JP5919812B2 - High strength thin steel sheet with excellent formability and method for producing the same - Google Patents

High strength thin steel sheet with excellent formability and method for producing the same Download PDF

Info

Publication number
JP5919812B2
JP5919812B2 JP2011284680A JP2011284680A JP5919812B2 JP 5919812 B2 JP5919812 B2 JP 5919812B2 JP 2011284680 A JP2011284680 A JP 2011284680A JP 2011284680 A JP2011284680 A JP 2011284680A JP 5919812 B2 JP5919812 B2 JP 5919812B2
Authority
JP
Japan
Prior art keywords
less
rolling
temperature
mass
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011284680A
Other languages
Japanese (ja)
Other versions
JP2013133496A (en
Inventor
重宏 ▲高▼城
重宏 ▲高▼城
花澤 和浩
和浩 花澤
藤田 耕一郎
耕一郎 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011284680A priority Critical patent/JP5919812B2/en
Publication of JP2013133496A publication Critical patent/JP2013133496A/en
Application granted granted Critical
Publication of JP5919812B2 publication Critical patent/JP5919812B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、建材や家電、自動車などの部材の素材に好適な、成形性(特に曲げ加工性)に優れた高強度薄鋼板およびその製造方法に関する。   The present invention relates to a high-strength thin steel sheet excellent in formability (particularly bending workability) suitable for a material of a member such as a building material, a home appliance, and an automobile, and a manufacturing method thereof.

建材や家電、自動車などの分野では、製品の軽量化等の観点から使用部材の薄肉化が進められており、これらの部材の素材として広く使用されている0.8mm厚のTS340MPa級鋼板は、0.7mm厚、或いは更に0.6mm厚の鋼板に取って代わられつつある。   In the fields of building materials, home appliances, automobiles, etc., the thickness of materials used has been reduced from the viewpoint of reducing the weight of products, etc., and the 0.8mm thick TS340MPa grade steel plate widely used as a material for these materials is 0.7 It is being replaced by steel sheets with a thickness of mm or even 0.6 mm.

しかしながら、素材となる鋼板の厚さは、部材の特性に大きな影響を及ぼす。そのため、部材に要求される所望の特性を維持しつつ部材(鋼板)の薄肉化を図ることは容易ではない。
例えば、平板部材の耐デント性Aは、部材(或いは素材となる鋼板)の板厚tおよび引張強さTSが大きくなるほど良好となり、おおむね「A∝t×t×TS」の関係式で評価される。そのため、同一鋼種規格による鋼板(部材)の薄肉化は、部材の耐デント性の低下を招き、問題となる。
However, the thickness of the steel plate used as a raw material greatly affects the characteristics of the member. Therefore, it is not easy to reduce the thickness of the member (steel plate) while maintaining the desired characteristics required for the member.
For example, the dent resistance A of a flat plate member becomes better as the plate thickness t and tensile strength TS of the member (or steel plate as a material) increases, and is generally evaluated by the relational expression of “A∝t × t × TS”. The Therefore, the thinning of the steel plate (member) according to the same steel type standard causes a decrease in the dent resistance of the member, which causes a problem.

そこで、部材の薄肉化には、高強度化が必須となる。具体的には、上記の関係式(A∝t×t×TS)に従い、現行材である「0.8mm厚、TS340MPa級」の鋼板と同等の耐デント性を維持しつつ鋼板の板厚を0.7mm、0.6mmに薄肉化する場合には、引張強さTS:440MPa、600MPaへの高強度化が必要となる。   Therefore, increasing the strength is essential for reducing the thickness of the member. Specifically, according to the above relational expression (A∝t × t × TS), while maintaining the same dent resistance as the current material “0.8mm thickness, TS340MPa class” steel sheet, the sheet thickness of the steel sheet is 0.7 When thinning to mm and 0.6 mm, it is necessary to increase the tensile strength to TS: 440 MPa and 600 MPa.

鋼板の高強度化には、大別して固溶強化増大による固溶強化や、第2相を微細かつ多量に析出させる分散強化が活用されている。しかしながら、これらの強化機構では、多くの固溶強化元素や析出強化元素を添加することが必要となり、製造コストが増大する。また、建材や家電、自動車などの部材となる鋼板には多くの場合、耐食性を確保する目的でめっき処理が施されるが、多くの元素を添加すると、めっき付着性を損なうといった問題も生じる。   In order to increase the strength of steel sheets, there are roughly used solid solution strengthening by increasing the solid solution strengthening and dispersion strengthening that precipitates the second phase finely and in large quantities. However, in these strengthening mechanisms, it is necessary to add many solid solution strengthening elements and precipitation strengthening elements, which increases the manufacturing cost. Moreover, in many cases, a steel sheet that is a member of a building material, a home appliance, an automobile, or the like is subjected to a plating treatment for the purpose of ensuring corrosion resistance. However, when many elements are added, there is a problem that the plating adhesion is impaired.

このような問題に対し、添加元素を増加させることなく、鋼板製造時、冷間圧延工程での加工硬化によって鋼板の高強度化を図る技術が確立されている。
例えば、特許文献1および特許文献2には、鋼板の製造工程の最後に冷間圧延を施すことにより、鋼板の高強度化を図る技術が提案されている。しかしながら、加工硬化させた鋼は、高強度であるものの加工性に極めて乏しい。そのため、冷間圧延後の焼鈍工程を省略したこれらの技術では、加工性に優れた鋼板を得ることが極めて困難であり、鋼板をプレス加工等によって所望の部材形状に成形する際、様々な支障をきたす。
In order to solve such a problem, there has been established a technique for increasing the strength of a steel sheet by work hardening in a cold rolling process at the time of manufacturing the steel sheet without increasing the additive elements.
For example, Patent Document 1 and Patent Document 2 propose a technique for increasing the strength of a steel sheet by performing cold rolling at the end of the manufacturing process of the steel sheet. However, work-hardened steel is very poor in workability although it is high strength. For this reason, it is extremely difficult to obtain a steel plate with excellent workability by these techniques that omits the annealing step after cold rolling, and there are various obstacles when forming a steel plate into a desired member shape by pressing or the like. Bring

これらの技術に対し、特許文献3には、各種容器用として用いられる缶用鋼板の製造方法に関し、所定の組成を有する圧延素材に熱間圧延を施して熱延板とし、ついで、該熱延板に冷間圧延を施したのち、連続焼鈍工程で、500 ℃以上でかつ再結晶率が90%未満、好ましくは60%以上90%未満となる温度範囲で均熱する技術が提案されている。そして、係る技術によると、部分再結晶状態で連続焼鈍を行うことで、加工性に優れた高強度缶用極薄冷延鋼板が得られるとされている。   In contrast to these technologies, Patent Document 3 relates to a method for producing steel sheets for cans used for various containers, and hot rolling is performed on a rolling material having a predetermined composition to form a hot rolled sheet, and then the hot rolled sheet. A technology has been proposed in which the sheet is cold-rolled and then soaked in a continuous annealing process at a temperature range of 500 ° C or higher and a recrystallization rate of less than 90%, preferably 60% or more and less than 90%. . And according to the technique concerned, it is supposed that the ultra-thin cold-rolled steel plate for high-strength cans excellent in workability will be obtained by performing continuous annealing in a partial recrystallization state.

しかしながら、部分再結晶状態は、強度のバラツキが大きくなるため、強度の安定した高強度鋼板を得ることが困難である。   However, in the partially recrystallized state, variation in strength increases, and it is difficult to obtain a high-strength steel plate with stable strength.

一方、特許文献4には、電機、建材、自動車などの分野で使用される曲げ加工性に優れた冷延鋼板の製造方法に関し、質量%で、C:0.025%以下、Si:0.1%以下、Mn:0.05〜0.5%、P:0.03%以下、S:0.02%以下、sol.Al:0.01〜0.1%を含み、残部がFeおよび不可避的不純物からなる成分組成を有する鋼を、Ar3変態点以上の仕上温度で熱間圧延後、500℃以上650℃以下の巻取温度で巻取り、酸洗後、圧延率が85%以下の範囲で、かつ冷間圧延後の鋼板の引張強度TSが390MPa以上、板厚が0.4mm以上となるように冷間圧延を行い、或いは更に冷間圧延後、回復焼鈍を行う技術が提案されている。 On the other hand, Patent Document 4 relates to a method for producing a cold-rolled steel sheet excellent in bending workability used in the fields of electric machinery, building materials, automobiles, etc., in mass%, C: 0.025% or less, Si: 0.1% or less, Mn: 0.05 to 0.5%, P: 0.03% or less, S: 0.02% or less, sol.Al: 0.01 to 0.1%, steel having a component composition consisting of Fe and inevitable impurities, the Ar 3 transformation point After hot rolling at the above finishing temperature, winding at a coiling temperature of 500 ° C. or more and 650 ° C. or less, pickling, rolling rate within the range of 85% or less, and tensile strength TS of the steel sheet after cold rolling is A technique has been proposed in which cold rolling is performed so that the sheet thickness is 390 MPa or more and the plate thickness is 0.4 mm or more, or recovery annealing is further performed after cold rolling.

そして、特許文献4で提案された技術によると、冷間加工の圧延率(圧下率ともいう)を調整して加工硬化により高強度化を図り、続く回復焼鈍を行い曲げ加工を改善することで、引張強度TSが390MPa以上の高強度化とポンチ先端曲率が2R以下の厳しい90度曲げ加工を可能とする優れた曲げ加工性が両立できるとされている。また、特許文献4で提案された技術では、鋼板をフェライト圧延組織とし、鋼のC含有量を0.0040%以下に抑制してセメンタイトの析出量を抑制することで、密着曲げ加工を施すことも可能になるとされている。   And according to the technique proposed in Patent Document 4, by adjusting the rolling rate (also referred to as the reduction rate) of cold working to increase the strength by work hardening, the subsequent recovery annealing is performed to improve the bending process. It is said that both high strength with a tensile strength TS of 390 MPa and higher and excellent bending workability that enables severe 90 degree bending with a punch tip curvature of 2R or less can be achieved. In the technique proposed in Patent Document 4, it is possible to perform adhesive bending by making the steel sheet into a ferrite rolled structure and suppressing the C content of the steel to 0.0040% or less and suppressing the precipitation amount of cementite. It is supposed to be.

特開平8−176674号公報JP-A-8-176664 特開2000−87184号公報JP 2000-87184 A 特開2001−107187号公報JP 2001-107187 A 特開2010−229545号公報JP 2010-229545 A

しかしながら、特許文献4で提案された技術では、得られた鋼板に90度曲げ加工部や密着曲げ加工部を施し、その加工部を観察して肌荒れの有無を確認すると、鋼板の板厚が0.8mmである場合には肌荒れが確認されないものの、冷間加工の圧延率(圧下率ともいう)を75%超として鋼板の板厚を0.7mm以下に薄肉化すると、肌荒れが確認される場合があった。そのため、意匠性が要求される部材への適用は制限され、汎用性等の面で問題が見られた。更に、特許文献4で提案された技術、すなわち冷間加工の圧下率を調整して鋼板の高強度化を図る技術では、強度を確保する目的で冷間加工の圧下率を70%超と高めに設定して製造した鋼板に密着曲げ加工を施すと、割れ発生には至らないものの、加工部の板厚が極端に薄肉化する場合もあった。加工部の板厚が大幅に減少すると、該加工部の剛性が極度に低下する。そのため、所定の強度が要求される部材にこのような鋼板を適用すると、部材の使用時に割れ等を招来する問題もあった。また、曲げた部分を平坦に戻すときに破断する問題も見られた。   However, in the technique proposed in Patent Document 4, when the obtained steel plate is subjected to a 90-degree bending portion or a contact bending portion and the presence or absence of rough skin is confirmed by observing the processed portion, the thickness of the steel plate is 0.8. In the case of mm, rough surface is not confirmed, but roughening may be confirmed if the rolling rate of cold working (also referred to as the rolling reduction) exceeds 75% and the sheet thickness is reduced to 0.7 mm or less. It was. Therefore, application to members that require designability is limited, and problems are seen in terms of versatility. Furthermore, in the technique proposed in Patent Document 4, that is, a technique for adjusting the rolling reduction ratio of the cold working to increase the strength of the steel sheet, the rolling reduction ratio of the cold working is increased to over 70% for the purpose of ensuring the strength. However, when the steel sheet produced by setting to be subjected to close contact bending, cracking does not occur, but the thickness of the processed part may become extremely thin. When the plate thickness of the processed portion is significantly reduced, the rigidity of the processed portion is extremely lowered. Therefore, when such a steel plate is applied to a member that requires a predetermined strength, there is a problem that a crack or the like is caused when the member is used. There was also a problem of breaking when the bent part was returned to the flat state.

以上のように、従来技術では、鋼板を薄肉化するに際し、密着曲げ等の厳しい加工条件に耐え得る加工性を維持しつつ高強度化を図ることが極めて困難であった。そのため、従来技術では、優れた耐デント性が要求され且つ厳しい加工条件で成形される複雑形状部材、例えば、建材、家電、自動車などの部材を薄肉化する場合に様々な支障をきたし、改善の余地が見られた。   As described above, in the prior art, when thinning a steel sheet, it has been extremely difficult to achieve high strength while maintaining workability that can withstand severe processing conditions such as tight bending. Therefore, in the prior art, excellent dent resistance is required and complex shaped members that are molded under severe processing conditions, such as building materials, home appliances, automobiles, etc., have various troubles and are improved. There was room for it.

本発明は、上記した従来技術が抱える問題を有利に解決し、建材や家電、自動車などの部材の素材に好適な、成形性(特に曲げ加工性)に優れた高強度薄鋼板、具体的には、引張強さTS:400MPa以上、より好ましくは500MPa以上であり、密着曲げ加工を施しても曲げ加工部に割れや極端な板厚の減少、肌荒れが生じない、曲げ加工性に優れた高強度薄鋼板およびその製造方法を提供することを目的とする。   The present invention advantageously solves the above-mentioned problems of the prior art, and is suitable for a material of a member such as a building material, a home appliance, and an automobile, and is a high strength thin steel sheet excellent in formability (particularly bending workability), specifically The tensile strength TS is 400MPa or more, more preferably 500MPa or more. Even if it is subjected to close contact bending, the bending part is not cracked, the plate thickness is reduced extremely, and the skin is not rough. It aims at providing a strength thin steel plate and its manufacturing method.

上記課題を解決すべく、本発明者らは、フェライト組織を有する薄鋼板の強度および曲げ加工性(特に密着曲げ加工部の耐割れ性や表面性状)に及ぼす各種要因について鋭意検討した。
まず、本発明者らは、加工硬化を活用することにより得られた引張強さTS:500MPa級の薄鋼板に密着曲げ加工を施し、該薄鋼板の成形性について調査した。そして、加工硬化量が大きいほど、密着曲げ加工時に曲げ加工部が肌荒れや割れ、或いは、割れには至らないものの曲げ中央部の板厚が大幅に減少する傾向があることを確認した。また、上記薄鋼板に焼鈍処理を施すことにより、密着曲げ加工部の肌荒れや割れ発生、或いは曲げ中央部における板厚減少が大幅に抑制されることを確認した。
In order to solve the above-described problems, the present inventors diligently studied various factors affecting the strength and bending workability (particularly, crack resistance and surface properties of the closely bent portion) of a thin steel sheet having a ferrite structure.
First, the present inventors performed adhesion bending processing on a thin steel plate having a tensile strength TS: 500 MPa class obtained by utilizing work hardening, and investigated the formability of the thin steel plate. And it was confirmed that as the work hardening amount is larger, the bent portion has a tendency to significantly reduce the thickness of the bent central portion although it does not cause rough skin, cracks, or cracks during close contact bending. In addition, it was confirmed that by subjecting the thin steel plate to an annealing treatment, surface roughness and cracking in the contact bending processed portion, or a reduction in plate thickness at the center of bending was significantly suppressed.

そこで、本発明者らは、各種条件の冷間加工を施すことによりフェライト組織を有する鋼板(板厚:0.6mmの薄鋼板)とし、これらの鋼板から曲げ試験片を採取し、該試験片に密着曲げ加工(曲げ方向:C方向)を施し、密着曲げ加工部を観察して肌荒れ度や割れの有無を確認するとともに、曲げ中央部における板厚減少率を測定した。また、上記冷間加工に続き各種条件の焼鈍を施し、冷間加工ままの鋼板と同様に密着曲げ加工(曲げ方向:C方向)を施し、密着曲げ加工部を観察して肌荒れ度や割れの有無を確認するとともに、曲げ中央部における板厚減少率を測定した。ここで、C方向とは、鋼板の圧延方向に直交する方向である。   Therefore, the present inventors made a steel sheet having a ferrite structure (sheet thickness: 0.6 mm thin steel sheet) by performing cold working under various conditions, collected bending test pieces from these steel sheets, Adhesion bending processing (bending direction: C direction) was performed, and the adhesion bending processed portion was observed to confirm the degree of roughness of the skin and the presence or absence of cracks, and the thickness reduction rate at the center of bending was measured. In addition, after the cold working, annealing under various conditions is performed, and the adhesive bending process (bending direction: C direction) is performed in the same manner as the cold-worked steel sheet, and the adhesion bending process part is observed to observe the degree of rough skin and cracks. The presence or absence was confirmed, and the thickness reduction rate at the center of bending was measured. Here, the C direction is a direction orthogonal to the rolling direction of the steel sheet.

なお、肌荒れ度は、図5に示すように、密着曲げ加工後、試験片の幅方向中央部断面(C方向断面)を観察し、密着曲げ加工後の曲げ外周部に生じた凹凸の凹部(図5中のA点)を直線で結び、該直線と凸部(図5中のB点)との最大距離L(図5中のL1,L2,L3・・・の最大値)で定量化したものとする。
また、板厚減少率は、図6に示すように、密着曲げ加工後、試験片の幅方向中央部断面(C方向断面)を観察し、曲げ中央部における板厚(図6中のt)を測定し、(加工前の板厚t0−密着曲げ加工後の曲げ中央部の板厚t)/(加工前の板厚t0)により得られた値とする。
In addition, as shown in FIG. 5, the roughness degree of the rough surface is obtained by observing the cross section (C direction cross section) in the width direction of the test piece after the contact bending process, The point A in FIG. 5 is connected with a straight line, and the maximum distance L between the straight line and the convex portion (point B in FIG. 5) (the maximum value of L 1 , L 2 , L 3 ... In FIG. 5). Quantified with.
Further, as shown in FIG. 6, the plate thickness reduction rate was measured by observing the cross section (C direction cross section) in the width direction of the test piece after the contact bending process, and the thickness at the bending center section (t in FIG. 6). It was measured, - the value obtained by (the thickness t 0 of the unprocessed plate thickness t of the bent central portion of the adhesion after bending) / (plate thickness t 0 of the previous processing).

その結果、冷間加工ままの鋼板では、何れも板厚減少率が0.10(10%)以上であり、密着曲げ加工部において割れが発生し易い状態となっていることが確認された。また、冷間加工ままの鋼板は何れも、密着曲げ加工部の肌荒れ度が5μm以上であった。更に、冷間加工に続き焼鈍を施した鋼板であっても、冷間加工の圧延率(加工硬化量)が高くなるにつれて、密着曲げ加工部において割れや肌荒れが発生し易くなる傾向が見られることが明らかになった。これらの鋼板に対し、冷間加工の圧延率(加工硬化量)を低減するとともに、冷間加工に続き焼鈍を施した鋼板では、何れも板厚減少率が0.05(5%)以下の値を示し、割れも発生せず、良好な密着曲げ加工性を示すことが確認された。また、これらの鋼板は何れも、密着曲げ加工部の肌荒れ度が3μm以下であった。   As a result, it was confirmed that all of the cold-worked steel sheets had a plate thickness reduction rate of 0.10 (10%) or more, and were in a state in which cracks were likely to occur in the contact bending process portion. Moreover, in all the steel sheets as cold-worked, the roughness of the skin of the tightly bent portion was 5 μm or more. Furthermore, even steel sheets that have been annealed following cold working tend to be more prone to cracking and roughening in the tightly bent parts as the rolling rate (work hardening amount) of cold working increases. It became clear. For these steel sheets, the reduction rate of cold working (work hardening amount) is reduced, and the thickness reduction rate of all steel sheets that have been annealed following cold working is 0.05 (5%) or less. It was confirmed that cracks did not occur and good adhesion bending workability was exhibited. In addition, in each of these steel plates, the roughness degree of the tightly bent portion was 3 μm or less.

以上のように、本発明者らは、板厚を0.6mmにまで低減した薄鋼板を製造するに際し、冷間加工の圧延率(加工硬化量)を小さくするとともに、適正温度での焼鈍処理を施すことで、密着曲げ加工のような厳しい加工にも耐え得る優れた曲げ加工性を有する薄鋼板が得られることを突き止めた。しかしながら、上記の如く冷間加工の圧延率(加工硬化量)を低減した薄鋼板では、所望の強度が得られないという問題が残された。   As described above, the inventors of the present invention reduced the cold rolling reduction rate (work hardening amount) and produced an annealing process at an appropriate temperature when manufacturing a thin steel sheet having a sheet thickness reduced to 0.6 mm. As a result, it was found that a thin steel sheet having excellent bending workability that can withstand severe processing such as contact bending is obtained. However, there remains a problem that a desired strength cannot be obtained with a thin steel sheet having a reduced cold work rolling rate (work hardening amount) as described above.

そこで、本発明者らは、加工硬化量(冷間加工の圧延率)を極力低減しつつ薄鋼板の高強度化を図る手段について模索し、安価な元素であるNを固溶強化元素として活用することに想到した。そして、Nを固溶強化元素として活用した固溶強化機構によると、密着曲げ加工時の板厚減少率や肌荒れ度が比較的低い値に維持され、密着曲げ加工性を損なうことなく鋼板を高強度化することが可能であることを知見した。   Therefore, the present inventors sought a means to increase the strength of the thin steel sheet while reducing the work hardening amount (rolling rate of cold working) as much as possible, and utilized N, which is an inexpensive element, as a solid solution strengthening element. I came up with the idea. According to the solid solution strengthening mechanism using N as a solid solution strengthening element, the plate thickness reduction rate and skin roughness during close contact bending are maintained at a relatively low value, and the steel plate can be made high without impairing close contact bending workability. It was found that it was possible to increase the strength.

また、先述のとおり、薄鋼板を製造するに際し、冷間加工に続き適正温度で焼鈍処理を施すことで優れた曲げ加工性を有する薄鋼板が得られるが、焼鈍処理に伴う薄鋼板の強度低下は避けられない。そこで、本発明者らは、加工硬化による強化機構とともにNを固溶強化元素とした固溶強化機構を活用したフェライト組織を有する薄鋼板について、所望の引張強さTS(400MPa以上)を確保するための焼鈍条件について検討した。その結果、薄鋼板を製造するに際し、鋼組成を所定の組成に規定したうえ、焼鈍温度AT(℃)を下記の式を満足するように設定することにより、焼鈍後の薄鋼板において400MPa以上の引張強さTSが維持されることを知見した。

AT(℃)≦(400−152−7.3×CR−155×[N]×100/(3.8×Nb−0.26)
(CR:冷間圧延工程の圧延率(%))
(Nb:Nbの含有量(質量%)。但し、鋼がNbを含有しない場合はNb=0。)
([N]:焼鈍処理工程前の冷延板に含まれる固溶Nの含有量(質量%))
In addition, as described above, when manufacturing a thin steel sheet, a thin steel sheet having excellent bending workability is obtained by performing an annealing treatment at an appropriate temperature following cold working, but the strength of the thin steel sheet is reduced due to the annealing treatment. Is inevitable. Therefore, the present inventors secure a desired tensile strength TS (400 MPa or more) for a thin steel sheet having a ferrite structure utilizing a solid solution strengthening mechanism using N as a solid solution strengthening element together with a strengthening mechanism by work hardening. Annealing conditions were investigated. As a result, when manufacturing a thin steel sheet, the steel composition is prescribed to a predetermined composition, and the annealing temperature AT (° C.) is set so as to satisfy the following formula, so that the annealed thin steel sheet has a pressure of 400 MPa or more. It was found that the tensile strength TS was maintained.
Record
AT (℃) ≦ (400−152−7.3 × CR−155 × [N] × 100 / (3.8 × Nb−0.26)
(CR: Rolling ratio in cold rolling process (%))
(Nb: Nb content (mass%). However, Nb = 0 when steel does not contain Nb.)
([N]: content of solid solution N contained in the cold-rolled sheet before the annealing process (mass%))

上記の式を導出するに至った実験、すなわち、冷間加工の圧延率CR(%)、固溶N量(質量%)、Nb含有量(質量%)および焼鈍温度AT(℃)の各々が、焼鈍処理後の薄鋼板の引張強さTS(MPa)に及ぼす影響を調査するための実験について以下に述べる。   Experiments leading to the above formula, that is, each of the cold work rolling rate CR (%), solute N content (mass%), Nb content (mass%) and annealing temperature AT (° C.) An experiment for investigating the influence on the tensile strength TS (MPa) of a thin steel sheet after annealing is described below.

C:0.003%含有鋼に熱間圧延を施し熱延板とし、該熱延板に種々の圧延率(40〜70%)で冷間圧延を施してフェライト組織を有する冷延板とした(板厚:0.6mm)。得られた冷延板から、圧延方向を引張方向とするJIS 5号引張試験片を採取し、JIS Z 2241の規定に準拠した引張試験を行い、圧延方向引張強さTS0を測定した。測定結果を図1に示す。図1は、圧延方向引張強さTS0に及ぼす冷間圧延の圧延率の影響を示し、圧延率CRが1%上昇するにつれて、冷延板の圧延方向引張強さTS0が7.3MPa高くなることが分かる。 C: Hot rolled to a steel containing 0.003% to obtain a hot rolled sheet, and the hot rolled sheet was subjected to cold rolling at various rolling rates (40 to 70%) to obtain a cold rolled sheet having a ferrite structure (plate) Thickness: 0.6mm). From the obtained cold-rolled sheet, a JIS No. 5 tensile test piece with the rolling direction as the tensile direction was sampled and subjected to a tensile test based on the provisions of JIS Z 2241 to measure the tensile strength TS 0 in the rolling direction. The measurement results are shown in FIG. Figure 1 shows the effect of rolling ratio of cold rolling on the rolling direction tensile strength TS 0, as rolling ratio CR is increased 1% rolling direction tensile strength TS 0 of the cold-rolled sheet is increased 7.3MPa I understand that.

また、上記で得られた冷延板に、種々の焼鈍温度AT(℃)で焼鈍処理を施し(焼鈍時間:100s)、焼鈍板とした。次いで、得られた焼鈍板から、圧延方向を引張方向とするJIS 5号引張試験片を採取し、JIS Z 2241の規定に準拠した引張試験を行い、圧延方向引張強さTSを測定した。そして、これらの測定結果から、焼鈍処理中の回復率ρ(焼鈍温度の高温化に伴う焼鈍板強度減少量(MPa/℃))を算出し、先に求めた未焼鈍冷延板の圧延方向引張強さTS0と回復率ρとの関係を求めた。図2は、回復率ρ(MPa/℃)に及ぼす未焼鈍冷延板の圧延方向引張強さTS0の影響を示し、未焼鈍冷延板の圧延方向引張強さTS0が100MPa上昇するにつれて、回復率ρが0.08MPa/℃上昇することが分かる。 Moreover, the cold-rolled sheet obtained above was subjected to annealing treatment at various annealing temperatures AT (° C.) (annealing time: 100 s) to obtain an annealed sheet. Next, a JIS No. 5 tensile test piece with the rolling direction as the tensile direction was taken from the obtained annealed plate, a tensile test based on the provisions of JIS Z 2241 was performed, and the tensile strength TS in the rolling direction was measured. And from these measurement results, the recovery rate ρ during annealing treatment (reduced amount of strength of annealed sheet (MPa / ° C) with increasing annealing temperature) was calculated, and the rolling direction of the unannealed cold rolled sheet previously obtained The relationship between the tensile strength TS 0 and the recovery rate ρ was determined. 2, the recovery rate ρ (MPa / ℃) to exert shows the effect of rolling direction tensile strength TS 0 of the unannealed cold-rolled sheet, as the rolling direction tensile strength TS 0 of the unannealed cold-rolled sheet is increased 100MPa It can be seen that the recovery rate ρ increases by 0.08 MPa / ° C.

また、上記と同様のC:0.003%含有鋼に熱間圧延を施し熱延板(板厚:1.5mm)とし、該熱延板に60%の圧延率で冷間圧延を施し、種々の固溶N含有量(質量%)のフェライト組織を有する冷延板(板厚:0.6mm)とした。なお、冷延板に含まれる固溶N量(質量%)は、熱間圧延条件(圧延温度、巻取り温度等)を変更することにより調整した。また、得られた冷延板を様々な焼鈍温度(450〜500℃)で焼鈍した焼鈍板について、上記と同様にして圧延方向引張強さTSを測定した。また、冷延板と焼鈍板の固溶N含有量を測定し、焼鈍前後で固溶N含有量に変化がないことが判った。TSの測定結果を図3に示す。図3は、焼鈍板の圧延方向引張強さTSに及ぼす焼鈍板(冷延板)の固溶N量(質量%)の影響を示し、固溶N量が0.01質量%上昇するにつれて、焼鈍板の圧延方向の引張強さTSが155MPa高くなることが分かる。   Also, hot rolled steel (sheet thickness: 1.5 mm) was hot rolled on steel containing C: 0.003% similar to the above, and the hot rolled sheet was cold rolled at a rolling rate of 60% to obtain various solids. A cold-rolled sheet (thickness: 0.6 mm) having a ferrite structure with a dissolved N content (mass%) was used. In addition, the amount of solid solution N (mass%) contained in a cold-rolled sheet was adjusted by changing hot rolling conditions (rolling temperature, winding temperature, etc.). Further, the tensile strength TS in the rolling direction was measured in the same manner as described above for the annealed plates obtained by annealing the obtained cold-rolled plates at various annealing temperatures (450 to 500 ° C.). Moreover, the solid solution N content of the cold rolled sheet and the annealed sheet was measured, and it was found that there was no change in the solid solution N content before and after annealing. The measurement result of TS is shown in FIG. FIG. 3 shows the effect of the solute N amount (mass%) of the annealed sheet (cold rolled sheet) on the tensile strength TS in the rolling direction of the annealed sheet, and the annealed sheet increases as the solute N amount increases by 0.01 mass%. It can be seen that the tensile strength TS in the rolling direction increases by 155 MPa.

また、前記したC:0.003%含有鋼に0〜0.035質量%のNbを加えて種々のNb含有量の鋼を用意し、これらの鋼に熱間圧延を施し熱延板とし、該熱延板に冷間圧延(圧延率:60%)を施してフェライト組織を有する冷延板とした(板厚:0.6mm)。次いで、得られた各種の冷延板に、種々の焼鈍温度で焼鈍処理を施し(焼鈍時間:100s)、焼鈍板とした。得られた焼鈍板から、圧延方向を引張方向とするJIS 5号引張試験片を採取し、JIS Z 2241の規定に準拠した引張試験を行い、圧延方向引張強さTSを測定した。そして、これらの測定結果から、焼鈍処理中の回復率ρ(焼鈍温度の高温化に伴う焼鈍板強度減少量(MPa/℃))を求めた。図4は、回復率ρ(MPa/℃)に及ぼす鋼板Nb含有量(質量%)の影響を示し、鋼板に含まれるNb含有量が0.01質量%増加するにつれて、回復率ρが0.038MPa/℃減少することが分かる。   Further, steels with various Nb contents are prepared by adding 0 to 0.035% by mass of Nb to the above-mentioned C: 0.003% steel, and these steels are hot-rolled to form hot-rolled sheets. The steel sheet was cold-rolled (rolling rate: 60%) to obtain a cold-rolled sheet having a ferrite structure (thickness: 0.6 mm). Subsequently, the various cold-rolled plates obtained were subjected to annealing treatment at various annealing temperatures (annealing time: 100 s) to obtain annealed plates. From the obtained annealed plate, a JIS No. 5 tensile test piece with the rolling direction as the tensile direction was sampled and subjected to a tensile test in accordance with the provisions of JIS Z 2241 to measure the tensile strength TS in the rolling direction. And from these measurement results, the recovery rate ρ during annealing (the amount of decrease in the strength of the annealed plate (MPa / ° C.) accompanying the increase in the annealing temperature) was determined. FIG. 4 shows the influence of the steel plate Nb content (mass%) on the recovery rate ρ (MPa / ° C.). As the Nb content contained in the steel plate increases by 0.01 mass%, the recovery rate ρ becomes 0.038 MPa / ° C. It turns out that it decreases.

図1〜4から明らかであるように、焼鈍板の圧延方向引張強さTS(MPa)と、冷間圧延の圧延率(%)、焼鈍板(冷延板)の固溶N含有量(質量%)、鋼中のNb含有量(質量%)、焼鈍温度AT(℃)との間には比例関係が認められ、焼鈍板の圧延方向引張強さTS(MPa)は以下の式で表すことができる。
TS=7.3(MPa)×CR+155(MPa)×[N]×100+(3.8×Nb−0.26)×AT+Const.
なお、上記の式において、[N]は焼鈍板(冷延板)の固溶N含有量(質量%)、Nbは鋼中のNb含有量(質量%)、Const.は定数である。
1-4, the rolling direction tensile strength TS (MPa) of the annealed sheet, the rolling rate (%) of the cold rolling, and the solid solution N content (mass of the annealed sheet (cold rolled sheet)) %), Nb content (% by mass) in steel, and annealing temperature AT (° C), a proportional relationship is recognized, and the rolling direction tensile strength TS (MPa) of the annealed sheet is expressed by the following formula: Can do.
TS = 7.3 (MPa) × CR + 155 (MPa) × [N] × 100 + (3.8 × Nb−0.26) × AT + Const.
In the above formula, [N] is the solid solution N content (mass%) of the annealed sheet (cold rolled sheet), Nb is the Nb content (mass%) in the steel, and Const. Is a constant.

また、以上の実験により得られた各データ(TS,CR,[N],Nb,AT)を上記の式に代入してデータ毎に定数(Const.)を算出し、これらの平均値を定数(Const.=152(MPa))として用い、更に上記の式を変形すると、以下に示すように焼鈍温度AT(℃)を表す式が得られる。
AT(℃)=(TS−152−7.3×CR−155×[N]×100)/(3.8×Nb−0.26) … (1A)
したがって、焼鈍板の圧延方向引張強さTSを400MPa以上とする、すなわち焼鈍板のTSの下限値(TSL)を400MPaとする場合には、以下の式を満足するような焼鈍温度AT(℃)で焼鈍すればよいことになる。
AT(℃)≦(400−152−7.3×CR−155×[N]×100)/(3.8×Nb−0.26)
Also, by substituting each data (TS, CR, [N], Nb, AT) obtained by the above experiment into the above formula, a constant (Const.) Is calculated for each data, and the average value of these is constant. When used as (Const. = 152 (MPa)) and further transforming the above equation, an equation representing the annealing temperature AT (° C.) is obtained as shown below.
AT (° C) = (TS−152−7.3 × CR−155 × [N] × 100) / (3.8 × Nb−0.26)… (1A)
Therefore, when the tensile strength TS in the rolling direction of the annealed sheet is set to 400 MPa or more, that is, when the lower limit value (TS L ) of the annealed sheet is set to 400 MPa, the annealing temperature AT (° C. that satisfies the following formula: ) To be annealed.
AT (° C) ≦ (400−152−7.3 × CR−155 × [N] × 100) / (3.8 × Nb−0.26)

更に、本発明者らは、以上の実験により得られた薄鋼板のうち圧延方向引張強さTSが400MPa以上である薄鋼板の組織観察(密着曲げ加工前の組織)を行った。次いで、密着曲げ加工(曲げ方向:C方向)を施したのち、肌荒れ度および板厚減少率を測定した。その結果、優れた密着曲げ加工性(肌荒れ度: 3μm以下、板厚減少率:0.05以下)を示した薄鋼板は何れも、フェライト相を主相とした回復組織を有していることが明らかとなった。   Furthermore, the present inventors performed the structure observation (structure before the adhesive bending process) of the thin steel sheet having a rolling direction tensile strength TS of 400 MPa or more among the thin steel sheets obtained by the above experiment. Subsequently, after performing close contact bending (bending direction: C direction), the degree of skin roughness and the plate thickness reduction rate were measured. As a result, it is clear that all the thin steel sheets that showed excellent adhesion bending workability (skin roughness: 3 μm or less, sheet thickness reduction rate: 0.05 or less) have a recovery structure mainly composed of a ferrite phase. It became.

本発明は上記の知見に基づき完成されたものであり、その要旨は次のとおりである。
[1] 質量%で、
C :0.0005%以上0.0080%以下、 Si:0.4%以下、
Mn:0.1%以上0.5%以下、 P :0.08%以下、
S :0.04%以下、 sol.Al:0.05%以下、
N :0.0060%以上0.0200%以下
を、Nおよびsol.Alが下記(1)式を満足するように含有し、且つ固溶N:0.0035%以上であり、残部がFeおよび不可避的不純物からなる組成と、フェライト相を主相とした冷間圧延回復組織を有し、圧延方向の引張強さが400MPa以上600MPa未満、板厚:0.7mm以下であることを特徴とする密着曲げ加工性および成形性に優れた高強度薄鋼板。

N/sol.Al ≧ 0.2 … (1)
(N、sol.Al:各元素の含有量(質量%))
The present invention has been completed based on the above findings, and the gist thereof is as follows.
[1] By mass%
C: 0.0005% or more and 0.0080% or less, Si: 0.4% or less,
Mn: 0.1% to 0.5%, P: 0.08% or less,
S: 0.04% or less, sol.Al: 0.05% or less,
N: 0.0060% or more and 0.0200% or less containing N and sol.Al so that the following formula (1) is satisfied, and solid solution N: 0.0035% or more, with the balance being Fe and inevitable impurities And a cold rolling recovery structure with a ferrite phase as the main phase, with a tensile strength in the rolling direction of 400 MPa or more and less than 600 MPa , and a plate thickness of 0.7 mm or less. High strength thin steel sheet with excellent properties.
Record
N / sol.Al ≧ 0.2… (1)
(N, sol.Al: content of each element (% by mass))

[2] [1]において、前記組成に加えてさらに、質量%で、Ti、Bのうちの1種または2種を下記(2)式および(3)式を満足するように含有することを特徴とする密着曲げ加工性および成形性に優れた高強度薄鋼板。

0.0060 ≦ N−(Ti/48+B/11)×14 … (2)
{N−(Ti/48+B/11)×14}/sol.Al ≧ 0.2 … (3)
(N、sol.Al、Ti、B:各元素の含有量(質量%))
[2] In [1], in addition to the above-mentioned composition, it further contains, by mass%, one or two of Ti and B so as to satisfy the following formulas (2) and (3): A high-strength thin steel sheet with excellent adhesion bending workability and formability.
Record
0.0060 ≦ N− (Ti / 48 + B / 11) × 14… (2)
{N− (Ti / 48 + B / 11) × 14} /sol.Al≧0.2… (3)
(N, sol.Al, Ti, B: content of each element (mass%))

[3] [1]または[2]において、前記組成に加えてさらに、質量%でNb:0.05%未満を、下記(4)式を満足するように含有することを特徴とする密着曲げ加工性および成形性に優れた高強度薄鋼板。

{N−(Ti/48+B/11)×14}/Nb ≧ 0.5 … (4)
(N、Ti、B、Nb:各元素の含有量(質量%))
[3] In the above [1] or [2], in addition to the above composition, Nb: less than 0.05% by mass% is contained so as to satisfy the following formula (4): And high strength thin steel sheet with excellent formability.
Record
{N− (Ti / 48 + B / 11) × 14} / Nb ≧ 0.5… (4)
(N, Ti, B, Nb: content of each element (mass%))

[4] 鋼素材を加熱し、粗圧延と仕上げ圧延からなる熱間圧延を施し、仕上げ圧延終了後、冷却し、巻き取り、熱延板とする熱間圧延工程と、前記熱延板に冷間圧延を施し冷延板とする冷間圧延工程と、さらに前記冷延板を所定の温度まで加熱し、該加熱温度に一定時間保持し、その後冷却する焼鈍処理を施す焼鈍処理工程とを順次施し薄鋼板とするにあたり、
前記鋼素材を、質量%で、
C :0.0005%以上0.0080%以下、 Si:0.4%以下、
Mn:0.1%以上0.5%以下、 P :0.08%以下、
S :0.04%以下、 sol.Al:0.05%以下、
N :0.0060%以上0.0200%以下
を、Nおよびsol.Alが下記(1)式を満足するように含有し、残部がFeおよび不可避的不純物からなる組成とし、前記熱間圧延工程の加熱温度を1000℃以上とし、前記仕上げ圧延の仕上げ圧延終了温度を850℃以上とし、前記巻き取りの巻取り温度CTを下記(5)式を満足する温度とし、前記冷間圧延工程の圧延率CRを40%以上65%以下とし、前記焼鈍処理工程の加熱温度ATを450℃以上620℃以下であり且つ下記(6)式を満足する温度とし、前記焼鈍処理工程の加熱温度での保持時間を5s以上600s以下とし、前記薄鋼板を圧延方向の引張強さが400MPa以上600MPa未満で、板厚:0.7mm以下である高強度薄鋼板とすることを特徴とする密着曲げ加工性および成形性に優れた高強度薄鋼板の製造方法。

N/sol.Al ≧ 0.2 … (1)
CT(℃)≦700−10×(sol.Al/N) … (5)
(CT:熱間圧延工程の巻取り温度(℃))
(N、sol.Al:各元素の含有量(質量%))
AT(℃)≦(TSL−152−7.3×CR−155×[N]×100)/(−0.26) … (6)
(AT:焼鈍処理工程の加熱温度(℃))
(TSL:目標とする薄鋼板引張強さの下限値(MPa)、TSL≧400MPa)
(CR:冷間圧延工程の圧延率(%))
([N]:焼鈍処理工程前の冷延板に含まれる固溶Nの含有量(質量%))
[4] A steel material is heated, subjected to hot rolling consisting of rough rolling and finish rolling, and after finishing rolling is cooled, wound, and hot rolled into a hot rolled sheet, and the hot rolled sheet is cooled. A cold rolling step for performing cold rolling to form a cold rolled sheet, and an annealing treatment step for further heating the cold rolled plate to a predetermined temperature, holding the heated temperature at a predetermined time, and thereafter performing an annealing treatment for cooling. In making thin steel plate,
The steel material in mass%,
C: 0.0005% or more and 0.0080% or less, Si: 0.4% or less,
Mn: 0.1% to 0.5%, P: 0.08% or less,
S: 0.04% or less, sol.Al: 0.05% or less,
N: 0.0060% or more and 0.0200% or less containing N and sol.Al so that the following formula (1) is satisfied, with the balance being composed of Fe and inevitable impurities, and the heating temperature in the hot rolling step is 1000 ° C or higher, the finish rolling finish temperature of the finish rolling is 850 ° C or higher, the winding temperature CT of the winding is set to a temperature that satisfies the following formula (5), and the rolling rate CR of the cold rolling step is 40 % To 65 %, the heating temperature AT in the annealing treatment step is 450 ° C. to 620 ° C. and satisfies the following formula (6), and the holding time at the heating temperature in the annealing treatment step is 5 seconds or more. It has excellent adhesive bending workability and formability, characterized in that it is 600 s or less, and the steel sheet is a high strength steel sheet having a tensile strength in the rolling direction of 400 MPa or more and less than 600 MPa and a thickness of 0.7 mm or less. A method for producing high strength thin steel sheets.
Record
N / sol.Al ≧ 0.2… (1)
CT (℃) ≦ 700−10 × (sol.Al/N)… (5)
(CT: coiling temperature in hot rolling process (℃))
(N, sol.Al: content of each element (% by mass))
AT (° C) ≤ (TS L −152−7.3 × CR−155 × [N] × 100) / (− 0.26)… (6)
(AT: Heating temperature in annealing process (℃))
(TS L : Lower limit of target tensile strength of thin steel sheet (MPa), TS L ≧ 400MPa)
(CR: Rolling ratio in cold rolling process (%))
([N]: content of solid solution N contained in the cold-rolled sheet before the annealing process (mass%))

[5] [4]において、前記組成に加えてさらに、質量%で、Ti、Bのうちの1種または2種を下記(2)式および(3)式を満足するように含有することを特徴とする密着曲げ加工性および成形性に優れた高強度薄鋼板の製造方法。

0.0060 ≦ N−(Ti/48+B/11)×14 … (2)
{N−(Ti/48+B/11)×14}/sol.Al ≧ 0.2 … (3)
(N、sol.Al、Ti、B:各元素の含有量(質量%))
[5] In [4], in addition to the above composition, the composition further contains one or two of Ti and B so as to satisfy the following formulas (2) and (3) by mass%. A method for producing a high-strength thin steel sheet having excellent adhesion bending workability and formability.
Record
0.0060 ≦ N− (Ti / 48 + B / 11) × 14… (2)
{N− (Ti / 48 + B / 11) × 14} /sol.Al≧0.2… (3)
(N, sol.Al, Ti, B: content of each element (mass%))

[6] [4]または[5]において、前記組成に加えてさらに、質量%でNb:0.05%未満を下記(4)式を満足するように含有し、前記熱間圧延工程の巻取り温度CTを前記(5)式に代えて下記(7)式を満足する温度とし、前記焼鈍処理工程の加熱温度ATを450℃以上620℃以下であり且つ前記(6)式に代えて下記(8)式を満足する温度とすることを特徴とする密着曲げ加工性および成形性に優れた高強度薄鋼板の製造方法。

{N−(Ti/48+B/11)×14}/Nb ≧ 0.5 … (4)
(N、Ti、B、Nb:各元素の含有量(質量%))
CT(℃)≦700−z … (7)
ここで、zは10×(sol.Al/N)および50×(Nb/N)のうち大きいほうの値とする。
(CT:熱間圧延工程の巻取り温度(℃))
(N、sol.Al、Nb:各元素の含有量(質量%))
AT(℃)≦(TSL−152−7.3×CR−155×[N]×100)/(3.8×Nb−0.26) … (8)
(AT:焼鈍処理工程の加熱温度(℃))
(TSL:目標とする薄鋼板引張強さの下限値(MPa)、TSL≧400MPa)
(CR:冷間圧延工程の圧延率(%))
(Nb:Nbの含有量(質量%))
([N]:焼鈍処理工程前の冷延板に含まれる固溶Nの含有量(質量%))
[6] In [4] or [5], in addition to the above composition, Nb: less than 0.05% by mass is contained so as to satisfy the following formula (4), and the coiling temperature in the hot rolling step CT is changed to the temperature satisfying the following equation (7) instead of the above equation (5), the heating temperature AT in the annealing treatment step is 450 ° C. or more and 620 ° C. or less, and the equation (6) is replaced with the following (8 A method for producing a high-strength thin steel sheet excellent in close contact bending workability and formability, characterized in that the temperature satisfies a formula.
Record
{N− (Ti / 48 + B / 11) × 14} / Nb ≧ 0.5… (4)
(N, Ti, B, Nb: content of each element (mass%))
CT (℃) ≦ 700−z (7)
Here, z is a larger value of 10 × (sol.Al/N) and 50 × (Nb / N).
(CT: coiling temperature in hot rolling process (℃))
(N, sol.Al, Nb: content of each element (mass%))
AT (° C) ≤ (TS L −152−7.3 × CR−155 × [N] × 100) / (3.8 × Nb−0.26)… (8)
(AT: Heating temperature in annealing process (℃))
(TS L : Lower limit of target tensile strength of thin steel sheet (MPa), TS L ≧ 400MPa)
(CR: Rolling ratio in cold rolling process (%))
(Nb: Nb content (% by mass))
([N]: content of solid solution N contained in the cold-rolled sheet before the annealing process (mass%))

[7] [4]ないし[6]のいずれかにおいて、前記焼鈍処理工程の加熱温度ATを450℃以上620℃以下とし、前記焼鈍処理工程の冷却停止温度を500℃以下とし、前記焼鈍処理工程後に、溶融亜鉛めっき処理工程を設けることを特徴とする密着曲げ加工性および成形性に優れた高強度薄鋼板の製造方法。 [7] In any one of [4] to [6], a heating temperature AT in the annealing treatment step is set to 450 ° C. or more and 620 ° C. or less, a cooling stop temperature in the annealing treatment step is set to 500 ° C. or less, and the annealing treatment step A method for producing a high-strength thin steel sheet excellent in adhesion bending workability and formability, characterized by providing a hot dip galvanizing process later.

[8] [7]において、前記溶融亜鉛めっき処理工程後に合金化処理工程を設け、該合金化処理工程の合金化処理温度GTを550℃以下とすることを特徴とする密着曲げ加工性および成形性に優れた高強度薄鋼板の製造方法。 [8] In [7], an alloying treatment step is provided after the hot dip galvanizing treatment step, and the alloying treatment temperature GT of the alloying treatment step is set to 550 ° C. or less, and the adhesive bending workability and molding For producing high-strength thin steel sheets with excellent properties.

本発明によれば、建材や家電、自動車などの部材の素材に好適な、引張強さが400MPa以上であり且つ成形性、特に曲げ加工性に優れた高強度薄鋼板を得ることができる。すなわち、本発明の高強度薄鋼板によると、板厚を0.8mm未満、例えば0.7mm、0.6mmと薄肉化した場合であっても、現行の0.8mm厚TS340MPa級鋼板と同等以上の耐デント性を確保することができるため、建材や家電、自動車などの軽量化に大きく貢献する。また、本発明の高強度薄鋼板は、密着曲げ等の厳しい加工条件に耐え得る加工性を有するため、複雑な形状を有する部材への適用も可能となり、産業上格段の効果を奏する。   ADVANTAGE OF THE INVENTION According to this invention, the high strength thin steel plate suitable for the raw material of members, such as building materials, household appliances, and an automobile, can be obtained with a tensile strength of 400 MPa or more and excellent in formability, particularly bending workability. That is, according to the high-strength thin steel sheet of the present invention, even when the thickness is less than 0.8 mm, for example, 0.7 mm, 0.6 mm, the dent resistance is equal to or better than the current 0.8 mm thick TS340MPa class steel sheet. Therefore, it contributes greatly to weight reduction of building materials, home appliances, and automobiles. Moreover, since the high-strength thin steel sheet of the present invention has processability that can withstand severe processing conditions such as tight bending, it can be applied to a member having a complicated shape, and has a remarkable industrial effect.

未焼鈍冷延板の圧延方向引張強さTS0(MPa)に及ぼす冷間圧延の圧延率CR(%)の影響を示す図である。Shows the effect of rolling direction tensile strength TS 0 of the unannealed cold-rolled sheet rolling ratio CR (%) of cold rolling on the (MPa). 焼鈍処理中の回復率ρ(焼鈍温度の高温化に伴う焼鈍板強度減少量(MPa/℃))に及ぼす未焼鈍冷延板の圧延方向引張強さTS0 (MPa)の影響を示す図である。Figure showing the effect of rolling direction tensile strength TS 0 (MPa) of unannealed cold-rolled sheets on the recovery rate ρ (annealed sheet strength decrease (MPa / ° C) with increasing annealing temperature) during annealing treatment is there. 焼鈍板の圧延方向引張強さTSに及ぼす固溶N量(質量%)の影響を示す図である。It is a figure which shows the influence of the amount of solute N (mass%) which has on the rolling direction tensile strength TS of an annealed sheet. 焼鈍処理中の回復率ρ(焼鈍温度の高温化に伴う焼鈍板強度減少量(MPa/℃))に及ぼす鋼板Nb含有量(質量%)の影響を示す図である。It is a figure which shows the influence of steel plate Nb content (mass%) which has on the recovery rate (rho) (the amount of reduction of the intensity | strength of an annealing board accompanying the high temperature of annealing temperature (MPa / degreeC)) in annealing treatment. 密着曲げ加工を施した鋼板の肌荒れ度を説明する図である。((a)は組織写真、(b)は模式図。)It is a figure explaining the rough skin degree of the steel plate which gave the close contact bending process. ((A) is a structure photograph, (b) is a schematic diagram.) 密着曲げ加工を施した鋼板の板厚減少率を説明する図である。((a)は組織写真、(b)は模式図。)It is a figure explaining the plate | board thickness reduction | decrease rate of the steel plate which performed the adhesion bending process. ((A) is a structure photograph, (b) is a schematic diagram.)

以下、本発明について詳細に説明する。
まず、本発明鋼板の成分組成の限定理由について説明する。なお、以下の成分組成を表す%は、特に断らない限り質量%を意味するものとする。
C :0.0005%以上0.0080%以下
Cは、鋼を強化するうえで有効な元素であるが、C含有量が0.0080%を超えると、鋼板の密着曲げ加工時に割れの起点となる粗大な炭化物の析出量が多くなり、曲げ加工性を損なう。一方、C含有量が0.0005%未満であると、製造コストが著しく増大する。したがって、C含有量は0.0005%以上0.0080%以下とする。好ましくは0.0010%以上0.0050%以下である。
Hereinafter, the present invention will be described in detail.
First, the reasons for limiting the component composition of the steel sheet of the present invention will be described. In addition,% showing the following component composition shall mean the mass% unless there is particular notice.
C: 0.0005% or more and 0.0080% or less
C is an element effective in strengthening steel. However, if the C content exceeds 0.0080%, the precipitation amount of coarse carbides that become the starting point of cracking during close-contact bending of steel sheets increases, and bending workability is increased. Damage. On the other hand, when the C content is less than 0.0005%, the production cost is remarkably increased. Therefore, the C content is 0.0005% or more and 0.0080% or less. Preferably it is 0.0010% or more and 0.0050% or less.

Si:0.4%以下
Siは、固溶強化元素であり、鋼の高強度化に有効な元素である。このような効果を得るためには0.01%以上含有することが望ましいが、Si含有量が0.4%を超えると、鋼板の延性が低下する。したがって、Si含有量は0.4%以下とする。好ましくは0.1%以下である。
Si: 0.4% or less
Si is a solid solution strengthening element and is an element effective for increasing the strength of steel. In order to acquire such an effect, it is desirable to contain 0.01% or more, but when Si content exceeds 0.4%, the ductility of a steel plate will fall. Therefore, the Si content is 0.4% or less. Preferably it is 0.1% or less.

Mn:0.1%以上0.5%以下
Mnは、硫化物を形成して熱間脆性を改善する元素であり、本発明ではMn含有量を0.1%以上とする。好ましくは、0.16%以上である。一方、Mn含有量が過度に高くなると、鋼板の密着曲げ加工時に割れの起点となるMnSが多くなり、加工時に割れが発生し易くなるため、Mn含有量は0.5%以下とする。好ましくは0.3%以下である。
Mn: 0.1% to 0.5%
Mn is an element that forms sulfides and improves hot brittleness. In the present invention, the Mn content is 0.1% or more. Preferably, it is 0.16% or more. On the other hand, if the Mn content is excessively high, the amount of MnS that becomes the starting point of cracking at the time of tight bending of the steel sheet increases, and cracking is likely to occur during processing, so the Mn content is set to 0.5% or less. Preferably it is 0.3% or less.

P :0.08%以下
Pは、固溶強化元素であり、鋼の降伏強度を高めるうえで有効な元素であるが、鋼板の延性に悪影響を及ぼす元素でもある。したがって、P含有量は0.08%以下とする。好ましくは0.015%以下である。
P: 0.08% or less
P is a solid solution strengthening element and is an element effective in increasing the yield strength of steel, but is also an element that adversely affects the ductility of the steel sheet. Therefore, the P content is 0.08% or less. Preferably it is 0.015% or less.

S :0.04%以下
Sは、鋼中では硫化物として存在し、鋼板の延性および伸びフランジ性を劣化させる原因となる。そのため、本発明ではSを極力低減することが好ましく、0.04%以下とする。好ましくは0.01%以下である。
S: 0.04% or less
S exists as a sulfide in steel and causes deterioration of the ductility and stretch flangeability of the steel sheet. Therefore, in the present invention, it is preferable to reduce S as much as possible, and to be 0.04% or less. Preferably it is 0.01% or less.

sol.Al:0.05%以下
Alは、脱酸剤として作用し、鋼の脆性改善に有効な元素である。このような効果を得るためには酸可溶Al(sol.Al)で0.005%以上含有することが望ましい。しかしながら、AlはNと親和力が強いため、sol.Al含有量が過剰になると、冷間圧延工程時の固溶N量を低減させ、固溶Nによる固溶強化能が劣化する。このため、sol.Al含有量は0.05%以下とする。好ましくは0.04%以下であり、より好ましくは0.019%以下である。
sol.Al: 0.05% or less
Al acts as a deoxidizer and is an effective element for improving the brittleness of steel. In order to acquire such an effect, it is desirable to contain 0.005% or more of acid-soluble Al (sol. Al). However, since Al has a strong affinity for N, if the sol.Al content is excessive, the amount of solid solution N during the cold rolling process is reduced, and the solid solution strengthening ability due to the solid solution N deteriorates. For this reason, sol.Al content shall be 0.05% or less. Preferably it is 0.04% or less, More preferably, it is 0.019% or less.

N :0.0060%以上0.0200%以下
Nは、冷間圧延工程前の熱延板に含まれる固溶Nを確保する観点から、0.0060%以上含有させる必要がある。一方、N含有量が過剰になると、連続鋳造時のスラブ割れの発生率を上昇させる原因となる。したがって、N含有量は0.0200%以下とする。好ましくは0.016%以下である。
N: 0.0060% or more and 0.0200% or less
N must be contained in an amount of 0.0060% or more from the viewpoint of securing solid solution N contained in the hot-rolled sheet before the cold rolling process. On the other hand, when the N content is excessive, it causes an increase in the occurrence rate of slab cracking during continuous casting. Therefore, the N content is 0.0200% or less. Preferably it is 0.016% or less.

固溶N:0.0035%以上
Nを固溶強化元素として活用する本発明においては、鋼板に所望の強度(圧延方向引張強さTS:400MPa以上)を付与するために、固溶N量を0.0035%以上とする必要がある。圧延方向引張強さTSを440MPa以上とするためには、固溶N量を0.0065%以上とすることが好ましい。
Solid solution N: 0.0035% or more
In the present invention in which N is used as a solid solution strengthening element, the solid solution N amount needs to be 0.0035% or more in order to give the steel sheet a desired strength (tensile strength in the rolling direction TS: 400 MPa or more). In order to set the tensile strength TS in the rolling direction to 440 MPa or more, the solid solution N content is preferably 0.0065% or more.

ここで、固溶N量は、鋼中の全N量から、電解抽出によって測定した析出N量を差し引いた値とする。また、析出N量は、定電位電解法を用いた電解抽出による溶解法によって求めた値とする。なお、電解液としては、アセチルアセトン系電解液を用いることが好ましい。   Here, the solute N amount is a value obtained by subtracting the precipitated N amount measured by electrolytic extraction from the total N amount in the steel. The amount of precipitated N is a value determined by a dissolution method by electrolytic extraction using a constant potential electrolysis method. As the electrolytic solution, it is preferable to use an acetylacetone-based electrolytic solution.

本発明の鋼板は、Nおよびsol.Alを、上記した範囲で且つ(1)式を満足するように含有する。
N/sol.Al ≧ 0.2 … (1)
(N、sol.Al:各元素の含有量(質量%))
上記(1)式は、鋼板中の固溶Nを所望の含有量(0.0035%以上)とするために満足すべき要件である。Nに対してsol.Alが過剰に含まれると、鋼板中のAlN析出量が増し(固溶N量が不足し)、鋼板に所望の強度を付与することができない。したがって、N/sol.Alは0.2以上とする。好ましくは0.3以上である。
The steel sheet of the present invention contains N and sol.Al so as to satisfy the above-mentioned range and the expression (1).
N / sol.Al ≧ 0.2… (1)
(N, sol.Al: content of each element (% by mass))
The above formula (1) is a requirement that must be satisfied in order to obtain a desired content (0.0035% or more) of solute N in the steel sheet. If sol.Al is excessively contained relative to N, the amount of precipitated AlN in the steel sheet increases (the amount of solute N is insufficient), and the desired strength cannot be imparted to the steel sheet. Therefore, N / sol.Al is 0.2 or more. Preferably it is 0.3 or more.

以上が、本発明における基本組成であるが、基本組成に加えてさらに、Ti、Bの1種または2種を(2)式および(3)式を満足するように含有することができる。なお、(2)式および(3)式において、Tiを含有しない場合はTi=0とし、Bを含有しない場合はB=0とする。
0.0060 ≦ N−(Ti/48+B/11)×14 … (2)
{N−(Ti/48+B/11)×14}/sol.Al ≧ 0.2 … (3)
(N、sol.Al、Ti、B:各元素の含有量(質量%))
The above is the basic composition in the present invention. In addition to the basic composition, one or two of Ti and B can be contained so as to satisfy the expressions (2) and (3). In the formulas (2) and (3), Ti = 0 when Ti is not contained, and B = 0 when B is not contained.
0.0060 ≦ N− (Ti / 48 + B / 11) × 14… (2)
{N− (Ti / 48 + B / 11) × 14} /sol.Al≧0.2… (3)
(N, sol.Al, Ti, B: content of each element (mass%))

後述するように、本発明の鋼板はフェライト相を主相とした組成を有する鋼板であり、鋼に熱間圧延、冷間圧延を施したのち、焼鈍処理を施すことにより製造される。
ここで、TiおよびBは、フェライトの再結晶温度を高め、上記焼鈍処理時に鋼板が軟化するのを抑制する効果を有する。その一方で、これらの元素は、Nとの親和力が極めて強いため、これらの含有量が過剰になると、高温で析出物(窒化物)を形成し、冷間圧延工程時の固溶N量を著しく低下させるおそれがある。
As will be described later, the steel sheet of the present invention is a steel sheet having a composition having a ferrite phase as a main phase, and is manufactured by subjecting the steel to hot rolling and cold rolling and then annealing.
Here, Ti and B have an effect of increasing the recrystallization temperature of ferrite and suppressing the steel sheet from being softened during the annealing treatment. On the other hand, these elements have a very strong affinity with N. Therefore, if their content becomes excessive, precipitates (nitrides) are formed at high temperatures, and the amount of solute N during the cold rolling process is reduced. There is a risk of significant reduction.

そこで、本発明において、Ti、Bを含有させる場合には、鋼板中の固溶N量を確保すべく、(2)式および(3)式を満足するように含有させる。   Therefore, in the present invention, when Ti and B are contained, they are contained so as to satisfy the expressions (2) and (3) in order to ensure the amount of solute N in the steel sheet.

また、TiやBとともに析出物を形成しないNに対して、sol.Alが過剰に含まれると、鋼板中のAlN析出量が増す(すなわち固溶Nが不足する)ため、{N−(Ti/48+B/11)×14}/sol.Alを0.2以上とする。好ましくは0.3以上である。   Further, if sol.Al is excessively contained with respect to N that does not form precipitates together with Ti and B, the amount of AlN precipitation in the steel sheet increases (that is, solute N is insufficient), so {N- (Ti /48+B/11)×14}/sol.Al is 0.2 or more. Preferably it is 0.3 or more.

また、基本組成に加えてさらに、Nbを0.05%未満で且つ (4)式を満足するように含有することができる。なお、(4)式において、Tiを含有しない場合はTi=0とし、Bを含有しない場合はB=0とする。
{N−(Ti/48+B/11)×14}/Nb ≧ 0.5 … (4)
(N、Ti、B、Nb:各元素の含有量(質量%))
Further, in addition to the basic composition, Nb may be contained so as to be less than 0.05% and satisfy the formula (4). In the formula (4), Ti = 0 is set when Ti is not contained, and B = 0 is set when B is not contained.
{N− (Ti / 48 + B / 11) × 14} / Nb ≧ 0.5… (4)
(N, Ti, B, Nb: content of each element (mass%))

Nb:0.05%未満
Nbは、Ti、Bと同様に、フェライトの再結晶温度を高め、上記焼鈍処理時に鋼板が軟化するのを抑制する効果を有する。このような効果を発現させるうえでは、Nb含有量を0.005%以上とすることが好ましい。一方、Nb含有量が過剰になると、鋼板を過度に高強度化させて延性を劣化させるおそれがある。したがって、Nb含有量は、0.05%未満にするとともに、鋼板中の固溶N量を確保すべく(4)式を満足するように調整する。
Nb: less than 0.05%
Nb, like Ti and B, has an effect of increasing the recrystallization temperature of ferrite and suppressing the steel sheet from being softened during the annealing treatment. In order to express such an effect, the Nb content is preferably 0.005% or more. On the other hand, if the Nb content is excessive, the steel sheet may be excessively strengthened to deteriorate ductility. Therefore, the Nb content is adjusted to be less than 0.05% and to satisfy the formula (4) in order to secure the solid solution N amount in the steel sheet.

本発明の鋼板において、上記以外の成分は、Feおよび不可避的不純物である。なお、不可避的不純物としては、Ni、Cr、Cuなどが挙げられる。これらは合計で0.3%以下の含有が許容される。   In the steel sheet of the present invention, components other than those described above are Fe and inevitable impurities. Inevitable impurities include Ni, Cr, Cu and the like. The total content of these is 0.3% or less.

次に、本発明鋼板の組織の限定理由について説明する。
本発明の鋼板は、フェライト相を主相とした冷間圧延回復組織を有するものとする。
本発明では、鋼板の成形性(特に曲げ加工性)を確保すべく、フェライト相を主相とした鋼板組織とする。ここで、主相とは、組織全体に対する体積率で92%以上、好ましくは95%以上である場合を言う。なお、主相以外の第二相としては、セメンタイト、パーライト等が挙げられる。また、第二相は、体積率で8%以下とする。第二相の体積率が8%超になると、鋼板の延性低下が著しくなる。特に良好な延性が必要とされる場合には、第二相の体積率を5%以下とすることが好ましい。
Next, the reason for limiting the structure of the steel sheet of the present invention will be described.
The steel sheet of the present invention has a cold rolling recovery structure having a ferrite phase as a main phase.
In the present invention, in order to ensure the formability (particularly bending workability) of the steel sheet, the steel sheet structure has a ferrite phase as a main phase. Here, the main phase refers to a case where the volume ratio with respect to the entire structure is 92% or more, preferably 95% or more. Examples of the second phase other than the main phase include cementite and pearlite. The second phase is 8% or less by volume. When the volume fraction of the second phase exceeds 8%, the ductility of the steel sheet is significantly reduced. When particularly good ductility is required, the volume ratio of the second phase is preferably 5% or less.

また、先述のとおり、冷間圧延ままの鋼板では、密着曲げ加工時の板厚減少率が大きくなり、また密着曲げ加工部の肌荒れも顕著となる。そのため、本発明では、鋼板の曲げ加工性を改善する目的で、後述するように鋼板に焼鈍処理を施し、鋼板組織を冷間圧延回復組織とする。なお、鋼板組織が再結晶組織になると、鋼板強度が著しく低下するため、また、鋼板強度のバラツキが大きくなるため、好ましくない。   Further, as described above, in the steel sheet as cold-rolled, the reduction rate of the thickness at the time of the close contact bending process becomes large, and the rough surface of the close contact bending process part becomes remarkable. Therefore, in the present invention, for the purpose of improving the bending workability of the steel sheet, the steel sheet is annealed as described later, and the steel sheet structure is set as a cold rolled recovery structure. In addition, when the steel sheet structure becomes a recrystallized structure, the steel sheet strength is remarkably lowered, and the variation in the steel sheet strength increases, which is not preferable.

ここで、「冷間圧延回復組織」とは、冷間圧延加工によってフェライト粒等の鋼板の結晶粒に蓄積された歪が、熱処理によって回復した組織を意味し、熱処理によって再結晶した組織とは異なる。また、結晶粒が冷間圧延回復組織であるか否かの判断は、本発明の鋼板はフェライト相を主相とするものであるため、等軸のフェライトの再結晶粒が10%以下であるか否かによって行うものとし、フェライトの全結晶粒のうち再結晶粒の占める割合が10%以下であれば回復組織とする。   Here, the “cold rolling recovery structure” means a structure in which the strain accumulated in the crystal grains of the steel sheet such as ferrite grains is recovered by the heat treatment by the cold rolling process, and the structure recrystallized by the heat treatment. Different. In addition, the judgment as to whether or not the crystal grains have a cold-rolled recovery structure is based on the fact that the steel sheet of the present invention has a ferrite phase as a main phase, so that the recrystallized grains of equiaxed ferrite are 10% or less. If the proportion of the recrystallized grains in the total ferrite grains is 10% or less, the recovery structure is obtained.

また、本発明の鋼板は、表面にめっき皮膜を有するものとしてもよい。めっき皮膜としては、溶融亜鉛めっき皮膜や合金化溶融亜鉛めっき皮膜が好ましい。   The steel sheet of the present invention may have a plating film on the surface. As the plating film, a hot dip galvanizing film or an alloyed hot dip galvanizing film is preferable.

次に、本発明の薄鋼板の製造方法について説明する。
本発明では、上記した組成の鋼素材を加熱し、粗圧延と仕上げ圧延からなる熱間圧延を施し、仕上げ圧延終了後、冷却し、巻き取り、熱延板とする熱間圧延工程と、前記熱延板に冷間圧延を施し冷延板とする冷間圧延工程と、さらに前記冷延板を所定の温度まで加熱し、該加熱温度に一定時間保持し、その後冷却する焼鈍処理を施す焼鈍処理工程とを順次施し薄鋼板とする。この際、前記熱間圧延工程の加熱温度を1000℃以上とし、前記仕上げ圧延の仕上げ圧延終了温度を850℃以上とし、前記巻き取りの巻取り温度CTを(5)式を満足する温度とする。また、上記鋼素材がNbを含有する場合、前記巻き取りの巻取り温度CTを(7)式を満足する温度とする。
CT(℃)≦700−10×(sol.Al/N) … (5)
CT(℃)≦700−z … (7)
ここで、zは、10×sol.Al/Nおよび50×Nb/Nのうち大きいほうの値とする。
(CT:熱間圧延工程の巻取り温度(℃))
(N、sol.Al、Nb:各元素の含有量(質量%))
Next, the manufacturing method of the thin steel plate of this invention is demonstrated.
In the present invention, the steel material having the above composition is heated, subjected to hot rolling consisting of rough rolling and finish rolling, cooled after completion of finish rolling, wound, and hot rolled into a hot rolled sheet, A cold rolling process in which the hot-rolled sheet is cold-rolled to form a cold-rolled sheet, and further, the cold-rolled sheet is heated to a predetermined temperature, held at the heating temperature for a certain time, and then subjected to an annealing process for cooling. The processing steps are sequentially performed to obtain a thin steel plate. At this time, the heating temperature of the hot rolling step is 1000 ° C. or higher, the finish rolling finish temperature of the finish rolling is 850 ° C. or higher, and the winding temperature CT of the winding is a temperature satisfying the formula (5). . Further, when the steel material contains Nb, the winding temperature CT of the winding is set to a temperature satisfying the expression (7).
CT (℃) ≦ 700−10 × (sol.Al/N)… (5)
CT (℃) ≦ 700−z (7)
Here, z is the larger value of 10 × sol.Al / N and 50 × Nb / N.
(CT: coiling temperature in hot rolling process (℃))
(N, sol.Al, Nb: content of each element (mass%))

更に、前記冷間圧延工程の圧延率CRを40%以上70%以下とし、前記焼鈍処理工程の加熱温度ATを620℃以下であり且つ (6)式を満足する温度とし、前記焼鈍処理工程の加熱温度での保持時間を5s以上600s以下とすることを特徴とする。また、上記鋼素材がNbを含有する場合、前記焼鈍処理工程の加熱温度ATを上記に代えて620℃以下であり且つ(8)式を満足する温度とする。
AT(℃)≦(TSL−152−7.3×CR−155×[N]×100)/(−0.26) … (6)
AT(℃)≦(TSL−152−7.3×CR−155×[N]×100)/(3.8×Nb−0.26) … (8)
(AT:焼鈍処理工程の加熱温度(℃))
(TSL:目標とする薄鋼板引張強さの下限値(MPa)、TSL≧400MPa)
(CR:冷間圧延工程の圧延率(%))
(Nb:Nbの含有量(質量%))
([N]:焼鈍処理工程前の冷延板に含まれる固溶Nの含有量(質量%))
Further, the rolling rate CR in the cold rolling step is 40% or more and 70% or less, the heating temperature AT in the annealing treatment step is 620 ° C. or less, and the temperature satisfies the formula (6). The holding time at the heating temperature is 5 s or more and 600 s or less. Further, when the steel material contains Nb, the heating temperature AT in the annealing treatment step is set to a temperature that is 620 ° C. or lower and satisfies the equation (8) instead of the above.
AT (° C) ≤ (TS L −152−7.3 × CR−155 × [N] × 100) / (− 0.26)… (6)
AT (° C) ≤ (TS L −152−7.3 × CR−155 × [N] × 100) / (3.8 × Nb−0.26)… (8)
(AT: Heating temperature in annealing process (℃))
(TS L : Lower limit of target tensile strength of thin steel sheet (MPa), TS L ≧ 400MPa)
(CR: Rolling ratio in cold rolling process (%))
(Nb: Nb content (% by mass))
([N]: content of solid solution N contained in the cold-rolled sheet before the annealing process (mass%))

本発明において、鋼素材の溶製方法は特に限定されず、転炉、電気炉等、公知の溶製方法を採用することができる。また、溶製後、偏析等の問題から連続鋳造法によりスラブ(鋼素材)とするのが好ましいが、造塊−分塊圧延法、薄スラブ連鋳法等、公知の鋳造方法でスラブとしても良い。   In the present invention, the method for melting the steel material is not particularly limited, and a known melting method such as a converter or an electric furnace can be employed. In addition, after melting, it is preferable to use a slab (steel material) by a continuous casting method because of problems such as segregation, but it may also be used as a slab by a known casting method such as an ingot-bundling rolling method or a thin slab continuous casting method. good.

鋼素材の加熱温度:1000℃以上
上記の如く得られた鋼素材に、加熱、粗圧延および仕上げ圧延からなる熱間圧延を施して熱延板とするが、本発明においては、粗圧延前の鋼素材を1000℃以上に加熱する。加熱温度が1000℃未満である場合、鋼素材中にNが未固溶のままで残留してしまうため、前記した固溶Nによる固溶強化能を十分に発現させることができない。このような観点から、加熱温度は高いほど好ましいが、過度に加熱を行うと、厚い酸化スケールが鋼表面に生成し、酸洗処理コストが増大する。したがって、鋼素材の加熱温度は1280℃以下とすることが好ましい。
Heating temperature of steel material: 1000 ° C. or higher The steel material obtained as described above is subjected to hot rolling consisting of heating, rough rolling and finish rolling to form a hot rolled sheet. Heat the steel material to 1000 ℃ or higher. When the heating temperature is less than 1000 ° C., N remains undissolved in the steel material, so that the solid solution strengthening ability due to the solid solution N cannot be sufficiently expressed. From this point of view, the higher the heating temperature, the better. However, if the heating is performed excessively, a thick oxide scale is generated on the steel surface, and the pickling cost increases. Therefore, the heating temperature of the steel material is preferably 1280 ° C. or less.

なお、鋳造後粗圧延前の鋼素材が、所定温度以上(1000℃以上)の温度を保持しており、鋼素材中のNが固溶している場合には、鋼素材を加熱することなく直送圧延しても良い。また、粗圧延条件については特に限定する必要はない。   In addition, when the steel material before casting and before rough rolling is maintained at a temperature of a predetermined temperature or higher (1000 ° C or higher) and N in the steel material is in solid solution, the steel material is not heated. Direct rolling may be used. Moreover, it is not necessary to specifically limit the rough rolling conditions.

仕上げ圧延終了温度:850℃以上
仕上げ圧延終了温度が850℃未満であると、オーステナイト域で圧延終了することが困難となり、熱延板に粗大粒が発生し、強度のバラツキや曲げ加工時に肌荒れし易くなる。したがって、仕上げ圧延終了温度は850℃以上とする。好ましくは880℃以上である。なお、仕上げ圧延終了温度が過剰に高くなると、2次スケールが厚くなり、スケール欠陥が発生し易くなることが懸念されるため、仕上げ圧延終了温度は920℃以下とすることが望ましい。
Finishing finish temperature: 850 ° C or higher If the finish rolling finish temperature is less than 850 ° C, it will be difficult to finish rolling in the austenite region, and coarse grains will be generated on the hot rolled sheet, resulting in uneven strength and rough skin during bending. It becomes easy. Accordingly, the finish rolling end temperature is set to 850 ° C. or higher. Preferably it is 880 degreeC or more. Note that if the finish rolling finish temperature becomes excessively high, the secondary scale becomes thick and scale defects are likely to occur. Therefore, the finish rolling finish temperature is preferably 920 ° C. or lower.

巻取り温度CT(℃)
巻取り温度は、鋼素材がNbを含有しない場合は上記(5)式を満足する温度とし、鋼素材がNbを含有する場合は上記(7)式を満足する温度とする。巻取り温度が過剰に高くなり、上記(5)式、(7)式を満足しなくなると、巻取り時にAlまたはNbが窒化物を形成するため、固溶Nを確保する観点から好ましくなく、所望の固溶N量(0.0035%以上)を確保することが困難となる。一方、板形状を良好に保つ観点からは、巻取り温度を400℃以上とすることが好ましい。
Winding temperature CT (℃)
The coiling temperature is a temperature that satisfies the above formula (5) when the steel material does not contain Nb, and a temperature that satisfies the above formula (7) when the steel material contains Nb. When the winding temperature becomes excessively high and the above formulas (5) and (7) are not satisfied, Al or Nb forms a nitride during winding, which is not preferable from the viewpoint of securing solid solution N. It becomes difficult to ensure a desired amount of dissolved N (0.0035% or more). On the other hand, from the viewpoint of maintaining a good plate shape, the winding temperature is preferably 400 ° C. or higher.

なお、所望の固溶N量(0.0035%以上)を確保する観点からは、仕上げ圧延終了後の冷却を水冷とすることが好ましく、仕上げ圧延終了温度から巻取り温度までの平均冷却速度は10℃/s以上200℃/s以下とすることが好ましい。   In addition, from the viewpoint of securing a desired solid solution N amount (0.0035% or more), it is preferable that the cooling after finish rolling is water cooling, and the average cooling rate from the finish rolling finish temperature to the winding temperature is 10 ° C. It is preferable to be at least 200 s / s.

冷間圧延工程の圧延率CR:40%以上70%以下
以上のようにして得られた熱延板を、通常の方法に従い酸洗し、冷間圧延を施して冷延板とする。ここで、冷間圧延工程の圧延率CRが40%未満であると、加工硬化量が小さくなり過ぎ、所望の鋼板強度を確保することが困難となる。一方、上記圧延率CRが70%を超えると、加工硬化が過度に進行し、鋼板の延性が著しく低下する。したがって、冷間圧延工程の圧延率CRは40%以上70%以下とする。好ましくは45%以上65%以下である。
Rolling ratio CR in the cold rolling process: 40% or more and 70% or less The hot-rolled sheet obtained as described above is pickled according to a normal method and cold-rolled to obtain a cold-rolled sheet. Here, when the rolling rate CR in the cold rolling process is less than 40%, the work hardening amount becomes too small, and it becomes difficult to secure a desired steel plate strength. On the other hand, when the rolling reduction CR exceeds 70%, work hardening proceeds excessively, and the ductility of the steel sheet is significantly reduced. Therefore, the rolling rate CR in the cold rolling process is 40% or more and 70% or less. Preferably they are 45% or more and 65% or less.

焼鈍処理工程の加熱温度AT
以上のようにして得られた冷延板に、回復による延性向上を目的とした焼鈍処理を施す。本発明では、焼鈍温度(焼鈍処理の加熱温度)AT(℃)を、上記(6)式または(8)式を満足する温度に設定することが重要である。ここで、式中[N]は、焼鈍処理工程前の冷延板に含まれる固溶Nの含有量であり、本発明の範囲内であれば、焼鈍処理工程の前後で変化しない。したがって、冷延板に含まれる固溶N含有量は、冷延板を直接分析してもよいし、或いは既存の製造条件から冷延圧下率(CR)を変更する際など、既存の焼鈍板の固溶N含有量を、冷延板中の固溶N含有量とみなしてもよい。
Heating temperature AT in annealing process
The cold-rolled sheet obtained as described above is subjected to an annealing treatment for the purpose of improving ductility by recovery. In the present invention, it is important to set the annealing temperature (heating temperature of the annealing treatment) AT (° C.) to a temperature that satisfies the above formula (6) or (8). Here, [N] in the formula is the content of solid solution N contained in the cold-rolled sheet before the annealing treatment step, and does not change before and after the annealing treatment step within the scope of the present invention. Therefore, the solute N content contained in the cold-rolled sheet may be analyzed directly from the cold-rolled sheet, or the existing annealed sheet such as when the cold rolling reduction ratio (CR) is changed from the existing manufacturing conditions. The solid solution N content may be regarded as the solid solution N content in the cold-rolled sheet.

上記(6)式あるいは(8)式を満足しない場合、所望の鋼板強度TSL(圧延方向引張強さ:400MPa以上)を確保することができない。また、上記(6)式あるいは(8)式を満足する場合であっても、焼鈍処理の加熱温度(焼鈍温度)ATが620℃を超えると、再結晶が生じて鋼板強度が急激に軟化する。そのため、焼鈍処理の加熱温度(焼鈍温度)ATは、鋼素材がNbを含有しない場合は上記(6)式を満足する温度とし、鋼素材がNbを含有する場合は上記(8)式を満足する温度とし、更に620℃以下とする。なお、特にTi、Nbを含有しない鋼組成の場合には再結晶温度が低くなるため、焼鈍処理の加熱温度(焼鈍温度)AT を580℃以下とすることが好ましい。 If it does not satisfy the above expression (6) or (8), the desired steel sheet strength TS L (rolling direction tensile strength: more than 400 MPa) can not be ensured. Even when the above formula (6) or (8) is satisfied, if the heating temperature (annealing temperature) AT of the annealing process exceeds 620 ° C., recrystallization occurs and the steel sheet strength softens rapidly. . Therefore, the heating temperature (annealing temperature) AT of the annealing treatment is a temperature that satisfies the above formula (6) when the steel material does not contain Nb, and the above formula (8) when the steel material contains Nb. The temperature is 620 ° C. or lower. In particular, in the case of a steel composition that does not contain Ti or Nb, the recrystallization temperature becomes low, so the heating temperature (annealing temperature) AT in the annealing treatment is preferably set to 580 ° C. or lower.

保持時間:5s以上600s以下
前記焼鈍処理工程の加熱温度(焼鈍温度)ATでの保持時間が5s未満であると、十分に回復が進まず、鋼板の延性が向上しない。一方、上記保持時間が600sを超えると、回復から再結晶に移行し易くなる。したがって、上記保持時間は5s以上600s以下とする。好ましくは10s以上400s以下である。
Holding time: 5 s or more and 600 s or less When the holding time at the heating temperature (annealing temperature) AT in the annealing treatment step is less than 5 s, the recovery does not proceed sufficiently and the ductility of the steel sheet is not improved. On the other hand, when the holding time exceeds 600 s, it is easy to shift from recovery to recrystallization. Therefore, the holding time is set to 5 s or more and 600 s or less. Preferably, it is 10 seconds or more and 400 seconds or less.

なお、焼鈍処理工程の加熱温度(焼鈍温度)ATで所定時間保持した後の冷却条件は特に規定されない。また、焼鈍処理後には、板形状の矯正などを目的として調質圧延やレベリングを施してもよいが、過度の調質圧延は鋼板の延性劣化を招くため、1%以下の伸長率とすることが好ましい。   In addition, the cooling conditions after hold | maintaining for predetermined time with the heating temperature (annealing temperature) AT of an annealing treatment process are not prescribed | regulated. In addition, after annealing, temper rolling and leveling may be performed for the purpose of straightening the plate shape, etc., but excessive temper rolling causes ductile deterioration of the steel sheet, so the elongation should be 1% or less. Is preferred.

以上により、曲げ加工性に優れた薄鋼板(板厚0.4〜1.6mm)、すなわち、密着曲げ加工を施した際の板厚減少率:0.05以下、肌荒れ度:3μm以下であり、且つ圧延方向引張強さTS:400MPa以上の高強度薄鋼板が得られる。圧延方向引張強さTSは、剪断、打ち抜き時の荷重を低下させるという観点から680MPa以下とすることが好ましく、600MPa未満とすることがより好ましい。なお、圧延方向引張強さTSは、例えば前記(1A)式に従い、焼鈍温度AT(℃)、冷間圧延工程の圧延率CR(%)、鋼組成(固溶N量(%)、Nb含有量(%)等)を調整することにより、所望の値(400〜680MPa)に制御することができる。   As described above, a thin steel plate (plate thickness of 0.4 to 1.6 mm) excellent in bending workability, that is, a thickness reduction rate when subjected to contact bending: 0.05 or less, skin roughness: 3 μm or less, and tensile in the rolling direction High strength steel sheet with strength TS: 400MPa or more is obtained. The rolling direction tensile strength TS is preferably 680 MPa or less, and more preferably less than 600 MPa, from the viewpoint of reducing the load during shearing and punching. Note that the tensile strength TS in the rolling direction is, for example, according to the formula (1A), annealing temperature AT (° C.), rolling rate CR (%) in the cold rolling process, steel composition (solid solution N amount (%), Nb content By adjusting the amount (%, etc.), it can be controlled to a desired value (400 to 680 MPa).

本発明においては、以上のようにして製造された薄鋼板に対し、めっき処理を施すことにより、鋼板表面にめっき皮膜を形成してもよい。例えば、めっき処理として溶融亜鉛めっき処理を施し溶融亜鉛めっき皮膜を形成し、或いは溶融亜鉛めっき処理後、更に合金化処理を施すことにより、鋼板表面に合金化溶融亜鉛めっき皮膜を形成してもよい。   In the present invention, a plating film may be formed on the surface of the steel sheet by plating the thin steel sheet manufactured as described above. For example, a hot dip galvanizing process may be performed as a plating process to form a hot dip galvanized film, or an alloyed hot dip galvanized film may be formed on the surface of the steel sheet by further alloying after the hot dip galvanizing process. .

溶融亜鉛めっき処理を施す場合、前記焼鈍処理工程の加熱温度(焼鈍温度)ATが450℃未満であると、不めっきが発生する問題が懸念される。したがって、上記加熱温度(焼鈍温度)ATを、上記(6)式あるいは(8)式を満足し且つ620℃以下にするとともに、450℃以上とすることが好ましい。また、上記加熱温度(焼鈍温度)に所定時間(5s以上600s以下)保持したのち、500℃以下の温度まで冷却したのち、溶融亜鉛めっき処理を施して冷却する。上記において500℃以下の温度まで冷却する理由は、表面欠陥の発生を抑制するためである。なお、溶融亜鉛めっき処理条件は特に限定されず、常法に従い溶融亜鉛めっき処理を施すことができる。   When performing the hot dip galvanizing treatment, if the heating temperature (annealing temperature) AT in the annealing treatment step is less than 450 ° C., there is a concern that non-plating may occur. Therefore, it is preferable that the heating temperature (annealing temperature) AT satisfies the above formula (6) or (8) and is set to 620 ° C. or lower and 450 ° C. or higher. Further, after being kept at the heating temperature (annealing temperature) for a predetermined time (5 s or more and 600 s or less), it is cooled to a temperature of 500 ° C. or less, and then subjected to hot dip galvanizing treatment and cooled. The reason for cooling to a temperature of 500 ° C. or lower in the above is to suppress the occurrence of surface defects. In addition, the hot dip galvanization process conditions are not specifically limited, A hot dip galvanization process can be performed according to a conventional method.

また、上記溶融亜鉛めっき処理後の薄鋼板に、合金化処理を施してもよい。合金化処理を施す場合には、合金化処理温度GTを550℃以下とすることが好ましい。550℃超の高温域で合金化処理を施すと、めっき密着性が劣化し易いためである。   Moreover, you may give an alloying process to the thin steel plate after the said hot dip galvanization process. When the alloying treatment is performed, the alloying treatment temperature GT is preferably set to 550 ° C. or less. This is because if the alloying treatment is performed in a high temperature region exceeding 550 ° C., the plating adhesion is likely to deteriorate.

表1に示す成分の溶鋼を通常公知の手法により溶製、鋳造して肉厚300mmのスラブ(鋼素材)とした。これらのスラブを、1250℃に加熱後、粗圧延し、仕上げ圧延終了温度:900℃とする仕上げ圧延を施し、仕上げ圧延終了後、仕上げ圧延終了温度から巻取り温度までの温度域を30℃/sの平均冷却温度で冷却し、表2に示す巻取り温度で巻取り、熱延板とした。次いで、熱延板を酸洗したのち、表2に示す圧延率CRで冷間圧延を施して冷延板(板厚0.6 mm)とした。   Molten steel having the components shown in Table 1 was melted and cast by a generally known technique to obtain a slab (steel material) having a thickness of 300 mm. These slabs are heated to 1250 ° C, roughly rolled, and finish-rolled at a finish rolling finish temperature of 900 ° C. After finish rolling, the temperature range from finish finish temperature to winding temperature is 30 ° C / It cooled at the average cooling temperature of s, and wound up at the winding temperature shown in Table 2, and it was set as the hot rolled sheet. Next, the hot-rolled sheet was pickled, and then cold-rolled at a rolling rate CR shown in Table 2 to obtain a cold-rolled sheet (plate thickness 0.6 mm).

上記により得られた冷延板に焼鈍処理を施した。焼鈍処理時の加熱温度(焼鈍温度)AT、該加熱温度(焼鈍温度)での保持時間は表2のとおりである。なお、目標とする薄鋼板の圧延方向引張強さの下限値TSLは400MPaである。また、一部の冷延板については焼鈍処理後、470℃まで冷却したのち、溶融亜鉛めっき処理、或いは更に合金化処理を施した。なお、合金化処理は、合金化処理温度:500℃に10s保持することにより行った。 The cold-rolled sheet obtained as described above was annealed. Table 2 shows the heating temperature (annealing temperature) AT during the annealing treatment and the holding time at the heating temperature (annealing temperature). The lower limit TS L in the rolling direction tensile strength of steel sheet to be targeted is 400 MPa. Some of the cold-rolled sheets were annealed, cooled to 470 ° C., and then subjected to hot dip galvanizing or further alloying. The alloying treatment was performed by maintaining the alloying treatment temperature at 500 ° C. for 10 seconds.

以上のようにして得られた焼鈍後(或いは溶融亜鉛めっき処理後、合金化処理後)の鋼板から試験片を採取し、組織観察、固溶N量測定、引張試験、密着曲げ加工試験を行い、フェライト相の体積率、固溶Nの含有量、圧延方向引張強さTS、密着曲げ加工後の板厚減量率、密着曲げ加工部の肌荒れ度を求めた。試験方法は以下のとおりである。なお、焼鈍処理工程前の冷延板に含まれる固溶Nの含有量は、上記により求めた焼鈍板の固溶N含有量と等しいとみなした。   Samples are taken from the steel plate after annealing (or after hot dip galvanizing or alloying) obtained as described above, and microstructure observation, solid solution N content measurement, tensile test, adhesion bending work test are performed. The volume ratio of the ferrite phase, the content of solute N, the tensile strength TS in the rolling direction, the plate thickness reduction rate after the contact bending process, and the skin roughness of the contact bending process part were determined. The test method is as follows. In addition, it was considered that content of the solid solution N contained in the cold-rolled sheet before an annealing treatment process was equal to the solid solution N content of the annealed sheet calculated | required by the above.

<組織観察>
焼鈍後(或いは溶融亜鉛めっき処理後、合金化処理後)の鋼板から、試験片を採取し、試験片の圧延方向断面を機械的に研磨し、ナイタールで腐食した後、走査型電子顕微鏡(SEM)で倍率:1000倍にて撮影した組織写真(SEM写真)を用い、画像解析装置によりフェライト相、フェライト相以外の組織の種類、および、それらの面積率を求め、各相の体積率とした。
また、(フェライト相)結晶粒が回復組織であるか否かの判断は、上記組織写真(SEM写真)を用いて等軸フェライトの面積率を測定し、該面積率が10%以下であれば回復組織であると判断した。
<Tissue observation>
A specimen is taken from the steel plate after annealing (or after hot dip galvanizing or alloying), and the cross section in the rolling direction of the specimen is mechanically polished and corroded with nital, followed by a scanning electron microscope (SEM). ) Magnification: Using a structure photograph (SEM photograph) taken at a magnification of 1000 times, the type of the structure other than the ferrite phase and the ferrite phase and the area ratio thereof were obtained by an image analyzer, and the volume ratio of each phase was obtained. .
In addition, the determination of whether or not the (ferrite phase) crystal grains have a recovery structure is performed by measuring the area ratio of equiaxed ferrite using the structure photograph (SEM photograph), and if the area ratio is 10% or less Judged to be a recovery organization.

<固溶N量測定>
焼鈍後(或いは溶融亜鉛めっき処理後、合金化処理後)の鋼板から、試験片を採取し、該試験片中の全N量から、電解抽出によって測定した析出N量を差し引いた値を固溶N量とした。なお、析出N量は、定電位電解法を用いた電解抽出による溶解法によって求めた。電解液としては、アセチルアセトン系電解液を用いた。
<Measurement of solid solution N amount>
A specimen is collected from the steel sheet after annealing (or after hot dip galvanizing treatment and after alloying treatment), and the value obtained by subtracting the precipitation N amount measured by electrolytic extraction from the total N amount in the specimen is dissolved. N amount. The amount of precipitated N was determined by a dissolution method by electrolytic extraction using a constant potential electrolysis method. As the electrolytic solution, an acetylacetone-based electrolytic solution was used.

<引張試験>
焼鈍後(或いは溶融亜鉛めっき処理後、合金化処理後)の鋼板から、圧延方向を長さ方向(引張り方向)としたJIS 5号サイズの試験片を採取し、JIS Z 2241に準拠した引張試験を行い、圧延方向引張強さTSを求めた。
<Tensile test>
A specimen of JIS No. 5 size with the rolling direction as the length direction (tensile direction) was taken from the steel sheet after annealing (or after hot-dip galvanizing and alloying), and a tensile test in accordance with JIS Z 2241. To determine the tensile strength TS in the rolling direction.

<密着曲げ加工試験>
焼鈍後(或いは溶融亜鉛めっき処理後、合金化処理後)の鋼板から、圧延方向:25mm、圧延垂直方向:60m、厚さ:0.6mmの試験片を採取し、圧延垂直方向が曲げ方向となるように密着曲げ加工を施し、割れの有無を確認した。また、密着曲げ加工後の試験片を、幅方向に研磨してから観察し(すなわち、試験片の幅方向中央断面を研磨してから観察し)、前記した方法に従い密着曲げ加工後の板厚減量率、密着曲げ加工部の肌荒れ度を求めた。なお、肌荒れ度については、肌荒れ度:3μm以下であるものを「肌荒れ度:良好(○)」、肌荒れ度:3μm超であるものを「肌荒れ度:不良(×)」とした。
以上の結果を、表3に示す。
<Adhesion bending test>
A specimen with a rolling direction of 25 mm, a rolling vertical direction of 60 m, and a thickness of 0.6 mm is taken from the steel plate after annealing (or after galvanizing treatment and alloying treatment), and the vertical direction of rolling becomes the bending direction. In this way, close contact bending was performed to check for cracks. In addition, the specimen after adhesion bending is observed after being polished in the width direction (that is, observed after polishing the central section in the width direction of the specimen), and the thickness after adhesion bending according to the method described above. The weight loss rate and the degree of skin roughness of the contact bending process were determined. As for the degree of skin roughness, those having a skin roughness of 3 μm or less were designated as “skin roughness: good (◯)”, and those having a skin roughness of more than 3 μm were designated as “skin roughness: poor (×)”.
The results are shown in Table 3.

本発明例は何れも、密着曲げ加工を施した際の板厚減少率:0.05以下、肌荒れ度:3μm以下である優れた曲げ加工性を有するとともに圧延方向引張強さTSが400MPa以上である高強度薄鋼板となっている。また、組織観察の結果、本発明例は何れも、等軸フェライトの面積率が10%以下であり、主相であるフェライト相の結晶粒が回復組織となっていることも確認している。一方、本発明の範囲を外れる比較例は、所定の高強度が確保できていないか、曲げ加工性が確保できていない。   All of the examples of the present invention have excellent bending workability of sheet thickness reduction rate of 0.05 or less and skin roughness: 3 μm or less when subjected to close contact bending, and a high tensile strength TS in the rolling direction of 400 MPa or more. It is a strength thin steel plate. Further, as a result of the structure observation, it is confirmed that in all of the examples of the present invention, the area ratio of the equiaxed ferrite is 10% or less, and the crystal grains of the ferrite phase as the main phase have a recovery structure. On the other hand, in the comparative example that is out of the scope of the present invention, the predetermined high strength cannot be ensured or the bending workability cannot be ensured.

Claims (8)

質量%で、
C :0.0005%以上0.0080%以下、 Si:0.4%以下、
Mn:0.1%以上0.5%以下、 P :0.08%以下、
S :0.04%以下、 sol.Al:0.05%以下、
N :0.0060%以上0.0200%以下
を、Nおよびsol.Alが下記(1)式を満足するように含有し、且つ固溶N:0.0035%以上であり、残部がFeおよび不可避的不純物からなる組成と、フェライト相を主相とした冷間圧延回復組織を有し、圧延方向の引張強さが400MPa以上600MPa未満、板厚:0.7mm以下であることを特徴とする密着曲げ加工性および成形性に優れた高強度薄鋼板。

N/sol.Al ≧ 0.2 … (1)
(N、sol.Al:各元素の含有量(質量%))
% By mass
C: 0.0005% or more and 0.0080% or less, Si: 0.4% or less,
Mn: 0.1% to 0.5%, P: 0.08% or less,
S: 0.04% or less, sol.Al: 0.05% or less,
N: 0.0060% or more and 0.0200% or less containing N and sol.Al so that the following formula (1) is satisfied, and solid solution N: 0.0035% or more, with the balance being Fe and inevitable impurities And a cold rolling recovery structure with a ferrite phase as the main phase, with a tensile strength in the rolling direction of 400 MPa or more and less than 600 MPa , and a plate thickness of 0.7 mm or less. High strength thin steel sheet with excellent properties.
Record
N / sol.Al ≧ 0.2… (1)
(N, sol.Al: content of each element (% by mass))
前記組成に加えてさらに、質量%で、Ti、Bのうちの1種または2種を下記(2)式および(3)式を満足するように含有することを特徴とする請求項1に記載の密着曲げ加工性および成形性に優れた高強度薄鋼板。

0.0060 ≦ N−(Ti/48+B/11)×14 … (2)
{N−(Ti/48+B/11)×14}/sol.Al ≧ 0.2 … (3)
(N、sol.Al、Ti、B:各元素の含有量(質量%))
2. In addition to the composition, the composition further contains one or two of Ti and B so as to satisfy the following formulas (2) and (3) by mass%. High-strength thin steel sheet with excellent adhesion bending workability and formability.
Record
0.0060 ≦ N− (Ti / 48 + B / 11) × 14… (2)
{N− (Ti / 48 + B / 11) × 14} /sol.Al≧0.2… (3)
(N, sol.Al, Ti, B: content of each element (mass%))
前記組成に加えてさらに、質量%でNb:0.05%未満を、下記(4)式を満足するように含有することを特徴とする請求項1または2に記載の密着曲げ加工性および成形性に優れた高強度薄鋼板。

{N−(Ti/48+B/11)×14}/Nb ≧ 0.5 … (4)
(N、Ti、B、Nb:各元素の含有量(質量%))
In addition to the above composition, Nb: less than 0.05% by mass is contained so as to satisfy the following expression (4). Excellent high-strength thin steel sheet.
Record
{N− (Ti / 48 + B / 11) × 14} / Nb ≧ 0.5… (4)
(N, Ti, B, Nb: content of each element (mass%))
鋼素材を加熱し、粗圧延と仕上げ圧延からなる熱間圧延を施し、仕上げ圧延終了後、冷却し、巻き取り、熱延板とする熱間圧延工程と、前記熱延板に冷間圧延を施し冷延板とする冷間圧延工程と、さらに前記冷延板を所定の温度まで加熱し、該加熱温度に一定時間保持し、その後冷却する焼鈍処理を施す焼鈍処理工程とを順次施し薄鋼板とするにあたり、
前記鋼素材を、質量%で、
C :0.0005%以上0.0080%以下、 Si:0.4%以下、
Mn:0.1%以上0.5%以下、 P :0.08%以下、
S :0.04%以下、 sol.Al:0.05%以下、
N :0.0060%以上0.0200%以下
を、Nおよびsol.Alが下記(1)式を満足するように含有し、残部がFeおよび不可避的不純物からなる組成とし、前記熱間圧延工程の加熱温度を1000℃以上とし、前記仕上げ圧延の仕上げ圧延終了温度を850℃以上とし、前記巻き取りの巻取り温度CTを下記(5)式を満足する温度とし、前記冷間圧延工程の圧延率CRを40%以上65%以下とし、前記焼鈍処理工程の加熱温度ATを450℃以上620℃以下であり且つ下記(6)式を満足する温度とし、前記焼鈍処理工程の加熱温度での保持時間を5s以上600s以下とし、
前記薄鋼板を圧延方向の引張強さが400MPa以上600MPa未満で、板厚:0.7mm以下である高強度薄鋼板とすることを特徴とする密着曲げ加工性および成形性に優れた高強度薄鋼板の製造方法。

N/sol.Al ≧ 0.2 … (1)
CT(℃)≦700−10×(sol.Al/N) … (5)
(CT:熱間圧延工程の巻取り温度(℃))
(N、sol.Al:各元素の含有量(質量%))
AT(℃)≦(TSL−152−7.3×CR−155×[N]×100)/(−0.26) … (6)
(AT:焼鈍処理工程の加熱温度(℃))
(TSL:目標とする薄鋼板引張強さの下限値(MPa)、TSL≧400MPa)
(CR:冷間圧延工程の圧延率(%))
([N]:焼鈍処理工程前の冷延板に含まれる固溶Nの含有量(質量%))
The steel material is heated, subjected to hot rolling consisting of rough rolling and finish rolling, and after finishing rolling is cooled, wound, hot rolled into a hot rolled sheet, and the hot rolled sheet is subjected to cold rolling. A thin steel sheet is sequentially subjected to a cold rolling process for applying a cold-rolled sheet, and an annealing process for heating the cold-rolled sheet to a predetermined temperature, holding the heated temperature for a certain period of time, and thereafter performing an annealing process for cooling. In the case of
The steel material in mass%,
C: 0.0005% or more and 0.0080% or less, Si: 0.4% or less,
Mn: 0.1% to 0.5%, P: 0.08% or less,
S: 0.04% or less, sol.Al: 0.05% or less,
N: 0.0060% or more and 0.0200% or less containing N and sol.Al so that the following formula (1) is satisfied, with the balance being composed of Fe and inevitable impurities, and the heating temperature in the hot rolling step is 1000 ° C or higher, the finish rolling finish temperature of the finish rolling is 850 ° C or higher, the winding temperature CT of the winding is set to a temperature that satisfies the following formula (5), and the rolling rate CR of the cold rolling step is 40 % To 65 %, the heating temperature AT in the annealing treatment step is 450 ° C. to 620 ° C. and satisfies the following formula (6), and the holding time at the heating temperature in the annealing treatment step is 5 seconds or more. 600s or less ,
A high-strength thin steel sheet excellent in adhesive bending workability and formability, characterized in that the thin steel sheet is a high-strength thin steel sheet having a tensile strength in the rolling direction of 400 MPa or more and less than 600 MPa and a thickness of 0.7 mm or less. Manufacturing method.
Record
N / sol.Al ≧ 0.2… (1)
CT (℃) ≦ 700−10 × (sol.Al/N)… (5)
(CT: coiling temperature in hot rolling process (℃))
(N, sol.Al: content of each element (% by mass))
AT (° C) ≤ (TS L −152−7.3 × CR−155 × [N] × 100) / (− 0.26)… (6)
(AT: Heating temperature in annealing process (℃))
(TS L : Lower limit of target tensile strength of thin steel sheet (MPa), TS L ≧ 400MPa)
(CR: Rolling ratio in cold rolling process (%))
([N]: content of solid solution N contained in the cold-rolled sheet before the annealing process (mass%))
前記組成に加えてさらに、質量%で、Ti、Bのうちの1種または2種を下記(2)式および(3)式を満足するように含有することを特徴とする請求項4に記載の密着曲げ加工性および成形性に優れた高強度薄鋼板の製造方法。

0.0060 ≦ N−(Ti/48+B/11)×14 … (2)
{N−(Ti/48+B/11)×14}/sol.Al ≧ 0.2 … (3)
(N、sol.Al、Ti、B:各元素の含有量(質量%))
5. In addition to the composition, the composition further contains one or two of Ti and B so as to satisfy the following formulas (2) and (3) by mass%. A method for producing a high-strength thin steel sheet having excellent adhesion bending workability and formability.
Record
0.0060 ≦ N− (Ti / 48 + B / 11) × 14… (2)
{N− (Ti / 48 + B / 11) × 14} /sol.Al≧0.2… (3)
(N, sol.Al, Ti, B: content of each element (mass%))
前記組成に加えてさらに、質量%でNb:0.05%未満を下記(4)式を満足するように含有し、前記熱間圧延工程の巻取り温度CTを前記(5)式に代えて下記(7)式を満足する温度とし、前記焼鈍処理工程の加熱温度ATを450℃以上620℃以下であり且つ前記(6)式に代えて下記(8)式を満足する温度とすることを特徴とする請求項4または5に記載の密着曲げ加工性および成形性に優れた高強度薄鋼板の製造方法。

{N−(Ti/48+B/11)×14}/Nb ≧ 0.5 … (4)
(N、Ti、B、Nb:各元素の含有量(質量%))
CT(℃)≦700−z … (7)
ここで、zは10×(sol.Al/N)および50×(Nb/N)のうち大きいほうの値とする。
(CT:熱間圧延工程の巻取り温度(℃))
(N、sol.Al、Nb:各元素の含有量(質量%))
AT(℃)≦(TSL−152−7.3×CR−155×[N]×100)/(3.8×Nb−0.26) … (8)
(AT:焼鈍処理工程の加熱温度(℃))
(TSL:目標とする薄鋼板引張強さの下限値(MPa)、TSL≧400MPa)
(CR:冷間圧延工程の圧延率(%))
(Nb:Nbの含有量(質量%))
([N]:焼鈍処理工程前の冷延板に含まれる固溶Nの含有量(質量%))
In addition to the above composition, Nb: less than 0.05% by mass is contained so as to satisfy the following formula (4), and the coiling temperature CT in the hot rolling step is replaced by the above formula (5) and the following ( 7) is a temperature satisfying the formula, the heating temperature AT in the annealing treatment step is 450 ° C. or more and 620 ° C. or less, and the temperature satisfies the following formula (8) instead of the formula (6): The manufacturing method of the high strength thin steel plate excellent in the adhesion bending workability and formability of Claim 4 or 5.
Record
{N− (Ti / 48 + B / 11) × 14} / Nb ≧ 0.5… (4)
(N, Ti, B, Nb: content of each element (mass%))
CT (℃) ≦ 700−z (7)
Here, z is a larger value of 10 × (sol.Al/N) and 50 × (Nb / N).
(CT: coiling temperature in hot rolling process (℃))
(N, sol.Al, Nb: content of each element (mass%))
AT (° C) ≤ (TS L −152−7.3 × CR−155 × [N] × 100) / (3.8 × Nb−0.26)… (8)
(AT: Heating temperature in annealing process (℃))
(TS L : Lower limit of target tensile strength of thin steel sheet (MPa), TS L ≧ 400MPa)
(CR: Rolling ratio in cold rolling process (%))
(Nb: Nb content (% by mass))
([N]: content of solid solution N contained in the cold-rolled sheet before the annealing process (mass%))
前記焼鈍処理工程の加熱温度ATを450℃以上620℃以下とし、前記焼鈍処理工程の冷却停止温度を500℃以下とし、前記焼鈍処理工程後に、溶融亜鉛めっき処理工程を設けることを特徴とする請求項4ないし6のいずれか1項に記載の密着曲げ加工性および成形性に優れた高強度薄鋼板の製造方法。   The heating temperature AT in the annealing treatment step is 450 ° C. or more and 620 ° C. or less, the cooling stop temperature in the annealing treatment step is 500 ° C. or less, and a hot dip galvanizing treatment step is provided after the annealing treatment step. Item 7. A method for producing a high-strength thin steel sheet having excellent adhesion bending workability and formability according to any one of Items 4 to 6. 前記溶融亜鉛めっき処理工程後に合金化処理工程を設け、該合金化処理工程の合金化処理温度GTを550℃以下とすることを特徴とする請求項7に記載の密着曲げ加工性および成形性に優れた高強度薄鋼板の製造方法。   An alloying treatment step is provided after the hot dip galvanizing treatment step, and an alloying treatment temperature GT of the alloying treatment step is set to 550 ° C. or less. An excellent method for producing high strength thin steel sheets.
JP2011284680A 2011-12-27 2011-12-27 High strength thin steel sheet with excellent formability and method for producing the same Active JP5919812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011284680A JP5919812B2 (en) 2011-12-27 2011-12-27 High strength thin steel sheet with excellent formability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011284680A JP5919812B2 (en) 2011-12-27 2011-12-27 High strength thin steel sheet with excellent formability and method for producing the same

Publications (2)

Publication Number Publication Date
JP2013133496A JP2013133496A (en) 2013-07-08
JP5919812B2 true JP5919812B2 (en) 2016-05-18

Family

ID=48910400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011284680A Active JP5919812B2 (en) 2011-12-27 2011-12-27 High strength thin steel sheet with excellent formability and method for producing the same

Country Status (1)

Country Link
JP (1) JP5919812B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY171370A (en) 2014-05-30 2019-10-10 Jfe Steel Corp Steel sheet for cans and manufacturing method thereof
CN111363979A (en) * 2020-03-10 2020-07-03 北京火龙升腾工贸有限公司 Electrode bar of long-life electrode boiler and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03294432A (en) * 1990-04-13 1991-12-25 Nippon Steel Corp Production of extra thin steel sheet for welded can excellent in blank layout property
JPH06264138A (en) * 1993-03-12 1994-09-20 Nippon Steel Corp Production of steel sheet for welded can excellent in blank layout property
JP2000087184A (en) * 1998-09-14 2000-03-28 Nisshin Steel Co Ltd Steel sheet excellent in ductility after cold rolling, and its production
JP5453884B2 (en) * 2008-04-03 2014-03-26 Jfeスチール株式会社 Steel plate for high-strength container and manufacturing method thereof
JP5397263B2 (en) * 2010-02-23 2014-01-22 Jfeスチール株式会社 High tensile cold-rolled steel sheet and method for producing the same

Also Published As

Publication number Publication date
JP2013133496A (en) 2013-07-08

Similar Documents

Publication Publication Date Title
EP3372703B1 (en) Ultra-high strength steel plate having excellent formability and hole-expandability, and method for manufacturing same
US10526676B2 (en) High-strength steel sheet and method for producing the same
JP5971434B2 (en) High-strength hot-dip galvanized steel sheet excellent in stretch flangeability, in-plane stability and bendability of stretch flangeability, and manufacturing method thereof
JP5857909B2 (en) Steel sheet and manufacturing method thereof
TWI417400B (en) High strength galvanized steel sheet with excellent formability and method for manufacturing the same
JP5532188B2 (en) Manufacturing method of high-strength steel sheet with excellent workability
KR101621639B1 (en) Steel sheet, plated steel sheet, method for producing steel sheet, and method for producing plated steel sheet
KR101402365B1 (en) Cold-rolled steel sheet having excellent slow-aging property and high curability in baking, and method for producing same
JP2017048412A (en) Hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet and production methods therefor
WO2016178430A1 (en) High-strength steel plate and production method therefor
EP2980245B1 (en) High-strength alloyed molten-zinc-plated steel sheet and method for manufacturing same
JP6402830B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP3610883B2 (en) Method for producing high-tensile steel sheet with excellent bendability
JP5958669B1 (en) High strength steel plate and manufacturing method thereof
WO2008093815A1 (en) High tensile cold-rolled steel sheet and process for production thereor
JP2007002276A (en) High strength steel sheet and its manufacturing method
JP5516057B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
CN102639740B (en) Steel sheet for cans and method for producing same
CN113348259A (en) High-strength hot-dip galvanized steel sheet and method for producing same
KR20180120715A (en) Thin steel plate and coated steel sheet, method of manufacturing hot-rolled steel sheet, manufacturing method of cold-rolled full-hard steel sheet, manufacturing method of thin steel sheet and manufacturing method of coated steel sheet
JP6411881B2 (en) Ferritic stainless steel and manufacturing method thereof
JP2013185240A (en) High-tension cold-rolled steel sheet, high-tension plated steel sheet, and method for producing them
CN113166835B (en) Steel sheet for cans and method for producing same
JP5397263B2 (en) High tensile cold-rolled steel sheet and method for producing the same
JP5903884B2 (en) Manufacturing method of high-strength thin steel sheet with excellent resistance to folding back

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130716

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140326

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160328

R150 Certificate of patent or registration of utility model

Ref document number: 5919812

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250