JP5397263B2 - High tensile cold-rolled steel sheet and method for producing the same - Google Patents
High tensile cold-rolled steel sheet and method for producing the same Download PDFInfo
- Publication number
- JP5397263B2 JP5397263B2 JP2010036983A JP2010036983A JP5397263B2 JP 5397263 B2 JP5397263 B2 JP 5397263B2 JP 2010036983 A JP2010036983 A JP 2010036983A JP 2010036983 A JP2010036983 A JP 2010036983A JP 5397263 B2 JP5397263 B2 JP 5397263B2
- Authority
- JP
- Japan
- Prior art keywords
- cold
- rolled
- hot
- less
- sheet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Electroplating Methods And Accessories (AREA)
- Coating With Molten Metal (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Description
本発明は、主として電機、建材、自動車等の分野で使用する部品用として好適な、安価な高張力冷延鋼板およびその製造方法に係り、とくに、成形性の向上に関する。なお、ここでいう「鋼板」には、鋼板、鋼帯を含むものとする。 The present invention relates to an inexpensive high-tensile cold-rolled steel sheet suitable for parts mainly used in the fields of electrical machinery, building materials, automobiles, and the like, and more particularly to improvement of formability. The “steel plate” here includes a steel plate and a steel strip.
近年、電機分野や建材分野では、販売競争の激化に伴い、コスト低減のために、安価な素材が強く要求されてきた。またさらに、運送費の低減のために、素材および製品の軽量化も要求されている。また、自動車分野では、コスト低減に加えて、地球環境の保全という観点から、自動車の燃費向上が強く要求され、最近では、自動車車体の軽量化が進められている。このような要求に対する有効な対策としては、鋼板の肉厚を薄肉化し軽量化を図るために、高強度化した高張力鋼板を使用すること、およびコスト低減のために合金元素量を低減した、安価な高張力鋼板を使用することが、まず挙げられる。 In recent years, in the electric field and building material field, with the intensifying sales competition, there has been a strong demand for inexpensive materials in order to reduce costs. Furthermore, weight reduction of materials and products is also required to reduce transportation costs. In the automobile field, in addition to cost reduction, there is a strong demand for improving the fuel efficiency of automobiles from the viewpoint of protecting the global environment, and recently, the weight reduction of automobile bodies has been promoted. As an effective measure for such a demand, in order to reduce the thickness of the steel sheet and reduce the weight, it is necessary to use a high-strength high-strength steel sheet, and to reduce the amount of alloy elements for cost reduction, First of all, the use of an inexpensive high-tensile steel plate is mentioned.
鋼板を高強度化する手段としては、固溶強化、析出強化、組織強化、加工硬化等の強化方法が知られている。しかし、固溶強化、析出強化による方法では、高強度化のために多量の合金元素を含有させる必要があり、また組織強化による方法では焼入性を向上させる合金元素を多量含有させ、さらに急冷等の熱処理を施す必要があり、鋼板製造コストの高騰を伴う。したがって、コスト低減要求の強い電機分野や建材分野向け鋼板では、加工硬化による鋼板の高強度化が有利と考えられる。しかし、加工硬化による高強度化は、他の強化方法に比べて、延性の低下を伴うという問題がある。 Strengthening methods such as solid solution strengthening, precipitation strengthening, structure strengthening and work hardening are known as means for increasing the strength of steel sheets. However, the solid solution strengthening and precipitation strengthening methods require a large amount of alloying elements to be strengthened, and the structure strengthening method requires a large amount of alloying elements that improve hardenability and further quenching. It is necessary to perform a heat treatment such as this, which is accompanied by an increase in steel sheet manufacturing costs. Therefore, it is considered advantageous to increase the strength of the steel sheet by work hardening in the steel sheet for the electrical machinery field and the building material field where the cost reduction demand is strong. However, the increase in strength by work hardening has a problem in that the ductility is lowered as compared with other strengthening methods.
このような問題に対し、例えば特許文献1には、連続焼鈍工程を省略し、冷間圧延ままで用いることができ、コストを削減できる「缶用鋼板の製造方法」が提案されている。特許文献1に記載された技術は、主として、3ピース缶用素材を目的として、C:0.0015%以下、Si:0.020%以下、Mn:0.10%以下、P:0.010%以下、S:0.005%以下、N:0.0030%以下、Al:0.150%以下を含み、さらに、Cr:0.020〜0.500%、Nb:0.0020〜0.0200%、Ti:0.0050〜0.0200%、B:0.0002〜0.0020%の1種または2種以上を含む連続鋳造スラブを1050℃以下に再加熱した後に熱延し、仕上げ圧延機入側温度を950℃以下とし、そこでの合計圧下率を40%以上、かつ、最終圧下率を25%以上とし、最終の熱延母板厚みを1.2mm以下として、500〜750℃の温度で巻取りを行い、通常の酸洗の後、圧下率50〜98%の冷間圧延を行う缶用鋼板の製造方法である。特許文献1に記載された技術では、合金元素量を低減した組成の鋼スラブを使用し、熱間圧延温度、圧下率を調整し、さらに冷間圧延時の圧下率を最小限に調整して、軟質で、高延性を有する缶用鋼板を得るとしている。 For such a problem, for example, Patent Document 1 proposes a “method for manufacturing a steel plate for cans” that can be used as it is in cold rolling without using a continuous annealing step and can reduce costs. The technology described in Patent Document 1 is mainly intended for three-piece can materials, C: 0.0015% or less, Si: 0.020% or less, Mn: 0.10% or less, P: 0.010% or less, S: 0.005% or less N: 0.0030% or less, Al: 0.150% or less, Cr: 0.020-0.500%, Nb: 0.0020-0.0200%, Ti: 0.0050-0.0200%, B: 0.0002-0.0020% The continuous cast slab containing the above is re-heated to 1050 ° C or lower and hot-rolled. And the final hot-rolled mother board thickness is 1.2 mm or less, the steel sheet is wound at a temperature of 500 to 750 ° C., and after normal pickling, the steel sheet for cans is subjected to cold rolling at a reduction rate of 50 to 98%. It is a manufacturing method. In the technique described in Patent Document 1, a steel slab having a composition with a reduced amount of alloy elements is used, the hot rolling temperature and the rolling reduction are adjusted, and the rolling reduction during cold rolling is adjusted to the minimum. The steel plate for cans is soft and has high ductility.
しかし、特許文献1に記載された技術で製造された冷延鋼板は、スラブ組成を高純度化し、さらに熱延後の板厚を1.2mm以下と薄くする必要があるため、製造コストが高騰するという問題がある。
本発明は、かかる従来技術の問題を有利に解決し、安価でかつ成形性に優れた高張力冷延鋼板およびその製造方法を提供することを目的とする。本発明の高張力冷延鋼板の板厚は、過度の薄肉化による冷間圧延工程におけるコスト上昇を抑制するとともに、冷間圧延による加工硬化を有効活用するという観点から、好ましくは板厚:0.4mm以上2.0mm以下とする。
However, the cold-rolled steel sheet manufactured by the technique described in Patent Document 1 has a high slab composition, and the thickness after hot rolling needs to be as thin as 1.2 mm or less, resulting in a high manufacturing cost. There is a problem.
An object of the present invention is to advantageously solve the problems of the prior art and to provide a high-tensile cold-rolled steel sheet that is inexpensive and excellent in formability and a method for producing the same. The sheet thickness of the high-tensile cold-rolled steel sheet of the present invention is preferably from the viewpoint of suppressing cost increase in the cold rolling process due to excessive thinning and effectively utilizing work hardening by cold rolling, preferably 0.4: From mm to 2.0 mm.
なお、ここでいう「高張力冷延鋼板」は、圧延方向の引張強さTSが600MPa以上である冷延鋼板をいうものとする。また、「成形性に優れた」とは、JIS Z 2201の規定に準拠して、平行部長さのみを短くしたJIS13号B試験片(GL:25mm)を用い、JIS Z 2241の規定に準拠して引張試験を行って得られた全伸びElTが6%以上で、かつ局部伸びElLが6%以上である場合をいうものとする。 Here, the “high-tensile cold-rolled steel sheet” refers to a cold-rolled steel sheet having a tensile strength TS in the rolling direction of 600 MPa or more. “Excellent formability” means that JIS13B test pieces (GL: 25mm) with only the parallel part length shortened in accordance with JIS Z 2201 and JIS Z 2241 are used. The total elongation El T obtained by conducting a tensile test is 6% or more, and the local elongation El L is 6% or more.
電機分野や建材分野向けの材料としては、従来、主として、引張強さTS:270MPa級の軟質鋼板が素材として用いられてきた。そして、代表的な加工としては、90°程度の折り曲げ加工、ねじ穴用としての軽度の穴拡げ加工、剛性の確保や部品の取り付けのための軽度の張出し加工など、がある。この程度の加工であれば、加工方法を適正化することにより、素材として特別に加工性に優れた鋼板を用いることなく、所望形状の部材に加工できる場合が多い。例えば、従来から、軟質冷延鋼板用熱延板を冷間圧延し、さらに溶融亜鉛めっき処理を施し、引張強さTS:500〜600MPa程度の溶融亜鉛めっき鋼板として、該溶融亜鉛めっき鋼板に、ロールフォーミング等の加工技術を駆使して、所望形状の部品を得ている場合もある。 Conventionally, soft steel sheets with a tensile strength of TS: 270 MPa have been mainly used as materials for the electric field and building materials field. Typical processing includes bending processing of about 90 °, mild hole expansion processing for screw holes, and mild overhanging processing for securing rigidity and attaching parts. If it is a process of this grade, it can often be processed into the member of a desired shape, without using the steel plate which was excellent in workability as a raw material by optimizing a processing method. For example, conventionally, hot-rolled sheets for soft cold-rolled steel sheets are cold-rolled, and further subjected to hot-dip galvanizing treatment, as hot-dip galvanized steel sheets having a tensile strength TS of about 500 to 600 MPa, A part having a desired shape may be obtained by utilizing a processing technique such as roll forming.
このような状況から、本発明者らは、少なくとも現状使用されている鋼板の延性(局部伸び:5%以上、全伸び:5%以上)と同等以上の延性を維持しながら、鋼板の更なる高強度化を安価に図ることができれば、電機分野や建材分野あるいは自動車分野向けの材料として、高強度化に伴う成形性の低下を避け、従来より高強度でかつ従来と同等あるいは同等以上の延性を有し、成形性に優れた高張力鋼板として、部品の軽量化に寄与できるとともに、コスト低減にも寄与することができると考えた。 Under these circumstances, the present inventors have further improved the steel sheet while maintaining a ductility at least equal to or higher than the ductility of the steel sheet currently used (local elongation: 5% or more, total elongation: 5% or more). If high strength can be achieved at a low cost, it can be used as a material for the electric field, building materials field, or automobile field, avoiding the deterioration of formability associated with high strength, and having higher strength than conventional and ductility equivalent to or higher than conventional. As a high-strength steel sheet having excellent formability, it was thought that it can contribute to weight reduction of parts and can also contribute to cost reduction.
