JP2009235532A - High strength steel sheet having excellent deep drawability, and method for producing the same - Google Patents

High strength steel sheet having excellent deep drawability, and method for producing the same Download PDF

Info

Publication number
JP2009235532A
JP2009235532A JP2008085222A JP2008085222A JP2009235532A JP 2009235532 A JP2009235532 A JP 2009235532A JP 2008085222 A JP2008085222 A JP 2008085222A JP 2008085222 A JP2008085222 A JP 2008085222A JP 2009235532 A JP2009235532 A JP 2009235532A
Authority
JP
Japan
Prior art keywords
rolling
value
less
hot
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008085222A
Other languages
Japanese (ja)
Other versions
JP5251207B2 (en
Inventor
Kaneharu Okuda
金晴 奥田
Takeshi Fujita
毅 藤田
Yasunobu Nagataki
康伸 長滝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008085222A priority Critical patent/JP5251207B2/en
Publication of JP2009235532A publication Critical patent/JP2009235532A/en
Application granted granted Critical
Publication of JP5251207B2 publication Critical patent/JP5251207B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high strength steel sheet having excellent deep drawability, and to provide a method for producing the high strength steel sheet. <P>SOLUTION: The high strength steel sheet has a composition containing, by mass, 0.01 to 0.035% C, 0.8 to 2.0% Si, 1.0 to 3.0% Mn, 0.005 to 0.1% P, ≤0.01% S, 0.005 to 0.1% Al, ≤0.01% N, 0.01 to 0.3% Nb, ≤0.1% Ti and ≤0.3% (inclusive of 0%) V, and in which the contents (mass%) of Nb, Ti, V and C satisfy specified formula, and the balance iron with inevitable impurities, and in which TS is ≥500 MPa and both the r value in the rolling 45° direction and the average r value are ≥1.7. In its production method, a steel slab having the similar componential composition is successively subjected to: a hot rolling stage where it is subjected to hot rolling in which finish rolling is performed at a finish rolling outlet side temperature of ≥800°, the total rolling ratio of the finish rolling at ≤950°C is controlled to ≥50%, within 0.5 s after the rolling, cooling is performed at the average cooling rate of ≥20°C/s, a cooling stopping temperature is controlled to 600 to 750°C, a coiling temperature is controlled to 550 to 750°C, and by the coil cooling, a hot rolled sheet is obtained; a cold rolling stage where the hot rolled sheet is subjected to pickling and cold rolling at a rolling ratio of 50 to 85%, so as to obtain a cold rolled sheet; and a cold rolled sheet annealing stage where the cold rolled sheet is annealed at an annealing temperature of 800 to 950°C, so as to obtain a steel sheet having a TS of ≥500 MPa and in which both the r value in the rolling 45° direction and the average r value are ≥1.7. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、自動車用鋼板等の使途に有用な、引張強度(TS)が500MPa以上の高強度でかつ高r値(r値≧1.7)を有する深絞り性に優れた高強度鋼板及びその製造方法を提案しようとするものである。   The present invention is a high-strength steel sheet that is useful for use in automobile steel sheets and the like, has a high tensile strength (TS) of 500 MPa or more, and has a high r value (r value ≧ 1.7) and excellent deep drawability, and its production We are going to propose a method.

近年、地球環境保全の観点から、CO2の排出量を規制するため、自動車の燃費改善が要求されている。加えて、衝突時に乗員の安全を確保するため、自動車車体の衝突特性を中心にした安全性向上も要求されている。このように、自動車車体の軽量化および自動車車体の強化が積極的に進められている。
自動車車体の軽量化と強化を同時に満たすには、剛性に問題とならない範囲で部品素材を高強度化し、板厚を減することによる軽量化が効果的であると言われており、最近では高張力鋼板が自動車部品に積極的に使用されている。

軽量化効果は使用する鋼板が高強度であるほど大きくなるため、自動車業界では、例えば内板および外板用のパネル用材料として引張強度(TS)440MPa超級の鋼板を使用する動向にある。
In recent years, in order to regulate CO 2 emissions from the viewpoint of global environmental conservation, improvement in fuel efficiency of automobiles has been demanded. In addition, in order to ensure the safety of passengers in the event of a collision, it is also required to improve safety centered on the collision characteristics of the automobile body. As described above, the weight reduction of the automobile body and the reinforcement of the automobile body are being actively promoted.
In order to satisfy the weight reduction and strengthening of automobile bodies at the same time, it is said that weight reduction by increasing the strength of the component materials and reducing the plate thickness is effective within the range where there is no problem with rigidity. Tensile steel plates are actively used in automotive parts.

Since the weight reduction effect increases as the strength of the steel sheet used increases, the automotive industry tends to use a steel sheet having a tensile strength (TS) of over 440 MPa as a panel material for inner and outer plates, for example.

一方、鋼板を素材とする自動車部品の多くは、プレス加工によって成形されるため、自動車用鋼板には優れたプレス成形性を有していることが必要とされる。しかしながら、高強度鋼板は、通常の軟鋼板に比べて成形性、特に深絞り性は大きく劣化するため、自動車の軽量化を進める上での課題として、 TS≧500MPaでしかも、440MPa級以下の深絞り用鋼板と同等の深絞り性を有する鋼板の要求が高まっており、深絞り性の評価指標であるランクフォード値(以下、r値)で、平均r値≧1.7の高強度鋼板が要求されている。
高r値を有しながら高強度化する手段としては、極低炭素鋼板にTi、Nbを固溶炭素、固溶窒素を固着する量添加し、IF化(Interstitial free)した鋼をベースとして、これにSi、Mn、Pなどの固溶強化元素を添加する手法(例えば、特許文献1参照)がある。
特開昭56−139654号公報
On the other hand, since many automotive parts made of steel plates are formed by press working, the steel plates for automobiles are required to have excellent press formability. However, high-strength steel sheets are significantly deteriorated in formability, especially deep drawability, compared to ordinary mild steel sheets. Therefore, TS ≥ 500 MPa and a depth of 440 MPa class or less are a challenge in reducing the weight of automobiles. There is an increasing demand for steel sheets having deep drawability equivalent to drawing steel sheets, and high-strength steel sheets with an average r value ≧ 1.7 at the Rankford value (hereinafter referred to as r value), which is an evaluation index of deep drawability, are required. ing.
As a means to increase the strength while having a high r value, based on steel made by adding IF (interstitial free) to the ultra-low carbon steel sheet, adding Ti and Nb in an amount to fix solute carbon and solute nitrogen, There is a method of adding a solid solution strengthening element such as Si, Mn, and P (for example, see Patent Document 1).
JP-A-56-139654

特許文献1は、C:0.002〜0.015%、Nb:C%×3〜C%×8+0.020%、Si:1.2%、Mn:0.04〜0.8%、P:0.03〜0.10%の組成を有する、引張強さ35〜45kg/mm2級(340〜440MPa級)の非時効性を有する成形性の優れた高張力冷延鋼板に関する技術である。
しかしながら、このような極低炭素鋼を素材とする技術では、引張強度が≧440MPaの鋼板を製造しようとすると、合金元素添加量が多くなり、表面外観上の問題や、めっき性の劣化、2次加工脆性の顕在化などの問題が生じてくることがわかってきた。また、多量に固溶強化成分を添加すると、r値が劣化するので、高強度化を図るほどr値の水準は低下してしまう問題があった。

また、C量を極低炭素域まで低減するためには製鋼工程で真空脱ガスをおこなわなければならず、すなわち、これは製造過程でCO2を多量に発生することになり、地球環境保全の観点からも最適なものとは言い難い。
Patent Document 1 has a composition of C: 0.002 to 0.015%, Nb: C% × 3 to C% × 8 + 0.020%, Si: 1.2%, Mn: 0.04 to 0.8%, and P: 0.03 to 0.10%. This is a technology relating to a high-tensile cold-rolled steel sheet having excellent formability and having non-aging properties of a tensile strength of 35 to 45 kg / mm2 class (340 to 440 MPa class).
However, in such a technology using ultra-low carbon steel as a raw material, when trying to produce a steel sheet with a tensile strength of ≧ 440 MPa, the amount of added alloying elements increases, resulting in surface appearance problems, plating deterioration, It has been found that problems such as the manifestation of the next processing brittleness arise. Further, when a solid solution strengthening component is added in a large amount, the r value deteriorates, so that there is a problem that the level of the r value decreases as the strength is increased.

In addition, in order to reduce the C content to an extremely low carbon range, vacuum degassing must be performed in the steelmaking process, that is, this generates a large amount of CO 2 in the manufacturing process, It is hard to say that it is optimal from the viewpoint.

鋼板の高強度化の方法として、前述のような固溶強化以外に、組織強化法がある。例えば、軟質なフェライトと硬質のマルテンサイトからなる複合組織鋼板であるDP(Dual-Phase)鋼板がある。 DP鋼板は、一般的に延性については概ね良好であり優れた強度-延性バランス(TS×El)を有し、さらに降伏比が低い、すなわち引張強さの割に降伏応力が低く、プレス成形時の形状凍結性に優れるという特徴があるが、r値が低く深絞り性に劣る。これは結晶方位的にr値に寄与しないマルテンサイトが存在することの他、マルテンサイト形成に必須である固溶Cは高r値化に有効な{111}再結晶集合組織の形成を阻害するからと言われている。
このような複合組織鋼板のr値を改善する試みとして、例えば、特許文献2あるいは特許文献3の技術がある。
特公昭55−10650号公報 特開昭55−100934号公報
In addition to the solid solution strengthening as described above, there is a structure strengthening method as a method for increasing the strength of a steel sheet. For example, there is a DP (Dual-Phase) steel plate which is a composite structure steel plate made of soft ferrite and hard martensite. DP steel is generally good in ductility, has an excellent strength-ductility balance (TS x El), and has a low yield ratio, that is, a low yield stress relative to the tensile strength. However, the r value is low and the deep drawability is inferior. In addition to the presence of martensite that does not contribute to the r value in terms of crystal orientation, solid solution C essential for martensite formation inhibits the formation of {111} recrystallized texture effective for increasing the r value. It is said to be from.
As an attempt to improve the r value of such a composite structure steel plate, for example, there is a technique of Patent Document 2 or Patent Document 3.
Japanese Patent Publication No.55-10650 JP-A-55-100934

特許文献2の技術では、冷間圧延後再結晶温度〜Ac3変態点の温度で箱焼鈍を行い、その後、複合組織とするため700〜800℃に加熱した後、焼入焼戻しを行う技術が開示されている。しかしながら、この方法では、連続焼鈍時に焼入焼戻しを行うため、製造コストが問題となる。また箱焼鈍の場合処理時間や効率の面から、連続焼鈍に劣る。   The technique of Patent Document 2 discloses a technique in which box annealing is performed at a temperature from the recrystallization temperature to the Ac3 transformation point after cold rolling, followed by heating to 700 to 800 ° C. to obtain a composite structure, followed by quenching and tempering. Has been. However, in this method, since the quenching and tempering is performed during the continuous annealing, the manufacturing cost becomes a problem. In the case of box annealing, it is inferior to continuous annealing in terms of processing time and efficiency.

特許文献3の技術は、高r値を得るために冷間圧延後、まず箱焼鈍を行い、このときの温度をフェライト(α)−オーステナイト(γ)の2相域とし、その後連続焼鈍を行うものである。この技術では、箱焼鈍の均熱時にα相からγ相にMnを濃化させる。このMn濃化相はその後の連続焼鈍時に優先的にγ相となり、ガスジェット程度の冷却速度でも混合組織が得られるものである。しかしながら、この方法では、Mn濃化のため比較的高温で長時間の箱焼鈍が必要であり、そのため鋼板間の密着の多発、テンパーカラーの発生および炉体インナーカバーの寿命低下など製造工程上多くの問題がある。   The technique of Patent Document 3 first performs box annealing after cold rolling in order to obtain a high r value, sets the temperature at this time to a two-phase region of ferrite (α) -austenite (γ), and then performs continuous annealing. Is. In this technique, Mn is concentrated from the α phase to the γ phase during soaking of the box annealing. This Mn-concentrated phase preferentially becomes a γ phase during the subsequent continuous annealing, and a mixed structure can be obtained even at a cooling rate as high as that of a gas jet. However, this method requires box annealing at a relatively high temperature for a long time to concentrate Mn, and therefore, many in the manufacturing process such as frequent adhesion between steel plates, generation of temper collar, and decrease in the life of the furnace inner cover. There is a problem.

また、C:0.003〜0.03%、Si:0.2〜1%、Mn:0.3〜1.5%、Ti:0.02〜0.2%(ただし(有効Ti)/(C+N)の原子濃度比を0.4〜0.8)含有する鋼を、熱間圧延し、冷間圧延した後、所定温度に加熱後急冷する連続焼鈍を施すことを特徴とする深絞り性及び形状凍結性に優れた複合組織型高張力冷延鋼板の製造方法の技術(特許文献4参照)がある。この技術には、質量%で、0.012%C-0.32%Si-0.53%Mn-0.03%P-0.051%Tiの組成の鋼を冷間圧延後α-γの2相域である870℃に加熱後、100℃/sの平均冷却速度で冷却することにより、r値=1.61、TS=482MPaの複合組織型冷延鋼板が製造可能である技術が開示されている。しかし、100℃/sという高い冷却速度を得るには水焼入設備が必要となる他、水焼入した鋼板は表面処理性の問題が顕在化するため、製造設備上および材質上の問題がある。
特公平1−35900号公報
Also, C: 0.003-0.03%, Si: 0.2-1%, Mn: 0.3-1.5%, Ti: 0.02-0.2% (however, (effective Ti) / (C + N) atomic concentration ratio is 0.4-0.8) A composite structure type high-tensile cold-rolled steel sheet excellent in deep drawability and shape freezeability, characterized by subjecting the steel to be contained to hot rolling, cold rolling, and continuous annealing that is heated to a predetermined temperature and then rapidly cooled. There is a manufacturing method technology (see Patent Document 4). In this technology, steel with a composition of 0.012% C-0.32% Si-0.53% Mn-0.03% P-0.051% Ti in mass% is cold-rolled and heated to 870 ° C, which is a two-phase region of α-γ. Subsequently, a technique is disclosed in which a composite-structure cold-rolled steel sheet having an r value = 1.61 and TS = 482 MPa can be manufactured by cooling at an average cooling rate of 100 ° C./s. However, in order to obtain a high cooling rate of 100 ° C / s, water quenching equipment is required, and water-quenched steel sheets have surface treatment problems, so there are problems with manufacturing equipment and materials. is there.
Japanese Patent Publication No. 1-35900

さらに、特許文献5には、C含有量との関係でV含有量の適正化を図ることで複合組織鋼板のr値を改善する技術が開示されている。これは再結晶焼鈍前には鋼中のCをV系炭化物で析出させて固溶Cを極力低減させて高r値を図り、引き続きα-γの2相域で加熱することによりV系炭化物を溶解させてγ中にCを濃化させてその後の冷却過程でマルテンサイトを生成させるものである。しかしながら、VCの熱延段階での析出が不十分であると、焼鈍後のr値を高めることができないという問題があった。

特開2002−226941号公報
Furthermore, Patent Document 5 discloses a technique for improving the r value of a composite structure steel sheet by optimizing the V content in relation to the C content. This is because, before recrystallization annealing, C in the steel is precipitated with V-based carbides to reduce solute C as much as possible to achieve a high r value, and then V-based carbides are heated in the α-γ two-phase region. Is dissolved to concentrate C in γ, and martensite is generated in the subsequent cooling process. However, if the precipitation of VC at the hot rolling stage is insufficient, there is a problem that the r value after annealing cannot be increased.

Japanese Patent Laid-Open No. 2002-226941

また、深絞り性に優れた高度鋼板およびその製造方法の技術として、特許文献6の技術がある。この技術は、所定のC量を含有し、平均r値が1.3以上、かつ組織中にベイナイト、マルテンサイト、オーステナイトのうち1種類以上を合計で3%以上有する高強度鋼板を得るものであり、製造方法としては、冷間圧延の圧下率を30〜95%とし、次いでAlとNのクラスターや析出物を形成することによって集合組織を発達させてr値を高めるための焼鈍と、引き続き組織中にベイナイト、マルテンサイト、オーステナイトのうち1種類以上を合計で3%以上有するようにするための熱処理を行うことを特徴とするものである。この方法では冷延後、良好なr値を得るための焼鈍と、組織を作り込むための熱処理をそれぞれ必要としており、さらに焼鈍工程ではその保持時間が1時間以上という長時間保持を必要としており、工程的(時間的)に生産性が悪いという問題がある。さらに、得られる組織の第2相分率が比較的高く、これでは実際優れた強度延性バランスを安定的に確保することは困難である。
特開2003−64444号公報
Moreover, there exists a technique of patent document 6 as a technique of the advanced steel plate excellent in deep drawability, and its manufacturing method. This technique obtains a high-strength steel sheet containing a predetermined amount of C, having an average r value of 1.3 or more, and having a total of 3% or more of one or more of bainite, martensite, and austenite in the structure. As a manufacturing method, the rolling reduction ratio of cold rolling is set to 30 to 95%, and then the annealing is performed to increase the r value by developing the texture by forming Al and N clusters and precipitates. In addition, heat treatment is performed so as to have at least 3% of at least one of bainite, martensite, and austenite. In this method, after cold rolling, annealing for obtaining a good r value and heat treatment for forming a structure are required, respectively, and the annealing process requires holding for a long time of 1 hour or more. There is a problem that productivity is poor in terms of process (time). Furthermore, the second phase fraction of the obtained structure is relatively high, and in this case, it is difficult to stably secure an excellent strength-ductility balance.
JP 2003-64444 A

深絞り性に優れる(軟)鋼板を高強度化するにあたり、従来検討されてきた固溶強化のみによる高強度化の方法には、多量の或いは過剰な合金成分の添加が必要であり、これはコスト的にも工程的にも、またr値の向上そのものにも課題を抱えるものであった。また、複合組織化による高r値化についても限界があった。
本発明は、このような従来技術の問題点を有利に解決し、従来にない深絞り性に優れた高強度鋼板及びその製造方法を提供することを課題とする。
In order to increase the strength of a (soft) steel sheet having excellent deep drawability, the conventional method of increasing the strength only by solid solution strengthening requires the addition of a large amount or an excess of alloy components. In terms of cost, process, and improvement of the r value, there are problems. In addition, there is a limit to increasing the r value by complex organization.
It is an object of the present invention to advantageously solve such problems of the prior art and provide a high-strength steel sheet excellent in deep drawability and a method for manufacturing the same, which is not conventional.

本発明は、上記のような課題を解決すべく鋭意検討を進めたところ、Nb、Ti、Vを適宜添加した低炭素鋼板で、Nb、Ti、Vに固定されない炭素量を制御しつつ、Siによる固溶強化と細粒化強化、析出強化をバランスさせること。さらに、熱延時での特に後段での未再再結晶域での圧延率を確保することにより圧延45°方向のr値および平均r値ともに1.7以上で深絞り性に優れた高強度鋼板を得ることに成功した。
本発明は、上記の課題を解決するために、以下の手段を採用する。
(1)質量%で
C:0.01〜0.035%
Si:0.8〜2.0%
Mn:1.0〜3.0%
P:0.005〜0.1%
S:0.01%以下
Al:0.005%〜0.1%
N:0.01%以下
Nb:0.01〜0.3%
Ti:0.1%以下、
V:0.3%以下(但し、Vは0の場合を含む)を含有し、
かつ、NbとTiとVとCの含有量(質量%)が
0.0005%≦C−(12/93)Nb−(12/48)Ti*−(12/50.9)(1/10)V≦0.005%
Ti*=Ti−3.4Nを満たし、残部が鉄および不可避的不純物からなり、TS500MPa以上で圧延45°方向のr値および平均r値がともに1.7以上であることを特徴とする深絞り性に優れた高強度鋼板である。
(2)さらに、Cr:0.1〜1.0%、Mo:0.02〜0.5%を1種以上含有することを特徴とする前記(1)の深絞り性に優れた高強度鋼板である。
(3)鋼組織は、フェライト相の面積率が90%以上であることを特徴とする前記(1)又は(2)の深絞り性に優れた高強度鋼板である。
(4)鋼板表面にメッキ層が形成されていることを特徴とする前記(1)〜(3)のいずれか一項の深絞り性に優れた高強度鋼板である。
(5)質量%で
C:0.01〜0.035%
Si:0.8〜2.0%
Mn:1.0〜3.0%
P:0.005〜0.1%
S:0.01%以下
Al:0.005%〜0.1%
N:0.01%以下
Nb:0.01〜0.3%
Ti:0.1%以下
V:0.3%以下(但し、Vは0の場合を含む)を含有し、
かつ、NbとTiとVとCの含有量(質量%)が
0.0005%≦C−(12/93)Nb−(12/48)Ti*−(12/50.9)(1/10)V≦0.005%
Ti*=Ti−3.4N
を満たし、残部が鉄及び不可避的不純物からなる鋼スラブを熱間圧延にて仕上圧延出側温度:800℃以上とする仕上圧延を施し、950℃以下での仕上げ圧延のトータル圧延率を50%以上とし、圧延後0.5s以内で20℃/s以上の平均冷却速度で冷却し、冷却停止温度を600℃〜750℃とし、巻き取り温度を550℃以上750℃以下とし、コイル冷却した熱延板とする熱間圧延工程と、該熱延板に酸洗および圧延率50%以上85%以下の冷間圧延を施し冷延板とする冷間圧延工程と、該冷延板に、焼鈍温度:800℃以上950℃以下で焼鈍を行う冷延板焼鈍工程を順次施し、TS500MPa以上で圧延45°方向のr値および平均r値ともに1.7以上の鋼板を製造することを特徴とする深絞り性に優れた高強度鋼板の製造方法である。
(6)前記鋼スラブが、さらに、Cr:0.1〜1.0%、Mo:0.02〜0.5%を1種以上含有することを特徴とする前記(5)の深絞り性に優れた高強度鋼板の製造方法である。
(7)前記冷延板焼鈍工程の後に、溶融めっき処理を施すことを特徴とする前記(5)又は(6)の深絞り性に優れた高強度鋼板の製造方法である。
The present invention has been intensively studied to solve the above-mentioned problems, and is a low carbon steel sheet to which Nb, Ti, and V are appropriately added, while controlling the amount of carbon that is not fixed to Nb, Ti, and V. Balance solid solution strengthening with fine grain strengthening and precipitation strengthening. Furthermore, by securing the rolling rate in the non-re-recrystallization region in the latter stage at the time of hot rolling, a high-strength steel sheet excellent in deep drawability with both the r value and the average r value in the rolling 45 ° direction being 1.7 or more is obtained. Succeeded.
The present invention employs the following means in order to solve the above problems.
(1) By mass%
C: 0.01-0.035%
Si: 0.8-2.0%
Mn: 1.0-3.0%
P: 0.005-0.1%
S: 0.01% or less
Al: 0.005% to 0.1%
N: 0.01% or less
Nb: 0.01-0.3%
Ti: 0.1% or less,
V: 0.3% or less (provided that V is 0),
And the content (mass%) of Nb, Ti, V and C is
0.0005% ≦ C− (12/93) Nb− (12/48) Ti * − (12 / 50.9) (1/10) V ≦ 0.005%
Excellent deep drawability characterized by satisfying Ti * = Ti-3.4N, balance of iron and inevitable impurities, TS500MPa or more, and r value in rolling 45 ° direction and average r value are both 1.7 or more High strength steel plate.
(2) The high-strength steel sheet having excellent deep drawability according to (1) above, further comprising at least one of Cr: 0.1 to 1.0% and Mo: 0.02 to 0.5%.
(3) The steel structure is a high-strength steel sheet excellent in deep drawability according to (1) or (2) above, wherein the area ratio of the ferrite phase is 90% or more.
(4) The high-strength steel sheet excellent in deep drawability according to any one of (1) to (3), wherein a plating layer is formed on the steel sheet surface.
(5) By mass%
C: 0.01-0.035%
Si: 0.8-2.0%
Mn: 1.0-3.0%
P: 0.005-0.1%
S: 0.01% or less
Al: 0.005% to 0.1%
N: 0.01% or less
Nb: 0.01-0.3%
Ti: 0.1% or less
V: 0.3% or less (provided that V is 0),
And the content (mass%) of Nb, Ti, V and C is
0.0005% ≦ C− (12/93) Nb− (12/48) Ti * − (12 / 50.9) (1/10) V ≦ 0.005%
Ti * = Ti−3.4N
The steel slab with the balance of iron and unavoidable impurities is subjected to finish rolling by hot rolling to a finish rolling exit temperature of 800 ° C or higher, and the total rolling ratio of finish rolling at 950 ° C or lower is 50% As described above, the steel sheet is cooled at an average cooling rate of 20 ° C./s or more within 0.5 s after rolling, the cooling stop temperature is 600 ° C. to 750 ° C., the coiling temperature is 550 ° C. or more and 750 ° C. or less, and the coil is cooled A hot rolling step for forming a sheet, a cold rolling step for subjecting the hot rolled sheet to pickling and cold rolling at a rolling rate of 50% to 85% to form a cold rolled sheet, and an annealing temperature for the cold rolled sheet : Deep drawability, characterized by producing cold rolled sheet annealing process, in which annealing is performed at 800 ° C or higher and 950 ° C or lower, and TS value is 500 MPa or higher and both the r value and the average r value in the rolling 45 ° direction are 1.7 or higher. It is a manufacturing method of a high-strength steel plate excellent in.
(6) The production of a high-strength steel sheet excellent in deep drawability according to (5), wherein the steel slab further contains at least one of Cr: 0.1 to 1.0% and Mo: 0.02 to 0.5%. Is the method.
(7) The method for producing a high-strength steel sheet having excellent deep drawability according to (5) or (6), wherein a hot dipping process is performed after the cold-rolled sheet annealing step.

本発明は、C含有量が0.01〜0.035wt%の範囲において、従来の極低炭素IF鋼のように深絞り性に悪影響をおよぼす固溶Cの低減を徹底的に行うことはせずに、固溶Cを残存させた状態下にもかかわらず、固溶C量の最適化と、熱延条件の最適化により{111}再結晶集合組織を発達させてTS500MPa以上で圧延45°方向のr値、平均r値ともに1.7以上を達成したものである。   In the present invention, in the range of C content of 0.01 to 0.035 wt%, without reducing thorough solution C that adversely affects deep drawability like conventional ultra-low carbon IF steel, Despite the state in which solute C remains, the {111} recrystallized texture is developed by optimizing the amount of solute C and by optimizing the hot rolling conditions. The value and average r value achieved 1.7 or more.

従来、軟鋼板においては、高r値化、すなわち{111}再結晶集合組織を発達させるためには、冷間圧延および再結晶前の固溶Cを極力低減することや熱延板組織を微細化することなどが有効な手段とされてきた。一方、前述のようなDP鋼板では、マルテンサイト形成に必要な固溶Cを必要とするため母相の再結晶集合組織が発達せずr値が低かった。しかしながら、本発明では、Nbと熱延の後段での圧延率確保による熱延板の微細化効果による高r値効果により、適度な固溶Cが存在しても、平均r値と相関の強い{111}再結晶集合組織発達と、圧延45°方向のr値を発達させる{211}<110>付近の集合組織を発達させる好成分範囲が存在することを新たに見出した。すなわち、従来のDP鋼板(低炭素鋼レベル)よりもC量を低減し、しかしながら、極低炭素鋼に比べてC量が多いという、0.01〜0.035%のC含有量に加え、このC量に合わせて適切なNb、Ti、V添加を行うこと、さらに熱延の後段での圧延率を確保することで、強度については固溶強化と細粒化効果と析出強化のバランスでTS500MPaを達成し、r値については圧延45°方向、平均r値ともに1.7以上となる特性を達成したものである。強度については、TS530MPa以上とすることが好ましく、TS540MPa以上とすることがより好ましい。固溶Cの確保は、積極的にDP組織を発現させ、組織強化を図るほどのものではないが、一部はマルテンサイトやベイナイトの第2相を含有することもある。そして、固溶強化のみにより高強度化を図るIF系ハイテンの問題である二次加工脆性を改善する目的もある。   Conventionally, in order to increase the r value, that is, to develop the {111} recrystallization texture, in mild steel sheets, the solid solution C before cold rolling and recrystallization is reduced as much as possible, and the hot rolled sheet structure is made finer. It has been regarded as an effective means. On the other hand, in the DP steel as described above, the solute C necessary for martensite formation is required, so that the recrystallized texture of the parent phase does not develop and the r value is low. However, in the present invention, due to the high r-value effect due to the refinement effect of the hot-rolled sheet by securing the rolling rate in the latter stage of Nb and hot-rolling, there is a strong correlation with the average r-value even if moderate solute C exists. It was newly found that there is a good component range that develops {111} recrystallized texture and a texture near {211} <110> that develops the r value in the 45 ° direction of rolling. That is, the amount of C is reduced compared to the conventional DP steel sheet (low carbon steel level). However, in addition to the C content of 0.01 to 0.035%, which is higher than that of extremely low carbon steel, Combined with appropriate addition of Nb, Ti, V, and further ensuring the rolling rate at the later stage of hot rolling, TS500MPa was achieved with the balance of solid solution strengthening, grain refinement effect and precipitation strengthening. As for the r value, the rolling 45 ° direction and the average r value are both 1.7 or more. About strength, it is preferable to set it as TS530MPa or more, and it is more preferable to set it as TS540MPa or more. Ensuring solute C is not enough to positively develop a DP structure and strengthen the structure, but some may contain a second phase of martensite or bainite. And there is also an object to improve secondary work brittleness, which is a problem of IF-based high tensile strength that increases strength only by solid solution strengthening.

従来知られているように、Nbは再結晶遅延効果があるため、熱延時の仕上温度を適切に制御することで熱延板組織を微細化することが可能であり、さらに鋼中においてNbは高い炭化物形成能を有している。本発明では特に、熱延仕上温度を変態点直上の適切な範囲にして熱延板組織を微細化する以外に、950℃以下のγの未再結晶域での仕上げ圧延のトータル圧延率を50%以上とすることで、冷延焼鈍後に圧延45°方向r値、平均r値ともにの上昇させるための、熱延板の微細化と熱延集合組織を発達させる。また、固溶強化元素のSiを活用する場合にも、固溶Cの確保とNb添加だけでは、Si添加に伴い、焼鈍後の圧延45°方向のr値が低下してしまうので、上記の熱延条件の最適化が必須であることが分かってきた。   As conventionally known, Nb has a recrystallization delay effect, so it is possible to refine the hot-rolled sheet structure by appropriately controlling the finishing temperature at the time of hot rolling. High carbide forming ability. In the present invention, in particular, in addition to refining the hot-rolled sheet structure by setting the hot-rolling finishing temperature in an appropriate range immediately above the transformation point, the total rolling ratio of finish rolling in the non-recrystallized region of γ of 950 ° C. or lower is 50 By making it at least%, the refinement of the hot-rolled sheet and the hot-rolled texture for developing both the 45 ° direction r-value and the average r-value after the cold rolling annealing are developed. In addition, when utilizing the solid solution strengthening element Si, the r value in the 45 ° direction of rolling after annealing decreases with the addition of Si only by securing solid solution C and adding Nb. It has been found that optimization of hot rolling conditions is essential.

以下に、本発明をさらに詳細に説明する。
以下、特に断らない限り、元素の含有量は質量%で示している。
まず、本発明の鋼板の成分組成を限定した理由について説明する。
The present invention is described in further detail below.
Hereinafter, unless otherwise specified, the element content is expressed in mass%.
First, the reason which limited the component composition of the steel plate of this invention is demonstrated.

C:0.01〜0.035%
Cは後述のNbとともに本発明における重要な元素である。CはNbCによる析出強化と細粒化硬化に有効であり、さらに焼鈍板に固溶することで耐二次加工脆性を改善する。本発明では析出強化、細粒化硬化、耐二次加工脆性の観点から0.01%以上含有する必要がある。一方、良好なr値を得るためには過剰な添加は好ましいものではないことを考慮して上限を0.035%とする。より好ましくは、C含有量は0.03%以下とする。
C: 0.01-0.035%
C is an important element in the present invention together with Nb described later. C is effective for precipitation strengthening and fine grain hardening by NbC, and further improves secondary work brittleness resistance by dissolving in an annealed plate. In the present invention, it is necessary to contain 0.01% or more from the viewpoint of precipitation strengthening, fine grain hardening, and secondary work brittleness resistance. On the other hand, in order to obtain a good r value, the upper limit is made 0.035% considering that excessive addition is not preferable. More preferably, the C content is 0.03% or less.

Si: 0.8〜2.0%
Siはr値を低下させず有効に固溶強化を図ることのできる元素であり、TS500Mpaを確保するためには、Siは0.8%以上含有することが好ましく、より好ましくは1.0%以上含有する。一方、Siを2.0%を超えて含有すると、熱延時に赤スケールが発生するため、鋼板とした時の表面外観を悪くする。また溶融亜鉛を施す際にめっきの濡れ性を悪くしてめっきむらの発生を招き、めっき品質が劣化するので、Si含有量は2.0%以下とすることが好ましい。
Si: 0.8-2.0%
Si is an element that can effectively enhance the solid solution without decreasing the r value. In order to secure TS500Mpa, Si is preferably contained in an amount of 0.8% or more, more preferably 1.0% or more. On the other hand, if Si is contained in excess of 2.0%, a red scale is generated during hot rolling, which deteriorates the surface appearance of the steel sheet. In addition, when applying hot-dip zinc, the wettability of the plating is deteriorated to cause uneven plating and the plating quality is deteriorated. Therefore, the Si content is preferably 2.0% or less.

Mn:1.0〜3.0%
Mnは焼鈍後の冷却時に一部第2相を存在させることで高強度化に有効であるとともに、圧延45°方向のr値を上昇させるために変態点を低下させることで、熱延板の微細化させる効果を有する。またMnはSによる熱間割れを防止するのに有効な元素でもある。このような観点からMnは1.0%以上含有する必要がある。より好ましくは1.2%以上含有させる。また一方で、過度の添加はr値および溶接性を劣化させるので3.0%を上限とする。
Mn: 1.0-3.0%
Mn is effective in increasing the strength by partially including the second phase during cooling after annealing, and lowering the transformation point in order to increase the r value in the rolling 45 ° direction, Has the effect of miniaturization. Mn is also an effective element for preventing hot cracking due to S. From this point of view, Mn needs to be contained at 1.0% or more. More preferably, the content is 1.2% or more. On the other hand, excessive addition degrades the r value and weldability, so 3.0% is made the upper limit.

P:0.005〜0.1%
Pはr値の低下代も少なく固溶強化可能な元素がある。しかしながら0.005%未満ではその効果が現れないだけでなく、製鋼工程において脱りんコストの上昇を招く。したがって、Pは0.005%以上含有するものとした。より好ましくは0.01%以上含有する。一方0.1%を越える過剰な添加は、Pが粒界に偏析し、耐二次加工脆性および溶接性を劣化させる。また、溶融亜鉛めっき鋼板とする際には、溶融亜鉛めっき後の合金化処理時に、めっき層と鋼板の界面における鋼板からめっき層へのFeの拡散を抑制し、合金化処理性を劣化させる。そのため、高温での合金化処理が必要となり、得られるめっき層はパウダリング、チッピング等のめっき剥離が生じやすいものとなるため好ましくない。従ってPの含有量の上限を0.1%とした。
P: 0.005-0.1%
P is an element that can be solid-solution strengthened with little reduction in r value. However, if it is less than 0.005%, not only the effect does not appear, but also the dephosphorization cost increases in the steelmaking process. Therefore, P is contained in an amount of 0.005% or more. More preferably, it contains 0.01% or more. On the other hand, excessive addition exceeding 0.1% causes P to segregate at the grain boundaries, resulting in deterioration of secondary work embrittlement resistance and weldability. Moreover, when it is set as the hot dip galvanized steel sheet, the diffusion of Fe from the steel sheet to the plated layer at the interface between the plated layer and the steel sheet is suppressed during the alloying process after the hot dip galvanizing, and the alloying processability is deteriorated. Therefore, an alloying treatment at a high temperature is required, and the obtained plating layer is not preferable because plating peeling such as powdering and chipping is likely to occur. Therefore, the upper limit of the P content is set to 0.1%.

S:0.01%以下
Sは不純物であり、熱間割れの原因になる他、鋼中で介在物として存在し鋼板の諸特性を劣化させるので、できるだけ低減することが好ましいが、0.01%までは許容できるため、0.01%以下とする。
S: 0.01% or less
S is an impurity and causes hot cracking. It also exists as an inclusion in steel and degrades various properties of the steel sheet. Therefore, it is preferable to reduce it as much as possible, but it is acceptable up to 0.01%, so 0.01% The following.

Al:0.005%〜0.1%以下
Alは鋼の脱酸元素として有用である他、固溶Nを固定して耐常温時効性を向上させる作用があるため、0.005%以上含有する。一方、0.1%を越える添加は高合金コストを招き、さらに表面欠陥を誘発するので、0.1%以下とする。
Al: 0.005% to 0.1% or less
In addition to being useful as a deoxidizing element for steel, Al has the effect of fixing solid solution N to improve normal temperature aging resistance, so it is contained in an amount of 0.005% or more. On the other hand, addition exceeding 0.1% leads to high alloy costs and further induces surface defects.

N:0.01%以下
Nは多すぎると耐常温時効性を劣化させ、多量のAlやTi添加が必要となるため、をできるだけ低減することが好ましいく、上限を0.01%とする。
N: 0.01% or less
If N is too much, the room temperature aging resistance is deteriorated and a large amount of Al or Ti needs to be added. Therefore, it is preferable to reduce as much as possible, and the upper limit is set to 0.01%.

Nb:0.01〜0.3%、0.0005%≦C−(12/93)Nb−(12/48)Ti*−(12/50.9)(1/10)V≦0.005%
Nbは本発明において最も重要な元素であり、熱延板組織の微細化および熱延板中にNbCとしてCを析出固定させる作用を有し、高r値化に寄与する元素である。このような観点からNbは0.01%以上含有するのが好ましい、過剰のNb添加は焼鈍板を軟質化させるとともに、粒界を清浄化し、粒界強度を低下させ、二次加工脆性を顕在化させるので、上限を0.3%とする。
また、上記のNb添加の効果を奏するには特にNb含有量(質量%)とC含有量(質量%)とのバランスを
0.0005%≦C−(12/93)Nb−(12/48)Ti*−(12/50.9)(1/10)V≦0.005%
を満足させることが必要である。
上記のC、Nb、Ti、Vの式が0.0005%未満では耐二次加工脆性や低強度化が懸念させるので好ましくなく、0.005%を超えると平均r値が1.7以上を確保することが困難となる。
Nb: 0.01 to 0.3%, 0.0005% ≦ C− (12/93) Nb− (12/48) Ti * − (12 / 50.9) (1/10) V ≦ 0.005%
Nb is the most important element in the present invention, and has an effect of refining the hot-rolled sheet structure and precipitating and fixing C as NbC in the hot-rolled sheet, and contributes to increasing the r value. From this point of view, Nb is preferably contained in an amount of 0.01% or more. Excessive Nb addition softens the annealed plate, cleans the grain boundaries, lowers the grain boundary strength, and reveals secondary work brittleness. Therefore, the upper limit is set to 0.3%.
In addition, in order to achieve the above effect of Nb addition, the balance between the Nb content (% by mass) and the C content (% by mass) must be balanced
0.0005% ≦ C− (12/93) Nb− (12/48) Ti * − (12 / 50.9) (1/10) V ≦ 0.005%
It is necessary to satisfy
If the above formula of C, Nb, Ti, V is less than 0.0005%, it is not preferable because secondary processing embrittlement resistance and low strength are concerned, and if it exceeds 0.005%, it is difficult to secure an average r value of 1.7 or more. Become.

V:0.3%以下(0の場合を含む)
VもNbと同様の効果を有し、熱延板組織の微細化させること、熱延板中に炭化物としてCを析出固定させる作用を有し、高r値化に寄与する元素であるので、適宜Vを添加する。但し、炭素を固定する能力はNb、Tiなどに比べると劣るので、その分を考慮して添加する必要がある。そのための係数として10を用いている。
V: 0.3% or less (including 0)
V also has the same effect as Nb, has the effect of refining the hot-rolled sheet structure, precipitates and fixes C as a carbide in the hot-rolled sheet, and is an element that contributes to increasing the r value. Add V as appropriate. However, since the ability to fix carbon is inferior to Nb, Ti, etc., it is necessary to add in consideration of that amount. For this purpose, 10 is used.

Ti:0.1%以下
TiもNbと同様の効果を有し、熱延板組織の微細化させること、熱延板中に炭化物としてCを析出固定させる作用を有し、高r値化に寄与する元素である。但し、熱延板の微細化効果はNbが大きいので、Nb添加鋼に対して、Tiを添加するのが良い。このような観点からTi、は0.005%以上含有するのが好ましい。一方で、過剰のTi、添加は強度確保と耐二次加工脆性の観点から好ましいものでなく、上限を0.1%とする。
また、Nb、Ti、添加の効果を奏するには特にNb、Ti(Ti*)、V含有量(質量%)とC含有量(質量%)との関係を
0.0005%≦C−(12/93)Nb−(12/48)Ti*−(12/50.9)(1/10)V≦0.005%
を満足させることが必要である。この場合のTi*
Ti*=Ti−3.4N
で、非常に安定なTiNにより析出してしまう分を差し引いた有効なTi量で評価する。
Ti: 0.1% or less
Ti also has the same effect as Nb, has the effect of making the hot-rolled sheet structure finer, and precipitating and fixing C as a carbide in the hot-rolled sheet, and is an element that contributes to increasing the r value. However, since the effect of refinement of the hot-rolled sheet is large in Nb, it is preferable to add Ti to the Nb-added steel. From such a viewpoint, Ti is preferably contained in an amount of 0.005% or more. On the other hand, excessive Ti and addition are not preferable from the viewpoint of securing strength and resistance to secondary work brittleness, and the upper limit is set to 0.1%.
Also, in order to achieve the effects of Nb, Ti and addition, the relationship between Nb, Ti (Ti *), V content (mass%) and C content (mass%)
0.0005% ≦ C− (12/93) Nb− (12/48) Ti * − (12 / 50.9) (1/10) V ≦ 0.005%
It is necessary to satisfy Ti * in this case
Ti * = Ti−3.4N
Therefore, the effective Ti amount is calculated by subtracting the amount precipitated by very stable TiN.

Cr:0.1%〜1.0%
CrはMn同様マルテンサイトが得られる臨界冷却速度を遅くする作用をもち、焼鈍後の冷却時にマルテンサイト形成を促す元素であり、強度レベル向上に効果がある。これらの効果を得るためには、Crは0.1%以上含有することが好ましい。しかしながら、過剰のCr添加はこれらの効果を必要以上に飽和するだけでなく、高合金コストを招くことから上限を1.0%とする。
Cr: 0.1% to 1.0%
Cr, like Mn, has the effect of slowing the critical cooling rate at which martensite is obtained, is an element that promotes martensite formation during cooling after annealing, and is effective in improving the strength level. In order to acquire these effects, it is preferable to contain Cr 0.1% or more. However, excessive addition of Cr not only saturates these effects more than necessary, but also causes high alloy costs, so the upper limit is made 1.0%.

Mo:0.02%〜0.5%
MoはMn同様マルテンサイトが得られる臨界冷却速度を遅くする作用をもち、焼鈍後の冷却時にマルテンサイト形成を促す元素であり、強度レベル増加に効果がある。また、フェライト中でのMoはr値への低下量が少なく、固溶強化できる元素である。これらの効果を得るためには、Moは0.02%以上含有することが好ましい。しかしながら、過剰のMo添加はこれらの効果を必要以上に飽和するだけでなく、高合金コストを招くことから上限を0.5%とする。
Mo: 0.02% to 0.5%
Mo, like Mn, has the effect of slowing the critical cooling rate at which martensite is obtained, and is an element that promotes martensite formation during cooling after annealing, and is effective in increasing the strength level. Further, Mo in ferrite is an element that can be solid-solution strengthened with little decrease in r value. In order to obtain these effects, the Mo content is preferably 0.02% or more. However, excessive addition of Mo not only saturates these effects more than necessary, but also causes high alloy costs, so the upper limit is made 0.5%.

以上が本発明の基本成分である。
また、本発明では上記した成分以外の残部は実質的に鉄および不可避的不純物の組成とすることが好ましい。
The above is the basic component of the present invention.
In the present invention, it is preferable that the balance other than the above-described components is substantially composed of iron and inevitable impurities.

なお、B、Ca、REM等を、通常の鋼組成範囲内であれば含有しても何ら問題はない。
例えば、Bは鋼の焼入性を向上する作用をもつ元素であり、必要に応じて含有できる。しかしその含有量が0.003%を越えるとその効果が飽和するため0.003%以下が好ましい。
It should be noted that there is no problem even if B, Ca, REM, etc. are contained within the normal steel composition range.
For example, B is an element having an effect of improving the hardenability of steel and can be contained as required. However, if the content exceeds 0.003%, the effect is saturated, so 0.003% or less is preferable.

また、CaおよびREMは硫化物系介在物の形態を制御する作用をもち、これにより鋼板の諸特性の劣化を防止する。このような効果はCaおよびREMのうちから選ばれた1種または2種の含有量が合計で0.01%を越えると飽和するのでこれ以下とすることが好ましい。   Further, Ca and REM have an action of controlling the form of sulfide inclusions, thereby preventing deterioration of various properties of the steel sheet. Such an effect is saturated when the content of one or two selected from Ca and REM exceeds 0.01% in total, and is therefore preferably made less than this.

また、その他の不可避的不純物としては、例えばSb、Sn、Zn、Co等が挙げられ、これらの含有量の許容範囲としては、Sb:0.01%以下、Sn:0.1%以下、Zn:0.01%以下、Co:0.1%以下の範囲である。   Other inevitable impurities include, for example, Sb, Sn, Zn, Co, etc. The allowable ranges of these contents are Sb: 0.01% or less, Sn: 0.1% or less, Zn: 0.01% or less , Co: 0.1% or less.

本発明の鋼板の鋼組織については、主相はフェライト相であり、フェライト相の他に、マルテンサイト相、パーライト、ベイナイトあるいは残留γ相などを含んだ組織としてもよい。但し、第2相の存在はr値の低下を招くため、フェライト相の面積率を90%以上とすることが好ましい。   Regarding the steel structure of the steel sheet of the present invention, the main phase is a ferrite phase, and in addition to the ferrite phase, a structure including a martensite phase, pearlite, bainite, or residual γ phase may be used. However, since the presence of the second phase causes a decrease in the r value, the area ratio of the ferrite phase is preferably 90% or more.

圧延45°方向および平均r値が1.7以上
本発明の鋼板は、上記成分組成、組織を満足するとともに、圧延45°方向および平均r値が1.7以上を満足するものである。
本発明では、上記成分組成に調整し、しかも後で述べる熱延条件の最適化により、初めて圧延45°方向のr値(r45)および平均r値が1.7以上を達成することができた。
ここで平均r値とは、JIS Z 2254で求められる平均塑性ひずみ比を意味し、以下で求められる値である。
平均r値=(r0+2r45+r90)/4
0=試験片を板面の圧延方向に対し平行に採取し測定した塑性ひずみ比
45=試験片を板面の圧延方向に対し45°方向に採取し測定した塑性ひずみ比
90=試験片を板面の圧延方向に対し90°方向に採取し測定した塑性ひずみ比
The rolling 45 ° direction and the average r value are 1.7 or more The steel sheet of the present invention satisfies the above component composition and structure, and the rolling 45 ° direction and the average r value is 1.7 or more.
In the present invention, the r value (r 45 ) in the direction of rolling 45 ° and the average r value of 1.7 or more could be achieved for the first time by adjusting to the above component composition and optimizing the hot rolling conditions described later.
Here, the average r value means an average plastic strain ratio determined by JIS Z 2254, and is a value determined below.
Average r value = (r 0 + 2r 45 + r 90 ) / 4
r 0 = Plastic strain ratio measured by taking a test piece parallel to the rolling direction of the plate surface r 45 = Plastic strain ratio measured by taking a test piece at 45 ° to the rolling direction of the plate surface r 90 = Test Plastic strain ratio obtained by measuring a piece at 90 ° to the rolling direction of the plate surface

本発明の鋼板は、電気めっき、あるいは溶融亜鉛めっきなどの表面処理を施した、いわゆるめっき鋼板をも含むものである。めっきとは、純亜鉛の他、亜鉛を主成分として合金元素を添加した亜鉛系合金めっき、あるいはAlやAlを主成分として合金元素を添加したAl系合金めっきなど、従来鋼板表面に施されているめっき層も含む。   The steel sheet of the present invention includes so-called plated steel sheets subjected to surface treatment such as electroplating or hot dip galvanizing. In addition to pure zinc, plating is conventionally applied to the surface of steel sheets, such as zinc alloy plating with zinc as the main component and addition of alloy elements, or Al alloy plating with addition of alloy elements as the main component of Al and Al. Including a plating layer.

次に、本発明鋼板の好ましい製造方法について説明する。
本発明の製造方法にもちいられるスラブの組成は上述した鋼板の組成と同様であるので、鋼スラブの限定理由については省略する。
Next, the preferable manufacturing method of this invention steel plate is demonstrated.
Since the composition of the slab used in the production method of the present invention is the same as that of the steel plate described above, the reason for limiting the steel slab is omitted.

本発明の鋼板は、上記した範囲内の組成を有するスラブを素材とし、該素材に熱間圧延を施し、仕上圧延出側温度:800℃以上とする仕上圧延を施し、950℃以下での仕上げ圧延のトータル圧延率を50%以上とし、圧延後0.5s以内で20℃/s以上の平均冷却速度で冷却し、冷却停止温度を600℃〜750℃とし、巻き取り温度を550℃以上750℃以下とし、コイル冷却した熱延板とする熱間圧延工程と、該熱延板に酸洗および圧延率50%以上85%以下の冷間圧延を施し冷延板とする冷間圧延工程と、該冷延板に、焼鈍温度:800℃以上950℃以下で焼鈍を行う冷延板焼鈍工程を順次施すことにより製造できる。焼鈍温度から500℃までの温度域の平均冷却速度:5℃/s以上として冷却することが好ましい。   The steel sheet of the present invention is made of a slab having a composition within the above-mentioned range, and is subjected to hot rolling, finish rolling at a finish rolling exit temperature of 800 ° C. or higher, and finished at 950 ° C. or lower. The total rolling rate of rolling is set to 50% or more, cooling is performed at an average cooling rate of 20 ° C / s or more within 0.5s after rolling, the cooling stop temperature is set to 600 ° C to 750 ° C, and the winding temperature is set to 550 ° C or more and 750 ° C. A hot rolling step to be a coil-cooled hot rolled sheet, and a cold rolling step to cold-roll the hot-rolled sheet by pickling and cold rolling at a rolling rate of 50% to 85%, The cold-rolled sheet can be manufactured by sequentially performing a cold-rolled sheet annealing step of annealing at an annealing temperature of 800 ° C. or higher and 950 ° C. or lower. It is preferable to cool at an average cooling rate in the temperature range from the annealing temperature to 500 ° C .: 5 ° C./s or more.

本発明では、まず鋼スラブを熱間圧延にて仕上圧延出側温度:800℃以上、950℃以下での仕上げ圧延のトータル圧延率を50%以上とする仕上圧延を施す。   In the present invention, the steel slab is first subjected to finish rolling by hot rolling so that the finish rolling temperature at 800 ° C. or higher and 950 ° C. or lower is 50% or higher.

本発明の製造方法で使用する鋼スラブは成分のマクロ偏析を防止すべく連続鋳造法で製造することが望ましいが、造塊法や薄スラブ鋳造法で製造してもよい。また、鋼スラブを製造した後、いったん室温まで冷却し、その後再度加熱する従来法に加え、冷却せず温片のままで加熱炉に装入し熱間圧延する直送圧延、或いはわずかの保熱をおこなった後に直ちに熱間圧延する直送圧延・直接圧延などの省エネルギプロセスも問題なく適用できる。
スラブ加熱温度は、析出物を粗大化させることにより{111}再結晶集合組織を発達させて深絞り性を改善するため、低い方が望ましい。しかし加熱温度が1000℃未満では圧延荷重が増大し熱間圧延時におけるトラブル発生の危険性が増大するので、スラブ加熱温度は1000℃以上にすることが好ましい。なお、酸化重量の増加に伴うスケールロスの増大などから、スラブ加熱温度の上限は1300℃とすることが好適である。
The steel slab used in the production method of the present invention is preferably produced by a continuous casting method in order to prevent macro segregation of components, but may be produced by an ingot-making method or a thin slab casting method. In addition to the conventional method in which the steel slab is manufactured and then cooled to room temperature and then heated again, direct feed rolling in which the steel slab is charged without being cooled and charged in a heating furnace and hot-rolled, or a little heat retention Energy-saving processes such as direct feed rolling and direct rolling, which are hot-rolled immediately after carrying out, can be applied without any problem.
The slab heating temperature is preferably low because the precipitates are coarsened to develop a {111} recrystallized texture and improve deep drawability. However, if the heating temperature is less than 1000 ° C, the rolling load increases and the risk of trouble during hot rolling increases, so the slab heating temperature is preferably 1000 ° C or higher. Note that the upper limit of the slab heating temperature is preferably set to 1300 ° C. because of an increase in scale loss accompanying an increase in oxidized weight.

上記条件で加熱された鋼スラブに粗圧延および仕上げ圧延を行う熱間圧延を施す。ここで、鋼スラブは粗圧延によりシートバーとされる。なお、粗圧延の条件は特に規定する必要はなく、常法に従っておこなえばよい。また、スラブ加熱温度を低くし、かつ熱間圧延時のトラブルを防止するといった観点から、シートバーを加熱する所謂シートバーヒーターを活用することは有効な方法であることは言うまでもない。
次いで、シートバーを仕上げ圧延して熱延板とする。仕上圧延出側温度(FT)は800℃以上とし950℃以下での仕上げ圧延のトータル圧延率を50%以上する。これは冷間圧延および再結晶焼鈍後に優れた深絞り性が得られる微細な熱延板組織と熱延集合組織を得るためである。950℃以下の未再結晶域での圧延率を高めることが重要で、50%未満では、十分な効果が得られない。特に圧延45°方向のr値を高めることができず、結果、平均r値も低い。

また、熱間圧延時の圧延荷重を低減するため仕上圧延の一部または全部のパス間で潤滑圧延としてもよい。潤滑圧延を行うことは鋼板形状の均一化や材質の均質化の観点からも有効である。潤滑圧延の際の摩擦係数は0.10〜0.25の範囲とするのが好ましい。さらに、相前後するシートバー同士を接合し、連続的に仕上圧延する連続圧延プロセスとすることも好ましい。連続圧延プロセスを適用することは熱間圧延の操業安定性の観点からも望ましい。
The steel slab heated under the above conditions is subjected to hot rolling for rough rolling and finish rolling. Here, the steel slab is made into a sheet bar by rough rolling. The conditions for rough rolling need not be specified, and may be performed according to a conventional method. It goes without saying that using a so-called sheet bar heater for heating the sheet bar is an effective method from the viewpoint of lowering the slab heating temperature and preventing troubles during hot rolling.
Next, the sheet bar is finish-rolled to obtain a hot-rolled sheet. The finish rolling delivery temperature (FT) is 800 ° C or higher, and the total rolling ratio of finish rolling at 950 ° C or lower is 50% or more. This is to obtain a fine hot-rolled sheet structure and hot-rolled texture capable of obtaining excellent deep drawability after cold rolling and recrystallization annealing. It is important to increase the rolling rate in the non-recrystallized region at 950 ° C. or less, and if it is less than 50%, a sufficient effect cannot be obtained. In particular, the r value in the rolling 45 ° direction cannot be increased, and as a result, the average r value is also low.

Moreover, in order to reduce the rolling load at the time of hot rolling, it is good also as lubrication rolling between some or all passes of finishing rolling. Lubricating rolling is also effective from the viewpoint of uniform steel plate shape and uniform material. The coefficient of friction during lubrication rolling is preferably in the range of 0.10 to 0.25. Furthermore, it is also preferable to use a continuous rolling process in which the adjacent sheet bars are joined and finish-rolled continuously. It is desirable to apply the continuous rolling process from the viewpoint of the operational stability of hot rolling.

コイル巻き取り前の冷却については、一旦は圧延後0.5s以内で冷却を開始し、20℃/s以上の平均冷却速度で冷却し冷却停止温度を600℃〜750℃にする必要がある。これは熱延板の微細化と、Nb系の析出物サイズ調整に重要な工程である。0.5sを越えるとオーステナイトが再結晶をし始め、変態後のフェライト組織が粗大となるため、高r値化に好ましくない。また、20℃/s未満の平均冷却速度ではフェライト変態開始温度が高くなり、フェライト粒が粗大となってr値が低下するので好ましくない。また、冷却停止温度は600℃未満では巻き取り温度が低くなり、NbCの析出が不十分となるので好ましくなく、750℃を超えると、フェライト粒径が粗大化し、強度低下を招くと共に、冷延焼鈍後のr値が低下してしまう。コイル巻き取り温度(CT)は、550℃以上750℃以下とする。この温度範囲が熱延板中にNbCを析出させるのに好適な温度範囲であるとともに、特にCTが上限を越えると結晶粒が粗大化し強度低下を招くとともに冷延焼鈍後の高r値化を妨げることになる。   As for cooling before winding the coil, it is necessary to start cooling within 0.5 s after rolling and then cool at an average cooling rate of 20 ° C./s or more to make the cooling stop temperature 600 ° C. to 750 ° C. This is an important process for refinement of hot-rolled sheet and adjustment of Nb-based precipitate size. If it exceeds 0.5 s, austenite begins to recrystallize, and the ferrite structure after transformation becomes coarse, which is not preferable for increasing the r value. On the other hand, an average cooling rate of less than 20 ° C./s is not preferable because the ferrite transformation start temperature becomes high, the ferrite grains become coarse and the r value decreases. Further, if the cooling stop temperature is less than 600 ° C., the coiling temperature becomes low and the precipitation of NbC becomes insufficient, which is not preferable, and if it exceeds 750 ° C., the ferrite grain size becomes coarse, resulting in a decrease in strength and cold rolling. The r value after annealing will decrease. The coil winding temperature (CT) is 550 ° C or higher and 750 ° C or lower. This temperature range is a suitable temperature range for precipitating NbC in the hot-rolled sheet, and especially when the CT exceeds the upper limit, the crystal grains become coarse and cause a decrease in strength and increase the r value after cold-rolling annealing. Will interfere.

上記のように成分組成および熱延条件を調整することにより、熱延板の組織を、小傾角粒界を含む平均結晶粒径が8μm以下とすることができ、高r値化に有利となる。   By adjusting the component composition and hot rolling conditions as described above, the average grain size including the small-angle grain boundaries can be reduced to 8 μm or less in the structure of the hot rolled sheet, which is advantageous for increasing the r value. .

次いで、該熱延板に酸洗および冷間圧延を施し冷延板とする冷間圧延工程を施す。酸洗は通常の条件にておこなえばよい。冷間圧延条件は所望の寸法形状の冷延板とすることができればよく、特に限定されないが、冷間圧延時の圧下率は少なくとも50%以上とすることが好ましい。高r値化には高冷延圧下率が一般に有効であり、圧下率が50%未満では{111}再結晶集合組織が発達せず、優れた深絞り性を得ることが困難となる。一方、この発明では冷間圧下率を85%までの範囲で高くするほどr値が上昇するが、85%を越えるとその効果が飽和するばかりでなく、圧延時のロールへの負荷も高まるため、上限を85%とすることが好ましい。   Subsequently, the hot-rolled sheet is subjected to pickling and cold rolling to perform a cold rolling process to obtain a cold-rolled sheet. Pickling may be performed under normal conditions. The cold rolling conditions are not particularly limited as long as the cold rolled sheet having a desired size and shape can be obtained, but the rolling reduction during cold rolling is preferably at least 50% or more. A high cold rolling reduction ratio is generally effective for increasing the r value. If the reduction ratio is less than 50%, the {111} recrystallization texture does not develop, and it becomes difficult to obtain excellent deep drawability. On the other hand, in the present invention, the r value increases as the cold rolling reduction is increased in the range of up to 85%. However, if it exceeds 85%, not only the effect is saturated but also the load on the roll during rolling increases. The upper limit is preferably 85%.

次に、上記冷延板に焼鈍温度:800℃以上950℃以下で焼鈍を行う焼鈍工程を施す。
上記焼鈍は本発明の焼鈍工程では、変態する前に再結晶を促進させる必要があるため、800℃以上の焼鈍が最低必要である。一方950℃を越える高温ではγ単相域となり、フェライトへの逆変態時の集合組織が弱くなってしまうので好ましくない。
Next, the said cold-rolled sheet is subjected to an annealing step of annealing at an annealing temperature of 800 ° C. or higher and 950 ° C. or lower.
In the annealing process of the present invention, since the annealing needs to promote recrystallization before transformation, annealing at 800 ° C. or higher is the minimum required. On the other hand, a high temperature exceeding 950 ° C. is not preferable because it becomes a γ single phase region and the texture at the time of reverse transformation to ferrite becomes weak.

また、上記冷延板焼鈍工程の後に電気めっき処理、あるいは溶融めっき処理などのめっき処理を施し、鋼板表面にめっき層を形成しても良い。
例えば、めっき処理として、自動車用鋼板に多く用いられる溶融亜鉛めっき処理を行う際には、上記焼鈍を連続溶融めっきラインにておこない、焼鈍後の冷却に引き続いて溶融亜鉛めっき浴に浸漬して、表面に溶融亜鉛めっき層を形成すればよく、或いはさらに合金化処理をおこない、合金化溶融亜鉛めっき鋼板を製造してもよい。
また、上記焼鈍後の冷却までを焼鈍ラインで行い、一旦室温まで冷却した後、溶融亜鉛めっきラインにて溶融亜鉛めっきを施し、或いはさらに合金化処理を行っても良い。
ここで、めっき層は純亜鉛および亜鉛系合金めっきに限らず、AlやAl系合金めっきなど、従来、鋼板表面に施されている各種めっき層とすることも勿論可能である。
Moreover, after the cold-rolled sheet annealing step, a plating process such as an electroplating process or a hot dipping process may be performed to form a plating layer on the steel sheet surface.
For example, when performing hot dip galvanizing treatment often used for automotive steel plates as plating treatment, the annealing is performed in a continuous hot dip plating line, immersed in a hot dip galvanizing bath following cooling after annealing, A hot-dip galvanized layer may be formed on the surface, or an alloying treatment may be further performed to produce an alloyed hot-dip galvanized steel sheet.
Further, the cooling after the annealing may be performed in an annealing line, and after cooling to room temperature, hot dip galvanizing may be performed in a hot dip galvanizing line, or further alloying treatment may be performed.
Here, the plating layer is not limited to pure zinc and zinc-based alloy plating, but can of course be various plating layers conventionally applied to the steel sheet surface, such as Al or Al-based alloy plating.

また、冷延焼鈍板およびめっき鋼板には形状矯正、表面粗度等の調整の目的で調質圧延またはレベラー加工を施してもよい。調質圧延或いはレベラー加工の伸び率は合計で0.2〜15%の範囲内であることが好ましい。0.2%未満では形状矯正、粗度調整の所期の目的が達成できない、一方15%を越えると顕著な延性低下をもたらす。なお、調質圧延とレベラー加工では加工形式が相違するが、その効果は両者で大きな差がないことを確認している。調質圧延、レベラー加工はめっき処理後でも有効である。   Further, the cold-rolled annealed plate and the plated steel plate may be subjected to temper rolling or leveler processing for the purpose of adjusting the shape correction, surface roughness, and the like. The total elongation of temper rolling or leveler processing is preferably in the range of 0.2 to 15%. If it is less than 0.2%, the intended purpose of shape correction and roughness adjustment cannot be achieved. On the other hand, if it exceeds 15%, the ductility is significantly reduced. In addition, although the processing form differs between temper rolling and leveler processing, it has been confirmed that there is no significant difference between the two. Temper rolling and leveler processing are effective even after plating.

次に、本発明の実施例について説明する。
表1に示す組成の溶鋼を転炉で溶製し、連続鋳造法でスラブとした。これら鋼スラブを1250℃に加熱し粗圧延してシートバーとし、次いで表2に示す条件の仕上圧延を施す熱間圧延工程により熱延板とした。これらの熱延板を酸洗および圧下率70、80%の冷間圧延工程により冷延板とした。引き続き、これら冷延板に連続焼鈍ラインにて、表2に示す条件で連続焼鈍をおこなった。さらに得られた冷延焼鈍板に伸び率0.5%の調質圧延を施した。
なお、No.7の鋼板は、連続溶融亜鉛めっきラインにて冷延板焼鈍工程を施し、その後引き続きインラインで溶融亜鉛めっき(めっき浴温:480℃)を施して溶融亜鉛めっき鋼板とし、同様に各種特性を評価した。
Next, examples of the present invention will be described.
Molten steel having the composition shown in Table 1 was melted in a converter and made into a slab by a continuous casting method. These steel slabs were heated to 1250 ° C. and roughly rolled into sheet bars, and then hot-rolled sheets were formed by a hot rolling process in which finish rolling under the conditions shown in Table 2 was performed. These hot-rolled sheets were made into cold-rolled sheets by pickling and a cold rolling process with a rolling reduction of 70 and 80%. Subsequently, these cold-rolled sheets were subjected to continuous annealing in the continuous annealing line under the conditions shown in Table 2. Further, the obtained cold-rolled annealed sheet was subjected to temper rolling with an elongation of 0.5%.
In addition, the No. 7 steel sheet is subjected to a cold-rolled sheet annealing process in a continuous hot-dip galvanizing line, and subsequently hot-dip galvanized (plating bath temperature: 480 ° C) in-line to obtain a hot-dip galvanized steel sheet. Various characteristics were evaluated.

得られた冷延焼鈍板について微視組織、引張特性、およびr値測定を調査した。調査方法は下記の通りである。
The resulting cold-rolled annealed plate was examined for microstructure, tensile properties, and r-value measurement. The survey method is as follows.

(1)引張特性
各得られた冷延焼鈍板から圧延方向に対して90°方向(C方向)にJIS5号引張試験片を採取し、JIS Z 2241の規定に準拠してクロスヘッド速度10mm/minで引張試験を行い、引張強さ(TS)、伸び(El)を求めた。
(1) Tensile properties JIS No. 5 tensile test specimens were sampled from each of the obtained cold-rolled annealed plates in the 90 ° direction (C direction) with respect to the rolling direction, and the crosshead speed was 10 mm / in accordance with the provisions of JIS Z 2241. A tensile test was performed at min, and tensile strength (TS) and elongation (El) were obtained.

(2)r値測定
各得られた冷延焼鈍板の圧延方向(L方向)、圧延方向に対し45°方向(D方向)、圧延方向に対し90°方向(C方向)からJIS5号引張試験片を採取した。これらの試験片に10%の単軸引張歪を付与した時の各試験片の幅歪と板厚歪を求め、JIS Z 2254の規定に準拠して平均r値(平均塑性歪比)を求め、これをr値とした。
(2) r value measurement Rolling direction (L direction) of each obtained cold rolled annealed sheet, 45 ° direction (D direction) with respect to rolling direction, 90 ° direction (C direction) with respect to rolling direction, JIS No. 5 tensile test Pieces were collected. Obtain the width strain and thickness strain of each specimen when 10% uniaxial tensile strain is applied to these specimens, and obtain the average r value (average plastic strain ratio) in accordance with the provisions of JIS Z 2254. This is the r value.

(3)微細組織の調査
組織は、ナイタールにて腐食後、SEMにて1000倍又は3000倍の写真を撮影し、ポイントカウント法により各相の面積率を評価した。
(3) Investigation of fine structure After corroding with nital, the structure was photographed 1000 times or 3000 times with SEM, and the area ratio of each phase was evaluated by the point counting method.

Figure 2009235532
Figure 2009235532

Figure 2009235532
Figure 2009235532

表1、表2より明らかなように、C、Si、Mn、P、S、Al、N、Nb、Ti、V、(Cr、Mo)を所定量含有し、0.0005%≦C*≦0.005%、C*=C−(12/93)Nb−(12/48)Ti*−(12/50.9)(1/10)V、Ti*=Ti−3.4Nを満たした記号1、5、6、9、11、14〜16の鋼(表1)を用い、所定の条件で製造した本発明例(No.1〜7、9〜12、No.15、No.16、No.20、No.21、No.27、No.29、No32〜34)の鋼板(表2)では、いずれもTS500MPa以上(No.15、No.20、No.21、No32の鋼板を除いてTS540MPa以上)と圧延45°方向および平均r値1.7以上の高いr値を有し、高延性となっている。また、本発明の鋼板は、フェライト相の面積率が、90%以上であった。これに対し、本発明の範囲を外れる条件で製造した比較例の鋼板では、強度が不足しているか或いはr値が低下している鋼板となっている。すなわち、C*が0.005%を超える記号2〜4、7、8、10の鋼を用いた鋼板(No.17〜19、No.22〜26、No.28)では、圧延45°方向のr値は1.7以上となっているが、平均r値が1.7以上を達成することができない。Siの含有量が0.8%未満で、C*が0.005%を大きく超える記号12、13の鋼を用いた鋼板(No.30、No.31)では、圧延45°方向のr値および平均r値の両者が1.7未満である。化学成分を所定量含有した記号6の鋼を用いた場合でも、所定の製造条件を満たしていない条件で製造した鋼板、例えば、冷却停止温度が750℃を超える条件で製造した鋼板(No.8)、950℃以下での仕上げ圧延のトータル圧延率が50%未満の条件で製造した鋼板(No.13、No.14)では、圧延45°方向のr値および平均r値の両者が1.7未満である。
以上のとおり、本発明においては、鋼の成分組成および製造条件を限定したことにより、TS500MPa以上と圧延45°方向および平均r値1.7以上の高いr値を達成することができたものである。
As is clear from Table 1 and Table 2, it contains C, Si, Mn, P, S, Al, N, Nb, Ti, V, (Cr, Mo) in a predetermined amount, 0.0005% ≦ C * ≦ 0.005% , C * = C− (12/93) Nb− (12/48) Ti * − (12 / 50.9) (1/10) V, symbols 1, 5, 6, satisfying Ti * = Ti−3.4N Examples of the present invention (Nos. 1-7, 9-12, No.15, No.16, No.20, No. 1) manufactured using steels of 9, 11, 14-16 (Table 1) under predetermined conditions. Steel sheets of No. 21, No. 27, No. 29 and No. 32 to 34 (Table 2) are all rolled with TS500MPa or higher (excluding No.15, No.20, No.21 and No32 steel plates and TS540MPa or higher). It has a high r value of 45 ° direction and an average r value of 1.7 or more, and has high ductility. In the steel sheet of the present invention, the area ratio of the ferrite phase was 90% or more. On the other hand, in the steel plate of the comparative example manufactured on the conditions which remove | deviate from the scope of the present invention, the strength is insufficient or the r value is lowered. That is, in steel plates (No. 17-19, No. 22-26, No. 28) using steels of symbols 2-4, 7, 8, 10 with C * exceeding 0.005%, r in the rolling 45 ° direction Although the value is 1.7 or more, the average r value cannot achieve 1.7 or more. For steel plates (No. 30, No. 31) using steels of symbols 12 and 13 with a Si content of less than 0.8% and C * greatly exceeding 0.005%, the r value and the average r value in the rolling 45 ° direction Both are less than 1.7. Even when steel of symbol 6 containing a predetermined amount of chemical components is used, a steel plate manufactured under conditions that do not satisfy the predetermined manufacturing conditions, for example, a steel plate manufactured under conditions where the cooling stop temperature exceeds 750 ° C. (No. 8 ) In steel plates (No. 13, No. 14) manufactured under conditions where the total rolling ratio of finish rolling at 950 ° C. or less is less than 50%, both the r value and the average r value in the 45 ° direction of rolling are less than 1.7. It is.
As described above, in the present invention, by limiting the steel component composition and production conditions, TS500 MPa or higher, rolling at 45 ° direction, and an average r value of 1.7 or higher can be achieved.

本発明によれば、TS500MPa以上での高r値を有する高強度鋼板を安価にかつ安定して製造することが可能となり産業上格段の効果を奏する。例えば本発明の高強度鋼板を自動車部品に適用した場合、これまでプレス成形が困難であった部位も高強度化が可能となり、自動車車体の衝突安全性や軽量化に十分寄与できるという効果がある。また自動車部品に限らず家電部品やパイプ用素材としても適用可能である。   According to the present invention, a high-strength steel sheet having a high r value of TS500 MPa or more can be produced at low cost and stably, and a remarkable industrial effect can be achieved. For example, when the high-strength steel sheet of the present invention is applied to automobile parts, it is possible to increase the strength of parts that have been difficult to press-form so far, and it is possible to sufficiently contribute to collision safety and weight reduction of the automobile body. . Moreover, it is applicable not only to automobile parts but also to household appliance parts and pipe materials.

Claims (7)

質量%で
C:0.01〜0.035%
Si:0.8〜2.0%
Mn:1.0〜3.0%
P:0.005〜0.1%
S:0.01%以下
Al:0.005%〜0.1%
N:0.01%以下
Nb:0.01〜0.3%
Ti:0.1%以下
V:0.3%以下(但し、Vは0の場合を含む)を含有し、
かつ、NbとTiとVとCの含有量(質量%)が
0.0005%≦C−(12/93)Nb−(12/48)Ti*−(12/50.9)(1/10)V≦0.005%
Ti*=Ti−3.4Nを満たし、残部が鉄および不可避的不純物からなり、TS500MPa以上で圧延45°方向のr値および平均r値がともに1.7以上であることを特徴とする深絞り性に優れた高強度鋼板。
In mass%
C: 0.01-0.035%
Si: 0.8-2.0%
Mn: 1.0-3.0%
P: 0.005-0.1%
S: 0.01% or less
Al: 0.005% to 0.1%
N: 0.01% or less
Nb: 0.01-0.3%
Ti: 0.1% or less
V: 0.3% or less (provided that V is 0),
And the content (mass%) of Nb, Ti, V and C is
0.0005% ≦ C− (12/93) Nb− (12/48) Ti * − (12 / 50.9) (1/10) V ≦ 0.005%
Excellent deep drawability characterized by satisfying Ti * = Ti-3.4N, balance of iron and inevitable impurities, TS500MPa or more, and r value in rolling 45 ° direction and average r value are both 1.7 or more High strength steel plate.
さらに、Cr:0.1〜1.0%、Mo:0.02〜0.5%を1種以上含有することを特徴とする請求項1に記載の深絞り性に優れた高強度鋼板。   Furthermore, Cr: 0.1-1.0%, Mo: 0.02-0.5% is contained 1 or more types, The high strength steel plate excellent in the deep drawability of Claim 1 characterized by the above-mentioned. 鋼組織は、フェライト相の面積率が90%以上であることを特徴とする請求項1又は2に記載の深絞り性に優れた高強度鋼板。   The high-strength steel sheet excellent in deep drawability according to claim 1 or 2, wherein the steel structure has a ferrite phase area ratio of 90% or more. 鋼板表面にめっき層が形成されていることを特徴とする請求項1〜3のいずれか一項に記載の深絞り性に優れた高強度鋼板。   The high strength steel plate excellent in deep drawability as described in any one of Claims 1-3 in which the plating layer is formed in the steel plate surface. 質量%で
C:0.01〜0.035%
Si:0.8〜2.0%
Mn:1.0〜3.0%
P:0.005〜0.1%
S:0.01%以下
Al:0.005%〜0.1%
N:0.01%以下
Nb:0.01〜0.3%
Ti:0.1%以下
V:0.3%以下(但し、Vは0の場合を含む)を含有し、
かつ、NbとTiとVとCの含有量(質量%)が
0.0005%≦C−(12/93)Nb−(12/48)Ti*−(12/50.9)(1/10)V≦0.005%
Ti*=Ti−3.4N
を満たし、残部が鉄及び不可避的不純物からなる鋼スラブを熱間圧延にて仕上圧延出側温度:800℃以上とする仕上圧延を施し、950℃以下での仕上げ圧延のトータル圧延率を50%以上とし、圧延後0.5s以内で20℃/s以上の平均冷却速度で冷却し、冷却停止温度を600℃〜750℃とし、巻き取り温度を550℃以上750℃以下とし、コイル冷却した熱延板とする熱間圧延工程と、該熱延板に酸洗および圧延率50%以上85%以下の冷間圧延を施し冷延板とする冷間圧延工程と、該冷延板に、焼鈍温度:800℃以上950℃以下で焼鈍を行う冷延板焼鈍工程を順次施し、TS500MPa以上で圧延45°方向のr値および平均r値ともに1.7以上の鋼板を製造することを特徴とする深絞り性に優れた高強度鋼板の製造方法。
In mass%
C: 0.01-0.035%
Si: 0.8-2.0%
Mn: 1.0-3.0%
P: 0.005-0.1%
S: 0.01% or less
Al: 0.005% to 0.1%
N: 0.01% or less
Nb: 0.01-0.3%
Ti: 0.1% or less
V: 0.3% or less (provided that V is 0),
And the content (mass%) of Nb, Ti, V and C is
0.0005% ≦ C− (12/93) Nb− (12/48) Ti * − (12 / 50.9) (1/10) V ≦ 0.005%
Ti * = Ti−3.4N
The steel slab, which consists of iron and inevitable impurities in the balance, is subjected to finish rolling at a finish rolling temperature of 800 ° C or higher by hot rolling, and the total rolling ratio of finish rolling at 950 ° C or lower is 50%. As described above, the steel sheet is cooled at an average cooling rate of 20 ° C./s or more within 0.5 s after rolling, the cooling stop temperature is set to 600 ° C. to 750 ° C., the coiling temperature is set to 550 ° C. or more and 750 ° C. or less, and the coil is cooled. A hot rolling step for forming a sheet, a cold rolling step for subjecting the hot rolled sheet to pickling and cold rolling at a rolling rate of 50% to 85% to form a cold rolled sheet, and an annealing temperature for the cold rolled sheet : Deep drawability characterized by producing cold rolled sheet annealing process that anneals at 800 ° C or more and 950 ° C or less in order to produce steel plate with TS value of 500MPa or more and both rolling r value and average r value of 1.7 or more For producing high-strength steel sheets with excellent resistance.
前記鋼スラブが、さらに、Cr:0.1〜1.0%、Mo:0.02〜0.5%を1種以上含有することを特徴とする請求項5に記載の深絞り性に優れた高強度鋼板の製造方法。   The method for producing a high-strength steel sheet with excellent deep drawability according to claim 5, wherein the steel slab further contains at least one of Cr: 0.1 to 1.0% and Mo: 0.02 to 0.5%. 前記冷延板焼鈍工程の後に、溶融めっき処理を施すことを特徴とする請求項5又は6に記載の深絞り性に優れた高強度鋼板の製造方法。   The method for producing a high-strength steel sheet excellent in deep drawability according to claim 5 or 6, wherein a hot dipping process is performed after the cold-rolled sheet annealing step.
JP2008085222A 2008-03-28 2008-03-28 High strength steel plate with excellent deep drawability and method for producing the same Expired - Fee Related JP5251207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008085222A JP5251207B2 (en) 2008-03-28 2008-03-28 High strength steel plate with excellent deep drawability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008085222A JP5251207B2 (en) 2008-03-28 2008-03-28 High strength steel plate with excellent deep drawability and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009235532A true JP2009235532A (en) 2009-10-15
JP5251207B2 JP5251207B2 (en) 2013-07-31

Family

ID=41249839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008085222A Expired - Fee Related JP5251207B2 (en) 2008-03-28 2008-03-28 High strength steel plate with excellent deep drawability and method for producing the same

Country Status (1)

Country Link
JP (1) JP5251207B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010018852A (en) * 2008-07-11 2010-01-28 Jfe Steel Corp High strength steel sheet having excellent deep drawability and method for producing the same
JP2012514132A (en) * 2008-12-24 2012-06-21 ポスコ High-strength cold-rolled steel sheet having excellent deep drawability and high yield ratio, hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet using the same, and production method thereof
CN104060162A (en) * 2013-09-12 2014-09-24 攀钢集团攀枝花钢铁研究院有限公司 Hot rolled sheet steel for cold forming and making method thereof
EP2749665A4 (en) * 2011-08-26 2015-11-11 Jfe Steel Corp High strength hot dip galvanized steel sheet having excellent deep- drawability, and method for producing same
CN111286592A (en) * 2020-03-18 2020-06-16 本钢板材股份有限公司 Production process of hot-rolled X80 pipeline steel with thickness specification of 21.4mm

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106834948A (en) * 2017-03-03 2017-06-13 内蒙古包钢钢联股份有限公司 Longitudinal yield strength 700MPa grades of hot rolled strip and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003064444A (en) * 2001-08-24 2003-03-05 Nippon Steel Corp High strength steel sheet with excellent deep drawability, and manufacturing method therefor
JP2003342680A (en) * 2002-05-23 2003-12-03 Jfe Steel Kk Dual-phase high-tensile cold rolled steel sheet excellent in deep drawability and stretch-flangeability and its production method
JP2003342643A (en) * 2002-05-23 2003-12-03 Jfe Steel Kk Process for manufacturing multiphase high tensile cold- rolled steel sheet with excellent deep-drawability and strength-elongation balance
JP2005232483A (en) * 2004-02-17 2005-09-02 Jfe Steel Kk High-strength steel sheet having superior deep drawability and balance of strength and ductility, and manufacturing method therefor
JP2006219737A (en) * 2005-02-14 2006-08-24 Nippon Steel Corp High-strength cold-rolled steel sheet excellent in deep drawability and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003064444A (en) * 2001-08-24 2003-03-05 Nippon Steel Corp High strength steel sheet with excellent deep drawability, and manufacturing method therefor
JP2003342680A (en) * 2002-05-23 2003-12-03 Jfe Steel Kk Dual-phase high-tensile cold rolled steel sheet excellent in deep drawability and stretch-flangeability and its production method
JP2003342643A (en) * 2002-05-23 2003-12-03 Jfe Steel Kk Process for manufacturing multiphase high tensile cold- rolled steel sheet with excellent deep-drawability and strength-elongation balance
JP2005232483A (en) * 2004-02-17 2005-09-02 Jfe Steel Kk High-strength steel sheet having superior deep drawability and balance of strength and ductility, and manufacturing method therefor
JP2006219737A (en) * 2005-02-14 2006-08-24 Nippon Steel Corp High-strength cold-rolled steel sheet excellent in deep drawability and method for producing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010018852A (en) * 2008-07-11 2010-01-28 Jfe Steel Corp High strength steel sheet having excellent deep drawability and method for producing the same
JP2012514132A (en) * 2008-12-24 2012-06-21 ポスコ High-strength cold-rolled steel sheet having excellent deep drawability and high yield ratio, hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet using the same, and production method thereof
EP2749665A4 (en) * 2011-08-26 2015-11-11 Jfe Steel Corp High strength hot dip galvanized steel sheet having excellent deep- drawability, and method for producing same
CN104060162A (en) * 2013-09-12 2014-09-24 攀钢集团攀枝花钢铁研究院有限公司 Hot rolled sheet steel for cold forming and making method thereof
CN111286592A (en) * 2020-03-18 2020-06-16 本钢板材股份有限公司 Production process of hot-rolled X80 pipeline steel with thickness specification of 21.4mm

Also Published As

Publication number Publication date
JP5251207B2 (en) 2013-07-31

Similar Documents

Publication Publication Date Title
JP4635525B2 (en) High-strength steel sheet excellent in deep drawability and manufacturing method thereof
JP5413546B2 (en) High strength thin steel sheet and method for producing the same
CA2751414C (en) High-strength galvanized steel sheet having excellent formability and method for manufacturing the same
JP4998757B2 (en) Manufacturing method of high strength steel sheet with excellent deep drawability
WO2016013144A1 (en) Method for producing high-strength hot dipped galvanized steel sheet
JP5765116B2 (en) High-strength hot-dip galvanized steel sheet excellent in deep drawability and stretch flangeability and method for producing the same
JP4501699B2 (en) High-strength steel sheet excellent in deep drawability and stretch flangeability and method for producing the same
JP5532088B2 (en) High-strength hot-dip galvanized steel sheet excellent in deep drawability and manufacturing method thereof
JP4407449B2 (en) High strength steel plate and manufacturing method thereof
JP6384623B2 (en) High strength steel plate and manufacturing method thereof
JP5251207B2 (en) High strength steel plate with excellent deep drawability and method for producing the same
JP4735552B2 (en) Manufacturing method of high strength steel plate and high strength plated steel plate
JP5262372B2 (en) High-strength steel sheet excellent in deep drawability and manufacturing method thereof
JP5678695B2 (en) High strength steel plate and manufacturing method thereof
JP5076480B2 (en) High-strength steel sheet excellent in strength-ductility balance and deep drawability and method for producing the same
JP4380353B2 (en) High-strength steel sheet excellent in deep drawability and strength-ductility balance and manufacturing method thereof
JP4506380B2 (en) Manufacturing method of high-strength steel sheet
JP2004002909A (en) Complex metallographic structure type high tensile strength hot-dip galvanized cold rolled steel sheet with excellent deep drawability and stretch-flange formability, and manufacturing method
JP4301045B2 (en) High-strength steel plate, plated steel plate, and production method thereof
JP4715637B2 (en) Method for producing high-strength hot-dip galvanized steel sheet with excellent formability
JP4525386B2 (en) Manufacturing method of high-strength steel sheets with excellent shape freezing and deep drawability
JP5251206B2 (en) High-strength steel sheet excellent in deep drawability, aging resistance and bake hardenability, and its manufacturing method
JP4985494B2 (en) Manufacturing method of high-strength cold-rolled steel sheets with excellent deep drawability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130401

R150 Certificate of patent or registration of utility model

Ref document number: 5251207

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees