JPH1192855A - Steel having ultrafine double phase structure - Google Patents

Steel having ultrafine double phase structure

Info

Publication number
JPH1192855A
JPH1192855A JP25680297A JP25680297A JPH1192855A JP H1192855 A JPH1192855 A JP H1192855A JP 25680297 A JP25680297 A JP 25680297A JP 25680297 A JP25680297 A JP 25680297A JP H1192855 A JPH1192855 A JP H1192855A
Authority
JP
Japan
Prior art keywords
steel
ferrite
strength
angle
pearlite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25680297A
Other languages
Japanese (ja)
Inventor
Kaneaki Tsuzaki
兼彰 津崎
Shiro Toritsuka
史郎 鳥塚
Hisashi Nagai
寿 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research Institute for Metals
Original Assignee
National Research Institute for Metals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Research Institute for Metals filed Critical National Research Institute for Metals
Priority to JP25680297A priority Critical patent/JPH1192855A/en
Priority to US09/157,394 priority patent/US6221178B1/en
Priority to EP98307632A priority patent/EP0903412A3/en
Priority to CN98120620A priority patent/CN1121502C/en
Priority to TW087115693A priority patent/TW580519B/en
Priority to KR1019980038944A priority patent/KR100536827B1/en
Publication of JPH1192855A publication Critical patent/JPH1192855A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To increase the strength of a ferritic steel and to improve the balance of the strength and ductility by providing the steel with an ultrafine double phase structure in which the average grain size is regulated to a specified value or below, the ferrite surrounded with a large-angle grain boundary whose orientation difference angle in the grain boundary is regulated to a specified value or above is used as the mother phase and the pearlite of a specified ratio or above is incorporated. SOLUTION: In this structure, the average grain size is <=4 μm, the ferrite surrounded with a large-angle grain boundary whose orientation difference angle in the boundary is regulated to >=15 deg. is used as the mother phase and the pearlite of >=3 vol.% is incorporated. For the ultrafining and the enlargement of the angle of the grains, anvil compression working is extremely effective, and intensive working of >90% reduction of area per pass is also possible. The worked part is applied with large deformation including shear deformation compared to the case by roll rolling even at the same reduction of area, so that, by executing the anvil compression working in an unrecrystallized region, the objective ferritic grains can be obtd. by the working of >=50% reduction of area. Thus, by regulating the austenitic grain size, the amt. to be worked and the working temp., the objective steel can be obtd.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この出願の発明は、高強度構
造用鋼として有用な、超微細複相組織鋼に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrafine double phase steel which is useful as a high strength structural steel.

【0002】[0002]

【従来の技術とその課題】従来、鋼材の強化方法として
は、固溶強化や、マルテンサイト等との複合化による第
2相による強化、析出強化、結晶粒の微細化が知られて
いる。なかでも、強度と靱性をともに高くし、強度−延
性バランスを良好にする方法としては、結晶粒の微細化
が最も優れた方法である。この方法では焼き入れ性を高
めるNi,Cr等の高価な元素の添加を必要としないた
め、低コストで高強度鋼材の製造が可能とされている。
この結晶粒の微細化の観点からは、構造用鋼において、
フェライトの結晶粒径が3μm以下まで微細化される
と、強度は急激に大きくなることが期待されている。し
かしながら、一般の加工熱処理技術で現在までに得られ
ている5μm程度の粒径では、高強度化されるものの、
大きな強度上昇量は得られていないのが実情である。
2. Description of the Related Art Conventionally, as a method for strengthening a steel material, solid solution strengthening, strengthening by a second phase by compounding with martensite, precipitation strengthening, and grain refinement are known. Above all, as a method for increasing both strength and toughness and improving the balance between strength and ductility, refinement of crystal grains is the most excellent method. This method does not require the addition of expensive elements such as Ni and Cr that enhance the hardenability, so that it is possible to manufacture high-strength steel at low cost.
From the viewpoint of the refinement of the crystal grains, in structural steel,
When the crystal grain size of ferrite is reduced to 3 μm or less, the strength is expected to increase rapidly. However, with a particle diameter of about 5 μm obtained up to now by general thermomechanical processing technology, although the strength is increased,
The fact is that a large increase in strength has not been obtained.

【0003】また、フェライト組織については、これを
微細にするにしたがって、降伏強度、引張強度がともに
上昇するが、一様伸びが著しく低下し、引張強度に比べ
降伏強度の上昇も大きいという問題が生じる。すなわ
ち、降伏比が上昇する。これはn値(加工硬化指数)の
低下を意味する。フェライト粒径が4μm以下のような
超微細フェライト単相鋼においても同様で、高強度化さ
れるものの伸びが著しく低下してしまうのである。
[0003] Further, as the ferrite structure is refined, both the yield strength and the tensile strength increase, but the uniform elongation significantly decreases, and the yield strength increases more than the tensile strength. Occurs. That is, the yield ratio increases. This means that the n value (work hardening index) decreases. The same applies to ultrafine ferrite single-phase steels having a ferrite grain size of 4 μm or less, although the strength is increased but the elongation is significantly reduced.

【0004】このようなことからは、フェライト鋼につ
いて、高強度化とともに、強度−延性のバランスの向上
を図るためには、従来のようなフェライト粒の微細化と
いう思想とは異った全く別の観点からの方策が必要とさ
れていた。そこで、この出願の発明は、以上のとおりの
従来技術の限界を克服し、フェライト構造鋼の高強度化
とともに、強度と延性とのバランスをも向上させた新し
いフェライト組織鋼を提供することを目的としている。
[0004] In view of the above, in order to improve the balance between strength and ductility of ferritic steel while increasing the strength, it is completely different from the conventional idea of miniaturizing ferrite grains. There was a need for measures from the perspective of Accordingly, an object of the invention of the present application is to overcome the limitations of the conventional technology as described above, and to provide a new ferrite structure steel in which the strength of a ferrite structural steel is increased and the balance between strength and ductility is also improved. And

【0005】[0005]

【課題を解決するための手段】この出願の発明は、上記
の課題を解決するものとして、平均粒径が4μm以下
で、粒界の方位差角15°以上の大角粒界に囲まれたフ
ェライトを母相とし、パーライトを体積率で3%以上含
有することを特徴とする超微細複相組織鋼を提供する。
The present invention solves the above-mentioned problems by providing a ferrite having an average grain size of 4 μm or less and surrounded by large-angle grain boundaries having a misorientation angle of grain boundaries of 15 ° or more. And a parent phase, and contains pearlite in a volume ratio of 3% or more.

【0006】[0006]

【発明の実施の形態】以上のとおりのこの発明の超微細
複相組織鋼は、以下の背景によりなされたものである。
すなわち、発明者らの検討の結果によると、フェライト
粒径が4μm以下になると、パーライトとの複相化によ
って、フェライト単相に比べ、強度と均一伸びが同時に
上昇することが見出された。フェライト粒径が10μm
以上のような一般のフェライト−パーライト複相鋼で
は、パーライト体積率の上昇にしたがって、高強度化さ
れるものの、伸び、n値が低下してしまうが、フェライ
ト粒径が4μm以下では、パーライト体積率の上昇にと
もなって、強度と伸びが同時に上昇するのである。この
ため、この発明では、フェライトの超微細化とパーライ
トとの複相化によって、高強度と強度−延性バランスの
向上を可能としているのである。特に、フェライト粒径
が2μm以下では、パーライトとの複相化による、高強
度化、高延性化の効果は顕著である。その結果、高強度
でありながら延性、n値、低降伏比を有する超微細組織
鋼の実現が可能となる。
BEST MODE FOR CARRYING OUT THE INVENTION As described above, the ultrafine dual-phase structure steel of the present invention has been made based on the following background.
That is, according to the results of studies by the inventors, it has been found that when the ferrite grain size is 4 μm or less, the strength and uniform elongation are simultaneously increased as compared with a ferrite single phase due to the formation of a double phase with pearlite. Ferrite grain size is 10μm
In the general ferrite-pearlite duplex stainless steel as described above, although the strength increases as the pearlite volume ratio increases, the elongation and the n value decrease. However, when the ferrite grain size is 4 μm or less, the pearlite volume increases. As the rate increases, strength and elongation increase at the same time. For this reason, according to the present invention, it is possible to improve the strength and the strength-ductility balance by making the ferrite ultrafine and making it into a dual phase with pearlite. In particular, when the ferrite particle size is 2 μm or less, the effect of increasing the strength and ductility by forming a dual phase with pearlite is remarkable. As a result, it is possible to realize an ultrafine structure steel having high strength, ductility, n value, and low yield ratio.

【0007】そこで、この発明では、前記のとおり、 1)フェライト平均粒径が4μm以下で、フェライトの
粒界の方位差角15°以上の大角粒界に囲まれたフェラ
イト母相とし、 2)パーライトを体積率で3%以上含有する とのことにより超微細複相組織鋼を特定している。
Therefore, according to the present invention, as described above, 1) a ferrite matrix having an average ferrite grain size of 4 μm or less and surrounded by a large-angle grain boundary having a misorientation angle of 15 ° or more at a ferrite grain boundary, 2) Ultrafine dual phase steel is specified by containing 3% or more by volume of pearlite.

【0008】この発明の鋼については、たとえば以下の
知見を踏まえて製造することができる。すなわち、ま
ず、発明者らの研究の結果、フェライトの超微細化とそ
の大角粒界化にはアンビル圧縮加工が極めて有効である
ことが見出された。図1は、このアンビル圧縮加工の態
様を例示したものである。アンビル圧縮では、減面率で
1パス90%を越える強加工も可能である。加工部はロ
ール圧延に比べ同じ減面率でも、せん断変形を含む大き
な変形を受けることになる。その結果、未再結晶域で、
このアンビル圧縮加工を行うことによって、平均粒径で
4μm以下のフェライト粒が50%以上の減面率の加工
で得られるようになった。そのフェライトは隣接方位差
角が15°以上のいわゆる大角粒界を有している。すな
わち、加工前のオーステナイト粒径、加工量、加工温度
を制御することによって、大角粒界からなりかつ4μm
以下のフェライト微細な組織鋼が製造が可能となる。
[0008] The steel of the present invention can be produced, for example, based on the following findings. That is, first, as a result of the research by the inventors, it has been found that anvil compression processing is extremely effective for ultrafine ferrite and formation of large-angle grain boundaries. FIG. 1 illustrates an aspect of the anvil compression processing. In the anvil compression, it is possible to perform a strong working exceeding 90% in one pass at a reduction in area. The processed part undergoes a large deformation including a shear deformation even at the same area reduction ratio as that of the roll rolling. As a result, in the unrecrystallized area,
By performing this anvil compression working, ferrite grains having an average grain size of 4 μm or less can be obtained by working with a reduction in area of 50% or more. The ferrite has a so-called large angle grain boundary having an adjacent misorientation angle of 15 ° or more. That is, by controlling the austenite grain size, the amount of processing, and the processing temperature before processing, a large-angle grain boundary and 4 μm
The following ferrite fine structure steel can be manufactured.

【0009】一般に、微細なフェライトはその変態過程
及びその後において、極めて合体、粒成長しやすいが、
大角粒界からなるフェライトは容易に合体、粒成長せ
ず、微細なまま室温にいたる。その結果、冷却速度は、
従来の20K/s以上に対し、3K/s以上でも上記の
微細粒を得ることができる。このような遅い冷却速度は
これまで考えられなかったものである。この発明の加工
時のひずみ速度は1/sで十分である。1−10/sは
厚板圧延の一般的ひずみ速度である。
Generally, fine ferrite is very easy to coalesce and grow during the transformation process and thereafter.
Ferrite composed of large-angle grain boundaries does not easily coalesce and grow, and reaches room temperature in a fine state. As a result, the cooling rate
The above-mentioned fine particles can be obtained even at 3 K / s or more, compared to the conventional 20 K / s or more. Such a slow cooling rate has never been considered before. A strain rate of 1 / s at the time of processing according to the present invention is sufficient. 1-10 / s is a general strain rate of plate rolling.

【0010】加工に用いるアンビル幅と試料の板厚との
関係は適宜調節可能であり、アンビルと試料の間には潤
滑材を塗布してもよい。以上のことから、この発明で
は、Ac3点以上に加熱してオーステナイト化した後
に、Ar3点以上の温度で、圧下率50%以上アンビル
圧縮加工を加え、次いで3K/s以上の速度で冷却する
ことを適当としている。
The relationship between the width of the anvil used for processing and the thickness of the sample can be appropriately adjusted, and a lubricant may be applied between the anvil and the sample. In view of the above, in the present invention, after an austenite is formed by heating to a temperature of 3 or more points, anvil compression processing is performed at a temperature of 3 or more points and an anvil compression rate of 50% or more, and then cooled at a rate of 3 K / s or more. Is appropriate.

【0011】加工前の平均オーステナイト粒径は、30
0μm以下で、さらには30μm以下が望ましい。加工
量として断面圧下率で50%以上が必要で、2ミクロン
未満の粒径を得るためには70%以上が望ましい。加工
温度としてはオーステナイト未再結晶域が必要で、Ar
3+200℃以内が望ましい。なるべく微細な粒を得る
ためにはAr3+100℃以内が望ましい。
The average austenite grain size before processing is 30
It is preferably 0 μm or less, and more preferably 30 μm or less. The amount of processing is required to be 50% or more in cross-sectional reduction ratio, and is preferably 70% or more in order to obtain a particle size of less than 2 microns. The processing temperature requires an austenite unrecrystallized region,
It is desirable to be within 3 + 200 ° C. In order to obtain as fine grains as possible, it is desirable that the temperature be Ar3 + 100 ° C. or less.

【0012】また、フェライトおよびパーライト相以外
の相としては、ベイナイト、マルテンサイト、残留オー
ステナイトの一つまたは二つ以上有してもよいし、カー
バイトやナイトライド、オキサイド等の析出物を有して
もよい。ただ、フェライトは母相として、またパーライ
トの体積率が3%以上であることが欠かせない。ただ、
パーライトの体積率が40%を超えると靭性や溶接性が
劣ってくる。だが、これらの特性を問題にしない用途な
らば40%を超えてもよい。このような観点からは、一
般溶接構造用鋼としては、パーライトの体積率は40%
までとするのが適当である。
The phase other than the ferrite and pearlite phases may have one or more of bainite, martensite, and retained austenite, and may have precipitates such as carbide, nitride, and oxide. You may. However, it is indispensable that ferrite be used as a matrix and that the volume ratio of pearlite be 3% or more. However,
When the volume ratio of pearlite exceeds 40%, toughness and weldability deteriorate. However, it may exceed 40% in applications where these characteristics are not a problem. From such a viewpoint, as a general welded structural steel, the volume ratio of pearlite is 40%.
It is appropriate to use up to.

【0013】なお、この発明で規定するところのフェラ
イトの平均粒径は、たとえば直線切断法により計測され
る。また、フェライト粒界の方位は、加工部の代表的な
約0.1×0.1mmの数視野をSEMで観察し、1視
野につき数百個のフェライト粒を電子線後方散乱回折
(EBSD)法で測定することができる。フェライトの
粒界の方位差角は15°以上であるときを大角粒界とす
る。大角粒界が全粒界の70%以上を占めるとき、組織
は大角粒界からなっているとする。大角粒界の割合が7
0%未満の時は、組織の微細化による強度上昇効果が十
分とは言えないからである。
The average grain size of ferrite as defined in the present invention is measured by, for example, a linear cutting method. The orientation of the ferrite grain boundary is determined by observing several fields of about 0.1 × 0.1 mm typical of the processed part with an SEM, and hundreds of ferrite grains are scattered by electron beam backscatter diffraction (EBSD) per field. Method. The case where the misorientation angle of the ferrite grain boundary is 15 ° or more is defined as a large-angle grain boundary. When the large-angle grain boundaries occupy 70% or more of the entire grain boundaries, it is assumed that the structure is composed of large-angle grain boundaries. The ratio of large-angle grain boundaries is 7
If it is less than 0%, the effect of increasing the strength due to the refinement of the structure cannot be said to be sufficient.

【0014】鋼の化学的組成については各種であってよ
いが、含有されるC(炭素)については、重量%で0.
3%以下とするのが適当である。それ以上の添加では、
フェライトの体積率が60%以上とするのが難しくなる
からである。また、組成には、高価な元素であるNi,
Cr,Mo,Cu等を用いることは必ずしも必要でな
い。Cとともに、Si,Mn,Al,P,SおよびNを
含有し、残部がFeと不可避的不純物からなる組成であ
ってもよい。
The chemical composition of the steel may vary, but the content of C (carbon) is 0.1% by weight.
It is appropriate that the content be 3% or less. With further additions,
This is because it becomes difficult to set the volume ratio of ferrite to 60% or more. The composition includes expensive elements such as Ni,
It is not always necessary to use Cr, Mo, Cu, or the like. The composition may contain Si, Mn, Al, P, S and N together with C, with the balance being Fe and unavoidable impurities.

【0015】以上のとおりの、この発明においては、フ
ェライトの4μm以下への超微細化にともなう高強度化
が、たとえば引張強度が従来の20μmの場合に480
MPa程度であったものが、4μmで約600MPa、
2μmで約700MPaと顕著に増大するとともに、フ
ェライトの超微細化にともなう延性の低下を抑え、強度
および強度−延性のバランスを向上させている。
As described above, in the present invention, the increase in strength due to ultrafine ferrite of 4 μm or less is achieved, for example, when the tensile strength is 20 μm, which is 480 μm.
What was about MPa, about 600 MPa at 4 μm,
At 2 μm, it is remarkably increased to about 700 MPa, and a decrease in ductility due to ultra-fine ferrite is suppressed, and a balance between strength and strength-ductility is improved.

【0016】実際に、パーライトの体積率が25%の場
合、フェライト平均粒径が3μmのものでは、一様伸び
は25%向上し、2μmのものでは一様伸びは倍増す
る。一方、驚くべきことに、従来の20μmフェライト
組織では、パーライトを含有させると延性はさらに悪く
なるのである。この現象は、フェライトの平均粒径が4
μmを超えて大きくなるに従って顕著となる。
Actually, when the volume ratio of pearlite is 25%, the uniform elongation is improved by 25% when the average particle diameter of ferrite is 3 μm, and the uniform elongation is doubled when the average particle diameter is 2 μm. On the other hand, surprisingly, in the conventional 20 μm ferrite structure, the inclusion of pearlite further deteriorates the ductility. This phenomenon occurs because the average ferrite grain size is 4
It becomes remarkable as the size exceeds μm.

【0017】この発明においては、このためフェライト
の平均粒径は4μm以下としている。そして、パーライ
トの体積分率については3%以上において実際的効果が
現われる。その上限については、期待する強度の許容範
囲として考慮することができる。その際には、たとえ
ば、フェライト単一組織鋼についての Swiftの式より求
めたデータをもとにマイクロメカニクスのSecant法を用
いて計算し、得られた応力−ひずみ曲線より算出した図
2の強度−一様伸びのバランス(フェライト粒径を変化
させた)を目安とすることができる。図2における実線
は、パーライトの体積率25%のものを示している。
In the present invention, the average grain size of the ferrite is set to 4 μm or less. A practical effect appears when the volume fraction of pearlite is 3% or more. The upper limit can be considered as an allowable range of expected strength. In this case, for example, the strength shown in FIG. 2 calculated from the stress-strain curve obtained by calculating using the Semant method of micromechanics based on the data obtained from the Swift equation for ferrite single-structure steel -The balance of uniform elongation (change in ferrite grain size) can be used as a guide. The solid line in FIG. 2 shows a pearlite having a volume ratio of 25%.

【0018】そこで以下、実施例を示し、さらに詳しく
この発明について説明する。
Hereinafter, the present invention will be described in more detail with reference to examples.

【0019】[0019]

【実施例】実施例1 表1の1の組成の鋼を900℃に加熱し、完全にオース
テナイト化した後に、750℃に冷却し、直ちに圧下率
で70%の図1に示したアンビル圧縮加工を行った。圧
縮後、500℃まで、10K/sで冷却を行った。その
結果、加工部のフェライトの平均粒径が2.0μmのフ
ェライト−パーライト複相組織鋼を得た。パーライト体
積率は25%であった。電子線後方散乱回折(EBS
D)法でフェライト粒界の傾角を測定したところ15°
以上の傾角を有する粒界が全フェライト粒界に占める割
合は90%であった。本鋼の引張強度、降伏強度、一様
伸びはそれぞれ、710MPa,600MPa,0.0
6であった
EXAMPLE 1 A steel having the composition shown in Table 1 was heated to 900.degree. C., completely austenitized, cooled to 750.degree. C., and immediately annealed as shown in FIG. Was done. After compression, cooling was performed at 10 K / s to 500 ° C. As a result, a ferrite-pearlite dual phase structure steel having an average ferrite grain size of 2.0 μm in the processed portion was obtained. The pearlite volume ratio was 25%. Electron Backscatter Diffraction (EBS
When the tilt angle of the ferrite grain boundary was measured by the method D), the angle was 15 °.
The ratio of the grain boundaries having the above inclination angles to all ferrite grain boundaries was 90%. The tensile strength, yield strength, and uniform elongation of the steel were 710 MPa, 600 MPa, and 0.0 MPa, respectively.
6

【0020】[0020]

【表1】 [Table 1]

【0021】実施例2 表1の2の組成の鋼を950℃に加熱し、完全にオース
テナイト化した後に、800℃に冷却し、実施例1と同
様な方法で、加工部のフェライト粒径が3.0ミクロン
で、パーライト体積率10%の鋼を得た。本鋼もフェラ
イトは大角粒界に囲まれていた。引張強度は580MP
a、一様のびは0.09であった。比較例1 実施例1と同様の組成の鋼を900℃に加熱し、完全に
オーステナイト化した後に、800℃に冷却し、累積圧
下率で70%のロール圧延を行った。圧延後、500℃
まで、10K/sで冷却を行った。その結果、加工部の
フェライトの平均粒径が6ミクロンのフェライト−パー
ライト鋼を得た。
Example 2 A steel having the composition shown in Table 1 was heated to 950.degree. C. and completely austenitized, and then cooled to 800.degree. A 3.0 micron, 10% perlite volume fraction steel was obtained. This steel also had ferrite surrounded by large-angle grain boundaries. Tensile strength is 580MP
a, the uniform spread was 0.09. Comparative Example 1 Steel having the same composition as in Example 1 was heated to 900 ° C. and completely austenitized, then cooled to 800 ° C., and roll-rolled at a cumulative draft of 70%. After rolling, 500 ° C
Until then, cooling was performed at 10 K / s. As a result, a ferrite-pearlite steel having an average ferrite grain size of 6 microns was obtained.

【0022】パーライトの体積率25%であった。この
ものの引張強度は、550MPaであり、一様伸びは、
0.15であった。粒径が6ミクロンとなったため、強
度は著しく低下した。パーライトの存在による一様伸び
の向上効果はなく、かえってその低下が認められた。比較例2 粉末冶金法により表1の3の組成を有し、平均粒径が2
ミクロンのフェライト鋼を得た。本鋼の引張強度、一様
伸び(真ひずみ)はそれぞれ、630MPa,0.03
であった。
The volume ratio of pearlite was 25%. The tensile strength of this is 550 MPa, and the uniform elongation is
0.15. Because the particle size was 6 microns, the strength was significantly reduced. There was no effect of improving uniform elongation due to the presence of pearlite. Comparative Example 2 A powder metallurgy method having the composition shown in Table 1 and having an average particle size of 2
A micron ferrite steel was obtained. The tensile strength and uniform elongation (true strain) of the steel were 630 MPa and 0.03, respectively.
Met.

【0023】強度−延性のバランスがとれていないこと
が確認された。比較例3 表1の1の組成の鋼を熱間圧延の後、冷間圧延、熱処理
を行ない、その結果、平均フェライト粒径3.2ミクロ
ンのフェライト−パーライト鋼を得た。EBSD測定の
結果、フェライト粒界に占める傾角15°以上の粒界の
割合は50%であった。そのとき、引張強度、一様のび
は、それぞれ、530MPa、0.12であった。
It was confirmed that strength-ductility was not balanced. Comparative Example 3 A steel having the composition shown in Table 1 was subjected to hot rolling, cold rolling and heat treatment, and as a result, a ferrite-pearlite steel having an average ferrite grain size of 3.2 microns was obtained. As a result of EBSD measurement, the ratio of the grain boundaries having an inclination angle of 15 ° or more to the ferrite grain boundaries was 50%. At that time, the tensile strength and the uniform spread were 530 MPa and 0.12.

【0024】[0024]

【発明の効果】この出願の発明によって、フェライト鋼
の微細化による強度向上とともに、延性を改善して、強
度−延性のバランスを向上させる。
According to the invention of this application, the strength is improved by the refinement of ferritic steel, the ductility is improved, and the balance between strength and ductility is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】アンビル圧縮加工について示した概要図であ
る。
FIG. 1 is a schematic view showing an anvil compression process.

【図2】引張強度−一様伸びのフェライト粒径並びにパ
ーライト体積率の関係を示した図である。
FIG. 2 is a graph showing a relationship between a tensile strength and a ferrite particle diameter of uniform elongation and a pearlite volume ratio.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 平均粒径が4μm以下で、粒界の方位差
角15°以上の大角粒界に囲まれたフェライトを母相と
し、パーライトを体積率で3%以上含有することを特徴
とする超微細複相組織鋼。
1. A ferrite surrounded by a large-angle grain boundary having an average grain diameter of 4 μm or less and a misorientation angle of a grain boundary of 15 ° or more as a mother phase, and containing pearlite in a volume ratio of 3% or more. Ultra-fine dual phase steel.
JP25680297A 1997-09-22 1997-09-22 Steel having ultrafine double phase structure Pending JPH1192855A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP25680297A JPH1192855A (en) 1997-09-22 1997-09-22 Steel having ultrafine double phase structure
US09/157,394 US6221178B1 (en) 1997-09-22 1998-09-21 Ultra-fine grain steel and method for producing it
EP98307632A EP0903412A3 (en) 1997-09-22 1998-09-21 Ultra-fine texture steel and method for producing it
CN98120620A CN1121502C (en) 1997-09-22 1998-09-21 Super fine organization steel and method for mfg. same
TW087115693A TW580519B (en) 1997-09-22 1998-09-21 Super fine structure steel and manufacturing method thereof
KR1019980038944A KR100536827B1 (en) 1997-09-22 1998-09-21 Ultra-fine grain steel and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25680297A JPH1192855A (en) 1997-09-22 1997-09-22 Steel having ultrafine double phase structure

Publications (1)

Publication Number Publication Date
JPH1192855A true JPH1192855A (en) 1999-04-06

Family

ID=17297650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25680297A Pending JPH1192855A (en) 1997-09-22 1997-09-22 Steel having ultrafine double phase structure

Country Status (1)

Country Link
JP (1) JPH1192855A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010053426A (en) * 2008-08-29 2010-03-11 National Institute For Materials Science Hot rolled bar steel wire rod and method for producing the same
JP2013127099A (en) * 2011-12-19 2013-06-27 Jfe Steel Corp High-strength steel sheet excellent in workability and method for manufacturing the same
JP2016079476A (en) * 2014-10-20 2016-05-16 Jfeスチール株式会社 Abrasion resistant steel sheet excellent in flexure processability and impact abrasion resistance and manufacturing method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010053426A (en) * 2008-08-29 2010-03-11 National Institute For Materials Science Hot rolled bar steel wire rod and method for producing the same
JP2013127099A (en) * 2011-12-19 2013-06-27 Jfe Steel Corp High-strength steel sheet excellent in workability and method for manufacturing the same
WO2013094130A1 (en) * 2011-12-19 2013-06-27 Jfeスチール株式会社 High-strength steel sheet and process for producing same
JP2016079476A (en) * 2014-10-20 2016-05-16 Jfeスチール株式会社 Abrasion resistant steel sheet excellent in flexure processability and impact abrasion resistance and manufacturing method therefor

Similar Documents

Publication Publication Date Title
WO1999013123A1 (en) Hot rolled steel plate to be processed having hyper fine particles, method of manufacturing the same, and method of manufacturing cold rolled steel plate
WO2014156078A1 (en) Abrasion resistant steel plate having low-temperature toughness and hydrogen embrittlement resistance, and manufacturing method therefor
CN1121502C (en) Super fine organization steel and method for mfg. same
KR102498956B1 (en) Hot-rolled steel sheet and its manufacturing method
JP3527641B2 (en) Steel wire with excellent cold workability
JP6875915B2 (en) High-strength steel plate and its manufacturing method
WO2021200402A1 (en) Electroseamed steel pipe, and method for manufacturing same
JPH1192855A (en) Steel having ultrafine double phase structure
JP2001271143A (en) Ferritic stainless steel excellent in ridging resistance and its production method
JP3228986B2 (en) Manufacturing method of high strength steel sheet
JP3246993B2 (en) Method of manufacturing thick steel plate with excellent low temperature toughness
JP6206423B2 (en) High strength stainless steel plate excellent in low temperature toughness and method for producing the same
JP2004137564A (en) Hot rolled steel member, and production method therefor
JP4116708B2 (en) Manufacturing method of fine grain structure steel
JPH0526850B2 (en)
JPH07224351A (en) Hot rolled high strength steel plate excellent in uniform elongation after cold working and its production
JPH0665645A (en) Production of high ductility hot rolled high tensile strength steel sheet
JP3543104B2 (en) Ultrafine structure steel and its manufacturing method
JP3546963B2 (en) Method of manufacturing high-strength hot-rolled steel sheet with excellent workability
JPH1192860A (en) Steel having ultrafine ferritic structure
CN114790530B (en) High-plasticity ultrahigh-strength steel plate and manufacturing method thereof
JPS60152635A (en) Manufacture of high-strength low-carbon steel material having superior heavy workability
JPS6220820A (en) Cold working method
WO2022149365A1 (en) Steel sheet pile and manufacturing method therefor
Anshari et al. Quantitative analysis of phase fraction and mechanical behaviour of friction stir processed carbon steels