電機分野や建材分野あるいは自動車分野向けでは、飲料缶用途や食缶用途と異なり、連続溶融亜鉛めっきラインを利用したり、溶融亜鉛めっき浴に浸漬して、鋼板(基板)表面に亜鉛めっきを施すことが一般的である。このような溶融亜鉛めっき処理により、鋼板は必然的に亜鉛の融点近傍に加熱される、すなわち、鋼板は400℃近傍の温度で熱処理されることになる。 In the fields of electrical machinery, building materials and automobiles, unlike beverage cans and food cans, use a continuous hot dip galvanizing line or dip in a hot dip galvanizing bath to galvanize the steel sheet (substrate) surface. It is common. By such hot dip galvanizing treatment, the steel sheet is inevitably heated in the vicinity of the melting point of zinc, that is, the steel sheet is heat-treated at a temperature in the vicinity of 400 ° C.
そこで、本発明者らは、上記した課題を達成するために、従来、とくに積極的に利用されなかった、400℃近傍の温度での熱処理を積極的に利用することを思い付いた。そして、鋼板組成や、製造条件を種々変更して鋼板を製造し、多くの材質評価を実施した。その結果、C:0.0010〜0.0080質量%、Si:0.4質量%以下、Mn:0.1〜1.0質量%、P:0.08質量%以下、S:0.05質量%以下を含み、Al:0.05質量%以下、N:0.0060〜0.0200質量%を、N/Alが0.2以上の条件で含む、N含有量を高くした鋼スラブを、所定条件の熱延工程と、所定条件の冷延工程とを施して冷延板とし、さらに400℃近傍の温度での熱処理を施すことにより、固溶N量が0.0040質量%以上と高くなり、加工硬化したフェライトがさらに強化されて、圧延方向の引張強さTSが600MPa以上で、かつ全伸びElTが6%以上、局部伸びElLが6%以上の、安価でかつ成形性に優れた高張力冷延鋼板とすることができることを見出した。 Therefore, the present inventors have come up with the idea of actively using heat treatment at a temperature in the vicinity of 400 ° C., which has not been actively used so far, in order to achieve the above-described problems. And steel plate was manufactured by changing various steel plate composition and manufacturing conditions, and many material evaluation was implemented. As a result, C: 0.0010 to 0.0080 mass%, Si: 0.4 mass% or less, Mn: 0.1 to 1.0 mass%, P: 0.08 mass% or less, S: 0.05 mass% or less, Al: 0.05 mass% or less, N : A steel slab containing 0.0060 to 0.0200% by mass with N / Al being 0.2 or more and having a high N content is subjected to a hot rolling process under a predetermined condition and a cold rolling process under a predetermined condition to obtain a cold rolled sheet Furthermore, by performing heat treatment at a temperature in the vicinity of 400 ° C., the amount of solute N becomes as high as 0.0040 mass% or more, the work-hardened ferrite is further strengthened, and the tensile strength TS in the rolling direction is 600 MPa or more. Further, it was found that a high-tensile cold-rolled steel sheet having an overall elongation El T of 6% or more and a local elongation El L of 6% or more can be obtained at low cost and excellent in formability.
まず、本発明者らが行った、本発明の基礎となった実験結果について説明する。
質量%で、0.002%C−0.01%Si−0.2%Mn−0.01%P−0.01%S−0.03%Al系を基本成分とし、Nを0.003%(低N材)と、0.012%(高N材)の2水準に変化した組成の2種のシートバーを作製した。そして、これらシートバーを、1250℃に加熱し均熱したのち、仕上圧延終了温度(仕上圧延出側温度)が900℃となるように、3パスの熱間圧延を行い板厚3.0mmの熱延板とした。なお、仕上圧延終了後に、600℃でのコイル巻取り処理の保温に相当する熱処理(600℃×1h)を施した。ついで、熱延板に酸洗後、圧下率:60%の冷間圧延を施して、板厚:1.2mmの冷延板とした。ついで、これら冷延板を、加熱温度:250〜450℃の温度に加熱し60s間保持したのち、ガスを吹付けて冷却した。
First, a description will be given of experimental results performed by the present inventors and serving as the basis of the present invention.
0.002% C-0.01% Si-0.2% Mn-0.01% P-0.01% S-0.03% Al based on the basic component, N is 0.003% (low N material) and 0.012% (high N material) Two types of sheet bars having a composition changed to two levels of) were produced. These sheet bars are heated to 1250 ° C and soaked, and after that, three passes of hot rolling are performed so that the finish rolling finish temperature (finish rolling exit temperature) is 900 ° C. It was a sheet. In addition, the heat processing (600 degreeC x 1 h) equivalent to the heat retention of the coil winding process at 600 degreeC was performed after completion | finish of finish rolling. Subsequently, the hot-rolled sheet was pickled and then cold-rolled with a reduction ratio of 60% to obtain a cold-rolled sheet with a sheet thickness of 1.2 mm. Subsequently, these cold-rolled plates were heated to a temperature of 250 to 450 ° C. and held for 60 seconds, and then cooled by blowing gas.
得られた冷延鋼板から試験片を採取し、引張試験を実施して引張特性(引張強さTS、全伸びElT、局部伸びElL)を測定した。なお、引張試験は、圧延方向が引張方向となるように、平行部長さのみを短くしたJIS13号B試験片(GL:25mm)を採取し、JIS Z 2241の規定に準拠して行った。
得られた結果を、図1、図2に示す。図1は、TS, ElT, ElLと熱処理温度との関係を示す。図2は、強度−延性バランスを示す。
Test specimens were collected from the obtained cold-rolled steel sheets and subjected to a tensile test to measure tensile properties (tensile strength TS, total elongation El T , local elongation El L ). The tensile test was carried out in accordance with the provisions of JIS Z 2241 by collecting JIS 13 B test pieces (GL: 25 mm) in which only the parallel part length was shortened so that the rolling direction was the tensile direction.
The obtained results are shown in FIGS. FIG. 1 shows the relationship between TS, El T, El L and the heat treatment temperature. FIG. 2 shows the strength-ductility balance.
図1から、低N材(0.003N材)にくらべ、高N材(0.012N材)の強度が高く、Nの多量含有により、TSが顕著に増加することがわかる。また、低N材と高N材とで、伸びElT, ElLはほとんど変わらず、N含有の有無によらず、ほぼ同等の延性を確保できることがわかる。また、冷間圧延後の溶融亜鉛めっき処理時相当の、250〜450℃の温度に加熱・保持する熱処理を施すことにより、伸びElT, ElLが顕著に増加することがわかる。なお、この熱処理によるTSの低下はわずかで、低N材、高N材ともに同程度の減少量である。 From FIG. 1, it can be seen that the strength of the high N material (0.012N material) is higher than that of the low N material (0.003N material), and TS increases significantly due to the large amount of N contained. In addition, it can be seen that the elongation El T and El L are almost the same between the low N material and the high N material, and almost the same ductility can be ensured regardless of the presence or absence of N. It can also be seen that the elongation El T and El L are remarkably increased by performing a heat treatment that is heated and maintained at a temperature of 250 to 450 ° C., which is equivalent to the hot dip galvanizing treatment after cold rolling. Note that the decrease in TS by this heat treatment is slight, and both the low N material and the high N material have the same amount of reduction.
図2から、同一強度レベルで比較して、低N材の伸びにくらべ、高N材の伸び、とくに局部伸びElLが著しく優れることがわかる。すなわち、低N材に比べ、高N材の強度−延性バランスが優れていることになる。熱処理温度を適正化すれば、伸び、とくに局部伸びが増加し、優れた強度−延性バランスを有する鋼板となる。
このようなことから、Nを多量に含有させ、N/Alを適正範囲とした冷延鋼板に、溶融亜鉛めっき処理に相当する400℃近傍の適正な熱処理を施すことにより、加工硬化による強度上昇に加えて、Nの固溶強化による強度上昇を付加でき、より一層安価に、高強度化を、高延性とくに高局部延性とともに、達成でき、優れた強度−延性バランスを有する冷延鋼板を得ることができることを知見した。
From FIG. 2, it can be seen that the elongation of the high N material, particularly the local elongation El L, is remarkably superior to that of the low N material as compared at the same strength level. That is, the strength-ductility balance of the high N material is superior to the low N material. If the heat treatment temperature is optimized, the elongation, particularly the local elongation increases, and the steel sheet has an excellent strength-ductility balance.
For this reason, a strength increase due to work hardening is achieved by subjecting a cold-rolled steel sheet containing a large amount of N and an appropriate range of N / Al to an appropriate heat treatment in the vicinity of 400 ° C. corresponding to hot dip galvanizing. In addition, an increase in strength due to solid solution strengthening of N can be added, and it is possible to achieve higher strength at a lower cost with high ductility, particularly high local ductility, and to obtain a cold-rolled steel sheet having an excellent strength-ductility balance. I found out that I can do it.
このような顕著な強度上昇の原因の詳細については、現時点では、不明であるが、本発明者らは次のように考えている。
Nによる顕著な強度上昇は、A1含有量とN含有量を適正範囲に調整することにより、固溶強化能が高いNを有効に活用できるようになったためと考えている。また、同一強度の低N材に比べ、高N材の局部延性が優れる理由は、局部的に硬質部が存在する加工硬化や、母相よりも硬い析出物、第二相等を利用した高強度化でなく、均一なミクロ組織で強化が可能なNによる固溶強化により高強度化を図ったためと考えている。加工硬化や、母相よりも硬い析出物、第二相等は、局部伸び(延性)を低下させる要因となる。
The details of the cause of such a significant increase in strength are currently unknown, but the present inventors consider as follows.
The significant increase in strength due to N is thought to be due to the fact that N having a high solid solution strengthening ability can be effectively utilized by adjusting the A1 content and the N content within appropriate ranges. Moreover, the reason why the local ductility of the high N material is superior to the low N material of the same strength is because of the high strength using the work hardening in which the hard portion exists locally, the precipitate harder than the parent phase, the second phase, etc. This is thought to be because the strength was increased by solid solution strengthening with N, which can be strengthened with a uniform microstructure. Work hardening, precipitates harder than the parent phase, the second phase, and the like are factors that reduce local elongation (ductility).
本発明は、上記した知見に基づき、さらに検討して完成されたものであり、本発明の要旨は次のとおりである。
(1)質量%で、C:0.0010〜0.0080%、Si:0.4%以下、Mn:0.1〜1.0%、P:0.08%以下、S:0.05%以下、Al:0.05%以下、N:0.0060〜0.0200%を含み、かつNとAlを、N含有量とAl含有量との比、N/Alが0.2以上となるように含有し、さらに固溶Nを0.0040%以上含み、残部Feおよび不可避的不純物からなる組成と、フェライト相を主相とする組織とを有し、圧延方向の引張強さTS:600MPa以上で、かつ全伸びElTが6%以上、局部伸びElLが6%以上であることを特徴とする高張力冷延鋼板。
The present invention has been completed by further study based on the above-described findings, and the gist of the present invention is as follows.
(1) By mass%, C: 0.0010 to 0.0080%, Si: 0.4% or less, Mn: 0.1 to 1.0%, P: 0.08% or less, S: 0.05% or less, Al: 0.05% or less, N: 0.0060 to 0.0200 %, And N and Al are contained so that the ratio of N content to Al content, N / Al is 0.2 or more, and further, solid solution N is contained 0.0040% or more, the remainder Fe and inevitable impurities And a structure having a ferrite phase as a main phase, a tensile strength in the rolling direction TS: 600 MPa or more, a total elongation El T of 6% or more, and a local elongation El L of 6% or more. A high-tensile cold-rolled steel sheet.
(2)質量%で、C:0.0010〜0.0080%、Si:0.4%以下、Mn:0.1〜1.0%、P:0.08%以下、S:0.05%以下、Al:0.05%以下、N:0.0060〜0.0200%を含み、さらに、Nb:0.001〜0.050%および/またはB:0.0020%以下を含有し、かつNとAl、Nb、Bを、N含有量とAl,Nb,Bの含有量との比、N/(Al+0.3Nb+2.5B)が0.2以上となるように含有し、さらに固溶Nを0.0040%以上含み、残部Feおよび不可避的不純物からなる組成と、フェライト相を主相とする組織とを有し、圧延方向の引張強さTS:600MPa以上で、かつ全伸びElTが6%以上、局部伸びElLが6%以上であることを特徴とする高張力冷延鋼板。 (2) By mass%, C: 0.0010 to 0.0080%, Si: 0.4% or less, Mn: 0.1 to 1.0%, P: 0.08% or less, S: 0.05% or less, Al: 0.05% or less, N: 0.0060 to 0.0200 Nb: 0.001 to 0.050% and / or B: 0.0020% or less, and N and Al, Nb, B, the ratio of the N content to the contents of Al, Nb, B, N / (Al + 0.3Nb + 2.5B) is contained so as to be 0.2 or more, and further contains a solid solution N of 0.0040% or more, a composition comprising the balance Fe and inevitable impurities, and a structure having a ferrite phase as a main phase. A high-tensile cold-rolled steel sheet having a tensile strength TS in the rolling direction of 600 MPa or more, a total elongation El T of 6% or more, and a local elongation El L of 6% or more.
(3)(1)または(2)において、鋼板表面にめっき層として、溶融亜鉛めっき層、合金化溶融亜鉛めっき層または電気亜鉛めっき層を有してなる高張力冷延鋼板。
(4)鋼素材に、該鋼素材を加熱し熱間圧延を施し熱延板とする熱延工程と、該熱延板に冷間圧延を施し冷延板とする冷延工程と、該冷延板に加熱し熱処理を施す熱処理工程と、を順次施し、高張力冷延鋼板とする高張力冷延鋼板の製造方法において、前記鋼素材を、質量%で、C:0.0010〜0.0080%、Si:0.4%以下、Mn:0.1〜1.0%、P:0.08%以下、S:0.05%以下、Al:0.05%以下、N:0.0060〜0.0200%を含み、かつNとAlを、N含有量とAl含有量との比、N/Alが0.2以上となるように含有し、さらに固溶Nを0.0040%以上含み、残部Feおよび不可避的不純物からなる組成の鋼素材とし、前記熱延工程を、前記鋼素材を加熱温度:1000℃以上に加熱し、粗圧延してシートバーとし、ついで該シートバーに仕上圧延出側温度:800℃以上とする仕上圧延を施し、巻取り温度:{700−10×(Al/N)}℃以下で巻取り熱延板とする工程とし、前記冷延工程を、前記熱延板に酸洗と、圧下率:50〜95%の冷間圧延とを施して冷延板とする工程とし、前記熱処理工程を、前記冷延板を300〜650℃の範囲の温度に加熱したのち冷却する工程とすることを特徴とする高張力冷延鋼板の製造方法。
(3) A high-tensile cold-rolled steel sheet having a hot-dip galvanized layer, an alloyed hot-dip galvanized layer or an electrogalvanized layer as a plated layer on the steel sheet surface in (1) or (2).
(4) A hot rolling process in which the steel material is heated and hot-rolled to form a hot-rolled sheet; a cold-rolling process in which the hot-rolled sheet is cold-rolled to form a cold-rolled sheet; In the method of manufacturing a high-tensile cold-rolled steel sheet, which is sequentially subjected to a heat treatment step of heating and heat-treating the rolled sheet to obtain a high-tensile cold-rolled steel sheet, the steel material is, in mass%, C: 0.0010 to 0.0080%, Si : 0.4% or less, Mn: 0.1 to 1.0%, P: 0.08% or less, S: 0.05% or less, Al: 0.05% or less, N: 0.0060 to 0.0200%, N and Al, N content and Al The ratio to the content, N / Al is contained so as to be 0.2 or more, and further includes a solid solution N containing 0.0040% or more, and a steel material having a composition composed of the remaining Fe and unavoidable impurities, and the hot rolling step, A steel material is heated to a heating temperature of 1000 ° C. or higher, roughly rolled into a sheet bar, and then the finish rolling is performed on the sheet bar to a finish rolling temperature of 800 ° C. or higher. Taking temperature: It is set as the process made into a hot-rolled sheet by winding up below {700-10x (Al / N)} ° C, and the cold rolling process is pickled on the hot-rolled sheet, and the rolling reduction: 50-95%. High-strength cooling, characterized in that a cold-rolled sheet is formed by performing cold rolling, and the heat-treating process is a step of cooling the cold-rolled sheet after heating to a temperature in the range of 300 to 650 ° C. A method for producing rolled steel sheets.
(5)鋼素材に、該鋼素材を加熱し熱間圧延を施し熱延板とする熱延工程と、該熱延板に冷間圧延を施し冷延板とする冷延工程と、該冷延板に加熱し熱処理を施す熱処理工程と、を順次施し、高張力冷延鋼板とする高張力冷延鋼板の製造方法において、前記鋼素材を、質量%で、C:0.0010〜0.0080%、Si:0.4%以下、Mn:0.1〜1.0%、P:0.08%以下、S:0.05%以下、Al:0.05%以下、N:0.0060〜0.0200%を含み、さらに、Nb:0.001〜0.050%および/またはB:0.0020%以下を含有し、かつNとAl、Nb、Bを、N含有量とAl,Nb,Bの含有量との比、N/(Al+0.3Nb+2.5B)が0.2以上となるように含有し、残部Feおよび不可避的不純物からなる組成の鋼素材とし、前記熱延工程を、前記鋼素材を加熱温度:1000℃以上に加熱し、粗圧延してシートバーとし、ついで該シートバーに仕上圧延出側温度:800℃以上とする仕上圧延を施し、巻取り温度:[700−10×{(Al+0.3Nb)/N}]℃以下で巻取り熱延板とする工程とし、前記冷延工程を、前記熱延板に酸洗と、圧下率:50〜95%の冷間圧延とを施して冷延板とする工程とし、前記熱処理工程を、前記冷延板を300〜650℃の範囲の温度に加熱したのち冷却する工程とすることを特徴とする高張力冷延鋼板の製造方法。 (5) A hot rolling process in which the steel material is heated and hot-rolled to form a hot-rolled sheet; a cold-rolling process in which the hot-rolled sheet is cold-rolled to form a cold-rolled sheet; In the method of manufacturing a high-tensile cold-rolled steel sheet, which is sequentially subjected to a heat treatment step of heating and heat-treating the rolled sheet to obtain a high-tensile cold-rolled steel sheet, the steel material is C: 0.0010 to 0.0080%, : 0.4% or less, Mn: 0.1 to 1.0%, P: 0.08% or less, S: 0.05% or less, Al: 0.05% or less, N: 0.0060 to 0.0200%, and Nb: 0.001 to 0.050% and / or B: 0.0020% or less, and N and Al, Nb, B, ratio of N content to Al, Nb, B content, N / (Al + 0.3Nb + 2.5B) is 0.2 or more The steel material is composed of the balance Fe and unavoidable impurities, and the hot rolling step is performed by heating the steel material to a heating temperature of 1000 ° C. or more, roughly rolling it into a sheet bar, Finishing and rolling the sheet bar at a finish rolling exit temperature of 800 ° C or higher and winding it up to a temperature of [700-10 x {(Al + 0.3Nb) / N}] ° C or less The cold rolling step is a step of subjecting the hot-rolled sheet to pickling and cold rolling at a reduction ratio of 50 to 95% to form a cold-rolled plate, and the heat treatment step is performed to change the cold-rolled plate to 300 A method for producing a high-tensile cold-rolled steel sheet, characterized by comprising a step of cooling after heating to a temperature in the range of ~ 650 ° C.
(6)(4)または(5)において、前記熱処理工程に代えて、前記冷延板を450〜650℃の範囲の温度に加熱する熱処理と、さらに溶融亜鉛めっきを施し、鋼板表面に溶融亜鉛めっき層を形成する溶融亜鉛めっき処理とを施す溶融亜鉛めっき処理工程とすることを特徴とする高張力冷延鋼板の製造方法。
(7)(4)または(5)において、前記熱処理工程に代えて、前記冷延板を450〜650℃の範囲の温度に加熱する熱処理と、さらに溶融亜鉛めっきを施し、鋼板表面に溶融亜鉛めっき層を形成する溶融亜鉛めっき処理と、さらに該溶融亜鉛めっき層を合金化する合金化処理とを施し、鋼板表面に合金化溶融亜鉛めっき層を形成する合金化溶融亜鉛めっき処理工程とすることを特徴とする高張力冷延鋼板の製造方法。
(6) In (4) or (5), in place of the heat treatment step, a heat treatment for heating the cold-rolled sheet to a temperature in the range of 450 to 650 ° C. and further hot dip galvanizing are performed, and the surface of the steel sheet is molten zinc. A method for producing a high-tensile cold-rolled steel sheet, characterized by comprising a hot-dip galvanizing treatment step for performing a hot-dip galvanizing treatment for forming a plating layer.
(7) In (4) or (5), in place of the heat treatment step, a heat treatment for heating the cold-rolled sheet to a temperature in the range of 450 to 650 ° C. and further hot-dip galvanizing are performed, and a hot-dip zinc is applied to the steel sheet surface. A galvanizing treatment for forming a plated layer and an alloying treatment for alloying the galvanized layer to form an alloyed galvanized layer on the surface of the steel sheet. A method for producing a high-tensile cold-rolled steel sheet.
本発明は、高価な合金元素を多量含有することなく、圧延方向の引張強さTSが600MPa以上で、全伸びElTが6%以上、かつ局部伸びElLが6%以上を有する、成形性に優れた高張力冷延鋼板を、容易にかつ安価に製造でき、産業上格段の効果を奏する。また、本発明によれば、電機用、建材用あるいは自動車用等として十分な特性を有する部品を安価に製造できるという効果もある。 The present invention does not contain a large amount of expensive alloy elements, has a tensile strength TS in the rolling direction of 600 MPa or more, a total elongation El T of 6% or more, and a local elongation El L of 6% or more. High-strength cold-rolled steel sheet that is superior to the above can be manufactured easily and inexpensively, and has a remarkable industrial effect. In addition, according to the present invention, there is an effect that parts having sufficient characteristics for electrical machinery, building materials, automobiles, and the like can be manufactured at low cost.
まず、本発明冷延鋼板の組成限定理由について説明する。以下、とくに断わらないかぎり質量%は、単に%で記す。
C:0.0010〜0.0080%
Cは、鋼板の強度を増加させる元素であり、所望の強度を確保するために、O.0010%以上の含有を必要とする。一方、0.0080%を超えて含有すると、密着曲げ加工時に曲げ加工部外側に割れ、肌荒れ等が発生しやすくなり、さらに延性が若干低下する傾向となり、高度な曲げ加工性が要求される部品用としては問題となる。このため、Cは0.O010〜0.0080%の範囲に限定した。なお、極めて高い局部延性や曲げ加工性を要求される使途の場合には、0.0050%以下、あるいはさらに0.0040%以下とすることが好ましい。
First, the reason for limiting the composition of the cold-rolled steel sheet of the present invention will be described. Hereinafter, unless otherwise specified, mass% is simply expressed as%.
C: 0.0010 to 0.0080%
C is an element that increases the strength of the steel sheet, and needs to contain O.0010% or more in order to secure a desired strength. On the other hand, if the content exceeds 0.0080%, cracks and rough skin are likely to occur on the outside of the bent part during close contact bending, and the ductility tends to decrease slightly, and for parts that require a high degree of bending workability. Is a problem. For this reason, C was limited to the range of 0.0010 to 0.0080%. It should be noted that, in the case of use in which extremely high local ductility and bending workability are required, it is preferably 0.0050% or less, or more preferably 0.0040% or less.
Si:0.4%以下
Siは、鋼の延性を顕著に低下させることなく、鋼板を高強度化させることができる有用な強化元素である。このような効果を得るためには、0.01%以上含有することが望ましい。一方、0.4%を超える含有は、表面性状、化成処理性等の表面美麗性に悪影響を与え、これらの悪影響を抑制するために、酸洗処理等の長時間化が避けられず、大幅なコスト増加を招く。このため、SiはO.4%以下の範囲に限定した。なお、より優れた表面美麗性が求められる用途では0.3%以下とすることが好ましい。
Si: 0.4% or less
Si is a useful strengthening element that can increase the strength of a steel sheet without significantly reducing the ductility of the steel. In order to acquire such an effect, it is desirable to contain 0.01% or more. On the other hand, a content exceeding 0.4% adversely affects the surface aesthetics such as surface properties and chemical conversion treatment properties, and in order to suppress these adverse effects, it is inevitable that the pickling treatment and the like will be prolonged, resulting in significant costs. Incurs an increase. For this reason, Si was limited to a range of O.4% or less. In addition, it is preferable to set it as 0.3% or less in the use for which the outstanding surface beauty is calculated | required.
Mn:0.1〜1.0%
Mnは、焼入れ性を向上させ、鋼板強度の増加に大きく寄与する元素である。また、Mnは、Sによる熱間割れを防止する有効な元素であり、含有するS量に応じて含有させることが好ましい。このような効果は、0.1%以上の含有で認められる。一方、1.0%を超えて含有すると、延性が顕著に低下する。このため、MnはO.1〜1.O%の範囲に限定した。なお、より良好な成形性が要求される用途では、O.6%以下とすることが望ましい。
Mn: 0.1-1.0%
Mn is an element that improves hardenability and greatly contributes to an increase in steel sheet strength. Further, Mn is an effective element for preventing hot cracking due to S, and is preferably contained according to the amount of S contained. Such an effect is recognized when the content is 0.1% or more. On the other hand, when it contains exceeding 1.0%, ductility will fall remarkably. For this reason, Mn was limited to the range of O.1 to 1.O%. In applications where better moldability is required, it is desirable that the content be O.6% or less.
P:0.08%以下
Pは、鋼を強化する作用があり、この効果を得るためには、本発明では、所望の強度に応じて0.001%以上含有させることが望ましい。しかし、0.08%を超えて含有すると、溶接性や加工後の低温靭性が低下する。このため、PはO.08%以下に限定した。なお、より優れた溶接性や低温靭性が要求される場合には、Pは0.05%以下とするのが好ましい。
P: 0.08% or less P has an action of strengthening steel, and in order to obtain this effect, it is desirable to contain 0.001% or more according to the desired strength in the present invention. However, if it exceeds 0.08%, the weldability and the low temperature toughness after processing are lowered. For this reason, P was limited to O.08% or less. In addition, when more excellent weldability and low temperature toughness are required, P is preferably 0.05% or less.
S:0.05%以下
Sは、鋼板中では介在物として存在し、鋼板の延性、成形性、とくに伸びフランジ成形性の劣化をもたらす元素であるため、できるだけ低減することが好ましい。しかし、O.05%以下に低減すると、伸びフランジ成形性への悪影響が無視できることから、本発明ではSは0.05%以下に限定した。なお、より優れた伸びフランジ成形性、あるいは溶接性を要求される場合には、SはO.03%以下とすることが好ましい。
S: 0.05% or less S is present as an inclusion in the steel sheet, and is an element that causes deterioration of the ductility and formability of the steel sheet, in particular, stretch flange formability. However, if the content is reduced to 0.05% or less, the adverse effect on stretch flangeability can be ignored. Therefore, in the present invention, S is limited to 0.05% or less. When more excellent stretch flange formability or weldability is required, S is preferably 0.03% or less.
Al:0.05%以下
Alは、鋼の脱酸剤として作用し、鋼の清浄度を向上させる有用な元素である。また、Alは、結晶粒を微細化する作用も有し、鋼の組織微細化のために含有することが望ましい元素である。このような効果を得るためには、Alは0.001%以上含有することが望ましいが、0.05%を超える含有は、表面性状の悪化、固溶Nの顕著な低下に繋がり、良好な強度−延性バランスを得ることが困難となる。このため、Alは0.05%以下に限定した。なお、材質の安定性という観点から、0.001〜O.04%とすることが好ましい。また、Al含有量の低減は、結晶粒の粗大化につながる懸念があるが、本発明では他の合金元素を最適量に制限することと、焼鈍条件を最適な範囲とすることにより結晶粒の粗大化を防止する。
Al: 0.05% or less
Al is a useful element that acts as a deoxidizer for steel and improves the cleanliness of the steel. Al also has an effect of refining crystal grains, and is an element that is desirably contained for refining the structure of steel. In order to obtain such an effect, Al is preferably contained in an amount of 0.001% or more. However, if the content exceeds 0.05%, the surface properties are deteriorated and the solid solution N is significantly reduced, and a good strength-ductility balance is obtained. It becomes difficult to obtain. For this reason, Al was limited to 0.05% or less. In addition, from a viewpoint of material stability, it is preferable to set it as 0.001 to 0.04%. In addition, there is a concern that the reduction of the Al content may lead to the coarsening of the crystal grains, but in the present invention, by limiting the other alloy elements to the optimum amount and making the annealing conditions in the optimum range, Prevent coarsening.
N:0.0060〜0.0200%
Nは、固溶して鋼の強度を増加させるとともに、本発明では優れた成形性の確保に寄与する元素であり、このような効果は、おおむね0.0060%以上の含有で安定して得られる。一方、0.0200%を超える多量の含有は、連続鋳造時のスラブ割れなどの発生が顕著となるとともに、鋼板の内部欠陥発生率が高くなる。このため、NはO.O060〜O.0200%の範囲に限定した。なお、好ましくは、製造工程全体を考慮した材質の安定性・歩留まりの向上という観点から、0.0060〜0.0170%である。また、Nは、鋼の変態点を降下させる効果も有し、薄物で変態点を大きく割り込んだ圧延をしたくないという状況では、Nの含有は有効となる。なお、Nは、本発明範囲内の含有であれば、溶接性等にはまったく悪影響はない。
N: 0.0060-0.0200%
N is a solid solution that increases the strength of the steel and contributes to securing excellent formability in the present invention, and such an effect can be stably obtained with a content of approximately 0.0060% or more. On the other hand, when the content exceeds 0.0200%, the occurrence of slab cracking during continuous casting becomes remarkable, and the internal defect occurrence rate of the steel sheet increases. For this reason, N was limited to the range of O.O060 to O.0200%. Preferably, it is 0.0060 to 0.0170% from the viewpoint of improving the stability and yield of the material in consideration of the entire manufacturing process. N also has an effect of lowering the transformation point of steel, and the inclusion of N is effective in situations where it is not desired to perform rolling with a thin material that greatly cuts the transformation point. If N is contained within the scope of the present invention, weldability and the like are not adversely affected.
N/Al:0.2以上
Alは、強力にNを固定する作用を有する元素であり、所望の固溶N量を確保する観点から、本発明では、N含有量とAl含有量の比、N/Alを0.2以上に限定した。これにより、O.O040%以上の固溶N量を安定して確保でき、所望の優れた成形性を確保できる。なお、好ましくはN/Alは0.3以上である。
N / Al: 0.2 or more
Al is an element that strongly fixes N. From the viewpoint of securing a desired amount of dissolved N, in the present invention, the ratio of N content to Al content, N / Al is limited to 0.2 or more. did. Thereby, the amount of solid solution N of O.O040% or more can be stably secured, and desired excellent moldability can be secured. N / Al is preferably 0.3 or more.
固溶状態のN:0.0040%以上
固溶状態のNは、フェライト相の強化に寄与する。加工硬化したフェライト相を固溶強化して、冷延鋼板として所望の高強度を確保するためには、固溶状態のNを0.O040%以上確保する必要がある。ここで、固溶状態のNは、鋼中の全N量から、析出N量(電解抽出による溶解法でもとめる)を差し引いた値とする。析出N量は、定電位電解法を用いた電解抽出による溶解法を適用して求めた値を用いる。析出Nの分析法について種々の方法を検討したが、定電位電解法を用いた電解抽出による溶解法を適用する方法が最も良く材質の変化と対応していたことに基づく。なお、電解液としては、アセチルアセトン系電解液を用いることが好ましい。定電位電解法を用いた電解抽出による溶解法にて抽出した残渣を化学分析して、残渣中のN量を求め、これを析出N量とした。なお、さらに安定して高い強度を得る必要がある場合は、固溶Nを0.0060%以上とすることが有効である。
Solid solution N: 0.0040% or more N in the solid solution state contributes to strengthening of the ferrite phase. In order to solid-solution strengthen the work-hardened ferrite phase to secure a desired high strength as a cold-rolled steel sheet, it is necessary to secure N in a solid solution state of 0.040% or more. Here, N in the solid solution state is a value obtained by subtracting the amount of precipitated N (stopped by the dissolution method by electrolytic extraction) from the total N amount in the steel. As the amount of precipitated N, a value obtained by applying a dissolution method by electrolytic extraction using a constant potential electrolysis method is used. Various methods have been examined for the analysis of the precipitate N, and the method of applying the dissolution method by electrolytic extraction using the constant potential electrolysis method is based on the fact that it best corresponds to the change in material. As the electrolytic solution, it is preferable to use an acetylacetone-based electrolytic solution. The residue extracted by the dissolution method by electrolytic extraction using a constant potential electrolysis method was chemically analyzed to determine the amount of N in the residue, and this was defined as the amount of precipitated N. In addition, when it is necessary to obtain higher strength more stably, it is effective to set the solid solution N to 0.0060% or more.
上記した成分が、基本の成分であり、本発明では基本の成分に加えてさらに、Nb:0.001〜0.050%および/またはB:0.0020%以下を含有してもよい。
Nb:0.001〜0.050%
Nbは、鋼板の製造工程中にその一部が、炭化物NbCや窒化物NbNとし析出し、粒成長や再結晶などを抑制する作用を有する元素であり、必要に応じて含有できる。本発明では、熱処理工程において、熱処理温度の上昇に伴う強度の低下を抑制する必要のある場合に添加する。Nbを含有させることにより、熱処理温度の変化に伴う強度変化が少なくなり、安定して高強度を有する冷延鋼板を製造できる。このような効果は、概ね0.001%以上の含有で顕著となる。一方、0.050%を超える含有は、延性の低下、固溶N量の顕著な低下に繋がり、良好な強度−延性バランスを確保することが困難となる。このため、含有する場合には、Nbは0.001〜0.050%の範囲に限定することが好ましい。なお、より好ましくは0.005〜0.03%である。
The above-described components are basic components, and in the present invention, Nb: 0.001 to 0.050% and / or B: 0.0020% or less may be further contained in addition to the basic components.
Nb: 0.001 to 0.050%
Nb is an element partly precipitated as carbide NbC or nitride NbN during the manufacturing process of the steel sheet, and has an action of suppressing grain growth, recrystallization, and the like, and can be contained as necessary. In the present invention, it is added in the heat treatment step when it is necessary to suppress a decrease in strength accompanying an increase in the heat treatment temperature. By containing Nb, the strength change accompanying the change in the heat treatment temperature is reduced, and a cold-rolled steel sheet having high strength can be manufactured stably. Such an effect becomes remarkable when the content is approximately 0.001% or more. On the other hand, the content exceeding 0.050% leads to a decrease in ductility and a significant decrease in the amount of dissolved N, and it becomes difficult to ensure a good strength-ductility balance. For this reason, when it contains, it is preferable to limit Nb to 0.001 to 0.050% of range. In addition, More preferably, it is 0.005-0.03%.
B:0.0020%以下
Bは、鋼板の製造工程中にその一部が結晶粒界に偏析し、粒成長や再結晶などを抑制する作用を有する元素であり、必要に応じて含有できる。本発明では、Bは、Nbと同様に、熱処理工程において、熱処理温度の上昇に伴う強度の低下を抑制する必要のある場合に添加する。Bを含有させることにより、熱処理温度の変化に伴う強度変化が少なくなり、安定して高強度を有する冷延鋼板を製造できる。このような効果は、概ね0.0001%以上の含有で顕著となるため、0.0001%以上含有することが望ましい。一方、0.0020%を超える含有は、延性の低下、固溶N量の顕著な低下に繋がり、良好な強度−延性バランスを確保することが困難となる。このため、含有する場合には、Bは0.0020%以下に限定することが好ましい。なお、より好ましくは0.0002〜0.0015%である。
B: 0.0020% or less B is an element that partially segregates at the grain boundaries during the manufacturing process of the steel sheet and has the action of suppressing grain growth, recrystallization, and the like, and can be contained as necessary. In the present invention, B, like Nb, is added in the heat treatment step when it is necessary to suppress a decrease in strength accompanying an increase in the heat treatment temperature. By containing B, the strength change accompanying the change in the heat treatment temperature is reduced, and a cold-rolled steel sheet having high strength can be produced stably. Since such an effect becomes remarkable when the content is generally 0.0001% or more, it is desirable to contain 0.0001% or more. On the other hand, the content exceeding 0.0020% leads to a decrease in ductility and a significant decrease in the amount of dissolved N, and it is difficult to ensure a good strength-ductility balance. For this reason, when it contains, it is preferable to limit B to 0.0020% or less. In addition, More preferably, it is 0.0002 to 0.0015%.
Nb、Bを含有する場合には、N/Alに代えて、N/(Al+0.3Nb+2.5B)を使用し、N/(Al+0.3Nb+2.5B):0.2以上を満足するように調整する。ここで、NはN含有量(質量%)、AlはAl含有量(質量%)を表し、Nb、BはそれぞれNb含有量(質量%)、B含有量(質量%)を表す。なお、NbまたはBを添加しない場合には、N/(Al+0.3Nb+2.5B)の値は、含有しない元素量を零として計算するものとする。 When Nb and B are contained, N / (Al + 0.3Nb + 2.5B) is used instead of N / Al, and N / (Al + 0.3Nb + 2.5B): is adjusted to satisfy 0.2 or more. Here, N represents N content (mass%), Al represents Al content (mass%), and Nb and B represent Nb content (mass%) and B content (mass%), respectively. When Nb or B is not added, the value of N / (Al + 0.3Nb + 2.5B) is calculated assuming that the amount of elements not contained is zero.
上記した成分以外の残部はFeおよび不可避的不純物である。不可避的不純物としては、例えばSb、Sn、Zn、Co等が挙げられ、Sb:O.01%以下、Sn:0.1%以下、Zn:0.01%以下、Co:O.1%以下が許容できる。
つぎに、本発明冷延鋼板の組織限定理由について説明する。
本発明冷延鋼板は、フェライト相を主相とする組織を有する。ここでいう「主相」とは、組織全体に対する体積率で97%以上である場合をいう。主相以外の第二相は、セメンタイト等である。第二相は、体積率で3%以下とする。第二相が3%を超えて多くなると、密着曲げ加工時に曲げ加工部外側に割れや肌荒れが発生しやすく、さらに若干延性が低下する傾向となり、高度な曲げ加工性が要求される部品向けとしては問題となる。さらに良好な曲げ加工性が必要とされる用途では、2%以下とすることが好ましい。なお、本発明では、主相であるフェライト相は、冷間圧延により加工硬化したフェライト相であり、例えば、X線回折による(211)面の回折ピークの半価幅が0.20°以上0.40°以下となる相である。
The balance other than the above components is Fe and inevitable impurities. Inevitable impurities include, for example, Sb, Sn, Zn, Co and the like, and Sb: 0.01% or less, Sn: 0.1% or less, Zn: 0.01% or less, Co: O.1% or less are acceptable.
Next, the reason for limiting the structure of the cold-rolled steel sheet of the present invention will be described.
The cold-rolled steel sheet of the present invention has a structure whose main phase is a ferrite phase. The “main phase” here refers to a case where the volume ratio with respect to the entire structure is 97% or more. The second phase other than the main phase is cementite or the like. The second phase is 3% or less by volume ratio. When the amount of the second phase exceeds 3%, cracks and rough skin are likely to occur on the outer side of the bent part during close contact bending, and the ductility tends to decrease slightly. For parts that require a high degree of bending workability. Is a problem. In applications where better bending workability is required, the content is preferably 2% or less. In the present invention, the ferrite phase that is the main phase is a ferrite phase that is work-hardened by cold rolling. For example, the half width of the diffraction peak of the (211) plane by X-ray diffraction is 0.20 ° or more and 0.40 ° or less. It is a phase to become.
つぎに、本発明冷延鋼板の好ましい製造方法について説明する。
本発明では、鋼素材に、該鋼素材を加熱し熱間圧延を施し熱延板とする熱延工程と、該熱延板に冷間圧延を施し冷延板とする冷延工程と、該冷延板を加熱し熱処理を施す熱処理工程と、を順次施し、高張力冷延鋼板とする。
使用する鋼素材は、上記した鋼板の組成と同様に、質量%で、C:0.001〜0.0080%、Si:0.4%以下、Mn:0.1〜1.0%、P:0.08%以下、S:0.05%以下、Al:0.05%以下、N:0.0060〜0.0200%を含み、あるいはさらにNb:0.001〜0.050%および/またはB:0.0020%以下を、NとAlあるいはさらにNbおよび/またはBを、N含有量とAl含有量の比、N/AlあるいはN含有量とAl、Nb、B含有量との比、N/(Al+0.3Nb+2.5B)が0.2以上となるように含有し、残部Feおよび不可避的不純物からなる組成の鋼素材とする。
Next, a preferred method for producing the cold-rolled steel sheet of the present invention will be described.
In the present invention, a hot rolling process in which the steel material is heated and subjected to hot rolling to form a hot rolled sheet, a cold rolling process in which the hot rolled sheet is subjected to cold rolling to form a cold rolled sheet, A heat treatment step of heating the cold-rolled plate and performing a heat treatment is sequentially performed to obtain a high-tensile cold-rolled steel plate.
The steel material to be used is in mass%, C: 0.001 to 0.0080%, Si: 0.4% or less, Mn: 0.1 to 1.0%, P: 0.08% or less, S: 0.05% or less, in the same manner as the steel plate composition described above. , Al: 0.05% or less, N: 0.0060 to 0.0200% included, or Nb: 0.001 to 0.050% and / or B: 0.0020% or less, N and Al or further Nb and / or B, N content Al content ratio, N / Al or N content to Al, Nb, B content ratio, N / (Al + 0.3Nb + 2.5B) is contained so as to be 0.2 or more, the remainder Fe and inevitable impurities A steel material having a composition consisting of
鋼素材の製造方法は、とくに限定する必要はないが、上記した組成の溶鋼を転炉等の常用の溶製方法で溶製し、連続鋳造法などの常用の鋳造方法でスラブ等の鋼素材とすることが好ましい。鋼素材の鋳造方法は、成分のマクロな偏析を防止すべく連続鋳造法とすることが望ましいが、造塊法、薄スラブ鋳造法によってもなんら問題はない。
得られた鋼素材はついで、熱延工程を施される。熱間圧延のための加熱は、いったん室温まで冷却し、その後再加熱する方法に加えて、室温まで冷却しないで、温片のままで加熱炉に装入する、あるいはわずかの保熱を行った後に直ちに圧延する直送圧延・直接圧延などの省エネルギープロセスも問題なく適用できる。
The manufacturing method of the steel material is not particularly limited, but the molten steel having the above composition is melted by a conventional melting method such as a converter, and a steel material such as a slab by a conventional casting method such as a continuous casting method. It is preferable that The casting method of the steel material is desirably a continuous casting method in order to prevent macro segregation of components, but there is no problem even with the ingot forming method or the thin slab casting method.
The obtained steel material is then subjected to a hot rolling process. In addition to the method of once cooling to room temperature and then reheating, the heat for hot rolling was not cooled to room temperature, but was charged in a heating furnace as it was, or a little heat was retained. Energy saving processes such as direct feed rolling and direct rolling, which are rolled immediately afterwards, can be applied without any problem.
熱延工程では、鋼素材を加熱温度:1000℃以上に加熱し、粗圧延してシートバーとし、ついで該シートバーに仕上圧延出側温度:800℃以上とする仕上圧延を施し、巻取り温度:{700−10×(Al/N)}℃以下、Nbおよび/またはBを含有する場合には[700−10×{(Al+0.3Nb)/N}]℃以下、で巻取り熱延板とする。
加熱温度:1000℃以上
熱間圧延のための加熱温度は、1000℃以上とすることが好ましい。加熱温度が1000℃未満では、冷延鋼板での所望の固溶Nや熱延後の仕上圧延出側温度の下限(800℃)を確保することが困難となると共に、熱間圧延時の圧延荷重の増加が著しくなり、圧延が困難となる場合がある。なお、加熱温度の上限はとくに限定する必要はないが、1280℃を超えて高温になると、酸化に伴うロスが増大し、歩留りが低下する。このようなことから、熱間圧延のための加熱温度は概ね1280℃以下とすることが好ましい。
In the hot rolling process, the steel material is heated to a heating temperature of 1000 ° C. or higher, roughly rolled into a sheet bar, and then subjected to finish rolling to a finish rolling exit temperature of 800 ° C. or higher, and the coiling temperature : {700-10 × (Al / N)} ° C. or less, and when Nb and / or B is contained, [700−10 × {(Al + 0.3Nb) / N}] ° C. or less, and rolled hot rolled sheet And
Heating temperature: 1000 ° C. or higher The heating temperature for hot rolling is preferably 1000 ° C. or higher. If the heating temperature is less than 1000 ° C, it becomes difficult to ensure the desired solid solution N in the cold-rolled steel sheet and the lower limit (800 ° C) of the finish rolling exit temperature after hot rolling, and rolling during hot rolling. The increase in load becomes significant, and rolling may be difficult. The upper limit of the heating temperature is not particularly limited. However, when the temperature exceeds 1280 ° C. and the temperature becomes high, loss due to oxidation increases and yield decreases. For this reason, the heating temperature for hot rolling is preferably about 1280 ° C. or less.
仕上圧延出側温度:800℃以上
熱間圧延の仕上圧延出側温度は、800℃以上とすることが好ましい。これにより、熱延板の組織を均一微細な組織とすることができる。仕上圧延出側温度が800℃未満では、得られる熱延板の組織が不均一になり、その後の冷延工程、熱処理(焼鈍)工程を施しても、組織の不均一性は消滅しない。このため、プレス成形時に種々の不具合を発生する危険性が増大する。また、仕上圧延出側温度が800℃未満の場合に、加工組織の残留を回避すべく、高い巻取り温度を採用すると、粗大粒が発生し、同様の不具合を生じる。このようなことから、仕上圧延出側温度は800℃以上に限定することが好ましい。なお、更なる機械的特性の向上のためには、仕上圧延出側温度は、820℃以上とすることがより好ましい。なお、仕上圧延出側温度の上限はとくに限定する必要はないが、過度に高い仕上圧延出側温度で圧延した場合には、スケール疵などが発生しやすくなるため、仕上圧延出側温度の上限は概ね1O00℃程度とすることが好ましい。
Finishing rolling exit temperature: 800 ° C. or more The finishing rolling exit temperature of hot rolling is preferably 800 ° C. or more. Thereby, the structure of a hot-rolled sheet can be made into a uniform fine structure. If the finish rolling exit temperature is less than 800 ° C., the structure of the hot-rolled sheet to be obtained becomes non-uniform, and the non-uniformity of the structure does not disappear even if the subsequent cold rolling process and heat treatment (annealing) process are performed. For this reason, the danger of generating various malfunctions at the time of press molding increases. In addition, when the finish rolling exit temperature is less than 800 ° C., if a high coiling temperature is employed to avoid the remaining of the processed structure, coarse grains are generated and the same problem occurs. For this reason, it is preferable that the finish rolling outlet temperature is limited to 800 ° C. or higher. In order to further improve the mechanical properties, the finish rolling outlet temperature is more preferably 820 ° C. or higher. The upper limit of the finish rolling exit temperature is not particularly limited. However, when rolling at an excessively high finish rolling exit temperature, scale wrinkles are likely to occur, so the upper limit of the finish rolling exit temperature. Is preferably about 1O00 ° C.
巻取り温度:{700−10×(Al/N)}℃以下または[700−10×{(Al+0.3Nb)/N}]℃以下
仕上圧延終了後、ついで、熱延板はコイル状に巻き取られる。AlNやNbN等の窒化物の析出には巻取り温度の影響が大きく、巻取り温度が高温となるとAlN、NbN等が生成しやすくなり、Al/Nまたは(Al+0.3Nb)/Nが大きい場合にもAl、NbとNとの化合物(AlN、NbN等)が析出しやすく、所定の固溶N量を確保することが困難となる。このため、本発明では巻取り温度を{700−10×(Al/N)}℃以下、または[700−10×{(Al+0.3Nb)/N}]℃以下とすることが好ましい。なお、該巻取り温度とAl/Nまたは(Al+0.3Nb)/Nとの関係式は、所定の固溶N量を得るために発明者らが種々検討して得た実験式である。巻取り温度が{700−10×(Al/N)}℃または[700−10×{(Al+0.3Nb)/N}]℃を超えると、AlNが生成しやすくなり、所望の固溶N量を確保できない。なお、巻取り温度の下限はとくに限定されないが、200℃以上とすることがより好ましい。200℃を下回ると鋼板形状の乱れが顕著となり、実際の使用にあたり不具合を生ずる危険性が増大する。また、材質の均一性も低下する傾向となる。さらに高い材質均一性が要求される場合は巻取り温度の下限は300℃以上とすることが望ましい。
Winding temperature: {700-10 × (Al / N)} ° C. or lower or [700-10 × {(Al + 0.3Nb) / N}] ° C. or lower After finishing rolling, the hot rolled sheet is then wound in a coil shape Taken. The precipitation of nitrides such as AlN and NbN is greatly affected by the coiling temperature. When the coiling temperature becomes high, AlN, NbN, etc. are likely to be generated, and Al / N or (Al + 0.3Nb) / N is large. In addition, a compound of Al, Nb and N (AlN, NbN, etc.) is likely to precipitate, and it becomes difficult to ensure a predetermined amount of solid solution N. For this reason, in the present invention, the winding temperature is preferably set to {700-10 × (Al / N)} ° C. or lower or [700-10 × {(Al + 0.3Nb) / N}] ° C. or lower. The relational expression between the coiling temperature and Al / N or (Al + 0.3Nb) / N is an empirical formula obtained by various studies by the inventors in order to obtain a predetermined solid solution N amount. When the coiling temperature exceeds {700-10 × (Al / N)} ° C. or [700-10 × {(Al + 0.3Nb) / N}] ° C., AlN is likely to be generated, and the desired amount of dissolved N Cannot be secured. The lower limit of the coiling temperature is not particularly limited, but is preferably 200 ° C. or higher. When the temperature is lower than 200 ° C., the shape of the steel sheet is significantly disturbed, and the risk of causing problems in actual use increases. In addition, the uniformity of the material tends to decrease. When higher material uniformity is required, the lower limit of the coiling temperature is desirably 300 ° C. or higher.
熱延板は、ついで冷延工程を施される。
冷延工程は、熱延板に酸洗と、圧下率:50〜95%の冷間圧延とを施して冷延板とする工程とする。
なお、酸洗は、常用の方法に準じて行うことが好ましいが、スケールが極めて薄い状態であれば、酸洗を行うことなく直接、冷延工程を行ってもよい。
The hot rolled sheet is then subjected to a cold rolling process.
The cold rolling process is a process in which a hot rolled sheet is pickled and cold rolled with a reduction ratio of 50 to 95% to obtain a cold rolled sheet.
In addition, although it is preferable to perform pickling according to a usual method, if a scale is a very thin state, you may perform a cold rolling process directly, without performing pickling.
冷間圧延圧下率:50〜95%
本発明では冷間圧延による加工硬化を活用して高強度化を図るため、冷間圧延の圧下率は50%以上とする。50%未満では、所望の高強度を確保できない。一方、圧下率が95%を超えると、冷間圧延時間が長くなり、冷延工程コストの大幅なアップが避けられない。このため、冷間圧延の圧下率は50〜95%に限定することが好ましい。さらに安定して高強度を得るには、圧下率は55%以上とすることが望ましい。
Cold rolling reduction: 50-95%
In the present invention, in order to increase the strength by utilizing work hardening by cold rolling, the rolling reduction of cold rolling is set to 50% or more. If it is less than 50%, the desired high strength cannot be ensured. On the other hand, when the rolling reduction exceeds 95%, the cold rolling time becomes long, and a significant increase in the cold rolling process cost is inevitable. For this reason, it is preferable to limit the rolling reduction of cold rolling to 50 to 95%. In order to obtain high strength more stably, the rolling reduction is desirably 55% or more.
冷延板は、ついで、熱処理工程を施される。
熱処理工程は、冷延板を熱処理温度:300〜650℃の範囲の温度に加熱したのち冷却する熱処理を施す工程とする。
熱処理温度:300〜650℃
冷延板に施す熱処理は、300℃〜650℃の範囲の温度で行うことが好ましい。熱処理温度が300℃未満では、延性の増加が少なく、とくに低い局部延性しか得られない。一方、650℃を超える温度では、冷間圧延により加工硬化したフェライト相の回復が進みすぎ、所望の引張強さTSを確保できなくなる。このため、熱処理温度は300〜650℃の範囲の温度に限定することが好ましい。より好ましくは300℃以上600℃以下であり、さらに好ましくは550℃以下である。所定温度に加熱後は適温冷却すればよい。なお、上記した温度範囲での保持時間は600s以下とすることが好ましい。保持時間が600sを超えると、熱処理時間が長くなりすぎ、鋼板製造コストの高騰を招く。なお、保持時間は0sとしてもよいが、更なる延性、とくに局部伸びの向上のためには、保持時間は10s以上とすることが好ましい。なお、ここで保持時間0sとは、所定温度に到達した直後に冷却を開始することを意味する。この熱処理工程に引続き、電気亜鉛めっき処理を施し、鋼板表面に電気亜鉛めっき層を形成し、電気亜鉛めっき鋼板とすることもできる。
The cold rolled sheet is then subjected to a heat treatment step.
The heat treatment step is a step in which the cold-rolled sheet is heated to a temperature in the range of 300 to 650 ° C. and then cooled.
Heat treatment temperature: 300-650 ° C
The heat treatment applied to the cold-rolled sheet is preferably performed at a temperature in the range of 300 ° C to 650 ° C. When the heat treatment temperature is less than 300 ° C., the increase in ductility is small, and particularly low local ductility can be obtained. On the other hand, at a temperature exceeding 650 ° C., the recovery of the work phase hardened by cold rolling proceeds so much that the desired tensile strength TS cannot be ensured. Therefore, the heat treatment temperature is preferably limited to a temperature in the range of 300 to 650 ° C. More preferably, it is 300 degreeC or more and 600 degrees C or less, More preferably, it is 550 degrees C or less. What is necessary is just to cool appropriately temperature after heating to predetermined temperature. The holding time in the above temperature range is preferably 600 s or less. If the holding time exceeds 600 s, the heat treatment time becomes too long, leading to an increase in steel sheet manufacturing cost. The holding time may be 0 s, but the holding time is preferably 10 s or more in order to further improve ductility, particularly local elongation. Here, the holding time of 0 s means that the cooling is started immediately after reaching the predetermined temperature. Subsequent to this heat treatment step, an electrogalvanizing treatment can be applied to form an electrogalvanized layer on the steel sheet surface to obtain an electrogalvanized steel sheet.
なお、鋼板表面に、電気亜鉛めっき層に代えて溶融亜鉛めっき層を形成する場合には、上記した熱処理工程に代えて、溶融亜鉛めっきラインを利用して、冷延工程を経た冷延板に、熱処理と溶融亜鉛めっき処理とを連続して施す溶融亜鉛めっき処理工程を施してもよい。
溶融亜鉛めっき処理工程は、冷延工程を経た冷延板を450〜650℃の範囲の温度に加熱する熱処理を施し、ついで、溶融亜鉛めっき処理を施す工程とすることが好ましい。
In addition, when forming a hot dip galvanized layer instead of the electrogalvanized layer on the steel sheet surface, instead of the above-described heat treatment step, using a hot dip galvanizing line, Further, a hot dip galvanizing treatment step in which the heat treatment and the hot dip galvanizing treatment are continuously performed may be performed.
The hot dip galvanizing treatment step is preferably a step of performing a heat treatment for heating the cold-rolled sheet that has undergone the cold rolling step to a temperature in the range of 450 to 650 ° C., and then performing a hot dip galvanizing treatment.
溶融亜鉛めっき処理工程では、熱処理温度を450℃以上とすることが好ましい。というのは、溶融亜鉛めっき処理に使用する溶融亜鉛めっき浴の温度がおおよそ460℃であるため、溶融亜鉛めっき処理に悪影響を及ぼさない温度として450℃を選択した。一方、熱処理温度が650℃を超えると、加工硬化したフェライトの回復が進み、引張強さが著しく低下する。このため、溶融亜鉛めっき処理工程における熱処理温度は、450〜650℃の範囲の温度に限定することが好ましい。また、熱処理温度の範囲での保持時間は600s以下とすることが好ましい。保持時間が600sを超えると、焼鈍時間が長くなり、生産性が低下し、熱処理コストの高騰を招く。なお、保持時間は、0sでもよいが、局部延性の向上の観点から10s以上とすることが好ましい。溶融亜鉛めっき処理工程では、上記熱処理に引続き、常法にしたがい、溶融亜鉛めっき処理を施す。溶融亜鉛めっき処理は、連続溶融亜鉛めっきラインを利用して、上記熱処理温度への加熱冷却に引続き施すことが好ましい。 In the hot dip galvanizing process, the heat treatment temperature is preferably 450 ° C. or higher. This is because the temperature of the hot dip galvanizing bath used for the hot dip galvanizing treatment is approximately 460 ° C., and thus 450 ° C. was selected as a temperature that does not adversely affect the hot dip galvanizing treatment. On the other hand, when the heat treatment temperature exceeds 650 ° C., the recovery of work-hardened ferrite proceeds and the tensile strength is significantly reduced. For this reason, it is preferable to limit the heat processing temperature in a hot dip galvanization process to the temperature of the range of 450-650 degreeC. Further, the holding time within the range of the heat treatment temperature is preferably 600 s or less. If the holding time exceeds 600 s, the annealing time becomes longer, the productivity is lowered, and the heat treatment cost is increased. The holding time may be 0 s, but is preferably 10 s or longer from the viewpoint of improving local ductility. In the hot dip galvanizing process, following the heat treatment, a hot dip galvanizing process is performed according to a conventional method. It is preferable that the hot dip galvanizing treatment is performed continuously after heating and cooling to the heat treatment temperature using a continuous hot dip galvanizing line.
また、上記した溶融亜鉛めっき処理工程に代えて、上記した熱処理−溶融亜鉛めっき処理に引続いて、さらに溶融亜鉛めっき層を550℃以下の温度に加熱し、溶融亜鉛めっき相を合金化する合金化処理を連続して行う、合金化溶融亜鉛めっき処理工程としてもよい。また、連続処理に代えて、鋼板を、バッチ処理で溶融亜鉛めっき浴に浸漬してめっき処理を施す、いわゆる“どぶ付けめっき"としても、本発明の効果が得られる。 Moreover, it replaces with the above-mentioned hot dip galvanizing process, and the alloy which heats a hot dip galvanized layer to the temperature of 550 degrees C or less, and alloys the hot dip galvanized phase following the above-mentioned heat treatment-hot dip galvanizing process. It is good also as an alloying hot-dip galvanization process process which performs an alloying process continuously. In addition, the effect of the present invention can be obtained by so-called “spotting plating” in which a steel sheet is immersed in a hot dip galvanizing bath and subjected to a plating process instead of a continuous process.
表1に示す組成の溶鋼を転炉で溶製し、連続鋳造法で鋼素材(スラブ:肉厚260mm)とした。これら鋼素材を、表2に示す条件の熱延工程で、板厚4.0mmの熱延鋼帯(熱延板)とした。ついで、これら熱延板に、酸洗処理を施したのち、表2に示す条件の冷延工程で板厚1.2mmの冷延板とした。得られた冷延板に、連続焼鈍ライン、または、溶融亜鉛めっきラインを用いて、表2に示す条件で熱処理工程、溶融亜鉛めっき処理工程、あるいは、合金化溶融亜鉛めっき処理工程を施した。なお、溶融亜鉛めっき処理は、熱処理に引続いて、鋼板をめっき浴温度:460℃の溶融亜鉛めっき浴に連続的に浸漬する処理とした。また、合金化溶融亜鉛めっき処理は、溶融亜鉛めっき処理後にさらに、合金化処理温度:500℃または520℃で溶融亜鉛めっき層を合金化する処理とした。 Molten steel having the composition shown in Table 1 was melted in a converter and made into a steel material (slab: thickness 260 mm) by a continuous casting method. These steel materials were made into a hot-rolled steel strip (hot-rolled sheet) having a thickness of 4.0 mm in the hot-rolling process under the conditions shown in Table 2. Next, these hot-rolled sheets were pickled, and then cold-rolled sheets having a thickness of 1.2 mm were formed in the cold-rolling step under the conditions shown in Table 2. The obtained cold-rolled sheet was subjected to a heat treatment step, a hot dip galvanizing treatment step, or an alloying hot dip galvanizing treatment step under the conditions shown in Table 2 using a continuous annealing line or a hot dip galvanizing line. Note that the hot dip galvanizing treatment was performed by continuously immersing the steel sheet in a hot dip galvanizing bath at a plating bath temperature of 460 ° C. following the heat treatment. The alloying hot dip galvanizing treatment was a treatment of alloying the hot dip galvanized layer at an alloying treatment temperature of 500 ° C. or 520 ° C. after the hot dip galvanizing treatment.
なお、熱処理工程、溶融亜鉛めっき処理工程、合金化溶融亜鉛めっき処理工程後に、形状矯正のために、伸び率:0.1%の調質圧延を施した。
得られた鋼板(冷延鋼板、またはめっき鋼板)から、試験片を採取し、組織観察、引張試験、曲げ試験、めっき性試験を実施した。試験方法は次の通りとした。
(1)組織観察
得られた冷延鋼板およびめっき鋼板から、圧延方向に平行な断面(L断面)が観察面となるように組織観察用試験片を採取し、研磨しナイタール腐食して、光学顕微鏡(倍率:400倍)または走査型電子顕微鏡(倍率:1000倍)を用いて、組織を構成する各相の同定を行うとともに、該各相の組織分率(面積率)を、画像解析装置を用いて、測定した。なお、フェライト相については、X線回折法で(211)面のピークを求め、その半価幅を求めた。なお、使用X線はCo−Kα線(波長1.79Å)とした。
(2)引張試験
得られた冷延鋼板およびめっき鋼板から、試験方向が圧延方向となるように、J1S13号B試験片(GL:25mm)を採取し、J1S Z 2241の規定に準拠して引張試験を行い、引張特性(降伏強さYS、引張強さTS、全伸び(ElT)、局部伸び(ElL))を求めた。ここで、J1S13号B試験片(GL:25mm)とは、J1S13号B試験片(Gl:50mm)と同様の形状で長さのみを短くし、標点距離を1/2の25mmとした試験片である。
(3)曲げ試験
得られた冷延鋼板およびめっき鋼板から、曲げ加工後の稜線が圧延方向となるように、曲げ試験片を採取し、JIS Z 2248の規定に準拠して密着曲げ加工試験を実施した。試験後、試験片について、曲げ加工部の外側を目視で、割れの有無を観察し、1箇所でも割れがある場合を×、ない場合を○として、曲げ加工性を評価した。
(4)めっき性試験
得られためっき鋼板について、鋼板表面を目視で、不めっき欠陥の存在の有無を観察した。不めっきがない場合を良好(○)、不めっきが1箇所でも観察された場合を不良(×)としてめっき性を評価した。
In addition, after the heat treatment process, the hot dip galvanizing process, and the alloying hot dip galvanizing process, temper rolling with an elongation of 0.1% was performed for shape correction.
From the obtained steel plate (cold-rolled steel plate or plated steel plate), test pieces were collected and subjected to structure observation, tensile test, bending test, and plating test. The test method was as follows.
(1) Microstructure observation From the obtained cold-rolled steel sheet and plated steel sheet, a specimen for microstructural observation is collected so that a cross section parallel to the rolling direction (L cross section) becomes the observation surface, polished, and subjected to nital corrosion, optical Using a microscope (magnification: 400 times) or a scanning electron microscope (magnification: 1000 times), each phase constituting the tissue is identified, and the tissue fraction (area ratio) of each phase is image analysis apparatus And measured. In addition, about the ferrite phase, the peak of (211) plane was calculated | required with the X ray diffraction method, and the half value width was calculated | required. The X-ray used was a Co-Kα ray (wavelength 1.79Å).
(2) Tensile test J1S13 No. B test piece (GL: 25mm) was sampled from the obtained cold-rolled steel sheet and plated steel sheet so that the test direction was the rolling direction, and tensioned according to the provisions of J1S Z 2241 Tests were conducted to determine tensile properties (yield strength YS, tensile strength TS, total elongation (El T ), local elongation (El L )). Here, J1S13 No. B test piece (GL: 25mm) is the same shape as J1S13 No. B test piece (Gl: 50mm), only the length is shortened, and the gauge distance is halved to 25mm It is a piece.
(3) Bending test From the obtained cold-rolled steel sheet and plated steel sheet, a bending test piece is taken so that the ridge line after bending is in the rolling direction, and an adhesion bending test is performed in accordance with the provisions of JIS Z 2248. Carried out. After the test, for the test piece, the outside of the bent portion was visually observed to observe the presence or absence of cracks, and the bending workability was evaluated with x when there was a crack even at one place and ◯ when there was no crack.
(4) Plating property test About the obtained plated steel plate, the steel plate surface was observed visually and the presence or absence of the non-plating defect was observed. The case where there was no unplating was evaluated as good (◯), and the case where unplating was observed even at one location was evaluated as defective (x), and the plating property was evaluated.
得られた結果を表3に示す。 The obtained results are shown in Table 3.
本発明例は、いずれも、高価な合金元素を多量含有することなく、引張強さ650MPa以上の高強度と、全伸びElT6%以上で、かつ局部伸びElL6%以上の延性を有し、成形性に優れるとともに、強度−延性バランスに優れた冷延鋼板またはめっき鋼板となっている。さらに、本発明例はいずれも、密着曲げ加工という厳しい加工においても、曲げ加工部外側に、割れの発生は認められず、優れた曲げ加工性を有する冷延鋼板またはめっき鋼板となっている。一方、本発明の範囲を外れる比較例は、強度が不足するか、あるいは強度−延性バランスが劣化し、あるいはさらに、曲げ加工部外側で割れが観察される場合があり、曲げ加工性が劣化している。
Each of the examples of the present invention has high tensile strength of 650 MPa or more,
Claims (7)
C:0.0010〜0.0080%、 Si:0.4%以下、
Mn:0.1〜1.0%、 P:0.08%以下、
S:0.05%以下、 Al:0.05%以下、
N:0.0060〜0.0200%
を含み、かつNとAlを、N含有量とAl含有量との比、N/Alが0.2以上となるように含有し、さらに固溶Nを0.0040%以上含み、残部Feおよび不可避的不純物からなる組成と、フェライト相を主相とする組織とを有し、圧延方向の引張強さTS:600MPa以上で、かつ全伸びElTが6%以上、局部伸びElLが6%以上であることを特徴とする高張力冷延鋼板。 % By mass
C: 0.0010 to 0.0080%, Si: 0.4% or less,
Mn: 0.1 to 1.0%, P: 0.08% or less,
S: 0.05% or less, Al: 0.05% or less,
N: 0.0060-0.0200%
N and Al are contained so that the ratio of N content to Al content, N / Al is 0.2 or more, and further contains solid solution N 0.0040% or more, and the balance Fe and unavoidable impurities And tensile structure TS in the rolling direction: 600 MPa or more, total elongation El T is 6% or more, and local elongation El L is 6% or more. A high-tensile cold-rolled steel sheet characterized by
C:0.0010〜0.0080%、 Si:0.4%以下、
Mn:0.1〜1.0%、 P:0.08%以下、
S:0.05%以下、 Al:0.05%以下、
N:0.0060〜0.0200%
を含み、さらに、Nb:0.001〜0.050%および/またはB:0.0020%以下を含有し、かつNとAl、Nb、Bを、N含有量とAl,Nb,Bの含有量との比、N/(Al+0.3Nb+2.5B)が0.2以上となるように含有し、さらに固溶Nを0.0040%以上含み、残部Feおよび不可避的不純物からなる組成と、フェライト相を主相とする組織とを有し、圧延方向の引張強さTS:600MPa以上で、かつ全伸びElTが6%以上、局部伸びElLが6%以上であることを特徴とする高張力冷延鋼板。 % By mass
C: 0.0010 to 0.0080%, Si: 0.4% or less,
Mn: 0.1 to 1.0%, P: 0.08% or less,
S: 0.05% or less, Al: 0.05% or less,
N: 0.0060-0.0200%
Nb: 0.001 to 0.050% and / or B: 0.0020% or less, and N and Al, Nb, B, the ratio of N content to the content of Al, Nb, B, N /(Al+0.3Nb+2.5B) is contained so as to be 0.2 or more, and further contains 0.0040% or more of solute N, the composition comprising the balance Fe and inevitable impurities, and the structure having the ferrite phase as the main phase. And a tensile strength TS in the rolling direction: 600 MPa or more, a total elongation El T of 6% or more, and a local elongation El L of 6% or more.
前記鋼素材を、質量%で、
C:0.0010〜0.0080%、 Si:0.4%以下、
Mn:0.1〜1.0%、 P:0.08%以下、
S:0.05%以下、 Al:0.05%以下、
N:0.0060〜0.0200%
を含み、かつNとAlを、N含有量とAl含有量との比、N/Alが0.2以上となるように含有し、残部Feおよび不可避的不純物からなる組成の鋼素材とし、
前記熱延工程を、前記鋼素材を加熱温度:1000℃以上に加熱し、粗圧延してシートバーとし、ついで該シートバーに仕上圧延出側温度:800℃以上とする仕上圧延を施し、巻取り温度:{700−10×(Al/N)}℃以下で巻取り熱延板とする工程とし、
前記冷延工程を、前記熱延板に酸洗と、圧下率:50〜95%の冷間圧延とを施して冷延板とする工程とし、
前記熱処理工程を、前記冷延板を300〜650℃の範囲の温度に加熱したのち冷却する工程とすることを特徴とする高張力冷延鋼板の製造方法。 A hot rolling process in which the steel material is heated and rolled into a hot rolled sheet, a cold rolling process in which the hot rolled sheet is cold rolled into a cold rolled sheet, and the cold rolled sheet In the manufacturing method of the high-tensile cold-rolled steel sheet, which is sequentially subjected to a heat treatment step of heating and heat-treating to obtain a high-tensile cold-rolled steel sheet,
The steel material in mass%,
C: 0.0010 to 0.0080%, Si: 0.4% or less,
Mn: 0.1 to 1.0%, P: 0.08% or less,
S: 0.05% or less, Al: 0.05% or less,
N: 0.0060-0.0200%
And N and Al, a ratio of N content to Al content, N / Al is contained so as to be 0.2 or more, and a steel material having a composition comprising the balance Fe and inevitable impurities,
In the hot rolling step, the steel material is heated to a heating temperature of 1000 ° C. or higher, roughly rolled into a sheet bar, and then subjected to finish rolling to a finish rolling outlet temperature of 800 ° C. or higher. Taking temperature: {700-10 × (Al / N)}
The cold rolling step is a step of subjecting the hot-rolled sheet to pickling and cold rolling at a reduction ratio of 50 to 95% to obtain a cold-rolled sheet,
The method for producing a high-tensile cold-rolled steel sheet, characterized in that the heat treatment step is a step of heating the cold-rolled plate to a temperature in the range of 300 to 650 ° C and then cooling.
前記鋼素材を、質量%で、
C:0.0010〜0.0080%、 Si:0.4%以下、
Mn:0.1〜1.0%、 P:0.08%以下、
S:0.05%以下、 Al:0.05%以下、
N:0.0060〜0.0200%
を含み、さらに、Nb:0.001〜0.050%および/またはB:0.0020%以下を含有し、かつNとAl、Nb、Bを、N含有量とAl,Nb,Bの含有量との比、N/(Al+0.3Nb+2.5B)が0.2以上となるように含有し、残部Feおよび不可避的不純物からなる組成の鋼素材とし、前記熱延工程を、前記鋼素材を加熱温度:1000℃以上に加熱し、粗圧延してシートバーとし、ついで該シートバーに仕上圧延出側温度:800℃以上とする仕上圧延を施し、巻取り温度:[700−10×{(Al+0.3Nb)/N}]℃以下で巻取り熱延板とする工程とし、
前記冷延工程を、前記熱延板に酸洗と、圧下率:50〜95%の冷間圧延とを施して冷延板とする工程とし、
前記熱処理工程を、前記冷延板を300〜650℃の範囲の温度に加熱したのち冷却する工程とすることを特徴とする高張力冷延鋼板の製造方法。 A hot rolling process in which the steel material is heated and rolled into a hot rolled sheet, a cold rolling process in which the hot rolled sheet is cold rolled into a cold rolled sheet, and the cold rolled sheet In the manufacturing method of the high-tensile cold-rolled steel sheet, which is sequentially subjected to a heat treatment step of heating and heat-treating to obtain a high-tensile cold-rolled steel sheet,
The steel material in mass%,
C: 0.0010 to 0.0080%, Si: 0.4% or less,
Mn: 0.1 to 1.0%, P: 0.08% or less,
S: 0.05% or less, Al: 0.05% or less,
N: 0.0060-0.0200%
Nb: 0.001 to 0.050% and / or B: 0.0020% or less, and N and Al, Nb, B, the ratio of N content to the content of Al, Nb, B, N /(Al+0.3Nb+2.5B) is contained so as to be 0.2 or more, and the steel material is composed of the balance Fe and inevitable impurities, and the hot rolling process is performed by heating the steel material to a heating temperature of 1000 ° C. or more. Then, rough rolling into a sheet bar, and then finishing rolling to a finish rolling exit temperature of 800 ° C. or higher is performed on the sheet bar, and a winding temperature: [700-10 × {(Al + 0.3Nb) / N}] It is a process to make a rolled hot rolled sheet at a temperature below ℃,
The cold rolling step is a step of subjecting the hot-rolled sheet to pickling and cold rolling at a reduction ratio of 50 to 95% to obtain a cold-rolled sheet,
The method for producing a high-tensile cold-rolled steel sheet, characterized in that the heat treatment step is a step of heating the cold-rolled plate to a temperature in the range of 300 to 650 ° C and then cooling.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010036983A JP5397263B2 (en) | 2010-02-23 | 2010-02-23 | High tensile cold-rolled steel sheet and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010036983A JP5397263B2 (en) | 2010-02-23 | 2010-02-23 | High tensile cold-rolled steel sheet and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011174101A JP2011174101A (en) | 2011-09-08 |
JP5397263B2 true JP5397263B2 (en) | 2014-01-22 |
Family
ID=44687222
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010036983A Expired - Fee Related JP5397263B2 (en) | 2010-02-23 | 2010-02-23 | High tensile cold-rolled steel sheet and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5397263B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5919812B2 (en) * | 2011-12-27 | 2016-05-18 | Jfeスチール株式会社 | High strength thin steel sheet with excellent formability and method for producing the same |
JP6065884B2 (en) | 2013-07-31 | 2017-01-25 | Jfeスチール株式会社 | Steel sheet excellent in corrosion resistance of cut end face and manufacturing method thereof |
CN105648322B (en) * | 2016-03-15 | 2018-04-10 | 唐山钢铁集团有限责任公司 | Inexpensive ultra-deep rushes level cold-rolling galvanization steel band and preparation method thereof |
MX2022008074A (en) * | 2020-01-08 | 2022-07-27 | Nippon Steel Corp | Steel sheet and method for manufacturing same. |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4284815B2 (en) * | 1999-08-04 | 2009-06-24 | Jfeスチール株式会社 | Steel plate for high-strength can and manufacturing method thereof |
JP4524859B2 (en) * | 2000-05-26 | 2010-08-18 | Jfeスチール株式会社 | Cold-drawn steel sheet for deep drawing with excellent strain age hardening characteristics and method for producing the same |
JP4041436B2 (en) * | 2003-07-15 | 2008-01-30 | 新日本製鐵株式会社 | Strain age hardened steel sheet excellent in non-aging at room temperature and method for producing the same |
JP4853325B2 (en) * | 2007-02-23 | 2012-01-11 | Jfeスチール株式会社 | Thin wall cold-rolled steel sheet for drums and method for producing the same |
-
2010
- 2010-02-23 JP JP2010036983A patent/JP5397263B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2011174101A (en) | 2011-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5549307B2 (en) | Cold-rolled steel sheet excellent in aging and bake hardenability and method for producing the same | |
CN110177896B (en) | Steel sheet and method for producing same | |
JP5983895B2 (en) | High strength steel plate and method for producing the same, and method for producing high strength galvanized steel plate | |
JP5971434B2 (en) | High-strength hot-dip galvanized steel sheet excellent in stretch flangeability, in-plane stability and bendability of stretch flangeability, and manufacturing method thereof | |
JP4786521B2 (en) | High-strength galvanized steel sheet with excellent workability, paint bake hardenability and non-aging at room temperature, and method for producing the same | |
KR101609331B1 (en) | Alloyed hot-dip galvanized steel sheet | |
JP5151504B2 (en) | High tensile cold-rolled steel sheet and method for producing the same | |
JP5310919B2 (en) | Method for producing high-strength cold-rolled steel sheets with excellent aging resistance and seizure curability | |
JP6123957B1 (en) | High strength steel plate and manufacturing method thereof | |
JP4501699B2 (en) | High-strength steel sheet excellent in deep drawability and stretch flangeability and method for producing the same | |
JP6589903B2 (en) | Hot-dip galvanized steel sheet and manufacturing method thereof | |
JP6402830B2 (en) | Alloyed hot-dip galvanized steel sheet and method for producing the same | |
JP5531757B2 (en) | High strength steel plate | |
JP6384623B2 (en) | High strength steel plate and manufacturing method thereof | |
JP4752522B2 (en) | Manufacturing method of high strength cold-rolled steel sheet for deep drawing | |
JP5397263B2 (en) | High tensile cold-rolled steel sheet and method for producing the same | |
JP2018003114A (en) | High strength steel sheet and manufacturing method therefor | |
JP5660291B2 (en) | High strength cold-rolled thin steel sheet with excellent formability and method for producing the same | |
JP5668361B2 (en) | High tensile cold-rolled steel sheet and method for producing the same | |
JP2018003115A (en) | High strength steel sheet and manufacturing method therefor | |
JP2013133496A (en) | High strength thin steel sheet excellent in formability and method for producing the same | |
JP2005232483A (en) | High-strength steel sheet having superior deep drawability and balance of strength and ductility, and manufacturing method therefor | |
JP4148257B2 (en) | Manufacturing method of hot-dip galvanized steel sheet with excellent strain age hardening characteristics | |
JP2004115886A (en) | Hot-dip zinc-based metal coated thin steel sheet with excellent workability, and its manufacturing method | |
JP4148227B2 (en) | Hot-dip galvanized steel sheet with excellent strain age hardening characteristics and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120727 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20130712 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130924 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131007 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5397263 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |