JP2005232483A - High-strength steel sheet having superior deep drawability and balance of strength and ductility, and manufacturing method therefor - Google Patents

High-strength steel sheet having superior deep drawability and balance of strength and ductility, and manufacturing method therefor Download PDF

Info

Publication number
JP2005232483A
JP2005232483A JP2004039667A JP2004039667A JP2005232483A JP 2005232483 A JP2005232483 A JP 2005232483A JP 2004039667 A JP2004039667 A JP 2004039667A JP 2004039667 A JP2004039667 A JP 2004039667A JP 2005232483 A JP2005232483 A JP 2005232483A
Authority
JP
Japan
Prior art keywords
strength
steel
mass
less
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004039667A
Other languages
Japanese (ja)
Other versions
JP4380353B2 (en
Inventor
Kaneharu Okuda
金晴 奥田
Hiromi Yoshida
裕美 吉田
Toshiaki Urabe
俊明 占部
Yoshihiro Hosoya
佳弘 細谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004039667A priority Critical patent/JP4380353B2/en
Publication of JP2005232483A publication Critical patent/JP2005232483A/en
Application granted granted Critical
Publication of JP4380353B2 publication Critical patent/JP4380353B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-strength steel sheet having superior deep drawability and a superior balance of strength and ductility, and to provide a manufacturing method therefor. <P>SOLUTION: The high-strength steel sheet has a component composition comprising, by mass%, 0.010-0.050% C, 0.01-1.0% Si, 1.0-3.0% Mn, 0.005-0.1% P, 0.01% or less S, 0.005-0.1% Al, 0.01% or less N, 0.03-0.3% Nb, so that the contents of N and C can satisfy a relationship of 0.2≤(Nb/93)/(C/12)≤0.7 (where Nb and C represent the contents of each element(mass%)), and the balance substantially Fe with unavoidable impurities; and has a steel structure including 50% or more of a ferrite phase by an area rate, and 1% or more of a martensite phase by an area rate; has an average of an r-value of 1.2 or higher; and the product (TS×El) of tensile strength (TS) and elongation (El) in an amount of 19,000 MPa×% or more. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、自動車用鋼板等の使途に有用な、引張強度(TS)が440MPa以上の高強度でかつ高r値(r値≧1.2)を有し、引張強さ(TS)と伸び(El)の積(TS×El)が、19000MPa・%以上である、深絞り性と強度−延性バランスに優れた高強度鋼板とその製造方法を提案しようとするものである。   The present invention is useful for the use of automobile steel sheets and the like, and has a high tensile strength (TS) of 440 MPa or more and a high r value (r value ≧ 1.2), and has a tensile strength (TS) and elongation (El ) Product (TS × El) is 19000 MPa ·% or more and is intended to propose a high-strength steel sheet excellent in deep drawability and strength-ductility balance and its manufacturing method.

近年、地球環境保全の観点から、CO2の排出量を規制するため、自動車の燃費改善が要求されている。加えて、衝突時に乗員の安全を確保するため、自動車車体の衝突特性を中心にした安全性向上も要求されている。このように、自動車車体の軽量化および自動車車体の強化が積極的に進められている。 In recent years, in order to regulate CO 2 emissions from the viewpoint of global environmental conservation, improvement in fuel efficiency of automobiles has been demanded. In addition, in order to ensure the safety of passengers in the event of a collision, it is also required to improve safety centered on the collision characteristics of the automobile body. As described above, the weight reduction of the automobile body and the reinforcement of the automobile body are being actively promoted.

自動車車体の軽量化と強化を同時に満たすには、剛性に問題とならない範囲で部品素材を高強度化し、板厚を減ずることによる軽量化が効果的であると言われており、最近では高張力鋼板が自動車部品に積極的に使用されている。   In order to satisfy the weight reduction and strengthening of automobile bodies at the same time, it is said that it is effective to reduce the thickness by reducing the plate thickness by increasing the strength of the component material within a range where rigidity does not become a problem. Steel plates are actively used in automotive parts.

軽量化効果は使用する鋼板が高強度であるほど大きくなるため、自動車業界では、例えば内板および外板用のパネル用材料として引張強度(TS)440MPa以上の鋼板を使用する動向にある。   Since the weight reduction effect increases as the strength of the steel sheet used increases, the automotive industry tends to use a steel sheet having a tensile strength (TS) of 440 MPa or more as a panel material for inner and outer plates, for example.

一方、鋼板を素材とする自動車部品の多くは、プレス加工によって成形されるため、自動車用鋼板には優れたプレス成形性を有していることが必要とされる。しかしながら、高強度鋼板は、通常の軟鋼板に比べて成形性、特に深絞り性は大きく劣化するため、自動車の軽量化を進める上での課題として、TS≧440MPa、より好ましくはTS≧500MPaでしかも良好な深絞り成形性を兼ね備える鋼板の要求が高まっており、深絞り性の評価指標であるランクフォード値(以下「r値」という。)で、平均r値≧1.2の高強度鋼板が要求されている。   On the other hand, since many automotive parts made of steel plates are formed by press working, the steel plates for automobiles are required to have excellent press formability. However, since high-strength steel sheets are greatly deteriorated in formability, especially deep drawability, compared with ordinary mild steel sheets, TS ≧ 440 MPa, more preferably TS ≧ 500 MPa, is an issue in promoting automobile weight reduction. In addition, there is an increasing demand for steel sheets that have good deep drawability, and high strength steel sheets with an average r value ≥ 1.2 at the Rankford value (hereinafter referred to as "r value"), which is an evaluation index of deep drawability, are required. Has been.

高r値を有しながら高強度化する手段としては、極低炭素鋼板にTi、Nbを固溶炭素、固溶窒素を固着する量添加し、IF化(Interstitial free)した鋼をベースとして、これにSi、Mn、Pなどの固溶強化元素を添加する手法があり、例えば特許文献1に開示されている方法がある。
特開昭56−139654号公報
As a means to increase strength while having a high r value, based on steel that has been converted to IF (Interstitial Free) by adding an amount of Ti, Nb solute carbon and solute nitrogen fixed to an extremely low carbon steel sheet, For example, there is a method of adding a solid solution strengthening element such as Si, Mn, and P. For example, there is a method disclosed in Patent Document 1.
JP-A-56-139654

特許文献1は、C:0.002〜0.015%、Nb:C%×3〜C%×8+0.020%、Si:1.2%、Mn:0.04〜0.8%、P:0.03〜0.10%の組成を有する、引張強さ35〜45kg/mm2級(340〜440MPa級)の非時効性を有する成形性の優れた高張力冷延鋼板に関する技術である。 Patent Document 1 has a composition of C: 0.002 to 0.015%, Nb: C% × 3 to C% × 8 + 0.020%, Si: 1.2%, Mn: 0.04 to 0.8%, P: 0.03 to 0.10%. This is a technology related to a high-tensile cold-rolled steel sheet having a non-aging property of a tensile strength of 35 to 45 kg / mm class 2 (340 to 440 MPa class) and excellent formability.

しかしながら、このような極低炭素鋼を素材とする技術では、引張強度が≧440MPaの鋼板を製造しようとすると、合金元素添加量が多くなり、表面外観上の問題や、めっき性の劣化、2次加工脆性の顕在化などの問題が生じてくることがわかってきた。また、多量に固溶強化成分を添加すると、r値が劣化するので、高強度化を図るほどr値の水準は低下してしまう問題があった。   However, in such a technology using ultra-low carbon steel as a raw material, when trying to produce a steel sheet with a tensile strength of ≧ 440 MPa, the amount of added alloying elements increases, resulting in surface appearance problems, plating deterioration, It has been found that problems such as the manifestation of the next processing brittleness arise. In addition, when a solid solution strengthening component is added in a large amount, the r value deteriorates, so there is a problem that the level of the r value decreases as the strength increases.

また、C量を極低炭素域まで低減するためには製鋼工程で真空脱ガスをおこなわなければならず、すなわちこれは製造過程でCO2を多量に発生することになり、地球環境保全の観点からも最適なものとは言い難い。 In addition, in order to reduce the C content to an extremely low carbon range, vacuum degassing must be performed in the steelmaking process, that is, this generates a large amount of CO 2 during the manufacturing process, which is a viewpoint of global environmental conservation. It is hard to say that it is the most suitable.

鋼板の高強度化の方法として、前述のような固溶強化以外に、組織強化法がある。例えば、軟質なフェライト相と硬質のマルテンサイト相からなる複合組織鋼板であるDP(Dual−Phase)鋼板がある。DP鋼板は、一般的に延性については概ね良好であり、優れた強度−延性バランス(TS×El)を有し、さらに降伏比が低い、すなわち引張強さの割に降伏応力が低く、プレス成形時の形状凍結性に優れるという特徴があるが、r値が低く深絞り性に劣る。これは、結晶方位的にr値に寄与しないマルテンサイト相が存在することの他、マルテンサイト形成に必須である固溶Cは高r値化に有効な{111}再結晶集合組織の形成を阻害するからと言われている。   In addition to the solid solution strengthening as described above, there is a structure strengthening method as a method for increasing the strength of a steel sheet. For example, there is a DP (Dual-Phase) steel sheet which is a composite structure steel sheet composed of a soft ferrite phase and a hard martensite phase. DP steel is generally good in ductility, has an excellent strength-ductility balance (TS x El), and has a low yield ratio, that is, a low yield stress for its tensile strength. There is a feature that the shape freezing property at the time is excellent, but the r value is low and the deep drawability is inferior. This is because, in addition to the presence of a martensite phase that does not contribute to the r value in terms of crystal orientation, the solid solution C essential for martensite formation forms a {111} recrystallized texture effective for increasing the r value. It is said to inhibit.

このような複合組織鋼板のr値を改善する試みとして、例えば、特許文献2あるいは特許文献3の技術がある。
特公昭55−10650号公報 特開昭55−100934号公報
As an attempt to improve the r value of such a composite structure steel plate, for example, there is a technique of Patent Document 2 or Patent Document 3.
Japanese Patent Publication No.55-10650 JP-A-55-100934

特許文献2の技術では、冷間圧延後、再結晶温度〜Ac変態点の温度で箱焼鈍をおこない、その後、複合組織とするため700〜800℃に加熱した後、焼入焼戻しを行なう技術が開示されている。しかしながらこの方法では、連続焼鈍時に焼入焼戻しを行なうため、製造コストが問題となる。また箱焼鈍の場合、処理時間や効率の面から連続焼鈍に劣る。 In the technique of Patent Document 2, after cold rolling, box annealing is performed at a temperature of the recrystallization temperature to the Ac 3 transformation point, and then heating to 700 to 800 ° C. to obtain a composite structure, followed by quenching and tempering. Is disclosed. However, in this method, since the quenching and tempering is performed during the continuous annealing, the manufacturing cost becomes a problem. In the case of box annealing, it is inferior to continuous annealing in terms of processing time and efficiency.

特許文献3の技術は、高r値を得るために冷間圧延後、まず箱焼純を行ない、この時の温度をフェライト(α)相−オーステナイト(γ)相の2相域とし、その後、連続焼鈍を行うものである。この技術では、箱焼鈍の均熱時にα相からγ相にMnを濃化させる。このMn濃化相は、その後の連続焼鈍時に優先的にγ相となり、ガスジェット程度の冷却速度でも混合組織が得られるものである。しかしながらこの方法では、Mn濃化のため比較的高温で長時間の箱焼鈍が必要であり、そのため鋼板間の密着の多発、テンパーカラーの発生および炉体インナーカバーの寿命低下など製造工程上多くの問題がある。   In the technique of Patent Document 3, after cold rolling in order to obtain a high r value, box tempering is first performed, and the temperature at this time is set to a two-phase region of ferrite (α) phase-austenite (γ) phase. Continuous annealing is performed. In this technique, Mn is concentrated from the α phase to the γ phase during soaking of the box annealing. This Mn-concentrated phase preferentially becomes a γ phase during the subsequent continuous annealing, and a mixed structure can be obtained even at a cooling rate of the order of a gas jet. However, this method requires a long annealing time at a relatively high temperature for Mn concentration. Therefore, there are many problems in the manufacturing process such as frequent adhesion between steel plates, generation of temper collar, and reduction in the life of the furnace inner cover. There's a problem.

また、特許文献4では、C:0.003〜0.03%、Si:0.2〜1%、Mn:0.3〜1.5%、Ti:0.02〜0.2%(ただし(有効Ti)/(C+N)の原子濃度比を0.4〜0.8)含有する鋼を、熱間圧延し、冷間圧延した後、所定温度に加熱後急冷する連続焼鈍を施すことを特徴とする深絞り性及び形状凍結性に優れた複合組織型高張力冷延鋼板の製造方法である。この技術には、質量%で、0.012%C−0.32%Si−0.53%Mn−0.03%P−0.051%Tiの組成の鋼を冷間圧延後α−γの2相域である870℃に加熱後、100℃/sの平均冷却速度で冷却することにより、r値=1.61、TS=482MPaの複合組織型冷延鋼板が製造可能である技術が開示されている。しかし、100℃/sという高い冷却速度を得るには水焼入設備が必要となる他、水焼入した鋼板は表面処理性の問題が顕在化するため、製造設備上および材質上の問題がある。
特公平1−35900号公報
In Patent Document 4, C: 0.003 to 0.03%, Si: 0.2 to 1%, Mn: 0.3 to 1.5%, Ti: 0.02 to 0.2% (however, the atomic concentration ratio of (effective Ti) / (C + N) is 0.4). -0.8) Composite structure type high tension excellent in deep drawability and shape freezing property, characterized by hot rolling, cold rolling, and continuous annealing that is rapidly cooled after heating to a predetermined temperature It is a manufacturing method of a cold-rolled steel plate. In this technology, a steel having a composition of 0.012% C-0.32% Si-0.53% Mn-0.03% P-0.051% Ti is heated to 870 ° C which is a two-phase region of α-γ after cold rolling. Thereafter, a technique is disclosed in which a composite structure cold-rolled steel sheet having an r value = 1.61 and TS = 482 MPa can be manufactured by cooling at an average cooling rate of 100 ° C./s. However, in order to obtain a high cooling rate of 100 ° C / s, water quenching equipment is required, and water-quenched steel plates have surface treatment problems, so there are problems with manufacturing equipment and materials. is there.
Japanese Patent Publication No. 1-35900

さらに、特許文献5では、C含有量との関係でV含有量の適正化を図ることで複合組織鋼板のr値を改善する技術が開示されている。これは再結晶焼鈍前には鋼中のCをV系炭化物で析出させて固溶Cを極力低減させて高r値を図り、引き続きα−γの2相域で加熱することによりV系炭化物を溶解させてγ中にCを濃化させてその後の冷却過程でマルテンサイト相を生成させるものである。しかしながら、Vの添加は高価な元素であるため合金コストの増加を招くこと、さらに熱延板中に析出したVCは冷間圧延時の変形抵抗を高くするため、実施例にある庄下率70%での冷間圧延はロールへの負荷を大きくし、トラブル発生の危険性を増大するとともに生産性の低下が懸念されるなど、製造上の問題がある。
特開2002−226941号公報
Furthermore, Patent Document 5 discloses a technique for improving the r value of a composite steel sheet by optimizing the V content in relation to the C content. This is because before recrystallization annealing, C in the steel is precipitated with V-based carbides to reduce the solute C as much as possible to achieve a high r value, and subsequently heated in the two-phase region of α-γ to make V-based carbides. Is dissolved, C is concentrated in γ, and a martensite phase is generated in the subsequent cooling process. However, the addition of V causes an increase in alloy cost because it is an expensive element, and further, VC precipitated in the hot-rolled sheet increases the deformation resistance during cold rolling. % Cold rolling increases the load on the roll, increases the risk of trouble occurrence, and has a manufacturing problem such as concern about a decrease in productivity.
Japanese Patent Laid-Open No. 2002-226941

また、深絞り性に優れた高強度鋼板およびその製造方法の技術として、特許文献6の技術がある。この技術は、所定のC量を含有し、平均r値が1.3以上、かつ組織中にベイナイト相、マルテンサイト相、オーステナイト相のうち1種類以上を合計で3%以上有する高強度鋼板を得るものであり、その製造方法としては、冷間圧延の圧下率を30〜95%とし、次いでAlとNのクラスターや析出物を形成することによって集合組織を発達させてr値を高めるための焼鈍と、引き続き組織中にべイナイト相、マルテンサイト相、オーステナイト相のうち1種類以上を合計で3%以上有するようにするための熱処理を行なうことを特徴とするものである。この方法では、冷延後、良好なr値を得るための焼鈍と、組織を作り込むための熱処理をそれぞれ必要としており、さらに焼鈍工程ではその保持時間が1時間以上という長時間保持を必要としており、工程的(時間的)に生産性が悪いという問題がある。さらに、得られる組織の第2相分率が比較的高く、これでは実際優れた強度−延性バランスを安定的に確保することは困難である。
特開2003−64444号公報
Moreover, there exists a technique of patent document 6 as a technique of the high strength steel plate excellent in deep drawability, and its manufacturing method. This technique obtains a high-strength steel sheet containing a predetermined amount of C, having an average r value of 1.3 or more, and having a total of 3% or more of one or more of bainite phase, martensite phase, and austenite phase in the structure. As its manufacturing method, the rolling reduction of cold rolling is set to 30 to 95%, and then the texture is developed to form a cluster and precipitates of Al and N to increase the r value. Subsequently, heat treatment is carried out so as to have a total of 3% or more of one or more of the bainite phase, martensite phase, and austenite phase in the structure. In this method, after cold rolling, annealing for obtaining a good r value and heat treatment for forming a structure are required, respectively, and further, the annealing process requires a long holding time of 1 hour or more. Therefore, there is a problem that productivity is poor in terms of process (time). Furthermore, the second phase fraction of the resulting structure is relatively high, which makes it difficult to stably secure an excellent strength-ductility balance.
JP 2003-64444 A

深絞り性に優れる(軟)鋼板を高強度化するにあたり、従来検討されてきた固溶強化による高強度化の方法には、多量の或いは過剰な合金成分の添加が必要であり、これはコスト的にも工程的にも、またr値の向上そのものにも課題を抱えるものであった。また組織強化を利用した方法では、2回焼鈍(加熱)法や高速冷却設備を必要とし、製造工程上の問題があり、さらにVCを活用した方法も開示されているが、Vは高価なため合金コストの増加を招く他、VCの析出は圧延時の変形抵抗を高くするため、これもまた安定した製造を困難にするものであった。   In order to increase the strength of a (soft) steel sheet with excellent deep drawability, the conventional methods for increasing the strength by solid solution strengthening require the addition of a large amount or an excessive amount of alloy components, which is costly. Both in terms of process, process and r-value improvement. In addition, the method using structural strengthening requires a two-time annealing (heating) method and a high-speed cooling facility, and there are problems in the manufacturing process. Further, a method using VC is disclosed, but V is expensive. In addition to increasing the alloy cost, precipitation of VC increases deformation resistance during rolling, which also makes stable production difficult.

この発明は、このような従来技術の問題点を有利に解決した、深絞り性と強度−延性バランスが良好な高強度鋼板およびその製造方法を提案することを目的とする。   An object of the present invention is to propose a high-strength steel sheet having a good deep drawability and a good balance between strength and ductility, and a method for producing the same, which have advantageously solved the problems of the prior art.

この発明は、上記のような課題を解決すべく鋭意検討を進めたところ、特別な或いは過剰な合金成分や設備を用いることなく、0.01〜0.05%というC含有量の範囲でこのC量に伴うNb含有量を規制することで、平均r値が1.2以上、TS×El
が19000MPa・%以上で深絞り性と強度−延性バランスに優れ、かつフェライト相とマルテンサイト相を含む鋼組織をもつ高強度鋼板を得ることに成功した。
The present invention has been intensively studied to solve the above-mentioned problems. As a result, the C content is within a C content range of 0.01 to 0.05% without using special or excessive alloy components or equipment. By regulating the Nb content, the average r value is 1.2 or more, TS x El
However, it has succeeded in obtaining a high-strength steel sheet having a steel structure containing a ferrite phase and a martensite phase with an excellent deep drawability and strength-ductility balance at 19000 MPa ·% or more.

本発明の要旨構成は以下のとおりである。
(1)質量%で、
C:0.010〜0.050%、
Si:0.01〜1.0%、
Mn:1.0〜3.0%、
P:0.005〜0.1%、
S:0.01%以下、
Al:0.005〜0.1%、
N:0.01%以下および
Nb:0.03〜0.3%
を含有し、かつ、Nb含有量とC含有量が、0.2≦(Nb/93)/(C/12)≦0.7(式中のNbおよびCは各々の元素の含有量(質量%))なる関係を満たし、残部は実質的にFeおよび不可避的不純物からなる成分組成を有するとともに、面積率で50%以上のフェライト相と、面積率で1%以上のマルテンサイト相を含む鋼組織を有し、平均r値が1.2以上であり、引張強さ(TS)と伸び(El)の積(TS×El)が、19000MPa・%以上であることを特徴とする深絞り性と強度−延性バランスに優れた高強度鋼板。
The gist of the present invention is as follows.
(1) In mass%,
C: 0.010 to 0.050%
Si: 0.01 to 1.0%
Mn: 1.0-3.0%
P: 0.005-0.1%
S: 0.01% or less,
Al: 0.005-0.1%
N: 0.01% or less and
Nb: 0.03-0.3%
And Nb content and C content are 0.2 ≦ (Nb / 93) / (C / 12) ≦ 0.7 (Nb and C in the formula are the contents (mass%) of each element) The relationship is satisfied, and the balance has a steel composition containing a component composition consisting essentially of Fe and inevitable impurities, and including a ferrite phase with an area ratio of 50% or more and a martensite phase with an area ratio of 1% or more. The average r value is 1.2 or more, and the product of tensile strength (TS) and elongation (El) (TS × El) is 19000 MPa ·% or more. Excellent high strength steel plate.

(2)上記組成に加えて、さらに質量%でMo:0.5%以下を含有することを特徴とする上記(1)に記載の深絞り性と強度−延性バランスに優れた高強度鋼板。 (2) The high-strength steel sheet excellent in deep drawability and strength-ductility balance as described in (1) above, further containing Mo: 0.5% or less by mass% in addition to the above composition.

(3)上記組成に加えて、さらに質量%でTi:0.1%以下を含有し、かつ、鋼中のTiとSとNの含有量が、(Ti/48)/{(S/32)+(N/14)}≦2(式中のTi、SおよびNは各々の元素の含有量(質量%))なる関係を満足することを特徴とする上記(1)または(2)に記載の深絞り性と強度−延性バランスに優れた高強度鋼板。 (3) In addition to the above composition, Ti: 0.1% by mass or less is further contained, and the contents of Ti, S and N in the steel are (Ti / 48) / {(S / 32) + (N / 14)} ≦ 2 (wherein Ti, S and N are the contents (mass%) of each element) satisfying the relationship of (1) or (2) High-strength steel sheet with excellent deep drawability and strength-ductility balance.

(4)表面にめっき層を有することを特徴とする上記(1)〜(3)のいずれか1項に記載の深絞り性と強度−延性バランスに優れた高強度鋼板。 (4) The high-strength steel sheet excellent in deep drawability and strength-ductility balance according to any one of (1) to (3) above, wherein the surface has a plating layer.

(5) 質量%で、
C:0.010〜0.050%、
Si:0.01〜1.0%、
Mn:1.0〜3.0%、
P:0.005〜0.1%、
S:0.01%以下、
Al:0.005〜0.1%、
N:0.01%以下および
Nb:0.03〜0.3%
を含有し、かつ、NbとCの含有量(質量%)が、0.2≦(Nb/93)/(C/12)≦0.7(式中のNbおよびCは各々の元素の含有量(質量%))を満たす組成になる鋼スラブを熱間圧延にて仕上圧延出側温度をFT(℃)とし、仕上げ圧延の最終3スタンドの合計圧下率をX(%)とするとき、仕上圧延出側温度FTは、800≦FT≦800+25×X×Nb(式中のNbは鋼中のNb含有量(質量%))とする仕上圧延を施し、該仕上圧延後、0.5秒間以内に25℃/s以上で冷却し、巻取温度:500〜720℃で巻取り熱延板とする熱間圧延工程と、該熱延板に酸洗および冷間圧延を施し冷延板とする冷間圧延工程と、該冷延板に焼純温度:800〜950℃で焼鈍を行い、次いで焼鈍温度から500℃までの温度域の平均冷却速度を5℃/s以上として冷却する冷延板焼純工程とを順次施すことを特徴とする、深絞り性と強度−延性バランスに優れた高強度鋼板の製造方法。
(5) By mass%
C: 0.010 to 0.050%
Si: 0.01 to 1.0%
Mn: 1.0-3.0%
P: 0.005-0.1%
S: 0.01% or less,
Al: 0.005-0.1%
N: 0.01% or less and
Nb: 0.03-0.3%
And Nb and C content (mass%) is 0.2 ≦ (Nb / 93) / (C / 12) ≦ 0.7 (where Nb and C are the contents of each element (mass%) )) When the steel slab having a composition satisfying the above) is hot-rolled and the finish rolling exit temperature is FT (° C.) and the final rolling reduction of the final three stands is X (%), the finish rolling exit The temperature FT is 800 ≦ FT ≦ 800 + 25 × X × Nb (where Nb is the Nb content (mass%) in the steel) and is subjected to finish rolling, and 25 ° C./s within 0.5 seconds after the finish rolling A cold rolling process in which the steel sheet is cooled and rolled at a coiling temperature of 500 to 720 ° C. to be a hot rolled sheet, and the hot rolled sheet is pickled and cold rolled to form a cold rolled sheet. The cold rolled sheet is annealed at an annealing temperature of 800 to 950 ° C., and then cooled at an average cooling rate of 5 ° C./s or more in the temperature range from the annealing temperature to 500 ° C. Characterized by sequential application To deep drawability and strength - the method of producing a high strength steel sheet excellent in ductility balance.

(6)鋼スラブが、上記組成に加えてさらに質量%でMo:0.5%以下を含有することを特徴とする上記(5)に記載の深絞り性と強度−延性バランスに優れた高強鋼板の製造方法。 (6) The steel slab further contains Mo: 0.5% or less by mass% in addition to the above composition. The high-strength steel sheet excellent in deep drawability and strength-ductility balance described in (5) above Production method.

(7)鋼スラブが、上記組成に加えてさらに質量%でTi:0.1%以下を含有し、かつ鋼中のTiとSおよびNとの含有量が、(Ti/48)/{(S/32)+(N/14)}≦2(式中のTi、SおよびNは各々の元素の含有量(質量%))なる関係を満足する上記(5)または(6)に記載の深絞り性と強度−延性バランスに優れた高強度鋼板の製造方法。 (7) In addition to the above composition, the steel slab further contains Ti: 0.1% or less by mass%, and the content of Ti, S and N in the steel is (Ti / 48) / {(S / 32) Deep drawing according to the above (5) or (6) satisfying the relationship of + (N / 14)} ≦ 2 (wherein Ti, S and N are the contents (mass%) of each element) Of high-strength steel sheet with excellent balance between strength and strength-ductility.

(8)上記(5)〜(7)のいずれか1項に記載の製造方法で、前記冷延板焼鈍工程を施した後にめつき処理を施すことを特徴とする深絞り性と強度−延性バランスに優れた高強度鋼板の製造方法。 (8) Deep drawability and strength-ductility, characterized in that in the manufacturing method according to any one of (5) to (7) above, a squeezing treatment is performed after the cold-rolled sheet annealing step. A method for producing high-strength steel sheets with excellent balance.

この発明は、C含有量が0.010〜0.050質量%の範囲において、従来の極低炭素IF鋼のように深絞り性に悪影響をおよぼす固溶Cの低減を徹底せずに、マルテンサイト形成に必要な程度の固溶Cを残存させた状態下にもかかわらず{111}再結晶集合組織を発達させて平均r値≧1.2を確保して良好な深絞り性を有するとともに、鋼組織を、フェライト相と、マルテンサイト相を含む第2相とを有する複合組織とすることで、TS≧440MPa、より好ましくはTS≧500MPa以上の高強度化を達成したものである。   This invention is necessary for the formation of martensite when the C content is in the range of 0.010 to 0.050 mass% without thoroughly reducing solute C, which has an adverse effect on deep drawability, unlike conventional ultra-low carbon IF steels. The {111} recrystallized texture is developed in spite of the state in which the solid solution C remains, and the average r value ≧ 1.2 is secured to provide a good deep drawability. By forming a composite structure having a phase and a second phase containing a martensite phase, high strength of TS ≧ 440 MPa, more preferably TS ≧ 500 MPa is achieved.

この理由については、必ずしも明らかではないが、次のように考えられる.
高r値化、すなわち{111}再結晶集合組織を発達させるためには、従来軟鋼板においては、冷間圧延および再結晶前の固溶Cを極力低減することや、熱延板組織を微細化することなどが有効な手段とされてきた。一方、前述のようなDP鋼板では、マルテンサイト相の形成に必要な固溶Cを必要とするため、母相の再結晶集合組織が発達せずr値が低かった。しかしながら、本発明では、{111}再結晶集合組織の発達と、マルテンサイト相の形成の双方を可能にする絶妙の好成分範囲が存在することを新たに見出した。すなわち、従来のDP鋼板(低炭素鋼レベル)よりもC量を低減し、しかしながら極低炭素鋼に比べてC量が多いという、0.010〜0.050質量%のC含有量に加え、このC含有量に合わせて適切なNb添加を行なうことで、{111}再結晶集合組織の発達と、マルテンサイト相の形成の双方を行えることを新たに見出した。
The reason for this is not necessarily clear, but it is thought to be as follows.
In order to increase the r value, that is, to develop a {111} recrystallized texture, in conventional mild steel sheets, it is possible to reduce the solute C before cold rolling and recrystallization as much as possible, It has been regarded as an effective means. On the other hand, in the DP steel plate as described above, since the solute C necessary for the formation of the martensite phase is required, the recrystallization texture of the parent phase does not develop and the r value is low. However, in the present invention, it has been newly found that there is an exquisite component range that enables both the development of {111} recrystallized texture and the formation of martensite phase. That is, in addition to the C content of 0.010 to 0.050% by mass, the C content is lower than that of the conventional DP steel sheet (low carbon steel level), however, the C content is higher than that of the ultra low carbon steel. It was newly found that both the development of {111} recrystallization texture and the formation of martensite phase can be performed by adding Nb appropriately.

従来知られているように、Nbは再結晶遅延効果があるため、熱間圧延時の仕上温度を適切に制御することで、熱延板組織を微細化することが可能であり、さらに鋼中において、Nbは高い炭化物形成能を有している。   As conventionally known, Nb has a recrystallization delay effect, so it is possible to refine the hot-rolled sheet structure by appropriately controlling the finishing temperature during hot rolling. In Nb, Nb has a high carbide forming ability.

本発明では特に、仕上圧延出側温度を仕上げ圧延の最終3スタンドの合計圧下率およびNb含有量との関係で適切な範囲にして熱延板組織を微細化する以外に、熱延後のコイル巻取温度も適切にすることで、熱延板を均質でかつ微細化するとともに、熱延板中にNbCを析出させ、冷間圧延前および再結晶前の固溶Cの低減を図っている。ここで、Nb量をC量との比で、0.2≦(Nb/93)/(C/12)≦0.7(式中のNbおよびCは各々の元素の含有量(質量%))とすることで、すなわち、Nb量をC量との原子比でNb/C(原子比)=0.2〜0.7とすることで、敢えてNbCとして析出しないCを存在させている。従来このようなCの存在が{111}再結晶集合組織の発達を阻害するとされてきたが、本発明では全CをNbCとして析出固定せず、マルテンサイト相の形成に必要な固溶Cが存在しながらも高r値化を達成できる。この理由は定かではないが、固溶Cの存在による{111}再結晶集合組織形成に対する負の要因よりも、熱延板組織の微細化に加え、マトリックス中に微細なNbCを析出させることで冷間圧延時に粒界近傍に歪を蓄積させ、粒界からの{111}再結晶粒の発生を促進するという正の要因が大きいためと考えられる。特にマトリックス中にNbCを析出させることの効果は、従来の極低炭素鋼程度のC含有量では有効ではなく、本発明のC含有量レベルに於いて初めてその効果を発揮するものと推測され、この領域を見出したことが本発明の技術思想の基盤となっている。そして、NbC以外のC、その存在形態はおそらくセメンタイト系炭化物或いは固溶Cであると推測されるが、これらNbCとして固定されなかったCの存在により、焼鈍工程における冷却時にマルテンサイト相の形成を可能とし高強度化にも成功したのである。   Especially in the present invention, in addition to refining the hot-rolled sheet structure by setting the finish rolling outlet temperature to an appropriate range in relation to the total rolling reduction and Nb content of the final three stands of finish rolling, the coil after hot rolling By making the coiling temperature appropriate, the hot-rolled sheet is made uniform and refined, and NbC is precipitated in the hot-rolled sheet to reduce the solute C before cold rolling and before recrystallization. . Here, the ratio of Nb to the amount of C is 0.2 ≦ (Nb / 93) / (C / 12) ≦ 0.7 (Nb and C in the formula are the contents of each element (mass%)). That is, by setting the Nb amount to Nb / C (atomic ratio) = 0.2 to 0.7 in terms of the atomic ratio with respect to the C amount, C that does not precipitate as NbC is present. Conventionally, it has been said that the presence of such C inhibits the development of {111} recrystallized texture, but in the present invention, all C is not precipitated and fixed as NbC, and solid solution C necessary for the formation of the martensite phase is not present. High r value can be achieved while existing. The reason for this is not clear, but rather than a negative factor for the formation of {111} recrystallized texture due to the presence of solute C, in addition to refinement of the hot rolled sheet structure, fine NbC is precipitated in the matrix. This is thought to be due to the large positive factor that accumulates strain near the grain boundary during cold rolling and promotes the generation of {111} recrystallized grains from the grain boundary. In particular, the effect of precipitating NbC in the matrix is not effective at the C content of the conventional ultra-low carbon steel, and is presumed to exhibit the effect for the first time at the C content level of the present invention. Finding this area is the basis of the technical idea of the present invention. C other than NbC and its existence form are presumed to be cementite-based carbides or solute C, but the presence of C that was not fixed as NbC caused the formation of martensite phase during cooling in the annealing process. It was possible to achieve high strength.

この製造方法によれば、従来技術に対し、製鋼工程においては極低炭素鋼とするための脱ガス工程が不要であること、また固溶強化を利用するための過剰な合金元素の添加も不要でありコスト的にも有利である。さらに、特許文献5に開示されている技術にあるようなVの添加は、圧延時の変形抵抗を高めロールへの負荷が大きくなり、一般に高r値化に有効とされる高冷延圧下率を得るには、トラブル発生の危険性が増大するとともに生産性の低下が懸念される問題があるが、この発明ではそのような懸念もない。   According to this manufacturing method, compared with the prior art, a degassing step for making an ultra-low carbon steel is not necessary in the steel making process, and addition of an excessive alloy element is not required for utilizing solid solution strengthening. This is also advantageous in terms of cost. Furthermore, the addition of V as in the technique disclosed in Patent Document 5 increases the deformation resistance during rolling, increases the load on the roll, and is generally effective for increasing the r value. In order to obtain the above, there is a problem that the risk of trouble increases and the productivity may be lowered, but the present invention does not have such a concern.

以下に本発明を詳細に説明する。
鋼中の元素の含有量は質量%であるが、以下、特に断らない限り、単に%で示す。
まず、本発明の鋼板の成分組成を限定した理由について説明する。
The present invention is described in detail below.
The content of the element in the steel is mass%, but hereinafter, it is simply expressed as% unless otherwise specified.
First, the reason which limited the component composition of the steel plate of this invention is demonstrated.

・C:0.010〜0.050%
Cは、後述のNbとともに本発明における重要な元素である。Cは高強度化に有効であり、フェライト相を主相とし、マルテンサイト相を含む第2相を有する複合組織の形成を促進するので、本発明では複合組織形成の観点から0.010%以上含有する必要がある。一方、良好なr値を得るためには過剰な添加は好ましいものではないため、C含有量の上限を0.050%とし、より好ましくは0.030%とする。
・ C: 0.010 to 0.050%
C is an important element in the present invention together with Nb described later. C is effective in increasing the strength and promotes the formation of a composite structure having a ferrite phase as a main phase and a second phase including a martensite phase. Therefore, in the present invention, C is contained in an amount of 0.010% or more from the viewpoint of forming a composite structure. There is a need. On the other hand, in order to obtain a good r value, excessive addition is not preferable, so the upper limit of the C content is 0.050%, more preferably 0.030%.

・Si:0.01〜1.0%
Siは、フェライト変態を促進させ、未変態オーステナイト中のC含有量を上昇させてフェライト相とマルテンサイト相の複合組織を形成させやすくする他、固溶強化の効果がある。上記効果を得るには、Siは0.01%以上含有することが好ましく、より好ましくは0.05%以上含有する。一方、Siを1.0%を超えて含有すると、熱間圧延時に赤スケールが発生するため、鋼板とした時の表面外観を悪くする。また、溶融亜鉛めっきを施す際にめっきの濡れ性を悪くしてめっきむらの発生を招き、めっき品質が劣化するので、Si含有量の上限は1.0%とし、より好ましくは0.7%とする。
・ Si: 0.01-1.0%
Si promotes ferrite transformation and increases the C content in untransformed austenite to facilitate the formation of a composite structure of ferrite phase and martensite phase, and has an effect of strengthening solid solution. In order to acquire the said effect, it is preferable to contain 0.01% or more of Si, More preferably, 0.05% or more is contained. On the other hand, if Si is contained in excess of 1.0%, a red scale is generated during hot rolling, which deteriorates the surface appearance of the steel sheet. Also, when hot dip galvanizing is performed, the wettability of the plating is deteriorated, resulting in uneven plating and the plating quality is deteriorated. Therefore, the upper limit of the Si content is 1.0%, more preferably 0.7%. .

・Mn:1.0〜3.0%
Mnは、高強度化に有効であるとともに、マルテンサイト相が得られる臨界冷却速度を遅くする作用があり、焼鈍後の冷却時にマルテンサイト相の形成を促すため、要求される強度レベルおよび焼鈍後の冷却速度に応じて含有するのが好ましい。また、MnはSによる熱間割れを防止するのに有効な元素でもある。このような観点から、Mnは1.0%含有する必要がある。より好ましくは1.2%以上含有させる。また一方で、3.0%を超える過度のMn添加は、r値および溶接性を劣化させるので、Mn含有量の上限は3.0%を上限とする。
・ Mn: 1.0-3.0%
Mn is effective in increasing strength and has the effect of slowing down the critical cooling rate at which a martensite phase is obtained, and promotes the formation of the martensite phase during cooling after annealing, so the required strength level and after annealing It is preferable to contain it according to the cooling rate. Mn is also an effective element for preventing hot cracking due to S. From such a viewpoint, it is necessary to contain 1.0% of Mn. More preferably, the content is 1.2% or more. On the other hand, excessive Mn addition exceeding 3.0% degrades the r value and weldability, so the upper limit of the Mn content is 3.0%.

・P:0.005〜0.1%
Pは固溶強化の効果を発揮する元素である。しかしながら、P含有量が0.005%未満では、その効果が現れないだけでなく、製鋼工程に於いて脱りんコストの上昇を招く。したがって、P含有量は0.005%以上とし、より好ましくは0.01%以上とする。一方、0.1%を超える過剰なPの添加は、Pが粒界に偏析し、耐二次加工脆性および溶接性を劣化させる。また、溶融亜鉛めっき鋼板とする際には、溶融亜鉛めっき後の合金化処理時に、めっき層と鋼板の界面における鋼板からめっき層へのFeの拡散を抑制し、合金化処理性を劣化させる。そのため、高温での合金化処理が必要となり、得られるめっき層はパウダリング、チッピング等のめっき剥離が生じやすいものとなるため好ましくない。従って、P含有量の上限は0.1%とした。
・ P: 0.005-0.1%
P is an element that exhibits the effect of solid solution strengthening. However, if the P content is less than 0.005%, not only the effect does not appear, but also the dephosphorization cost increases in the steelmaking process. Therefore, the P content is 0.005% or more, more preferably 0.01% or more. On the other hand, the addition of excess P exceeding 0.1% causes P to segregate at the grain boundaries and deteriorates secondary work embrittlement resistance and weldability. Moreover, when it is set as the hot dip galvanized steel sheet, the diffusion of Fe from the steel sheet to the plated layer at the interface between the plated layer and the steel sheet is suppressed during the alloying process after the hot dip galvanizing, and the alloying processability is deteriorated. Therefore, an alloying treatment at a high temperature is required, and the obtained plating layer is not preferable because plating peeling such as powdering and chipping is likely to occur. Therefore, the upper limit of the P content is set to 0.1%.

・S:0.01%以下
Sは不純物であり、熱間割れの原因になる他、鋼中で介在物として存在し鋼板の諸特性を劣化させるので、できるだけ低減することが好ましいが、0.01%までのS含有量であれば許容できるため、S含有量の上限を0.01%とする。
-S: 0.01% or less S is an impurity and causes hot cracking, and also exists as inclusions in steel and deteriorates various properties of the steel sheet. Therefore, it is preferable to reduce as much as possible, but up to 0.01% Since the S content is acceptable, the upper limit of the S content is set to 0.01%.

・Al:0.005%〜0.1%
Alは、鋼の脱酸元素として有用である他、固溶Nを固定して耐常温時効性を向上させる効果を発揮する元素である。かかる効果を発揮するには、Al含有量は0.005%以上とすることが必要である。一方、0.1%を超えるAlの添加は、合金コストの増加を招き、さらに表面欠陥を誘発するので、Al含有量の上限は0.1%とする。
・ Al: 0.005% to 0.1%
In addition to being useful as a deoxidizing element for steel, Al is an element that exhibits the effect of fixing solute N and improving the normal temperature aging resistance. In order to exhibit such an effect, the Al content needs to be 0.005% or more. On the other hand, the addition of Al exceeding 0.1% causes an increase in alloy cost and further induces surface defects, so the upper limit of Al content is 0.1%.

・N:0.01%以下
Nは、多すぎると耐常温時効性を劣化させ、多量のAlやTi添加が必要となるため、できるだけ低減することが好ましいが、0.01%までのN含有量であれば許容できるため、N含有量の上限を0.01%とする。
・ N: 0.01% or less If N is too much, it deteriorates the aging resistance at room temperature and requires a large amount of Al or Ti addition, so it is preferable to reduce it as much as possible, but if the N content is up to 0.01% Since it is acceptable, the upper limit of N content is 0.01%.

・Nb:0.03〜0.3%でかつ0.2≦(Nb/93)/(C/12)≦0.7なる関係を満たすこと
Nbは、本発明において最も重要な元素であり、熱延板組織の微細化および熱延板中にNbCとしてCを析出固定させる作用を有し、高r値化に寄与する元素である。また圧延時の最終仕上げでの蓄積歪量を向上させる。このような観点から、Nbは0.03%以上含有するのが好ましい。一方で、本発明では、焼鈍後の冷却過程でマルテンサイト相を形成させるための固溶Cを必要とするが、過剰のNb添加はこれを妨げることになるので、Nb含有量の上限を0.3%とする。
・ Nb: 0.03 to 0.3% and 0.2 ≦ (Nb / 93) / (C / 12) ≦ 0.7
Nb is the most important element in the present invention, and has an effect of refining the hot-rolled sheet structure and precipitating and fixing C as NbC in the hot-rolled sheet, and contributes to increasing the r value. In addition, the amount of accumulated strain in the final finish during rolling is improved. From such a viewpoint, Nb is preferably contained in an amount of 0.03% or more. On the other hand, in the present invention, solid solution C for forming a martensite phase is required in the cooling process after annealing, but excessive Nb addition hinders this, so the upper limit of the Nb content is limited to 0.3. %.

また、Nb添加の効果を奏するには、特にNb含有量(質量%)とC含有量(質量%)との比が、0.2≦(Nb/93)/(C/12)≦0.7の範囲を満足することが必要である。なお、ここで式中のNb、Cは各々の元素の含有量(質量%)である。(Nb/93)/(C/12)が0.2未満では、固溶Cの存在量が多く、高r値化に有効な{111}再結晶集合組織の形成を阻害することになる。また、(Nb/93)/(C/12)が0.7を超えると、マルテンサイト相を形成するのに必要な固溶C量を鋼中に存在させることを妨げるので、最終的にマルテンサイト相を含む第2相を有する組織が得られない。したがって、Nb含有量を0.03〜0.3%の範囲とし、さらに、Nb含有量とC含有量(質量%)との比が、0.2≦(Nb/93)/(C/12)≦0.7の範囲を満足するものとする。   In order to achieve the effect of Nb addition, the ratio of the Nb content (mass%) and the C content (mass%) should be in the range of 0.2 ≦ (Nb / 93) / (C / 12) ≦ 0.7. It is necessary to be satisfied. In addition, Nb and C in a formula here are content (mass%) of each element. When (Nb / 93) / (C / 12) is less than 0.2, the amount of dissolved C is large, and the formation of {111} recrystallized texture effective for increasing the r value is inhibited. Further, if (Nb / 93) / (C / 12) exceeds 0.7, the amount of solute C necessary to form the martensite phase is prevented from being present in the steel, so that the martensite phase is finally obtained. The structure | tissue which has the 2nd phase containing is not obtained. Therefore, the Nb content is in the range of 0.03 to 0.3%, and the ratio of the Nb content to the C content (mass%) is in the range of 0.2 ≦ (Nb / 93) / (C / 12) ≦ 0.7. Satisfied.

以上が本発明の基本成分である。
本発明では、上記した組成に加えてさらに下記に示すMoおよびTiの1種または2種を添加してもよい。
The above is the basic component of the present invention.
In the present invention, in addition to the above-described composition, one or two of Mo and Ti shown below may be added.

・Mo:0.5%以下
Moは、Mn同様、マルテンサイト相が得られる臨界冷却速度を遅くする作用をもち、焼鈍後の冷却時にマルテンサイト相の形成を促す元素であり、強度レベル向上に効果がある。また、Moは、Cを析出固定させる作用を有し、高r値化に寄与する元素でもある。Moは鋼中に不可避的不純物として0.02%未満程度の範囲で含有している場合があるが、上記効果を得るためにはMoは0.02%以上含有していることが好ましく、0.05%以上含有することがさらに好ましい。しかしながら、過剰のMoを添加しても、これらの効果が飽和するだけでなく、合金コストの増加を招くだけであることから、Mo含有量の上限は0.5%とすることが好ましい。
・ Mo: 0.5% or less
Mo, like Mn, has the effect of slowing the critical cooling rate at which a martensite phase is obtained, and is an element that promotes the formation of a martensite phase during cooling after annealing, and is effective in improving the strength level. Mo is also an element that has the effect of precipitating and fixing C and contributes to an increase in the r value. Mo may be contained in the steel as an inevitable impurity in a range of less than 0.02%. However, in order to obtain the above effect, Mo is preferably contained in an amount of 0.02% or more, and 0.05% or more. More preferably. However, adding excess Mo not only saturates these effects but also increases alloy costs, so the upper limit of the Mo content is preferably 0.5%.

・Ti:0.1質量%以下、かつ、鋼中のTiとSとNの含有量が、(Ti/48)/{(S/32)+(N/14)}≦2なる関係を満足すること
Tiは、Alと同等或いはそれよりも固溶Nを析出固定する効果がある元素である。Tiは鋼中に不可避的不純物として0.005%未満の範囲で含有している場合があるが、上記効果を得るには、Ti含有量を0.005%以上とすることが好ましい。しかしながら、0.1%を超える過剰なTiの添加は合金コストの増加を招くばかりか、TiCの形成によりマルテンサイト相の形成に必要な固溶Cを鋼中に残すことを妨げるので、Ti含有量は0.1%以下とする。また、Tiは、鋼中で優先的に結合するSおよびN含有量との関係で(Ti/48)/{(S/32)+(N/14)}≦2を満足する必要がある。(Ti/48)/{(S/32)+(N/14)}が2よりも大きいと、過剰Tiにより2相域焼鈍時の固溶Cが少なくなり、複合組織化が困難になるからである。
-Ti: 0.1 mass% or less, and the contents of Ti, S, and N in the steel satisfy the relationship of (Ti / 48) / {(S / 32) + (N / 14)} ≤2.
Ti is an element having the effect of precipitating and fixing solute N equivalent to or more than Al. Ti may be contained in the steel as an inevitable impurity in a range of less than 0.005%. To obtain the above effect, the Ti content is preferably 0.005% or more. However, the addition of excessive Ti exceeding 0.1% not only increases the alloy cost, but also prevents the solid solution C necessary for the formation of the martensite phase from remaining in the steel due to the formation of TiC, so the Ti content is 0.1% or less. Further, Ti needs to satisfy (Ti / 48) / {(S / 32) + (N / 14)} ≦ 2 in relation to the S and N contents that are preferentially bonded in the steel. If (Ti / 48) / {(S / 32) + (N / 14)} is greater than 2, the amount of solid solution C during two-phase annealing decreases due to excess Ti, making it difficult to form a composite structure. It is.

また、本発明では、上記した成分以外の残部は実質的に鉄および不可避的不純物の組成とすることが好ましい.   In the present invention, the balance other than the above-described components is preferably substantially composed of iron and inevitable impurities.

なお、B、Ca、REM等を、通常の鋼組成範囲内であれば含有しても何ら問題はない。例えば、Bは鋼の焼入性を向上する作用をもつ元素であり、必要に応じて含有できる。しかし、その含有量が0.003質量%を超えると、その効果が飽和するため、B含有量は0.003質量%以下が好ましい。また、CaおよびREMは、硫化物系介在物の形態を制御する作用をもち、これにより鋼板の諸特性の劣化を防止する。このような効果は、CaおよびREMのうちから選ばれた1種または2種の含有量が合計で0.01質量%を超えると飽和するので、これ以下の含有量とすることが好ましい。   In addition, there is no problem even if B, Ca, REM, and the like are contained within the normal steel composition range. For example, B is an element having an effect of improving the hardenability of steel and can be contained as necessary. However, when the content exceeds 0.003% by mass, the effect is saturated, so the B content is preferably 0.003% by mass or less. Moreover, Ca and REM have the effect | action which controls the form of a sulfide type inclusion, and, thereby, prevents the deterioration of the various characteristics of a steel plate. Since such an effect is saturated when the content of one or two selected from Ca and REM exceeds 0.01% by mass in total, the content is preferably made less than this.

また、その他の不可避的不純物としては、例えばSb、Sn、Zn、Co等が挙げられ、これらの含有量の許容範囲としては、Sb:0.01質量%以下、Sn:0.1質量%以下、Zn:0.01質量%以下、Co:0.1質量%以下の範囲である。   Other inevitable impurities include, for example, Sb, Sn, Zn, Co, etc. The allowable ranges of these contents are Sb: 0.01% by mass or less, Sn: 0.1% by mass or less, Zn: 0.01 It is the range of the mass% or less and Co: 0.1 mass% or less.

次に本発明の鋼板の鋼組織および機械的特性を限定した理由について、以下で説明する。
本発明の高強度鋼板は、上記鋼組成を満足した上で、面積率で50%以上のフェライト相と、面積率で1%以上のマルテンサイト相を含む鋼組織を有し、平均r値が1.2以上であり、引張強さ(TS)と伸び(El)の積(TS×El)が、19000MPa・%以上であることが必要である。
Next, the reason why the steel structure and mechanical properties of the steel sheet of the present invention are limited will be described below.
The high-strength steel sheet according to the present invention has a steel structure including a ferrite phase having an area ratio of 50% or more and a martensite phase having an area ratio of 1% or more after satisfying the above steel composition, and an average r value. It must be 1.2 or more, and the product of tensile strength (TS) and elongation (El) (TS x El) must be 19000 MPa ·% or more.

・面積率で50%以上のフェライト相と、面積率で1%以上のマルテンサイト相を含む鋼組織を有すること
本発明の高強度鋼板は、面積率で50%以上のフェライト相と、面積率で1%以上のマルテンサイト相を含む、複合組織を有する複合組織鋼板である。ここで、本発明の鋼板は、半分以上の面積率を占めるフェライト相の{111}再結晶集合組織を発達させたものであり、平均r値≧1.2を達成している。良好な深絞り性を有し、引張強さTS≧440MPaの鋼板とするために、面積率で50%以上のフェライト相と、面積率で1%以上のマルテンサイト相を含む鋼組織とする必要がある。フェライト相が少なくなり、面積率で50%未満となると、良好な深絞り性を確保することが困難となり、プレス成形性が低下する傾向がある。より好ましくは、フェライト相は面積率で70%以上とする。なお、複合組織の利点を利用するため、フェライト相は99%以下とするのが好ましい。なお、ここでフェライト相とは、ポリゴナルフェライト相や、オーステナイト相から変態した転位密度の高いベイニチックフェライト相を意味する。
-It has a steel structure containing a ferrite phase with an area ratio of 50% or more and a martensite phase with an area ratio of 1% or more. The high-strength steel sheet of the present invention has a ferrite phase with an area ratio of 50% or more and an area ratio. And a steel sheet having a composite structure containing a martensite phase of 1% or more. Here, the steel sheet of the present invention has developed a {111} recrystallized texture of the ferrite phase occupying more than half of the area ratio, and has achieved an average r value ≧ 1.2. In order to obtain a steel sheet with good deep drawability and tensile strength TS ≧ 440MPa, it is necessary to have a steel structure containing a ferrite phase with an area ratio of 50% or more and a martensite phase with an area ratio of 1% or more. There is. When the ferrite phase is reduced and the area ratio is less than 50%, it becomes difficult to ensure good deep drawability, and the press formability tends to decrease. More preferably, the ferrite phase is 70% or more in area ratio. In order to take advantage of the composite structure, the ferrite phase is preferably 99% or less. Here, the ferrite phase means a polygonal ferrite phase or a bainitic ferrite phase having a high dislocation density transformed from an austenite phase.

また、本発明ではマルテンサイト相が存在することが必要であり、マルテンサイト相を面積率で1%以上含有する必要がある。マルテンサイト相が1%未満では、良好な強度−延性バランスを得ることが難しい。マルテンサイト相は、より好ましくは3%以上とする。   In the present invention, the martensite phase must be present, and the martensite phase needs to be contained in an area ratio of 1% or more. If the martensite phase is less than 1%, it is difficult to obtain a good strength-ductility balance. The martensite phase is more preferably 3% or more.

なお、本発明の鋼板の鋼組織は、上記したフェライト相やマルテンサイト相の他に、パーライト、べイナイトあるいは残留オーステナイト(γ)相などを含んだ組織としてもよい。   The steel structure of the steel sheet of the present invention may be a structure containing pearlite, bainite, retained austenite (γ) phase, etc. in addition to the above-described ferrite phase and martensite phase.

・平均r値が1.2以上であること
本発明の鋼板は、上記した成分組成および鋼組織を満足するとともに、平均r値≧1.2を満足することが必要である。本発明では、上記成分組成に調整し、フェライト相とマルテンサイト相を含む鋼組織とするもので、初めて平均r値が1.2以上を達成することができた。ここで平均r値とは、JIS Z 2254で求められる平均塑性ひずみ比を意味し、以下で求められる値である。
平均r値=(r+2r45+r90)/4
ただし、r、r45およびr90は、試験片を板面の圧延方向に対し、それぞれ、平行、45°方向および90°方向に採取し測定した塑性ひずみ比である。
-The average r value is 1.2 or more The steel sheet of the present invention is required to satisfy the above-described component composition and steel structure, and to satisfy the average r value ≧ 1.2. In the present invention, the steel composition containing the ferrite phase and the martensite phase is adjusted to the above component composition, and for the first time, an average r value of 1.2 or more can be achieved. Here, the average r value means an average plastic strain ratio determined by JIS Z 2254, and is a value determined below.
Average r value = (r 0 + 2r 45 + r 90 ) / 4
However, r 0 , r 45 and r 90 are plastic strain ratios obtained by measuring the test pieces taken in parallel, 45 ° direction and 90 ° direction, respectively, with respect to the rolling direction of the plate surface.

・引張強さTSと伸びElの積TS×Elが、19000MPa・%以上であること
本発明鋼板は、強度−延性バランスに優れることを特徴としており、TS×Elの値が19000MPa・%以上であることが必要である。この場合のElはJIS5号試験片にてJIS Z 2241の規定に準拠して引張試験し、破断した時の全伸びとする。
・ The product TS × El of tensile strength TS and elongation El is 19000 MPa ·% or more. The steel sheet of the present invention is characterized by an excellent balance between strength and ductility, and the value of TS × El is 19000 MPa ·% or more. It is necessary to be. In this case, El is a tensile test using a JIS No. 5 test piece in accordance with the provisions of JIS Z 2241, and is defined as the total elongation at break.

本発明の鋼板は、その表面に電気めっきあるいは溶融亜鉛めっきなどの表面処理を施してめっき層を有する、いわゆるめっき鋼板をも含むものである。ここでいう「めっき」とは、純亜鉛の他、亜鉛を主成分として合金元素を添加した亜鉛系合金めっき、あるいはAlやAlを主成分として合金元素を添加したAl系合金めっきなど、従来鋼板表面に施されているめっき層も含む。   The steel sheet of the present invention also includes a so-called plated steel sheet having a plating layer on the surface thereof subjected to surface treatment such as electroplating or hot dip galvanizing. The term “plating” as used herein refers to conventional steel sheets such as zinc-based alloy plating in which zinc is the main component and alloy elements are added in addition to pure zinc, or Al-based alloy plating in which alloy elements are mainly composed of Al or Al. Also includes a plating layer applied to the surface.

次に、本発明鋼板の好ましい製造方法について説明する。
本発明の製造方法に用いられるスラブの組成は、上述した鋼板の組成と同様であるので、鋼スラブの限定理由については省略する。
Next, the preferable manufacturing method of this invention steel plate is demonstrated.
Since the composition of the slab used in the production method of the present invention is the same as that of the steel plate described above, the reason for limiting the steel slab is omitted.

本発明の鋼板は、上記した範囲内の組成を有する鋼スラブを素材とし、該素材に熱間圧延を施し熱延板とする熱間圧延工程と、該熱延板に酸洗および冷間圧延を施し冷延板とする冷間圧延工程と、該冷延板に再結晶と複合組織化を達成する冷延板焼純工程とを順次施すことにより製造できる。   The steel sheet of the present invention comprises a steel slab having a composition within the above-described range as a material, a hot rolling step in which the material is hot-rolled to form a hot-rolled sheet, and pickling and cold-rolling the hot-rolled sheet. Can be produced by sequentially performing a cold rolling step to form a cold-rolled sheet and a cold-rolled sheet refrigeration step for achieving recrystallization and complex structure formation on the cold-rolled sheet.

本発明では、まず鋼スラブを熱間圧延にて仕上圧延出側温度FT(℃)とし、仕上げ圧延の最終3スタンドの合計圧下率をX(%)とするとき、仕上圧延出側温度FTは、800≦FT≦800+25×X×Nb(式中のNbは鋼中のNb含有量(質量%))とする仕上圧延を施し、該仕上圧延後、0.5秒間以内に25℃/s以上で冷却し、巻取温度:500〜720℃で巻取り熱延板とする熱間圧延工程を施す。   In the present invention, first, when the steel slab is made into a finish rolling exit temperature FT (° C.) by hot rolling and the total rolling reduction of the final three stands of finish rolling is X (%), the finish rolling exit temperature FT is 800 ≦ FT ≦ 800 + 25 × X × Nb (Nb in the formula is Nb content in steel (mass%)), and after finish rolling, cool at 25 ° C / s or more within 0.5 seconds And the hot rolling process which makes a coiled hot rolled sheet at a coiling temperature: 500-720 degreeC is given.

本発明の製造方法で使用する鋼スラブは、成分のマクロ偏析を防止すべく連続鋳造法で製造することが望ましいが、造塊法や薄スラブ鋳造法で製造してもよい。また、鋼スラブを製造した後、いったん室温まで冷却し、その後再度加熱する従来法に加え、冷却せず温片のままで加熱炉に装入し熱間圧延する直送圧延、或いはわずかの保熱を行なった後に直ちに熱間圧延する直送圧延・直接圧延などの省エネルギープロセスも問題なく適用できる。   The steel slab used in the production method of the present invention is preferably produced by a continuous casting method in order to prevent macro segregation of components, but may be produced by an ingot-making method or a thin slab casting method. In addition to the conventional method in which the steel slab is manufactured and then cooled to room temperature and then heated again, direct feed rolling in which the steel slab is charged without being cooled and charged in a heating furnace and hot-rolled, or a little heat retention Energy saving processes such as direct feed rolling and direct rolling, which are hot-rolled immediately after performing the above, can be applied without any problem.

スラブ加熱温度は、析出物を粗大化させることにより{111}再結晶集合組織を発達させて深絞り性を改善するため、低い方が望ましい。しかし、加熱温度が1000℃未満では圧延荷重が増大し熱間圧延時におけるトラブル発生の危険性が増大するので、スラブ加熱温度は1000℃以上にすることが好ましい。なお、酸化重量の増加に伴うスケールロスの増大などから、スラブ加熱温度の上限は1300℃とすることが好適である。   The slab heating temperature is preferably low because the precipitates are coarsened to develop a {111} recrystallized texture and improve deep drawability. However, if the heating temperature is less than 1000 ° C, the rolling load increases and the risk of trouble occurring during hot rolling increases, so the slab heating temperature is preferably 1000 ° C or higher. Note that the upper limit of the slab heating temperature is preferably set to 1300 ° C. because of an increase in scale loss accompanying an increase in oxidized weight.

上記条件で加熱された鋼スラブに粗圧延および仕上げ圧延を行う熱間圧延を施す。ここで、鋼スラブは粗圧延によりシートバーとされる。なお、粗圧延の条件は特に規定する必要はなく、常法に従って行なえばよい。また、スラブ加熱温度を低くし、かつ熱間圧延時のトラブルを防止するといった観点から、シートバーを加熱する所謂シートバーヒーターを活用することは有効な方法であることは言うまでもない。   The steel slab heated under the above conditions is subjected to hot rolling for rough rolling and finish rolling. Here, the steel slab is made into a sheet bar by rough rolling. The conditions for rough rolling need not be specified, and may be determined according to a conventional method. It goes without saying that using a so-called sheet bar heater for heating the sheet bar is an effective method from the viewpoint of lowering the slab heating temperature and preventing troubles during hot rolling.

次いで、シートバーを仕上げ圧延して熱延板とする。仕上圧延出側温度FTは800℃以上とするとともに、仕上圧延出側温度をFT(℃)と、仕上圧延の最終3スタンドの合計圧下率をX(%)とするとき、800≦FT≦800+25×X×Nb(式中のNbは鋼中のNb含有量(質量%))とする仕上圧延を施す。本発明では、仕上圧延の最終段階で歪を十分に蓄積し、フェライト変態の促進と、微細化および均質化を図ることが重要である。また、前述のようにNbは蓄積歪量に影響し、圧下スタンド間での再結晶を遅らせることにより、蓄積歪量の向上に寄与する。これらのことから、種々実験を行い、r値およびTS×ElにおよぼすFTと仕上圧延の最終3スタンドの合計圧下率XとNb含有量の影響を解析し、r≧1.2かつTS×El≧19000MPa・%が得られる実験式としてFT≦800+25×X×Nbを求めた。FTの値が800+25×X×Nbで与える式から求められる値を超えると、組織が粗大化するとともに、冷延焼鈍後の{111}再結晶集合組織の形成および発達を妨げ高r値が得られないことや、強度−延性バランスが悪くなるので好ましくない。この式の意味するところは、必ずしも明らかではないが、圧延歪をためこむ効果がNbにはあるので、Nb量が多いと、より高い仕上げ温度でも同じ効果を発揮できるのである。   Next, the sheet bar is finish-rolled to obtain a hot-rolled sheet. When the finish rolling exit temperature FT is 800 ° C. or higher, the finish rolling exit temperature is FT (° C.), and the total rolling reduction of the final three stands of finish rolling is X (%), 800 ≦ FT ≦ 800 + 25 Finish rolling is performed with × X × Nb (Nb in the formula is Nb content (% by mass) in steel). In the present invention, it is important to sufficiently accumulate strain at the final stage of finish rolling, to promote ferrite transformation, and to refine and homogenize. Further, as described above, Nb affects the amount of accumulated strain and contributes to improvement of the amount of accumulated strain by delaying recrystallization between the rolling stands. Based on these results, various experiments were conducted to analyze the effects of the total reduction ratio X and Nb content of the final three stands of FT and finish rolling on the r value and TS × El, and r ≧ 1.2 and TS × El ≧ 19000 MPa. -FT ≦ 800 + 25 × X × Nb was determined as an empirical formula for obtaining%. If the value of FT exceeds the value obtained from the formula given by 800 + 25 × X × Nb, the structure becomes coarse and the formation and development of {111} recrystallized texture after cold rolling annealing is prevented, resulting in a high r value. Is not preferable, and the strength-ductility balance is deteriorated. The meaning of this equation is not necessarily clear, but Nb has an effect of accumulating rolling strain. Therefore, if the amount of Nb is large, the same effect can be exhibited even at a higher finishing temperature.

但し、FTが800℃未満では、組織が加工組織になり、冷延焼鈍後に{111}集合組織が発達しないだけでなく、熱間圧延時の圧延負荷が高くなる。従って、FTは800℃以上とし、またFTは800+25×X×Nb以下にする。   However, when the FT is less than 800 ° C., the structure becomes a processed structure, and not only the {111} texture develops after cold rolling annealing, but also the rolling load during hot rolling increases. Therefore, FT is 800 ° C. or higher, and FT is 800 + 25 × X × Nb or lower.

また、熱間圧延時の圧延荷重を低減するため、仕上圧延の一部または全部のパス間で潤滑圧延としてもよい。潤滑圧延を行なうことは、鋼板形状の均一化や材質の均質化の観点からも有効である。潤滑圧延の際の摩擦係数は0.10〜0.25の範囲とするのが好ましい。さらに、相前後するシートバー同士を接合し、連続的に仕上圧延する連続圧延プロセスとすることも好ましい。連続圧延プロセスを適用することは熱間圧延の操業安定性の観点からも望ましい。   Moreover, in order to reduce the rolling load at the time of hot rolling, it is good also as lubrication rolling between some or all passes of finishing rolling. Lubrication rolling is also effective from the viewpoint of homogenizing the shape of the steel sheet and homogenizing the material. The coefficient of friction during lubrication rolling is preferably in the range of 0.10 to 0.25. Furthermore, it is also preferable to use a continuous rolling process in which the adjacent sheet bars are joined and finish-rolled continuously. It is desirable to apply the continuous rolling process from the viewpoint of the operational stability of hot rolling.

上記仕上圧延後、0.5秒間以内に25℃/s以上で冷却する。これは、仕上圧延で、Nbの効果により蓄積した歪を効果的にフェライト変態させるのに役立たせるため、組織を凍結させておく必要があり、そのためには、仕上圧延後、0.5秒間以内に冷却を開始する必要があり、しかも、冷却速度は25℃/s以上でないといけない。なお、冷却停止温度は、ランアウトテーブルの長さによるが、巻き取る温度が、下記のようになるようにすればよい。   After the finish rolling, cool at 25 ° C./s or more within 0.5 seconds. This is because it is necessary to freeze the structure in the finish rolling in order to effectively transform the strain accumulated due to the effect of Nb into ferrite, and for this purpose, cooling is performed within 0.5 seconds after the finish rolling. The cooling rate must be 25 ° C / s or higher. The cooling stop temperature depends on the length of the runout table, but the winding temperature may be set as follows.

コイル巻取温度CTは500〜720℃の範囲とする。この温度範囲が熱延板中にNbCを析出させ、熱延組織を均一微細にするのに好適な温度範囲であるとともに、特にCTが上限を超えると、結晶粒が粗大化し強度低下を招くとともに冷延焼鈍後の高r値化を妨げることになる。なお、コイル巻取温度CTは、好ましくは550〜680℃とする。   The coil winding temperature CT is in the range of 500 to 720 ° C. This temperature range is a suitable temperature range for precipitating NbC in the hot-rolled sheet and making the hot-rolled structure uniform and fine, and especially when CT exceeds the upper limit, the crystal grains become coarse and cause a decrease in strength. This will hinder high r-value after cold rolling annealing. The coil winding temperature CT is preferably 550 to 680 ° C.

上記のように成分組成および熱延条件を調整することにより、1)熱延板段階でC含有量全体の20%以上をNbCとして析出固定することができ、また2)熱延板の組織を、小傾角粒界を含む平均結晶粒径が8μm以下とすることができ、高r値化に有利となる。   By adjusting the component composition and hot rolling conditions as described above, 1) 20% or more of the total C content can be deposited and fixed as NbC at the hot rolling stage, and 2) In addition, the average crystal grain size including a low-angle grain boundary can be 8 μm or less, which is advantageous for increasing the r value.

1)熱延板段階において、NbCとして析出固定されるC量が全体のC量の20%以上
NbCとして析出固定されているC量とは、熱延板を化学分析(抽出分析)して得られる析出Nb量から次式にて算出される値である。
fix(%)={12×(NbPre/93)/Ctotal}×100
但し、CfixはNbCとして析出固定されているC量の全C量に占める割合(%)、Ctotalは鋼中の全C量(質量%)、そして、NbPreは析出Nb量(質量%)である。
1) The amount of C deposited and fixed as NbC in the hot-rolled sheet stage is 20% or more of the total amount of C
The amount of C deposited and fixed as NbC is a value calculated by the following equation from the amount of precipitated Nb obtained by chemical analysis (extraction analysis) of a hot-rolled sheet.
C fix (%) = {12 × (Nb Pre / 93) / C total } × 100
However, C fix is the ratio (%) of the C amount precipitated and fixed as NbC to the total C amount, C total is the total C amount (mass%) in the steel, and Nb Pre is the precipitated Nb amount (mass%). ).

冷間圧延および再結晶前の段階で固溶Cを低減することは高r値化のために有効であり、本発明ではNbCとして析出固定されるC量が全体のC量の20%以上でその効果が現れる。一方、Nb含有量の上限は、前述した他の適正範囲の上限(Nb/93)/(C/12)≦0.7を満足するのであれば問題なく、高r値化と焼鈍後のマルテンサイト相の形成とが両立される。   Reducing solute C at the stage before cold rolling and recrystallization is effective for increasing the r value, and in the present invention, the amount of C precipitated and fixed as NbC is 20% or more of the total amount of C. The effect appears. On the other hand, the upper limit of the Nb content is no problem as long as the upper limit (Nb / 93) / (C / 12) ≦ 0.7 of the other appropriate range described above is satisfied. And the formation of both.

2)熱延板の組織が小傾角粒界を含む平均結晶粒径で8μm以下
従来軟鋼板においては、熱延板の結晶粒径を微細化する程、r値を高める効果があることが知られている。本発明においては、特に小傾角粒界も含めて粒径を測定した場合、その平均結晶粒径が8μm以下で高r値化に効果が現れる。結晶粒径の測定方法としては、圧延方向に平行な断面(L断面)について光学顕微鏡を用いてて微視組織を撮像し、JIS G O552に準じた切断法により、公称粒径dとして求めればよく、この他EBSD(Electron Back-Scatter Diffraction)等の装置を用いて求めてもよい。
2) The average grain size of the hot-rolled sheet is 8 μm or less, including an average grain size including a low-angle grain boundary. In conventional mild steel sheets, it is known that the finer the grain size of the hot-rolled sheet, the higher the r value. It has been. In the present invention, particularly when the particle diameter is measured including a low-angle grain boundary, an effect appears in increasing the r value when the average crystal grain diameter is 8 μm or less. The method of measuring the crystal grain size, the cross section parallel to the rolling direction (L cross section) imaging the microstructure have an optical microscope, by a cutting method in accordance with JIS G O552, is determined as the nominal diameter d n Alternatively, it may be obtained using a device such as EBSD (Electron Back-Scatter Diffraction).

次いで、熱延板に酸洗および冷間圧延を施し冷延板とする冷間圧延工程を施す。酸洗は通常の条件にて行なえばよい。冷間圧延条件は、所望の寸法形状の冷延板とすることができればよく、特に限定されないが、冷間圧延時の圧下率は少なくとも40%以上とすることが好ましく、より望ましくは50%以上とする。高r値化には高冷延圧下率が一般に有効であり、圧下率が40%未満では{111}再結晶集合組織が発達せず、優れた深絞り性を得ることが困難となる場合がある。一方、この発明では冷間圧下率を90%までの範囲で高くするほどr値が上昇するが、90%を超えるとその効果が飽和するばかりでなく、圧延時のロールへの負荷も高まるため、圧下率の上限を90%とすることが好ましい。   Next, the hot-rolled sheet is pickled and cold-rolled to give a cold-rolling step to obtain a cold-rolled sheet. Pickling may be performed under normal conditions. The cold rolling condition is not particularly limited as long as it can be a cold-rolled sheet having a desired size and shape, but the rolling reduction during cold rolling is preferably at least 40%, more preferably 50% or more. And A high cold rolling reduction is generally effective for increasing the r value. If the reduction is less than 40%, the {111} recrystallization texture does not develop, and it may be difficult to obtain excellent deep drawability. is there. On the other hand, in this invention, the r value increases as the cold rolling reduction is increased in the range up to 90%, but when it exceeds 90%, not only the effect is saturated, but also the load on the roll during rolling increases. The upper limit of the rolling reduction is preferably 90%.

次に、上記冷延板に焼鈍温度:800〜950℃で焼鈍を行い、次いで焼鈍温度から500℃までの温度域の平均冷却速度を5℃/s以上として冷却する冷延板焼純工程を施す。   Next, the cold-rolled sheet pure process is performed by annealing the cold-rolled sheet at an annealing temperature of 800 to 950 ° C., and then cooling at an average cooling rate in the temperature range from the annealing temperature to 500 ° C. at 5 ° C./s or more. Apply.

上記焼鈍は、本発明で必要とする冷却速度を確保するため連続焼鈍ラインで行なうことが好ましく、800〜950℃の温度域で行う必要がある。本発明においては、焼鈍の際の最高到達温度である焼鈍温度を、概ね800℃以上とすることで、α-γの2相域、すなわち冷却後にフェライト相とマルテンサイト相を含む組織が得られる温度以上、かつ再結晶温度以上にすることができる。すなわち、焼鈍温度が800℃未満では、冷却後に十分なマルテンサイト相の形成がなされないか、或いは再結晶が完了せずフェライトの集合組織を調整できず高r値化が図れない。一方、950℃を超える高温では、再結晶粒が著しく粗大化し、特性が著しく劣化するからである。   The annealing is preferably performed in a continuous annealing line in order to ensure the cooling rate required in the present invention, and it is necessary to perform in a temperature range of 800 to 950 ° C. In the present invention, by setting the annealing temperature, which is the highest temperature during annealing, to approximately 800 ° C. or higher, a two-phase region of α-γ, that is, a structure containing a ferrite phase and a martensite phase after cooling can be obtained. It can be higher than the temperature and higher than the recrystallization temperature. That is, when the annealing temperature is less than 800 ° C., a sufficient martensite phase is not formed after cooling, or recrystallization is not completed and the ferrite texture cannot be adjusted, so that a high r value cannot be achieved. On the other hand, at a high temperature exceeding 950 ° C., the recrystallized grains are remarkably coarsened and the characteristics are remarkably deteriorated.

上記焼鈍後の冷却速度は、マルテンサイト相の形成の観点から、焼鈍温度から500℃までの温度域の平均冷却速度を5℃/s以上として冷却する必要がある。該温度域の平均冷却速度が5℃/s未満だと、マルテンサイト相が形成されにくく、フェライト単相組織となり、組織強化が不足することになる。   The cooling rate after the annealing needs to be cooled by setting the average cooling rate in the temperature range from the annealing temperature to 500 ° C. to 5 ° C./s or more from the viewpoint of forming the martensite phase. When the average cooling rate in the temperature range is less than 5 ° C./s, the martensite phase is hardly formed, and a ferrite single phase structure is formed, resulting in insufficient structure strengthening.

本発明では、マルテンサイト相を含む第2相の存在が必須であることから、500℃までの平均冷却速度が臨界冷却速度以上であることが必要であり、これを達成するためには概ね5℃/s以上とすることで満足される。なお、500℃未満の冷却については、特に限定はしないが、引き続き、望ましくは300℃まで5℃/s以上の平均冷却速度で冷却することが好ましく、過時効処理を施す場合は、過時効処理温度までを平均冷却速度が5℃/s以上になるようにすることが好ましい。   In the present invention, since the presence of the second phase including the martensite phase is essential, the average cooling rate up to 500 ° C. is required to be equal to or higher than the critical cooling rate. Satisfactory when the temperature is set to ℃ / s or more. In addition, although it does not specifically limit about cooling below 500 degreeC, It is preferable to continue cooling at an average cooling rate of 5 degree-C / s or more desirably to 300 degreeC, and when overaging treatment is performed, overaging treatment is preferable. It is preferable that the average cooling rate is 5 ° C./s or higher up to the temperature.

また、上記冷延板焼鈍工程の後に電気めっき処理あるいは溶融めっき処理などのめっき処理を施し、鋼板表面にめっき層を形成しても良い。   Moreover, after the cold-rolled sheet annealing step, a plating process such as an electroplating process or a hot dipping process may be performed to form a plating layer on the steel sheet surface.

例えば、めっき処理として、自動車用鋼板に多く用いられる溶融亜鉛めっき処理を行なう際には、上記焼鈍を連続溶融めっきラインにて行い、焼鈍後の冷却に引き続いて溶融亜鉛めっき浴に浸漬して、表面に溶融亜鉛めっき層を形成すればよく、或いはさらに合金化処理を行い、合金化溶融亜鉛めっき鋼板を製造してもよい。その場合、溶融めっきのポットから出た後、或いはさらに合金化処理した後の冷却においても、300℃までの平均冷却速度が5℃/s以上になるように冷却することが好ましい。   For example, when performing a hot dip galvanizing process often used for automotive steel sheets as a plating process, the annealing is performed in a continuous hot dip plating line, and immersed in a hot dip galvanizing bath following cooling after annealing, A hot-dip galvanized layer may be formed on the surface, or an alloying treatment may be further performed to produce an alloyed hot-dip galvanized steel sheet. In this case, it is preferable that the cooling after leaving the hot-dip plating pot or after alloying is performed so that the average cooling rate up to 300 ° C. is 5 ° C./s or more.

また、上記焼鈍後の冷却までを焼鈍ラインで行い、一旦室温まで冷却した後、溶融亜鉛めっきラインにて溶融亜鉛めっきを施し、或いはさらに合金化処理を行なっても良い。ここで、めっき層は、純亜鉛および亜鉛系合金めっきに限らず、AlやAl系合金めっきなど、従来、鋼板表面に施されている各種めっき層とすることも勿論可能である。   Further, the cooling after the annealing may be performed in an annealing line, and after cooling to room temperature, hot dip galvanizing may be performed in a hot dip galvanizing line, or further alloying treatment may be performed. Here, the plating layer is not limited to pure zinc and zinc-based alloy plating, and may of course be various plating layers conventionally applied to the steel sheet surface, such as Al or Al-based alloy plating.

さらに、冷延焼鈍板およびめっき鋼板には、形状矯正、表面粗度等の調整の目的で調質圧延またはレベラー加工を施してもよい。調質圧延或いはレベラー加工の伸び率は合計で0.2〜15%の範囲内であることが好ましい。前記伸び率が0.2%未満では形状矯正や粗度調整を十分に行なうことができず、所期の目的が達成できない。一方、前記伸び率が15%を超えると顕著な延性低下をもたらす。なお、調質圧延とレベラー加工では、加工形式が相違するが、その効果は両者で大きな差がないことを確認している。   Further, the cold-rolled annealed plate and the plated steel plate may be subjected to temper rolling or leveler processing for the purpose of adjusting shape correction, surface roughness, and the like. The total elongation of temper rolling or leveler processing is preferably in the range of 0.2 to 15%. If the elongation is less than 0.2%, shape correction and roughness adjustment cannot be performed sufficiently, and the intended purpose cannot be achieved. On the other hand, when the elongation rate exceeds 15%, the ductility is significantly reduced. In addition, although the processing form differs between temper rolling and leveler processing, it has been confirmed that there is no significant difference between the two.

次に、本発明の実施例について説明する。
表1に示す組成の溶鋼を転炉で溶製し、連続鋳造法でスラブとした。これら鋼スラブを1250℃に加熱し粗圧延してシートバーとし、次いで表2および表3に示す条件の仕上圧延を施す熱間圧延工程により熱延板とした。これらの熱延板を酸洗および圧下率65%の冷間圧延工程により冷延板とした。引き続きこれら冷延板に連続焼鈍ラインにて、表2および表3に示す条件で連続焼鈍を行なった。さらに得られた冷延焼鈍板に伸び率0.5%の調質圧延を施した。なお、No.2の鋼板は、連続溶融亜鉛めっきラインにて冷廷板焼鈍工程を施し、その後引き続きインラインで溶融亜鉛めっき(めっき浴温:480℃)を施して溶融亜鉛めっき鋼板とし、同様に各種特性を評価した。
Next, examples of the present invention will be described.
Molten steel having the composition shown in Table 1 was melted in a converter and made into a slab by a continuous casting method. These steel slabs were heated to 1250 ° C. and roughly rolled into sheet bars, and then hot-rolled sheets were formed by a hot rolling process in which finish rolling under the conditions shown in Tables 2 and 3 was performed. These hot-rolled sheets were made into cold-rolled sheets by pickling and a cold rolling process with a rolling reduction of 65%. Subsequently, these cold-rolled sheets were subjected to continuous annealing in the continuous annealing line under the conditions shown in Tables 2 and 3. Further, the obtained cold-rolled annealed sheet was subjected to temper rolling with an elongation of 0.5%. In addition, the No. 2 steel plate is subjected to a cold plate annealing process in a continuous hot dip galvanizing line, followed by in-line hot dip galvanizing (plating bath temperature: 480 ° C) to obtain a hot dip galvanized steel plate. Various characteristics were evaluated.

得られた冷延焼鈍板について、鋼組織、引張特性(降伏応力YS、引張強さTS、伸びEl、および引張強さ(TS)と伸び(El)の積(TS×El))およびr値を調査した.調査方法は下記の通りである。   About the obtained cold-rolled annealed sheet, steel structure, tensile properties (yield stress YS, tensile strength TS, elongation El, and product of tensile strength (TS) and elongation (El) (TS x El)) and r value investigated. The survey method is as follows.

(1)冷延焼鈍板の鋼組織
得られた各冷延焼鈍板あるいはめっき鋼板から試験片を採取し、圧延方向に平行な断面(L断面)について光学顕微鏡或いは走査型電子顕微鏡を用いて微視組織を撮像し、画像解析装置で主相であるフェライト相の面積率と第2相の種類および面積率を求めた。
(1) Steel structure of cold-rolled annealed plates Test specimens were collected from each of the obtained cold-rolled annealed plates or plated steel plates, and the cross section (L cross section) parallel to the rolling direction was finely measured using an optical microscope or scanning electron microscope. The visual tissue was imaged, and the area ratio of the ferrite phase, which is the main phase, and the type and area ratio of the second phase were obtained by an image analysis apparatus.

(2)冷延焼鈍板の引張特性
得られた各冷延焼鈍板あるいはめっき鋼板から圧延方向に対して90°方向(C方向)にJIS5号引張試験片を採取し、JIS Z 2241の規定に準拠してクロスヘッド速度10mm/minで引張試験を行い、降伏応力(YS)、引張強さ(TS)、伸び(El)および引張強さ(TS)と伸び(El)の積(TS×El)を求めた。
(2) Tensile properties of cold-rolled annealed plates JIS No. 5 tensile test specimens were taken from each of the obtained cold-rolled annealed plates or plated steel plates in the 90 ° direction (C direction) with respect to the rolling direction. In accordance with the tensile test at a crosshead speed of 10 mm / min, yield stress (YS), tensile strength (TS), elongation (El), and the product of tensile strength (TS) and elongation (El) (TS x El )

(3)冷延焼鈍板のr値測定
得られた各冷延焼鈍板あるいはめっき鋼板から、それぞれ、圧延方向(L方向)、圧延方向に対し45°方向(D方向)および圧延方向に対し90°方向(C方向)にJIS5号引張試験片を採取した。これらの試験片に10%の単軸引張歪を付与した時の各試験片の幅歪と板厚歪を求め、JIS Z 2254の規定に準拠して平均r値(平均塑性歪比)を求め、これをr値とした。
(3) Measurement of r value of cold-rolled annealed sheet From each of the obtained cold-rolled annealed sheets or plated steel sheets, the rolling direction (L direction), 45 ° direction (D direction) with respect to the rolling direction, and 90 direction with respect to the rolling direction, respectively. A JIS No. 5 tensile test piece was taken in the direction (C direction). Obtain the width strain and thickness strain of each specimen when 10% uniaxial tensile strain is applied to these specimens, and obtain the average r value (average plastic strain ratio) in accordance with the provisions of JIS Z 2254. This is the r value.

Figure 2005232483
Figure 2005232483

Figure 2005232483
Figure 2005232483

Figure 2005232483
Figure 2005232483

表2および表3より明らかなとおり、本発明例は、いずれも引張強さTSが440MPa以上であり、かつ、平均r値が1.2以上と高いr値を有し、強度−延性バランスも向上している。これに対し、本発明の範囲を外れる条件で製造した比較例は、強度が不足しているか、或いはr値または強度−延性バランスが低下している鋼板となっている。   As is clear from Tables 2 and 3, all of the inventive examples have a tensile strength TS of 440 MPa or higher, an average r value of 1.2 or higher, and a high strength-ductility balance. ing. On the other hand, the comparative example manufactured on the conditions which remove | deviate from the range of this invention is a steel plate which intensity | strength is insufficient or r value or intensity-ductility balance is falling.

本発明によれば、引張強さTSが440MPa以上でかつ平均r値が1.2以上、TS×Elが19000MPa・%以上と高r値を有し、強度−延性バランスに優れる高強度鋼板を安価にかつ安定して製造することが可能となり、これは、産業上格段の効果を奏する。例えば本発明の高強度鋼板を自動車部品に適用した場合、これまでプレス成形が困難であった部位も高強度化が可能となり、自動車車体の衝突安全性や軽量化に十分寄与できるという効果がある。また、自動車部品に限らず家電部品やパイプ用素材としても適用可能である。   According to the present invention, a high-strength steel sheet having a tensile strength TS of 440 MPa or more, an average r value of 1.2 or more, TS × El of 19000 MPa ·% or more and a high r value, and an excellent balance between strength and ductility is inexpensive. And it becomes possible to manufacture stably, and there exists a remarkable effect on an industry. For example, when the high-strength steel sheet of the present invention is applied to automobile parts, it is possible to increase the strength of parts that have been difficult to press-form so far, and it is possible to sufficiently contribute to collision safety and weight reduction of the automobile body. . Moreover, it is applicable not only to automobile parts but also to household appliance parts and pipe materials.

Claims (8)

質量%で、
C:0.010〜0.050%、
Si:0.01〜1.0%、
Mn:1.0〜3.0%、
P:0.005〜0.1%、
S:0.01%以下、
Al:0.005〜0.1%、
N:0.01%以下および
Nb:0.03〜0.3%
を含有し、かつ、Nb含有量とC含有量が、0.2≦(Nb/93)/(C/12)≦0.7(式中のNbおよびCは各々の元素の含有量(質量%))なる関係を満たし、残部は実質的にFeおよび不可避的不純物からなる成分組成を有するとともに、面積率で50%以上のフェライト相と、面積率で1%以上のマルテンサイト相を含む鋼組織を有し、平均r値が1.2以上であり、引張強さ(TS)と伸び(El)の積(TS×El)が、19000MPa・%以上であることを特徴とする深絞り性と強度−延性バランスに優れた高強度鋼板。
% By mass
C: 0.010 to 0.050%
Si: 0.01 to 1.0%
Mn: 1.0-3.0%
P: 0.005-0.1%
S: 0.01% or less,
Al: 0.005-0.1%
N: 0.01% or less and
Nb: 0.03-0.3%
And Nb content and C content are 0.2 ≦ (Nb / 93) / (C / 12) ≦ 0.7 (Nb and C in the formula are the contents (mass%) of each element) The relationship is satisfied, and the balance has a steel composition containing a component composition consisting essentially of Fe and inevitable impurities, and including a ferrite phase with an area ratio of 50% or more and a martensite phase with an area ratio of 1% or more. The average r value is 1.2 or more, and the product of tensile strength (TS) and elongation (El) (TS × El) is 19000 MPa ·% or more. Excellent high strength steel plate.
上記組成に加えて、さらに質量%でMo:0.5%以下を含有することを特徴とする請求項1に記載の深絞り性と強度−延性バランスに優れた高強度鋼板。   In addition to the said composition, Mo: 0.5% or less is further contained in the mass%, The high strength steel plate excellent in the deep drawability and strength-ductility balance of Claim 1 characterized by the above-mentioned. 上記組成に加えて、さらに質量%でTi:0.1%以下を含有し、かつ、鋼中のTiとSとNの含有量が、(Ti/48)/{(S/32)+(N/14)}≦2(式中のTi、SおよびNは各々の元素の含有量(質量%))なる関係を満足することを特徴とする請求項1または2に記載の深絞り性と強度−延性バランスに優れた高強度鋼板。   In addition to the above composition, Ti: 0.1% or less by mass%, and the contents of Ti, S and N in the steel are (Ti / 48) / {(S / 32) + (N / 14)} ≦ 2 (wherein Ti, S and N are the contents (mass%) of each element) The deep drawability and strength according to claim 1 or 2, High strength steel plate with excellent ductility balance. 表面にめっき層を有することを特徴とする請求項1〜3のいずれか1項に記載の深絞り性と強度−延性バランスに優れた高強度鋼板。   The high strength steel sheet excellent in deep drawability and strength-ductility balance according to any one of claims 1 to 3, wherein the surface has a plating layer. 質量%で、
C:0.010〜0.050%、
Si:0.01〜1.0%、
Mn:1.0〜3.0%、
P:0.005〜0.1%、
S:0.01%以下、
Al:0.005〜0.1%、
N:0.01%以下および
Nb:0.03〜0.3%
を含有し、かつ、NbとCの含有量(質量%)が、0.2≦(Nb/93)/(C/12)≦0.7(式中のNbおよびCは各々の元素の含有量(質量%))を満たす組成になる鋼スラブを熱間圧延にて仕上圧延出側温度をFT(℃)とし、仕上げ圧延の最終3スタンドの合計圧下率をX(%)とするとき、仕上圧延出側温度FTは、800≦FT≦800+25×X×Nb(式中のNbは鋼中のNb含有量(質量%))とする仕上圧延を施し、該仕上圧延後、0.5秒間以内に25℃/s以上で冷却し、巻取温度:500〜720℃で巻取り熱延板とする熱間圧延工程と、該熱延板に酸洗および冷間圧延を施し冷延板とする冷間圧延工程と、該冷延板に焼純温度:800〜950℃で焼鈍を行い、次いで焼鈍温度から500℃までの温度域の平均冷却速度を5℃/s以上として冷却する冷延板焼純工程とを順次施すことを特徴とする、深絞り性と強度−延性バランスに優れた高強度鋼板の製造方法。
% By mass
C: 0.010 to 0.050%
Si: 0.01 to 1.0%
Mn: 1.0-3.0%
P: 0.005-0.1%
S: 0.01% or less,
Al: 0.005-0.1%
N: 0.01% or less and
Nb: 0.03-0.3%
And Nb and C content (mass%) is 0.2 ≦ (Nb / 93) / (C / 12) ≦ 0.7 (where Nb and C are the contents of each element (mass%) )) When the steel slab having a composition satisfying the above) is hot-rolled and the finish rolling exit temperature is FT (° C.) and the final rolling reduction of the final three stands is X (%), the finish rolling exit The temperature FT is 800 ≦ FT ≦ 800 + 25 × X × Nb (where Nb is the Nb content (mass%) in the steel) and is subjected to finish rolling, and 25 ° C./s within 0.5 seconds after the finish rolling A cold rolling process in which the steel sheet is cooled and rolled at a coiling temperature of 500 to 720 ° C. to be a hot rolled sheet, and the hot rolled sheet is pickled and cold rolled to form a cold rolled sheet. The cold rolled sheet is annealed at an annealing temperature of 800 to 950 ° C., and then cooled at an average cooling rate of 5 ° C./s or more in the temperature range from the annealing temperature to 500 ° C. Characterized by sequential application To deep drawability and strength - the method of producing a high strength steel sheet excellent in ductility balance.
鋼スラブが、上記組成に加えてさらに質量%でMo:0.5%以下を含有することを特徴とする請求項5に記載の深絞り性と強度−延性バランスに優れた高強鋼板の製造方法。   6. The method for producing a high strength steel plate excellent in deep drawability and strength-ductility balance according to claim 5, wherein the steel slab further contains Mo: 0.5% or less by mass% in addition to the above composition. 鋼スラブが、上記組成に加えてさらに質量%でTi:0.1%以下を含有し、かつ鋼中のTiとSおよびNとの含有量が、(Ti/48)/{(S/32)+(N/14)}≦2(式中のTi、SおよびNは各々の元素の含有量(質量%))なる関係を満足する請求項5または6に記載の深絞り性と強度−延性バランスに優れた高強度鋼板の製造方法。   In addition to the above composition, the steel slab further contains Ti: 0.1% or less by mass%, and the content of Ti, S and N in the steel is (Ti / 48) / {(S / 32) + (N / 14)} ≦ 2 (wherein Ti, S and N are the contents (mass%) of each element) The deep drawability and the strength-ductility balance according to claim 5 or 6 are satisfied. For producing high-strength steel sheets with excellent resistance. 請求項5〜7のいずれか1項に記載の製造方法で、前記冷延板焼鈍工程を施した後にめっき処理を施すことを特徴とする深絞り性と強度−延性バランスに優れた高強度鋼板の製造方法。   A high-strength steel sheet excellent in deep drawability and strength-ductility balance, characterized in that in the manufacturing method according to any one of claims 5 to 7, a plating treatment is performed after the cold-rolled sheet annealing step. Manufacturing method.
JP2004039667A 2004-02-17 2004-02-17 High-strength steel sheet excellent in deep drawability and strength-ductility balance and manufacturing method thereof Expired - Fee Related JP4380353B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004039667A JP4380353B2 (en) 2004-02-17 2004-02-17 High-strength steel sheet excellent in deep drawability and strength-ductility balance and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004039667A JP4380353B2 (en) 2004-02-17 2004-02-17 High-strength steel sheet excellent in deep drawability and strength-ductility balance and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005232483A true JP2005232483A (en) 2005-09-02
JP4380353B2 JP4380353B2 (en) 2009-12-09

Family

ID=35015742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004039667A Expired - Fee Related JP4380353B2 (en) 2004-02-17 2004-02-17 High-strength steel sheet excellent in deep drawability and strength-ductility balance and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4380353B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007246991A (en) * 2006-03-16 2007-09-27 Jfe Steel Kk Steel sheet for printing substrate
JP2008169427A (en) * 2007-01-11 2008-07-24 Jfe Steel Kk High strength steel sheet excellent in deep drawability and secondary working embrittlement resistance, and its production method
JP2009235532A (en) * 2008-03-28 2009-10-15 Jfe Steel Corp High strength steel sheet having excellent deep drawability, and method for producing the same
JP2012062559A (en) * 2010-09-17 2012-03-29 Kobe Steel Ltd High-thermal-conductivity steel sheet
JP2017150051A (en) * 2016-02-26 2017-08-31 Jfeスチール株式会社 High strength steel sheet excellent in flexure property and manufacturing method therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007246991A (en) * 2006-03-16 2007-09-27 Jfe Steel Kk Steel sheet for printing substrate
JP2008169427A (en) * 2007-01-11 2008-07-24 Jfe Steel Kk High strength steel sheet excellent in deep drawability and secondary working embrittlement resistance, and its production method
JP2009235532A (en) * 2008-03-28 2009-10-15 Jfe Steel Corp High strength steel sheet having excellent deep drawability, and method for producing the same
JP2012062559A (en) * 2010-09-17 2012-03-29 Kobe Steel Ltd High-thermal-conductivity steel sheet
JP2017150051A (en) * 2016-02-26 2017-08-31 Jfeスチール株式会社 High strength steel sheet excellent in flexure property and manufacturing method therefor

Also Published As

Publication number Publication date
JP4380353B2 (en) 2009-12-09

Similar Documents

Publication Publication Date Title
JP4635525B2 (en) High-strength steel sheet excellent in deep drawability and manufacturing method thereof
KR101264574B1 (en) Method for producing high-strength steel plate having superior deep drawing characteristics
JP4501699B2 (en) High-strength steel sheet excellent in deep drawability and stretch flangeability and method for producing the same
WO2016021193A1 (en) High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet
WO2013084478A1 (en) Method for manufacturing high-strength cold-rolled steel sheet having excellent aging resistance and bake hardenability
JP4407449B2 (en) High strength steel plate and manufacturing method thereof
JP4752522B2 (en) Manufacturing method of high strength cold-rolled steel sheet for deep drawing
JP5251207B2 (en) High strength steel plate with excellent deep drawability and method for producing the same
JP4735552B2 (en) Manufacturing method of high strength steel plate and high strength plated steel plate
JP2004250749A (en) High strength thin steel sheet having burring property, and production method therefor
WO2020148948A1 (en) High-strength hot-dip galvanized steel sheet and method for manufacturing same
JP4848958B2 (en) High-strength steel sheet excellent in deep drawability and secondary work brittleness resistance and method for producing the same
JP5262372B2 (en) High-strength steel sheet excellent in deep drawability and manufacturing method thereof
JP2005256141A (en) Method for manufacturing high-strength steel sheet superior in hole expandability
JP4380353B2 (en) High-strength steel sheet excellent in deep drawability and strength-ductility balance and manufacturing method thereof
JP3912181B2 (en) Composite structure type high-tensile hot-dip galvanized cold-rolled steel sheet excellent in deep drawability and stretch flangeability and manufacturing method thereof
JP5076480B2 (en) High-strength steel sheet excellent in strength-ductility balance and deep drawability and method for producing the same
JP4506380B2 (en) Manufacturing method of high-strength steel sheet
JP5251206B2 (en) High-strength steel sheet excellent in deep drawability, aging resistance and bake hardenability, and its manufacturing method
JP4301045B2 (en) High-strength steel plate, plated steel plate, and production method thereof
JP4525386B2 (en) Manufacturing method of high-strength steel sheets with excellent shape freezing and deep drawability
JP5655436B2 (en) High-strength steel sheet excellent in deep drawability and manufacturing method thereof
JP5151227B2 (en) High strength steel plate and manufacturing method thereof
JP4985494B2 (en) Manufacturing method of high-strength cold-rolled steel sheets with excellent deep drawability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090323

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees