、(2)式を満足させるためには、少なくとも0.02%以上のAl含有を必要とする。一方、Alの多量含有は、熱間圧延時における、γ→α変態の変態点を上昇させるため、オーステナイト域で圧延を完了させることが困難になる。このようなことから、Alは0.02〜0.10%に限定した。なお、好ましくは0.060%以下である。 The precipitation of AlN is affected by temperature. For this reason, in order to ensure a desired solid solution N amount stably, the Al content is expressed by the equation (1) in relation to the coiling temperature, and further in the relationship between the coiling temperature and the annealing temperature (2). Adjust to satisfy the equation. In order to satisfy the expressions (1) and (2), at least 0.02% or more of Al is required. On the other hand, since a large amount of Al increases the transformation point of the γ → α transformation during hot rolling, it is difficult to complete the rolling in the austenite region. For these reasons, Al is limited to 0.02 to 0.10%. In addition, Preferably it is 0.060% or less.
N:0.005〜0.02%
Nは、固溶して鋼の強度を増加させる元素であり、本発明では焼付硬化性の向上のために、固溶Nを活用する。所望の優れた焼付硬化性を確保するために、固溶Nとして、0.0010%以上確保する必要があり、Nは、少なくとも0.005%の含有を必要とする。一方、0.02%を超える含有は、スラブ割れの発生傾向が強まり、表面疵が発生する恐れがある。このため、Nは0.005〜0.02%の範囲に限定した。なお、好ましくは0.007〜0.015%である。
N: 0.005-0.02%
N is an element that increases the strength of steel by solid solution, and in the present invention, solid solution N is utilized for improving bake hardenability. In order to ensure the desired excellent bake hardenability, it is necessary to ensure 0.0010% or more as the solid solution N, and N needs to contain at least 0.005%. On the other hand, if the content exceeds 0.02%, the tendency of slab cracking to increase and surface flaws may occur. For this reason, N was limited to the range of 0.005 to 0.02%. In addition, Preferably it is 0.007 to 0.015%.
固溶N:0.0010%以上
固溶Nは、歪付与により導入された転位に、塗装焼付処理時に固着し、鋼板強度を増加させる。所望のΔYS(歪付与−塗装焼付処理後の降伏強さの増加量)を確保するためには、本発明では固溶N量は0.0010%以上とする。なお、固溶N量は、Al含有量を上記したような範囲内で含有したうえで、さらに、巻取温度、焼鈍温度を適正化することにより調整する。なお、固溶N量は、0.0020%以上とすることが好ましい。より好ましくは0.0040%以上である。
Solid solution N: 0.0010% or more Solid solution N adheres to dislocations introduced by applying strain during coating baking, and increases the strength of the steel sheet. In order to secure a desired ΔYS (amount of increase in yield strength after applying a strain and baking treatment), the solid solution N amount is set to 0.0010% or more in the present invention. The solute N amount is adjusted by optimizing the coiling temperature and the annealing temperature after containing the Al content within the range as described above. The amount of solute N is preferably 0.0020% or more. More preferably, it is 0.0040% or more.
上記した成分が基本の成分であり、所望の強度に応じて、基本組成に加えてさらに、必要に応じて、Ti:0.01%以下、Nb:0.01%以下、B:0.005%以下のうちから選ばれた1種または2種以上、および/または、Mo:0.01%以下、Ni:0.01%以下、Cr:0.01%以下、Cu:0.01%以下のうちから選ばれた1種または2種以上、を含有できる。
Ti:0.01%以下、Nb:0.01%以下、B:0.005%以下のうちから選ばれた1種または2種以上
Ti、Nb、Bはいずれも、冷延鋼板のフェライトを微細化する作用を有する元素であり、必要に応じて選択して1種または2種以上を含有できる。このような効果を得るためには、それぞれTi:0.001%以上、Nb:0.001%以上、B:0.0005%以上、とすることが望ましいが、過剰の含有は、固溶N量が低減し、焼付け硬化性が低下する。このため、含有する場合には、それぞれTi:0.01%以下、Nb:0.01%以下、B:0.005%以下に限定する。
The above-mentioned components are basic components, and in addition to the basic composition, depending on the desired strength, further selected as follows: Ti: 0.01% or less, Nb: 0.01% or less, B: 0.005% or less One or more selected from the group consisting of Mo: 0.01% or less, Ni: 0.01% or less, Cr: 0.01% or less, Cu: 0.01% or less, Can be contained.
One or more selected from Ti: 0.01% or less, Nb: 0.01% or less, B: 0.005% or less
Ti, Nb, and B are all elements that have the effect of refining the ferrite of the cold-rolled steel sheet, and can be selected as necessary and contain one or more. In order to obtain such effects, it is desirable that Ti: 0.001% or more, Nb: 0.001% or more, and B: 0.0005% or more, respectively. However, excessive inclusion reduces the amount of dissolved N and causes baking. Curability decreases. For this reason, when it contains, it limits to Ti: 0.01% or less, Nb: 0.01% or less, and B: 0.005% or less, respectively.
Mo:0.01%以下、Ni:0.01%以下、Cr:0.01%以下、Cu:0.01%以下のうちから選ばれた1種または2種以上
Mo、Ni、Cr、Cuはいずれも、固溶強化により鋼板強度を増加させる作用を有する元素であり、必要に応じて選択して1種または2種以上を含有できる。このような効果を得るためには、それぞれMo:0.001%以上、Ni:0.001%以上、Cr:0.001%以上、Cu:0.001%以上とすることが望ましい。一方、過剰の含有は、延性の低下を招くため、それぞれMo:0.01%以下、Ni:0.01%以下、Cr:0.01%以下、Cu:0.01%以下に限定する。
One or more selected from Mo: 0.01% or less, Ni: 0.01% or less, Cr: 0.01% or less, Cu: 0.01% or less
Mo, Ni, Cr, and Cu are all elements that have the effect of increasing the strength of the steel sheet by solid solution strengthening, and can be selected as necessary to contain one or more. In order to obtain such effects, it is desirable that Mo: 0.001% or more, Ni: 0.001% or more, Cr: 0.001% or more, and Cu: 0.001% or more, respectively. On the other hand, excessive inclusion leads to a decrease in ductility, so it is limited to Mo: 0.01% or less, Ni: 0.01% or less, Cr: 0.01% or less, and Cu: 0.01% or less, respectively.
上記した成分以外の残部は、Feおよび不可避的不純物からなる。
つぎに、本発明冷延鋼板の組織限定理由について説明する。
本発明冷延鋼板は、延性を確保して加工性を良好とする観点から、面積率で80%以上のフェライト相を含む組織を有する。フェライト相以外の第二相としては、パーライト、マルテンサイト、ベイナイト、残留オーステナイト等が例示できる。フェライト相が面積率で80%未満では、第二相の組織分率が増加し、加工性が低下する。なお、成形性の観点から、フェライト相は面積率で85〜95%とすることが好ましい。
The balance other than the components described above consists of Fe and inevitable impurities.
Next, the reason for limiting the structure of the cold-rolled steel sheet of the present invention will be described.
The cold-rolled steel sheet of the present invention has a structure containing a ferrite phase with an area ratio of 80% or more from the viewpoint of ensuring ductility and improving workability. Examples of the second phase other than the ferrite phase include pearlite, martensite, bainite, and retained austenite. When the ferrite phase is less than 80% in area ratio, the structure fraction of the second phase increases and the workability decreases. From the viewpoint of formability, the ferrite phase is preferably 85 to 95% by area ratio.
フェライト相の平均結晶粒径は、7μm以下とする。平均結晶粒径が7μmを超えて大きくなると、調質圧延で導入される歪の分布が不均一となり、導入される歪を効果的に鋼板全体に付与できなくなる。なお、好ましくは4〜7μmである。なお、フェライトの平均結晶粒径は、光学顕微鏡(倍率:200〜1000倍)で20視野以上観察し、JIS法に準拠した切断法や画像解析により算出する値を用いるものとする。 The average crystal grain size of the ferrite phase is 7 μm or less. If the average crystal grain size exceeds 7 μm, the distribution of strain introduced by temper rolling becomes non-uniform, and the introduced strain cannot be effectively applied to the entire steel sheet. In addition, Preferably it is 4-7 micrometers. The average crystal grain size of ferrite is observed with 20 or more fields of view with an optical microscope (magnification: 200 to 1000 times), and a value calculated by a cutting method or image analysis based on the JIS method is used.
また、フェライト相粒内には、炭化物を主体とする析出物を析出、分散させる。これにより固溶Cを可能な限り低減でき、時効による降伏伸びの出現を抑制できる。析出物の大きさは、平均の円相当径で0.05〜5μmとする。焼付硬化量(ΔYS)は析出物の粒径に大きく影響されるため、この程度の大きさの析出物を適正量存在させることにより、ΔYS:50MPa以上の焼付硬化量を安定して確保できる。析出物の大きさが平均で0.05μm未満では、焼付硬化量が小さく、ΔYS:50MPa以上を安定して確保できない。一方、平均で5μmを超えて大きい場合には、歪みを付与しても焼付硬化量が小さく、所望の特性を得ることができない。 Further, precipitates mainly composed of carbide are precipitated and dispersed in the ferrite phase grains. Thereby, the solid solution C can be reduced as much as possible, and the appearance of yield elongation due to aging can be suppressed. The size of the precipitate is 0.05 to 5 μm in terms of an average equivalent circle diameter. Since the bake hardening amount (ΔYS) is greatly influenced by the particle size of the precipitates, the bake hardening amount of ΔYS: 50 MPa or more can be stably secured by the presence of an appropriate amount of precipitates of this size. When the average size of the precipitate is less than 0.05 μm, the bake hardening amount is small, and ΔYS: 50 MPa or more cannot be secured stably. On the other hand, if the average is larger than 5 μm, the amount of bake-hardening is small even if strain is applied, and desired characteristics cannot be obtained.
なお、上記した大きさの析出物は、1〜100個/0.01mm2の析出密度で存在させることが好ましい。析出密度が1個/0.01mm2と未満では、焼付硬化量が小さく、ΔYS:50MPa以上を安定して確保できない。一方、100個/0.01mm2を超えると加工性が低下する。
つぎに、本発明冷延鋼板の好ましい製造方法について説明する。
本発明冷延鋼板の製造方法では、鋼素材に、熱延工程と、冷延工程と、焼鈍工程と、さらに調質圧延工程を順次施して、冷延鋼板とする。
In addition, it is preferable to make the precipitate of the above-mentioned size exist at a precipitation density of 1 to 100 pieces / 0.01 mm 2 . When the precipitation density is less than 1 piece / 0.01 mm 2 , the bake hardening amount is small, and ΔYS: 50 MPa or more cannot be secured stably. On the other hand, if it exceeds 100 pieces / 0.01 mm 2 , the workability deteriorates.
Next, a preferred method for producing the cold-rolled steel sheet of the present invention will be described.
In the manufacturing method of the cold-rolled steel sheet of the present invention, a hot-rolling process, a cold-rolling process, an annealing process, and a temper rolling process are sequentially performed on the steel material to obtain a cold-rolled steel sheet.
つぎに、本発明冷延鋼板の好ましい製造方法について説明する。
鋼素材の製造方法では、質量%で、C:0.020〜0.070%、Si:0.05%以下、Mn:0.1〜0.5%、P:0.05%以下、S:0.02%以下、Al:0.02〜0.08%、N:0.005〜0.02%を含み、残部Feおよび不可避的不純物からなる組成の鋼素材が得られればよく、とくに限定する必要がないが、上記した組成の溶鋼を、転炉法、電炉法等の常用の溶製方法で、溶製し、連続鋳造法等の、常用の鋳造方法でスラブ等の鋼素材とすることが好ましい。鋼素材の鋳造方法は、成分のマクロな偏析を防止すべく違続鋳造法とすることが望ましいが、造塊法、薄スラブ鋳造法によってもなんら問題はない。
Next, a preferred method for producing the cold-rolled steel sheet of the present invention will be described.
In the manufacturing method of the steel material, C: 0.020 to 0.070%, Si: 0.05% or less, Mn: 0.1 to 0.5%, P: 0.05% or less, S: 0.02% or less, Al: 0.02 to 0.08%, N: 0.005 to 0.02% is included as long as a steel material composed of the balance Fe and unavoidable impurities can be obtained. Although there is no particular limitation, the molten steel having the above composition can be converted into a converter method, an electric furnace method, etc. It is preferable to use a conventional melting method to produce a steel material such as a slab by a conventional casting method such as a continuous casting method. The steel material casting method is desirably an intermittent casting method in order to prevent macro segregation of components, but there is no problem with the ingot casting method or the thin slab casting method.
得られた鋼素材はついで、熱延工程を施されるが、熱間圧延のための加熱は、いったん室温まで冷却し、その後再加熱する方法に加えて、室温まで冷却しないで、温片のままで加熱炉に装入する、あるいはわずかの保熱を行った後に直ちに圧延する直送圧延・直接圧延などの省エネルギープロセスも問題なく適用できる。
熱延工程は、鋼素材に、所定温度で加熱し、粗圧延と仕上圧延とからなる熱間圧延を施し熱延板とし、ついで巻き取る工程とする。
The obtained steel material is then subjected to a hot rolling process, but the heating for hot rolling is performed by cooling to room temperature and then reheating, without cooling to room temperature. Energy-saving processes such as direct feed rolling and direct rolling, in which the material is charged into the heating furnace as it is or after a slight heat retention is performed, can be applied without any problem.
The hot rolling process is a process in which a steel material is heated at a predetermined temperature, subjected to hot rolling including rough rolling and finish rolling to form a hot rolled sheet, and then wound.
加熱温度は1150℃以上とすることが好ましい。
熱間圧延における加熱では、加熱中にAlN、Fe3Cなどの炭窒化物を一旦固溶させ、巻取り後に炭化物のみを析出させる必要がある。このため、熱間圧延の加熱温度は1150℃以上に限定することが好ましい。加熱温度が1150℃未満では、炭窒化物の固溶が不十分で、巻取り後に適正な大きさの析出物とすることができない。加熱温度の上限はとくに限定する必要はないが、結晶粒粗大化、酸化によるスケールロス等の観点から1300℃以下とすることが好ましい。
The heating temperature is preferably 1150 ° C. or higher.
In heating in hot rolling, it is necessary to once dissolve carbonitride such as AlN and Fe 3 C during heating and to precipitate only carbide after winding. For this reason, it is preferable to limit the heating temperature of hot rolling to 1150 ° C. or higher. If the heating temperature is less than 1150 ° C, the carbonitride is not sufficiently dissolved, and it is impossible to obtain a precipitate having an appropriate size after winding. The upper limit of the heating temperature is not particularly limited, but is preferably 1300 ° C. or lower from the viewpoint of crystal grain coarsening, scale loss due to oxidation, and the like.
加熱された鋼素材は、粗圧延され所定寸法形状のシートバーとされるが、粗圧延の条件については、所定寸法形状を確保できればよく、とくに限定する必要はない。ついで、シートバーに仕上圧延を施し熱延板とする。
仕上圧延の仕上圧延終了温度は850℃以上とすることが好ましい。
本発明では、仕上圧延はオーステナイト(γ)域で行うことが好ましい。仕上圧延において、鋼板の温度が、γ域からフェライト(α)域になると、圧延荷重が急激に低下し、圧延機の荷重制御が困難になり、破断などの通板中のトラブルが発生する危険性がある。一方、このような危険は、鋼板温度を入側から、α域の温度として通板すれば回避できるが、圧延温度が低下して、熱延板の組織が未再結晶フェライトとなる。その後の工程である冷間圧延時に圧延荷重が増大してしまうという問題が生じる。このようなことから、仕上圧延はγ域で終了させることとし、本発明の鋼組成範囲であれば、850℃以上とすることが好ましい。一方、仕上圧延終了温度の上限はとくに限定する必要はないが、高くなりすぎると、結晶粒が粗大化し、冷延板の加工性が低下するという問題があるため、概ね950℃程度以下とすることが好ましい。
The heated steel material is roughly rolled into a sheet bar having a predetermined size and shape. However, the rough rolling condition is not particularly limited as long as the predetermined size and shape can be secured. Next, the sheet bar is finish-rolled to obtain a hot-rolled sheet.
The finish rolling finishing temperature of finish rolling is preferably 850 ° C. or higher.
In the present invention, finish rolling is preferably performed in the austenite (γ) region. In finish rolling, if the temperature of the steel sheet changes from the γ region to the ferrite (α) region, the rolling load decreases rapidly, making it difficult to control the rolling mill load, and the risk of troubles during sheet passing such as breakage. There is sex. On the other hand, such a risk can be avoided by passing the steel sheet temperature from the inlet side as a temperature in the α range, but the rolling temperature is lowered and the structure of the hot rolled sheet becomes non-recrystallized ferrite. There arises a problem that the rolling load increases during the subsequent cold rolling. For this reason, the finish rolling is finished in the γ region, and the temperature is preferably 850 ° C. or higher within the steel composition range of the present invention. On the other hand, the upper limit of the finish rolling finish temperature is not particularly limited, but if it becomes too high, there is a problem that the crystal grains become coarse and the workability of the cold-rolled sheet is lowered. It is preferable.
得られた熱延板は、ついでコイル状に巻き取られる。巻取りまでの冷却速度は、特に規定する必要はなく、空冷以上の冷却速度があれば十分である。なお、必要に応じて、強制冷却、例えば100℃/s以上の急冷をおこなってもよい。
本発明では巻取温度CTは、Al、N含有量との関係で、次(1)式
[(Al/28)/(N/14)]/CT ≦ 5.5×10−3 ・・・・(1)
(ここで、Al、N:各元素の含有量(質量%)、CT:巻取温度(℃))
を満足するように調整する。
The obtained hot rolled sheet is then wound into a coil. The cooling rate until winding is not particularly limited, and a cooling rate higher than air cooling is sufficient. If necessary, forced cooling, for example, rapid cooling at 100 ° C./s or higher may be performed.
In the present invention, the coiling temperature CT is expressed by the following equation (1) in relation to the Al and N contents.
[(Al / 28) / (N / 14)] / CT ≤ 5.5 × 10 -3 (1)
(Where, Al, N: content of each element (mass%), CT: coiling temperature (° C.))
Adjust to satisfy.
本発明では、AlNの析出を抑制し、熱延板において所望の固溶N量を確保するため、巻取温度CTを、Al量、N量に関係する(1)式を満足するように調整する。巻取温度CTが上記(1)式を満足しない場合には、熱延板において所望の固溶N量を確保できなくなり、冷延鋼板で、所望の優れた焼付硬化性を確保できなくなる。なお、上記した条件で熱延板を巻き取ることにより、固溶Cは炭化物として析出するとともに、フェライト相の結晶粒径が微細化する。 In the present invention, in order to suppress precipitation of AlN and secure a desired solid solution N amount in the hot-rolled sheet, the coiling temperature CT is adjusted to satisfy the formula (1) related to the Al amount and the N amount. To do. When the coiling temperature CT does not satisfy the above formula (1), the desired amount of dissolved N in the hot-rolled sheet cannot be secured, and the desired excellent bake hardenability cannot be secured in the cold-rolled steel sheet. In addition, by winding a hot-rolled sheet on the above-mentioned conditions, the solid solution C precipitates as a carbide | carbonized_material, and the crystal grain diameter of a ferrite phase refines | miniaturizes.
熱延板はついで、冷延工程を施される。冷延工程では、熱延板に酸洗処理を施したのち、冷延圧下率:60〜90%とする冷間圧延を施し冷延板とする。
熱延板を酸洗した後の冷延圧下率は、熱延板と製品板の板厚によって決定することが好ましい。通常、冷延圧下率:60%以上であれば、加工性、板厚精度においてとくに問題ない。一方、冷延圧下率が90%を超えると、冷間圧延機への負荷が大きくなりすぎて、操業が困難となる。このため、冷延圧下率は60〜90%の範囲に限定することが好ましい。
The hot rolled sheet is then subjected to a cold rolling process. In the cold rolling step, the hot-rolled sheet is subjected to a pickling treatment, and then cold-rolled to a cold rolling reduction ratio of 60 to 90% to obtain a cold-rolled sheet.
The cold rolling reduction ratio after pickling the hot rolled sheet is preferably determined by the thickness of the hot rolled sheet and the product sheet. Usually, when the cold rolling reduction ratio is 60% or more, there is no particular problem in workability and sheet thickness accuracy. On the other hand, if the cold rolling reduction ratio exceeds 90%, the load on the cold rolling mill becomes too large and operation becomes difficult. For this reason, it is preferable to limit the cold rolling reduction ratio to the range of 60 to 90%.
冷延板はついで、焼鈍工程を施される。
焼鈍工程は、冷延板に焼鈍処理を施し冷延焼鈍板とする工程である。焼鈍処理においては、焼鈍温度Anを次(2)式
1.0 ≦ {[(Al/28)/(N/14)]/CT}/{[(Al/28)/(N/14)]/An} ≦ 1.5・・・・・(2)
(ここで、Al、N:各元素の含有量(質量%)、CT:巻取温度(℃)、An:焼鈍温度(℃))
を満足する温度とする。本発明の焼鈍処理においては、所望の固溶N量を確保し、所望の焼付硬化性を得るために、まず、焼鈍温度Anを、(2)式を満足する温度に調整することが好ましい。固溶N量は、Al量、N量、および、巻取温度、焼鈍温度に依存するため、所望の固溶N量を確保には、焼鈍温度を、Al量、N量、および、巻取温度、焼鈍温度の関係式である(2)式を満足させるように調整することが重要となる。焼鈍温度が、(2)式を満足しない場合には、所望の固溶N量を確保することが難しくなる。
The cold-rolled sheet is then subjected to an annealing process.
An annealing process is a process of giving an annealing process to a cold-rolled sheet, and setting it as a cold-rolled annealed sheet. In annealing treatment, the annealing temperature An is expressed by the following equation (2)
1.0 ≦ {[(Al / 28) / (N / 14)] / CT} / {[(Al / 28) / (N / 14)] / An} ≦ 1.5 (2)
(Where, Al, N: content of each element (mass%), CT: coiling temperature (° C), An: annealing temperature (° C))
Is satisfied. In the annealing treatment of the present invention, it is preferable to first adjust the annealing temperature An to a temperature satisfying the expression (2) in order to secure a desired amount of dissolved N and obtain a desired bake hardenability. The amount of solid solution N depends on the amount of Al, the amount of N, the coiling temperature, and the annealing temperature. Therefore, in order to ensure the desired amount of solid solution N, the annealing temperature is the amount of Al, the amount of N, and the coiling. It is important to adjust so as to satisfy the equation (2) which is a relational expression between the temperature and the annealing temperature. When the annealing temperature does not satisfy the formula (2), it becomes difficult to secure a desired amount of dissolved N.
上記した焼鈍温度Anまでの加熱は、加熱速度を二段階に変化させた加熱とすることが好ましい。焼鈍温度までの加熱速度を二段階に変化させることにより、粒内の析出物(炭化物)の大きさ、析出量を所望の分布状態とすることができる。
第一段の加熱は、300℃〜(焼鈍温度−20℃)までの温度域での加熱であり、加熱速度を1〜30℃/sとすることが好ましい。この温度域での加熱速度が、1℃/s未満では、熱延板で生成した炭化物が溶解し、固溶C量が増加する。一方、30℃/sを超えて大きくなると、フェライト相粒内への炭化物等の析出が不十分となり、固溶C量が多くなり、歪付与−塗装焼付処理後に降伏伸びを低減できない。このようなことから、この温度域での加熱速度は1〜30℃/sの範囲内に限定することが好ましい。
The heating up to the annealing temperature An described above is preferably heating in which the heating rate is changed in two stages. By changing the heating rate up to the annealing temperature in two stages, the size of the precipitates (carbides) in the grains and the amount of precipitation can be set to a desired distribution state.
The first stage heating is heating in a temperature range from 300 ° C. to (annealing temperature −20 ° C.), and the heating rate is preferably 1 to 30 ° C./s. When the heating rate in this temperature range is less than 1 ° C./s, the carbide generated in the hot-rolled sheet is dissolved and the amount of solute C increases. On the other hand, when it exceeds 30 ° C./s, precipitation of carbides and the like in the ferrite phase grains becomes insufficient, the amount of solid solution C increases, and the yield elongation cannot be reduced after the strain imparting-paint baking process. For this reason, the heating rate in this temperature range is preferably limited to the range of 1 to 30 ° C./s.
また第二段の加熱は、(焼鈍温度−20℃)〜(焼鈍温度)までの温度域での加熱であり、加熱速度を0.5〜5℃/sとすることが好ましい。この温度域での加熱速度が0.5℃/s未満では、炭化物が溶解し、固溶C量が増加し、歪付与−塗装焼付処理後に降伏伸びを低減できない。一方、5℃/sを超えて大きくなると、フェライト相粒内への炭化物等の析出が不十分となり、固溶C量が多くなり、歪付与−塗装焼付処理後に降伏伸びを低減できない。このようなことから、この温度域での加熱速度は0.5〜5℃/sの範囲内に限定することが好ましい。 The second-stage heating is heating in a temperature range from (annealing temperature −20 ° C.) to (annealing temperature), and the heating rate is preferably 0.5 to 5 ° C./s. When the heating rate in this temperature range is less than 0.5 ° C./s, the carbide is dissolved, the amount of solute C increases, and the yield elongation cannot be reduced after the strain imparting-paint baking process. On the other hand, if it exceeds 5 ° C./s, precipitation of carbide and the like in the ferrite phase grains becomes insufficient, the amount of solid solution C increases, and the yield elongation cannot be reduced after the strain imparting-paint baking process. For this reason, the heating rate in this temperature range is preferably limited to the range of 0.5 to 5 ° C./s.
上記した二段階の加熱により、焼鈍温度Anまで加熱したのち、焼鈍温度Anで150s以下の均熱を行うことが好ましい。均熱時間が150sを超えて長時間となると、粒が成長し粗大粒となるため、加工時に肌荒れの原因となり、表面性状が低下する。このため、焼鈍温度Anでの均熱時間は150s以下の範囲内に限定することが好ましい。なお、本発明では、焼鈍温度Anでの均熱時間は0s、すなわち、該焼鈍温度Anに到達後直ちに冷却を開始する場合、をも含むものとする。なお、15s未満では、再結晶が完了しないか、完了しても粒成長が抑制され、延性(伸び)が低下する場合があり、より好ましくは15s以上である。
均熱後の冷却は、5℃/s以上の冷却速度で500℃以下まで冷却する。
After heating to the annealing temperature An by the two-stage heating described above, it is preferable to perform soaking at the annealing temperature An of 150 s or less. When the soaking time is longer than 150 seconds, the grains grow and become coarse grains, which causes rough skin during processing and the surface properties are lowered. For this reason, it is preferable to limit the soaking time at the annealing temperature An within a range of 150 s or less. In the present invention, the soaking time at the annealing temperature An is 0 s, that is, includes the case where the cooling is started immediately after reaching the annealing temperature An. If it is less than 15 s, recrystallization will not be completed or even if it is completed, grain growth may be suppressed and ductility (elongation) may be reduced, and more preferably 15 s or more.
Cooling after soaking is performed at a cooling rate of 5 ° C./s or higher to 500 ° C. or lower.
均熱後の冷却速度が5℃/s未満では、フェライト相粒内の析出物の粗大化が著しくなり、所望の析出物の大きさを確保できにくくなり、所望の焼付硬化量を確保できなくなる。冷却の停止温度が500℃超では、その後の冷却により、炭化物の粗大化が進行する。このため、均熱後には、5℃/s以上の冷却速度で500℃以下まで冷却することが好ましいとした。なお、500℃より低い領域での冷却速度はとくに限定する必要はない。また、冷却途中で保持を行うなどの熱履歴をとってもよい。 If the cooling rate after soaking is less than 5 ° C / s, the coarsening of the precipitates in the ferrite phase grains becomes remarkable, it becomes difficult to secure the desired precipitate size, and the desired bake hardening amount cannot be ensured. . When the cooling stop temperature exceeds 500 ° C., coarsening of the carbide proceeds by subsequent cooling. For this reason, after soaking, it is preferable to cool to 500 ° C. or less at a cooling rate of 5 ° C./s or more. The cooling rate in the region lower than 500 ° C. does not need to be particularly limited. Further, a heat history such as holding during cooling may be taken.
また、必要に応じて、焼鈍工程後に、耐腐食性を向上させるために溶融亜鉛めっきや電気亜鉛めっきなどの、亜鉛めっき層を鋼板表面に形成する亜鉛めっき処理工程を、調質圧延工程前に行ってもよい。例えば、焼鈍工程の後に、引き続き、480℃近傍で溶融亜鉛めっき処理を施す、溶融亜鉛めっき処理工程を施してもよい。溶融亜鉛めっき処理工程では、好ましくは、上記した焼鈍処理で冷延板を5℃/s以上の冷却速度で500℃以下の所定の温度、好ましくは450℃程度の温度まで冷却する焼鈍工程ののち、引き続き、480℃近傍の温度に保持された溶融亜鉛めっき浴に浸漬し、鋼板表面に溶融亜鉛めっき層を形成する溶融亜鉛めっき処理、あるいはさらに形成された溶融亜鉛めっき層を、好ましくは450℃以上550℃以下に加熱し、鉄・亜鉛合金層とする、めっき層を合金化する合金化処理を施すことが好ましい。 In addition, if necessary, a galvanizing treatment process for forming a galvanized layer on the steel sheet surface, such as hot dip galvanizing and electrogalvanizing, to improve corrosion resistance after the annealing process is performed before the temper rolling process. You may go. For example, after the annealing step, a hot dip galvanizing treatment step in which hot dip galvanizing treatment is performed near 480 ° C. may be performed. In the hot dip galvanizing process, preferably, after the annealing process, the cold-rolled sheet is cooled to a predetermined temperature of 500 ° C. or lower, preferably about 450 ° C., at a cooling rate of 5 ° C./s or higher. Subsequently, a hot dip galvanizing treatment for forming a hot dip galvanized layer on the surface of the steel sheet by immersing in a hot dip galvanizing bath maintained at a temperature close to 480 ° C., or a further formed hot dip galvanized layer, preferably 450 ° C. It is preferable to apply an alloying treatment for alloying the plating layer by heating to 550 ° C. or lower to form an iron / zinc alloy layer.
焼鈍工程後、あるいは焼鈍工程、溶融亜鉛めっき工程あるいは亜鉛めっき工程後には、調質圧延工程を施す。調質圧延工程は、冷延焼鈍板に伸び率:0.5〜5%の調質圧延を施す工程とすることが好ましい。
冷延焼鈍板に、調質圧延を施して形状を矯正するとともに、鋼板(表面)に適正な歪みを付与して、冷延鋼板における時効によるしわの発生を抑制することができる。部材への加工時に鋼板に付加される加工量が少ない軽加工である場合にはとくに、加工−塗装焼付処理後に所望の焼付け硬化量を確保するために、調質圧延における歪付加量が重要となる。本発明では、調質圧延における伸び率は0.5〜5%の範囲に限定することが望ましい。調質圧延での伸び率が0.5%未満では、部材への加工量が少ない軽加工である場合にはとくに、所望の焼付け硬化量を確保することが困難となる。一方、伸び率が5%を超えて大きくなると、加工硬化により鋼板強度が高くなり、成形性が低下するため、加工後に形状不良となる場合が多発する。なお、伸び率は、好ましくは3%以下である。
After the annealing step, or after the annealing step, the hot dip galvanizing step or the galvanizing step, a temper rolling step is performed. The temper rolling step is preferably a step of subjecting the cold-rolled annealed sheet to temper rolling with an elongation of 0.5 to 5%.
The cold-rolled annealed sheet can be subjected to temper rolling to correct the shape, and an appropriate strain can be applied to the steel sheet (surface) to suppress the occurrence of wrinkles due to aging in the cold-rolled steel sheet. Especially in the case of light processing with a small amount of processing added to the steel plate during processing to the member, in order to ensure the desired bake hardening amount after the processing-paint baking process, the amount of strain applied in the temper rolling is important. Become. In this invention, it is desirable to limit the elongation rate in temper rolling to the range of 0.5 to 5%. If the elongation in temper rolling is less than 0.5%, it is difficult to ensure a desired bake hardening amount, especially in the case of light processing with a small amount of processing on the member. On the other hand, if the elongation exceeds 5%, the strength of the steel sheet increases due to work hardening, and the formability decreases, so that a shape defect often occurs after processing. The elongation is preferably 3% or less.
以下に、実施例に基づきさらに、本発明について詳細に説明する。 Below, based on an Example, this invention is demonstrated in detail.
表1に示す組成の鋼素材(スラブ)を出発素材とし、表2に示す条件で、熱延工程、冷延工程、焼鈍工程、さらに調質圧延工程を施し、表2に示す板厚の冷延鋼板とした。
得られた冷延鋼板について、固溶N量、組織、引張特性、焼付硬化性、時効性を調査した。試験方法はつぎのとおりとした。
(1)固溶N量測定
得られた冷延鋼板から電解抽出用試験片を採取し、アセチルアセトン系電解液中で定電位電解法により抽出した電解抽出物中のN量を分析し、析出N量とした。得られた析出N量を鋼中の全N量から差し引き、固溶N量とした。
A steel material (slab) having the composition shown in Table 1 is used as a starting material, and subjected to a hot rolling process, a cold rolling process, an annealing process, and a temper rolling process under the conditions shown in Table 2, and the cold thickness of the sheet shown in Table 2 A rolled steel sheet was used.
About the obtained cold-rolled steel sheet, the amount of solid solution N, structure | tissue, tensile characteristics, bake hardenability, and aging were investigated. The test method was as follows.
(1) Measurement of solid solution N amount A test piece for electrolytic extraction was collected from the obtained cold-rolled steel sheet, and the N amount in the electrolytic extract extracted by the potentiostatic electrolysis method in the acetylacetone-based electrolytic solution was analyzed. The amount. The obtained amount of precipitated N was subtracted from the total amount of N in the steel to obtain a solid solution N amount.
(2)組織観察試験
得られた冷延鋼板から組織観察用試験片を採取し、圧延方向断面を研磨し、腐食(ナイタール液)して、板厚の1/4から3/4の位置について、光学顕微鏡(倍率:200〜1000倍)または走査型電子顕微鏡(倍率:500〜2000倍)で視野数:20視野以上を観察し、撮像して組織を同定するとともに、画像解析装置を用いてフェライト相の平均結晶粒径、および各相の組織分率を求めた。また、走査型電子顕微鏡(倍率:2000〜5000倍)または透過型電子顕微鏡(倍率:2000〜5000倍)を用いて、フェライト粒内に析出した析出物の大きさ、および単位面積あたりの析出物個数(析出密度)を測定した。ここで、フェライト相の平均結晶粒径は、JIS G 0552−1998の規定に準拠した切断法で算出した。また、析出物の大きさは、各々の析出物の面積を求め、該面積から各々の析出物の円相当径を算出し、得られた値の算術平均を求め、平均の円相当径として表示した。
(2) Microstructure observation test Samples for microstructural observation were collected from the obtained cold-rolled steel sheet, the cross section in the rolling direction was polished and corroded (Nital solution), and about 1/4 to 3/4 of the plate thickness Using an optical microscope (magnification: 200 to 1000 times) or a scanning electron microscope (magnification: 500 to 2000 times), observing the number of fields of view: 20 fields or more, imaging and identifying tissues, and using an image analyzer The average crystal grain size of the ferrite phase and the structure fraction of each phase were determined. Further, the size of precipitates precipitated in ferrite grains and the precipitates per unit area using a scanning electron microscope (magnification: 2000 to 5000 times) or a transmission electron microscope (magnification: 2000 to 5000 times). The number (precipitation density) was measured. Here, the average crystal grain size of the ferrite phase was calculated by a cutting method in accordance with the provisions of JIS G 0552-1998. Further, the size of the precipitate is obtained by calculating the area of each precipitate, calculating the equivalent circle diameter of each precipitate from the area, obtaining the arithmetic average of the obtained values, and displaying the average equivalent circle diameter. did.
(3)引張試験
得られた冷延鋼板から、圧延方向が引張方向となるようにJIS5号引張試験片を採取し、引張速度:10mm/minで引張試験を行い、引張特性(降伏強さYS、引張強さTS、伸びEl)を求めた。
(4)焼付硬化性試験
得られた冷延鋼板から、圧延方向が引張方向となるようにJIS5号引張試験片を採取し、引張試験で表3に示す予歪を付加し、予歪加工時の降伏強さYSPSを求めた(予歪加工)。そして、予歪加工後、表3に示す条件の塗装焼付処理相当の熱処理(塗装焼付相当熱処理)を施した。予歪加工−熱処理後、引張試験を行い、降伏強さYSHT、降伏伸び(ElY)HTを求めた。焼付硬化性として、熱処理前後の降伏強さ上昇量ΔYS(=降伏強さYSHT−予歪加工時の応力YSPS)を算出した。
(3) Tensile test From the obtained cold-rolled steel sheet, a JIS No. 5 tensile test piece was taken so that the rolling direction was the tensile direction, and a tensile test was performed at a tensile rate of 10 mm / min to obtain tensile properties (yield strength YS , Tensile strength TS, elongation El).
(4) Bake hardenability test From the obtained cold-rolled steel sheet, a JIS No. 5 tensile test piece was taken so that the rolling direction would be the tensile direction, and the pre-strain shown in Table 3 was added in the tensile test. YS PS was obtained (pre-strain processing). Then, after the pre-straining process, a heat treatment equivalent to the coating baking process under the conditions shown in Table 3 (paint baking equivalent heat treatment) was performed. After pre-straining-heat treatment, a tensile test was performed to determine yield strength YS HT and yield elongation (El Y ) HT . As bake hardenability, yield strength increases amount ΔYS before and after the heat treatment - was calculated (= yield strength YS HT predistortion stress YS PS during processing).
(5)時効性
得られた冷延鋼板を25℃で3ヶ月間保管したのち、圧延方向が引張方向となるようにJIS5号引張試験片を採取し、引張試験を実施し、降伏伸びYEl を求め、時効性を評価した。YElが2%以下である場合に、時効性に優れると評価した。
得られた結果を表3に示す。
(5) Aging After storing the obtained cold-rolled steel sheet at 25 ° C for 3 months, a JIS No. 5 tensile test piece was taken so that the rolling direction was the tensile direction, a tensile test was conducted, and the yield elongation YEl was determined. And aging was evaluated. When YEl was 2% or less, it was evaluated that the aging property was excellent.
The obtained results are shown in Table 3.
本発明例はいずれも、平均粒径が7μm以下のフェライト相が面積率で80%以上で、フェライト粒内に円相当径(平均)が0.005〜5μmの析出物が分散した組織が認められた。なお、パーライト、ベイナイトなどがフェライト以外の第二相として認められた。本発明例はいずれも、引張強さTS:340MPa以上の強度を有し、加工性に優れ、時効性に優れ、さらに2.0%未満の歪を付加する、予歪加工−塗装焼付処理相当熱処理による降伏強さの増加量が、50MPa以上となり、軽加工を施されても大きい焼付硬化量が得られる、焼付硬化性に優れた冷延鋼板となっている。一方、本発明範囲を外れる比較例は、伸びが低く加工性が低下しているか、YElが大きく時効するか、あるいは焼付硬化量が少ないか、して所望の特性を有する冷延鋼板が得られていない。 In each of the inventive examples, a structure in which a ferrite phase having an average particle diameter of 7 μm or less was 80% or more in area ratio and precipitates having an equivalent circle diameter (average) of 0.005 to 5 μm dispersed in the ferrite grains was observed. . In addition, pearlite, bainite, etc. were recognized as 2nd phases other than a ferrite. Each of the inventive examples has a tensile strength TS: strength of 340 MPa or more, excellent workability, excellent aging property, and a strain of less than 2.0%. The amount of increase in yield strength is 50 MPa or more, and it is a cold-rolled steel sheet with excellent bake hardenability that can obtain a large bake hardening amount even when lightly processed. On the other hand, a comparative example out of the scope of the present invention provides a cold-rolled steel sheet having desired characteristics when elongation is low and workability is reduced, YEl is aged greatly, or the amount of bake hardening is small. Not.
表1に示す組成の鋼素材(スラブ)の一部を、表4に示す条件で、熱延工程、冷延工程、焼鈍工程、さらに溶融亜鉛めっき処理工程、調質圧延工程を施し、表4に示す板厚のめっき層を有する冷延鋼板(めっき鋼板)とした。なお、溶融亜鉛めっき処理工程では、焼鈍工程の冷却途中で440℃まで冷却したのち、引き続き、溶融亜鉛めっき浴(浴温:480〜520℃)に浸漬する溶融亜鉛めっき処理を施し、表4に示す付着量の溶融亜鉛めっき層を形成した。一部の溶融亜鉛めっき処理工程では、溶融亜鉛めっき処理に加えて、さらに480〜530℃に加熱し、めっき層を合金化し合金化溶融亜鉛めっき層とする合金化処理を施した。 A part of the steel material (slab) having the composition shown in Table 1 is subjected to a hot rolling process, a cold rolling process, an annealing process, a hot dip galvanizing process, and a temper rolling process under the conditions shown in Table 4. Table 4 It was set as the cold rolled steel plate (plated steel plate) which has the plating layer of the board thickness shown to. In addition, in the hot dip galvanizing process, after cooling to 440 ° C. during the cooling of the annealing process, the hot dip galvanizing process to be immersed in a hot dip galvanizing bath (bath temperature: 480 to 520 ° C.) is subsequently performed. A hot-dip galvanized layer having the adhesion amount shown was formed. In some of the hot dip galvanizing treatment steps, in addition to the hot dip galvanizing treatment, heating was further performed at 480 to 530 ° C., and the alloying treatment was performed by alloying the plating layer into an alloyed hot dip galvanizing layer.
得られた冷延鋼板(めっき鋼板)について、固溶N量、組織、引張特性、焼付硬化性、時効性を調査した。試験方法は(実施例1)と同様とした。さらに、得られた冷延鋼板(めっき鋼板)について、表面を目視で観察し、不めっきの有無を調査した。
得られた結果を表5に示す。
The obtained cold-rolled steel sheet (plated steel sheet) was examined for the amount of solute N, structure, tensile properties, bake hardenability, and aging. The test method was the same as in (Example 1). Furthermore, about the obtained cold-rolled steel plate (plated steel plate), the surface was observed visually and the presence or absence of non-plating was investigated.
The results obtained are shown in Table 5.
本発明例はいずれも、不めっきもなく、表面性状に優れ、かつめっき処理後においても、引張強さTS:340MPa以上の強度を有し、加工性に優れ、時効性に優れ、さらに軽加工を施されても大きい焼付硬化量が得られる、焼付硬化性に優れた冷延鋼板(めっき鋼板)となっている。一方、本発明の範囲を外れる比較例は、所望の特性を有する冷延鋼板(めっき鋼板)とはなっていない。
None of the inventive examples are non-plated, have excellent surface properties, and have a tensile strength of TS: 340 MPa or more after plating treatment, excellent workability, excellent aging, and light processing. It is a cold-rolled steel plate (plated steel plate) excellent in bake hardenability that can obtain a large bake-hardening amount even if it is applied. On the other hand, a comparative example outside the scope of the present invention is not a cold-rolled steel sheet (plated steel sheet) having desired characteristics.
Claims (11)
C:0.020〜0.070%、 Si:0.05%以下、
Mn:0.1〜0.5%、 P:0.05%以下、
S:0.02%以下、 Al:0.02〜0.08%、
N:0.005〜0.02%
を含み、固溶Nが0.0010%以上であり、残部Feおよび不可避的不純物からなる組成と、平均結晶粒径が7μm以下のフェライト相を面積率で80%以上含み、該フェライト相の結晶粒内に、平均の円相当径で0.05〜5μmの大きさの析出物が析出、分散した組織と、を有することを特徴とする冷延鋼板。 % By mass
C: 0.020 to 0.070%, Si: 0.05% or less,
Mn: 0.1 to 0.5%, P: 0.05% or less,
S: 0.02% or less, Al: 0.02 to 0.08%,
N: 0.005-0.02%
A solid solution N is 0.0010% or more, the composition comprising the balance Fe and inevitable impurities, and a ferrite phase having an average crystal grain size of 7 μm or less in an area ratio of 80% or more, and within the crystal grains of the ferrite phase And a structure in which precipitates having an average equivalent circle diameter of 0.05 to 5 μm are deposited and dispersed.
C:0.020〜0.070%、 Si:0.05%以下、
Mn:0.1〜0.5%、 P:0.05%以下、
S:0.02%以下、 Al:0.02〜0.08%、
N:0.005〜0.02%
を含み、残部Feおよび不可避的不純物からなる組成の鋼素材とし、
前記熱延工程が、該鋼素材に加熱温度:1150℃以上とする加熱を施したのち、粗圧延してシートバーとし、ついで該シートバーに仕上圧延終了温度:850℃以上とする仕上圧延を施し熱延板とし、ついで該熱延板を下記(1)式を満足する巻取温度CTで巻取る工程であり、
前記冷延工程が、該熱延板に酸洗処理を施したのち、冷延圧下率:60〜90%とする冷間圧延を施し冷延板とする工程であり、
前記焼鈍工程が、該冷延板に焼鈍処理を施し冷延焼鈍板とする工程で、該焼鈍処理が焼鈍温度Anを下記(2)式を満足する温度とし、300℃〜(焼鈍温度−20℃)までの温度域での加熱速度を1〜30℃/s、(焼鈍温度−20℃)〜(焼鈍温度)までの温度域での加熱速度を0.5〜5℃/s、として該焼鈍温度まで加熱し、その後、5℃/s以上の冷却速度で500℃以下まで冷却する焼鈍処理であり、
前記調質圧延工程が、前記冷延焼鈍板に伸び率:0.5〜5%の調質圧延を施す工程である、
ことを特徴とする冷延鋼板の製造方法。
記
[(Al/28)/(N/14)]/CT ≦ 5.5×10−3 ・・・・(1)
1.0 ≦ {[(Al/28)/(N/14)]/CT}/{[(Al/28)/(N/14)]/An} ≦ 1.5・・・・・(2)
ここで、Al、N:各元素の含有量(質量%)、
CT:巻取温度(℃)、
An:焼鈍温度(℃)。 The steel material is subjected to a hot rolling process, a cold rolling process, an annealing process, and a temper rolling process in order to obtain a cold rolled steel sheet.
C: 0.020 to 0.070%, Si: 0.05% or less,
Mn: 0.1 to 0.5%, P: 0.05% or less,
S: 0.02% or less, Al: 0.02 to 0.08%,
N: 0.005-0.02%
A steel material having a composition comprising the balance Fe and inevitable impurities,
In the hot rolling step, the steel material is heated to a heating temperature of 1150 ° C. or higher, and then roughly rolled into a sheet bar, and then the finish rolling to the sheet bar is finished to a finish rolling temperature of 850 ° C. or higher. Applying hot rolled sheet, and then winding the hot rolled sheet at a winding temperature CT satisfying the following formula (1):
The cold rolling step is a step of subjecting the hot-rolled sheet to pickling treatment, and then cold-rolling the cold-rolled reduction ratio: 60 to 90% to obtain a cold-rolled plate,
The annealing step is a step in which the cold-rolled sheet is annealed to form a cold-rolled annealed sheet, and the annealing process sets the annealing temperature An to a temperature satisfying the following expression (2), and is 300 ° C. to (annealing temperature −20 The annealing temperature is 1 to 30 ° C./s in the temperature range up to (° C.) and 0.5 to 5 ° C./s in the temperature range from (annealing temperature −20 ° C.) to (annealing temperature). Is then annealed to cool to 500 ° C. or lower at a cooling rate of 5 ° C./s or higher,
The temper rolling step is a step of subjecting the cold-rolled annealed sheet to temper rolling with an elongation of 0.5 to 5%.
A method for producing a cold-rolled steel sheet.
Record
[(Al / 28) / (N / 14)] / CT ≤ 5.5 × 10 -3 (1)
1.0 ≦ {[(Al / 28) / (N / 14)] / CT} / {[(Al / 28) / (N / 14)] / An} ≦ 1.5 (2)
Here, Al, N: Content (mass%) of each element,
CT: Winding temperature (℃),
An: Annealing temperature (° C).
In the annealing step, the cold-rolled sheet is cooled to a predetermined temperature of 500 ° C. or less at a cooling rate of 5 ° C./s or more, and subsequently immersed in a hot dip galvanizing bath as the galvanizing treatment step. The hot-dip galvanizing process which forms the hot-dip galvanized layer in this, or the alloying process which further alloyes this hot-dip galvanized layer is given, The cold rolling of Claim 10 characterized by the above-mentioned A method of manufacturing a steel sheet.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010069962A JP5549307B2 (en) | 2009-04-13 | 2010-03-25 | Cold-rolled steel sheet excellent in aging and bake hardenability and method for producing the same |
KR1020117024271A KR101402365B1 (en) | 2009-04-13 | 2010-04-13 | Cold-rolled steel sheet having excellent slow-aging property and high curability in baking, and method for producing same |
CN201080016714.1A CN102395695B (en) | 2009-04-13 | 2010-04-13 | Cold-rolled steel sheet having excellent slow-aging property and high curability in baking, and method for producing same |
PCT/JP2010/056895 WO2010119971A1 (en) | 2009-04-13 | 2010-04-13 | Cold-rolled steel sheet having excellent slow-aging property and high curability in baking, and method for producing same |
MYPI2011004348A MY157318A (en) | 2009-04-13 | 2010-04-13 | Cold-rolled steel sheet with excellent aging property and bake hardening and method for manufacturing the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009096733 | 2009-04-13 | ||
JP2009096733 | 2009-04-13 | ||
JP2010069962A JP5549307B2 (en) | 2009-04-13 | 2010-03-25 | Cold-rolled steel sheet excellent in aging and bake hardenability and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010265545A JP2010265545A (en) | 2010-11-25 |
JP5549307B2 true JP5549307B2 (en) | 2014-07-16 |
Family
ID=42982627
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010069962A Active JP5549307B2 (en) | 2009-04-13 | 2010-03-25 | Cold-rolled steel sheet excellent in aging and bake hardenability and method for producing the same |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP5549307B2 (en) |
KR (1) | KR101402365B1 (en) |
CN (1) | CN102395695B (en) |
MY (1) | MY157318A (en) |
WO (1) | WO2010119971A1 (en) |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5018900B2 (en) * | 2010-01-15 | 2012-09-05 | Jfeスチール株式会社 | Cold-rolled steel sheet excellent in formability and shape freezing property after aging and method for producing the same |
CN102816986A (en) * | 2011-06-10 | 2012-12-12 | 宝山钢铁股份有限公司 | Strip steel continuous hot galvanizing method |
CN102719736B (en) * | 2012-06-12 | 2014-07-09 | 武汉钢铁(集团)公司 | Steel with yield ratio of 0.9 or more used for ultra-fine grain slideway and production method thereof |
CN102703808B (en) * | 2012-06-12 | 2014-05-14 | 武汉钢铁(集团)公司 | Steel for 300MPa-grade automobile structural part and production method for steel |
CN102732780B (en) * | 2012-06-18 | 2013-12-25 | 首钢总公司 | Hot galvanized plate used for refrigerator outer plate, and production method thereof |
KR101597411B1 (en) * | 2013-08-30 | 2016-02-25 | 현대제철 주식회사 | Steel sheet and method of manufacturing the same |
KR101505293B1 (en) * | 2013-05-31 | 2015-03-23 | 현대제철 주식회사 | Steel sheet |
JP6065884B2 (en) * | 2013-07-31 | 2017-01-25 | Jfeスチール株式会社 | Steel sheet excellent in corrosion resistance of cut end face and manufacturing method thereof |
CN103498101B (en) * | 2013-10-22 | 2016-04-13 | 武汉钢铁(集团)公司 | The low cost household electrical appliances of resistance to timeliness colour coated plate and production method thereof |
KR101523966B1 (en) * | 2014-10-22 | 2015-05-29 | 현대제철 주식회사 | Method of manufacturing steel sheet |
CN107429355B (en) * | 2015-03-25 | 2020-01-21 | 杰富意钢铁株式会社 | High-strength steel sheet and method for producing same |
CN106191682B (en) * | 2015-04-30 | 2018-03-27 | 上海梅山钢铁股份有限公司 | A kind of easy-open end draw ring cold rolling hot-dip galvanized steel sheet and its production method |
CN105063484B (en) | 2015-08-28 | 2017-10-31 | 宝山钢铁股份有限公司 | 500MPa grades of high-elongation hot-dip aluminizing zincs of yield strength and color coated steel sheet and its manufacture method |
CN105331887B (en) * | 2015-11-25 | 2017-03-22 | 武汉钢铁(集团)公司 | 320 MPa-grade thickness-specification hot dip galvanized steel and production method thereof |
KR101988773B1 (en) * | 2017-12-26 | 2019-06-12 | 주식회사 포스코 | Cold-rolled steel sheet having excellent anti-aging properties and workability, and manufacturing method thereof |
CN111763876A (en) * | 2019-04-02 | 2020-10-13 | 上海梅山钢铁股份有限公司 | Cold-rolled steel plate for motor vehicle silencing sheet and production method thereof |
CN110684929B (en) * | 2019-10-13 | 2021-06-08 | 唐山钢铁集团有限责任公司 | Super-thick coating hot-dip galvanized steel strip for underground pipe gallery corrugated pipe and production method thereof |
JP7131596B2 (en) * | 2019-12-04 | 2022-09-06 | Jfeスチール株式会社 | Steel plate for high-strength cans and method for manufacturing the same |
KR102326110B1 (en) * | 2019-12-20 | 2021-11-16 | 주식회사 포스코 | Cold rolled steel sheet and metal plated steel sheet having excellent bake hardenability and aging property at room temperature, and manufacturing method thereof |
DE102020200326A1 (en) * | 2020-01-13 | 2021-07-15 | Thyssenkrupp Steel Europe Ag | Process for the production of a surface-refined and surface-conditioned steel sheet |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2380377C (en) * | 2000-05-31 | 2007-01-09 | Kawasaki Steel Corporation | Cold-rolled steel sheets with superior strain-aging hardenability |
JP4085809B2 (en) * | 2002-12-27 | 2008-05-14 | Jfeスチール株式会社 | Hot-dip galvanized cold-rolled steel sheet having an ultrafine grain structure and excellent stretch flangeability and method for producing the same |
JP2007077510A (en) * | 2006-11-16 | 2007-03-29 | Jfe Steel Kk | High-strength high-ductility galvanized steel sheet excellent in aging resistance and its production method |
JP5151468B2 (en) * | 2007-01-10 | 2013-02-27 | 新日鐵住金株式会社 | High-strength cold-rolled steel sheet excellent in workability and impact resistance and method for producing the same |
JP5194878B2 (en) * | 2007-04-13 | 2013-05-08 | Jfeスチール株式会社 | High-strength hot-dip galvanized steel sheet excellent in workability and weldability and method for producing the same |
JP5135868B2 (en) * | 2007-04-26 | 2013-02-06 | Jfeスチール株式会社 | Steel plate for can and manufacturing method thereof |
-
2010
- 2010-03-25 JP JP2010069962A patent/JP5549307B2/en active Active
- 2010-04-13 WO PCT/JP2010/056895 patent/WO2010119971A1/en active Application Filing
- 2010-04-13 CN CN201080016714.1A patent/CN102395695B/en not_active Expired - Fee Related
- 2010-04-13 KR KR1020117024271A patent/KR101402365B1/en active IP Right Grant
- 2010-04-13 MY MYPI2011004348A patent/MY157318A/en unknown
Also Published As
Publication number | Publication date |
---|---|
KR20120008033A (en) | 2012-01-25 |
CN102395695A (en) | 2012-03-28 |
WO2010119971A1 (en) | 2010-10-21 |
CN102395695B (en) | 2013-12-25 |
JP2010265545A (en) | 2010-11-25 |
KR101402365B1 (en) | 2014-06-03 |
MY157318A (en) | 2016-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5549307B2 (en) | Cold-rolled steel sheet excellent in aging and bake hardenability and method for producing the same | |
JP5884714B2 (en) | Hot-dip galvanized steel sheet and manufacturing method thereof | |
JP5003785B2 (en) | High tensile steel plate with excellent ductility and method for producing the same | |
JP6123957B1 (en) | High strength steel plate and manufacturing method thereof | |
JP5310919B2 (en) | Method for producing high-strength cold-rolled steel sheets with excellent aging resistance and seizure curability | |
JP5569657B2 (en) | Steel sheet with excellent aging resistance and method for producing the same | |
JP2011017060A (en) | High-strength steel sheet and manufacturing method therefor | |
JP2008106351A (en) | High strength cold rolled steel sheet excellent in workability and its production method | |
JP6610749B2 (en) | High strength cold rolled steel sheet | |
JP4752522B2 (en) | Manufacturing method of high strength cold-rolled steel sheet for deep drawing | |
JP2013064169A (en) | High-strength steel sheet and plated steel sheet excellent in bake-hardenability and formability, and method for production thereof | |
JPWO2020148948A1 (en) | High-strength galvanized steel sheet and its manufacturing method | |
JP6123958B1 (en) | High strength steel plate and manufacturing method thereof | |
JP5397263B2 (en) | High tensile cold-rolled steel sheet and method for producing the same | |
JP5151390B2 (en) | High-tensile cold-rolled steel sheet, high-tensile galvanized steel sheet, and methods for producing them | |
JP5310920B2 (en) | High strength cold-rolled steel sheet with excellent aging resistance and seizure hardening | |
JP5660291B2 (en) | High strength cold-rolled thin steel sheet with excellent formability and method for producing the same | |
JP5903884B2 (en) | Manufacturing method of high-strength thin steel sheet with excellent resistance to folding back | |
JP3840901B2 (en) | Cold-rolled steel sheet, plated steel sheet, and method for producing cold-rolled steel sheet having excellent strength increasing ability by heat treatment after forming | |
JP2007270167A (en) | Method for producing galvanized steel sheet excellent in baking hardenability | |
JPWO2021020439A1 (en) | High-strength steel sheets, high-strength members and their manufacturing methods | |
JP6541504B2 (en) | High strength high ductility steel sheet excellent in production stability, method for producing the same, and cold rolled base sheet used for production of high strength high ductility steel sheet | |
JP5668361B2 (en) | High tensile cold-rolled steel sheet and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130221 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20130712 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140218 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140331 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20140407 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140422 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140505 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5549307 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |