JP4116708B2 - Manufacturing method of fine grain structure steel - Google Patents

Manufacturing method of fine grain structure steel Download PDF

Info

Publication number
JP4116708B2
JP4116708B2 JP27027698A JP27027698A JP4116708B2 JP 4116708 B2 JP4116708 B2 JP 4116708B2 JP 27027698 A JP27027698 A JP 27027698A JP 27027698 A JP27027698 A JP 27027698A JP 4116708 B2 JP4116708 B2 JP 4116708B2
Authority
JP
Japan
Prior art keywords
steel
ferrite
processing
less
austenite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27027698A
Other languages
Japanese (ja)
Other versions
JP2000096137A (en
Inventor
功和 枩倉
茂信 難波
政昭 藤岡
智之 横田
吉隆 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Kobe Steel Ltd
Nippon Steel Corp
Sumitomo Metal Industries Ltd
Original Assignee
JFE Steel Corp
Kobe Steel Ltd
Nippon Steel Corp
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, Kobe Steel Ltd, Nippon Steel Corp, Sumitomo Metal Industries Ltd filed Critical JFE Steel Corp
Priority to JP27027698A priority Critical patent/JP4116708B2/en
Publication of JP2000096137A publication Critical patent/JP2000096137A/en
Application granted granted Critical
Publication of JP4116708B2 publication Critical patent/JP4116708B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、合金元素をあまり含まない高強度鋼の製造方法に関し、詳細には、微細結晶粒組織を有する鋼を効率よく製造する方法に関するものである。
【0002】
【従来の技術】
近年、鋼構造物の大型化や鋼製品の軽量化に対するニーズが急増するに伴い、従来よりも強度の高められた高強度鋼の提供が切望されており、同時に、省資源、省エネルギーの観点から材料のリサイクル性も望まれている。
【0003】
この様な要求特性に対し、リサイクル性は考慮されていないが従来より知られている鋼材の強化方法として、固溶強化法、マルテンサイトやベイナイトの様な硬い組織による強化法、析出強化法、加工硬化等による転位強化法、結晶粒の微細化による強化法などが挙げられる。上記方法の中でも結晶粒の微細化による強化法は、強度のみならず靭性を高め、強度−延性のバランスを良好ならしめる方法として最適であると考えられる。また、結晶粒の微細化は加工熱処理を適正にすることにより行われ、合金元素等の添加を抑えることができる点で、鋼材のリサイクル性にも優れた強化方法と言うことができ、前述の要求特性に応え得る方法である。
【0004】
従来より鋼材の結晶粒微細化法は種々提案されているが、いずれの方法も微細化が充分行われているとは言い難い。例えば微細化方法としては下記(1)〜(3)の方法が挙げられる。
【0005】
(1)変態前のオーステナイト相の結晶粒微細化
オーステナイト−フェライト変態では変態時の核生成が主にオーステナイトの粒界上で起こる為、オーステナイトの粒径を小さくし、粒界面積を大きくすることにより変態の核生成頻度を高める方法は、変態後のフェライト粒を微細化するのに有効である。ここで、オーステナイト粒を微細化するには、オーステナイトの加工による再結晶法やフェライト−オーステナイトの逆変態を利用する方法等が効果的である。
【0006】
(2)変態前のオーステナイトへの歪の蓄積
オーステナイトを未再結晶温度域で加工すると、加工歪の一部が蓄積される結果、これがフェライト変態時の核生成場所となって変態の核生成頻度が増加するので変態後のフェライト粒を微細化するのに有効である。
【0007】
(3)変態時の過冷度を高くする。
【0008】
オーステナイト−フェライト変態時の冷却速度を速くし、過冷度を高くすることにより変態核の生成数が多くなるので、変態後のフェライト粒を微細化するのに有効である。
【0009】
しかしながら、上記(1)〜(3)の微細化法には限界があり、実操業レベルにおいて3μm以下のフェライト粒を得るのは極めて困難である。
【0010】
まず(1)、(2)の方法によれば、比較的高温でフェライト粒が微細化する為、その後の結晶粒成長により微細化の程度には限界がある。また、(3)の方法は比較的低温で変態させる為、フェライト粒の成長は或る程度抑制できるものの、あまり過冷し過ぎるとマルテンサイト等の過冷組織が生成するため、やはり微細化の程度には限界がある。
【0011】
上記方法の他、鋼を熱間圧延するに際し、オーステナイトとフェライトの2相混合状態で圧下する方法がある(特公昭62−5212号、特公昭62−7247号)。これは、所定の鋼を熱間圧延するに際し、該熱間圧延の終段において、極めて短時間に所定の加工を行った後、該熱間加工終了後短時間内に冷却するという方法であり、オーステナイト領域は未再結晶温度域にあり、これに加工が加わるので前述の(2)の方法に相当し、フェライト領域は加工により再結晶を起こし、微細化するというものである。ところが、一般にフェライト相は再結晶を起こし難く、上記方法により所望の微細化組織を得る為には際めて短時間内に強加工することを余儀なくされ、更に結晶粒の成長を抑制する為に、加工直後に急冷する工程が不可欠であった。具体的には、熱間加工の終段において1〜2秒以内に50〜90%の圧下加工を行うと同時に、その後20℃/s以上の速度で冷却する工程が必要となり、実操業レベル上、極めて難しい製造条件となっている。
【0012】
【発明が解決しようとする課題】
本発明は、上記事情に着目してなされたものであり、その目的は、従来よりも簡便な製造条件によって結晶粒径を3μm以下に微細化することができ、靭性を良好に保ちつつ高強度を達成することのできる新規な微細結晶粒組織鋼の製造方法を提供することにある。
【0013】
【課題を解決するための手段】
上記課題を解決し得た本発明の製造方法とは、C:0.01〜0.3%(質量%の意味、以下同じ),Si:0.01〜2%,Mn:0.1〜2%を含有する鋼を熱間加工して鋼材を製造する方法において、一連の熱間加工の終段において、フェライト相の占有率が面積率で5〜70%であるフェライト・オーステナイト2相状態の鋼を、歪み速度:0.05〜20/秒、総歪み量:0.8〜3.0の条件で1パス加工するか;若しくは、2パス以上加工する場合は、各パスにおける歪み速度:0.05〜20/秒、総歪み量:1.0〜3.0、パス間時間:5秒以内の条件で加工した後、少なくとも550℃までの温度範囲を5℃/秒以上の冷却速度で冷却するところに要旨を有するものである。
【0014】
ここで、上記鋼が、更にNb:0.05%以下(0%を含まない),Ti:0.1%以下(0%を含まない),およびV:0.1%以下(0%を含まない)よりなる群から選択される少なくとも1種を含有するものは本発明の好ましい態様である。
【0015】
【発明の実施の形態】
前述した様に、鋼の結晶粒を微細化すれば靱性を良好に保ちながら強加工を向上させることは知られているが、従来提案されている結晶粒微細化法では、結晶粒径を3μm以下に微細化することは困難であり、たとえ所望の粒径に微細化し得たとしても、その為に加工条件や冷却条件を厳密に制御しなければならず、実用性に欠けるものであった。
【0016】
そこで本発明者らは、3μm以下の結晶粒からなる微細結晶粒組織鋼を従来よりも簡便且つ容易な方法で効率よく得ることのできる新規な製造方法を提供すべく鋭意検討した結果、上記構成要件を採用することにより所望の目的が達成されることを見出し、本発明を完成したのである。
【0017】
本発明法は、基本的にはフェライト相とオーステナイト相の2相状態で強加工することにより結晶粒を微細化する方法を採用するものである。前述の特公昭62−5212号や特公昭62−7247号に記載の方法も、この方法を採用したものであるが、極めて短時間内に強加工と急冷を行わなければならず、実操業上の製造管理が極めて困難であるという不具合を抱えていた。これに対し、本発明法はフェライト・オーステナイト2相状態におけるオーステナイト相の未再結晶温度域加工における微細化およびフェライト相の再結晶による微細化を両立せしめ、且つフェライト−オーステナイト相界面の粒界移動抑制効果により粒成長が抑制される最適なフェライト相の占有率を突き止めたところに最重要ポイントを有するものであり、この様なフェライト占有率からなるフェライト−オーステナイト2相状態の鋼を用いれば、従来よりも緩やかで且つ簡便な加工・冷却条件を施したとしても、3μm以下の結晶粒径からなる微細結晶粒組織鋼が容易に得られるところに技術的意義が存在するものである。
【0018】
以下、本発明法を構成する鋼組成、加工・冷却条件、加工時における組織の限定理由について説明する。
まず、本発明法に用いられる鋼の成分組成について説明する。
【0019】
C:0.01〜0.3%
本発明は強度向上を主たる目的とするものであり、C濃度が低すぎると強度が低くなる為、Cの下限値を0.01%とする。一方、Cが0.3%を超えると変形抵抗が増大し、強加工が困難になる為、その上限値を0.3%とした。
【0020】
Si:0.01〜2%
Siは脱酸元素としてのみならず、鋼の強化元素として有効であるが、0.01%未満ではその効果が得られない。また、SiはA3 点を高くし、フェライトの再結晶が起こり易い高温域まで2相域を広げることができるので有用であるが、2%を超えると靭性や延性が劣化してしまう。従って、Siの上限値を2%以下とする。
【0021】
Mn:0.1〜2%
Mnは鋼の強化元素として有効であるが、0.1%未満ではその作用を発揮させることができない。一方、2%を超えると靭性や延性が劣化してしまうので、その上限を2%とする。
【0022】
本発明では、上記元素を必須的に含有する鋼を使用するものであり、残部:鉄および不可避的不純物からなるものであるが、より優れた作用を発揮させることを目的として、下記元素を1種または2種以上積極的に添加しても構わない。
【0023】
Nb:0.05%以下,Ti:0.1%以下,およびV:0.1%以下(いずれも0%を含まない)よりなる群から選択される少なくとも1種を含有
上記元素は、いずれも結晶粒成長の抑制による結晶粒微細化作用および析出強化作用を有するが、0.005%未満では所望の作用が充分得られない。一方、過剰に添加すると靭性が劣化するので、上限値をNb:0.05%,Ti:0.1%,V:0.1%とする。
【0024】
次に、上記鋼を熱間加工する。ここで、加工に至るまでの温度履歴については特に限定されず、例えばA3 点以上のオーステナイト単相温度域から冷却する途中で加工しても良いし、或いは、最初から2相温度域に加熱しから加工を開始しても構わない。本発明法では、オーステナイト相の再結晶や逆変態による微細化作用等は期待しておらず、本発明法で特定する構成要件のみによって所望の微細効果が充分得られるからである。
【0025】
本発明法では、一連の熱間加工の終段での加工条件、そのときの組織分率、及びその後の冷却条件を以下の様に特定したところに最重要ポイントがある。
【0026】
まず、熱間加工終段の加工は、フェライトとオーステナイトの2相域で行うことが必要であり、該2相域におけるフェライト相の占有率は面積率で5〜70%でなければならない。このときのフェライト量が上記範囲を外れると相界面面積が小さくなり、粒成長抑制効果を充分発揮させることができない。また、フェライト量が多すぎると、加工後にフェライトが再結晶するのに充分な歪を付与できないという不具合もある。これらの理由に基づき、熱間加工終段の加工時のフェライト占有率を5%以上、70%以下に制御した。
【0027】
また、加工時の総歪み量(真歪)は1パス加工の場合は0.8〜3.0,2パス以上加工する場合は1.0〜3.0に制御しなければならない。総歪み量が小さ過ぎると、オーステナイト相に核発生場所を充分供給できず、フェライト相の再結晶も起こらないので、1パス加工の場合は、真歪で0.8以上とした。好ましくは0.9以上である。尚、2パス以上の加工で歪を与える場合は、パス間の時間で加えた歪の一部が解放されるので、総歪量の下限値を真歪で1とした。好ましくは1.5以上である。但し、パス間時間が長すぎると、加えた歪が全て開放されてしまい、歪が蓄積されないので、パス間時間を5秒以内とした。好ましくは4秒以内である。一方、真歪3以上で加工することは、実用レベルでは極めて困難であるので、実用性の観点から上限値を3とした。
【0028】
更に歪速度は、0.05〜20/秒の範囲に制御する必要がある。歪速度が遅すぎると、加工中に歪が開放される為、歪が蓄積されないが、逆に速すぎると加工による発熱が大きくなり、加工が歪として有効に鋼中に投入・蓄積されない。これらの理由より、歪み速度を0.05/秒以上、20/秒以下とした。好ましくは0.1/秒以上、10/秒以下である。
【0029】
また、冷却速度については、少なくとも550℃までの温度範囲を5℃/秒以上で冷却することが必要である。冷却速度は、結晶粒成長に及ぼす影響が極めて大きく、比較的高温域での冷却が遅すぎると冷却中に結晶粒成長が生じる為、冷却速度5℃/秒以上で、少なくとも550℃まで冷却することにした。好ましくは10℃/秒以上である。尚、550℃以下の温度域における冷却速度は特に限定されない。
【0030】
本発明法は以上の様に構成されており、鋼中の炭素量を鋼強化に必要な最低限の範囲に制御しつつ、焼入れにより、マルテンサイト主体としベイナイトを一部含有する金属組織となる様に合金元素量および製造条件を制御したものであり、従来では、焼入れ後に実施していた焼戻し処理を省略したとしても、強度および靱性に優れた微細結晶粒組織鋼を簡便に効率良く製造できる点で極めて有用である。
【0031】
以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は本発明を制限するものではなく、前・後記の趣旨を逸脱しない範囲で変更実施することは全て本発明の技術的範囲に包含される。
【0032】
【実施例】
表1に示す成分組成の鋼(150kg)を真空溶解にて溶製し、鋳塊を鍛造した後、機械加工により、80mm厚−60mm幅−160mm長さの加工熱処理用試験片を得た。次に、この試験片を1030〜800℃に加熱した後、850〜750℃の温度範囲を真歪0.7〜2.3、歪み速度0.01〜10/秒で加工し、その後、3〜12℃/秒の冷却速度で冷却した。加工後の試験片を光学顕微鏡で観察し、結晶粒径を測定すると共に、引張試験により強度及び伸びを測定した。尚、加工時のフェライト占有率については別途、加工直前の状態で急冷した試料におけるフェライトとマルテンサイトの分率を測定することにより算出した。
【0033】
表2に、使用した鋼種、加工条件、および加工時のフェライト分率を示すと共に、上記の様にして得られた結晶粒径、強度及び伸びを併記する。
【0034】
【表1】

Figure 0004116708
【0035】
【表2】
Figure 0004116708
【0036】
表より以下の様に考察することができる。
表中、No.1〜15は本発明の要件を満足する本発明例であり、本発明の鋼組成を満たす鋼番号A〜Jを用い、本発明で特定する製造条件に基づき、加工、熱処理、冷却を行ったものである。この様にして得られた本発明例の平均結晶粒径は、いずれも3μm以下で強度も高く、延性も確保されていることが分かる。
【0037】
これに対して、No.16〜20は、本発明の成分範囲を満足する鋼番号Aを用いているが、本発明で特定する範囲外の条件で加工、熱処理、冷却を行ったものであり、No.16,17はフェライト占有率が本発明で特定する範囲を外れる為;No.18は加工真歪が小さ過ぎる為、No.19は冷却速度が遅過ぎる為、No.20はパス間時間が長過ぎる為、いずれも結晶粒径が大きくなり、本発明例に比べて強度が著しく低くなっている。また、No.21〜24は本発明で特定する成分範囲を満足しない鋼番号H〜Lを用いて試験したものであるが、No.21は、C量の多い鋼Hを使用している為、過冷組織が出てしまう;No.22及び23は、Si量が多い鋼I及びMn量が多い鋼Kを夫々使用している為、結晶粒径は小さく強度も高いものの、伸びが劣化する;No.24はC量の少ない鋼Lを使用している為、結晶粒径が大きく、強度が低下する、といった不具合を夫々抱えている。
【0038】
この様に、鋼の成分組成;加工時の組織、加工、冷却の条件を本発明の範囲内に制御することによって始めて、平均結晶粒径が3μm以下の微細結晶粒組織鋼が得られ、高強度が達成されると共に延性も確保できることが分かる。このうち、平均結晶粒径が2μm以下のNo.9は、強度が700MPaを超えており、強度の著しく高められた高強度鋼である。
【0039】
【発明の効果】
本発明法は以上の様に構成されており、鋼の成分組成、加工時の組織、加工条件、及び冷却条件を制御することにより、合金添加量が少ないにもかかわらず、高強度で延性も確保された微細結晶粒組織鋼を効率よく製造することが可能になり、産業上極めて有用である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing high-strength steel that does not contain much alloying elements, and in particular, to a method for efficiently producing steel having a fine grain structure.
[0002]
[Prior art]
In recent years, with the rapid increase in needs for larger steel structures and lighter steel products, there has been a strong desire to provide high-strength steel with higher strength than before, and at the same time from the viewpoint of saving resources and energy. Recyclability of materials is also desired.
[0003]
For such required characteristics, recyclability is not taken into consideration, but conventionally known methods for strengthening steel materials include solid solution strengthening, strengthening by hard structures such as martensite and bainite, precipitation strengthening, Examples thereof include a dislocation strengthening method by work hardening and a strengthening method by refining crystal grains. Among the above methods, the strengthening method by refining crystal grains is considered to be optimal as a method for improving not only strength but also toughness and improving the balance between strength and ductility. In addition, the refinement of crystal grains is performed by optimizing thermomechanical processing, and can be said to be a strengthening method excellent in recyclability of steel materials in that the addition of alloy elements and the like can be suppressed. It is a method that can meet the required characteristics.
[0004]
Conventionally, various methods for refining crystal grains of steel have been proposed, but it is difficult to say that any method has been sufficiently refined. For example, as the miniaturization method, the following methods (1) to (3) may be mentioned.
[0005]
(1) Grain refinement of the austenite phase before transformation In the austenite-ferrite transformation, nucleation during transformation occurs mainly at the austenite grain boundaries, so the austenite grain size must be reduced and the grain interface area increased. The method of increasing the frequency of nucleation of transformation by this is effective to refine the ferrite grains after transformation. Here, in order to refine the austenite grains, a recrystallization method by processing of austenite, a method using reverse transformation of ferrite-austenite, and the like are effective.
[0006]
(2) Accumulation of strain in austenite before transformation When austenite is processed in the non-recrystallization temperature range, part of the processing strain accumulates, and this becomes the nucleation site during ferrite transformation and the nucleation frequency of transformation Is effective in making the ferrite grains after transformation finer.
[0007]
(3) Increase the degree of supercooling during transformation.
[0008]
Since the number of transformation nuclei is increased by increasing the cooling rate at the time of austenite-ferrite transformation and increasing the degree of supercooling, it is effective to refine the ferrite grains after transformation.
[0009]
However, the above-mentioned methods (1) to (3) are limited in the miniaturization method, and it is extremely difficult to obtain ferrite grains of 3 μm or less at the actual operation level.
[0010]
First, according to the methods (1) and (2), since ferrite grains are refined at a relatively high temperature, the degree of refinement is limited by subsequent crystal grain growth. In addition, since the method (3) is transformed at a relatively low temperature, the growth of ferrite grains can be suppressed to some extent, but if it is overcooled too much, a supercooled structure such as martensite is generated. There is a limit to the degree.
[0011]
In addition to the above method, there is a method of rolling steel in a two-phase mixed state of austenite and ferrite when hot rolling the steel (Japanese Examined Patent Publication No. 62-5212, Japanese Examined Patent Publication No. 62-7247). This is a method in which when a predetermined steel is hot-rolled, at the final stage of the hot rolling, after predetermined processing is performed in a very short time, the steel is cooled within a short time after the hot processing is completed. The austenite region is in the non-recrystallization temperature region, and processing is added to this. This corresponds to the above-mentioned method (2), and the ferrite region is recrystallized by processing and becomes finer. However, in general, the ferrite phase does not easily recrystallize, and in order to obtain a desired fine structure by the above method, it is forced to be strongly processed within a short time, and to further suppress the growth of crystal grains. The process of quenching immediately after processing was indispensable. Specifically, at the final stage of hot working, a reduction process of 50 to 90% is performed within 1 to 2 seconds, and at the same time, a process of cooling at a rate of 20 ° C./s or more is required. This is an extremely difficult manufacturing condition.
[0012]
[Problems to be solved by the invention]
The present invention has been made by paying attention to the above circumstances, and its purpose is that the crystal grain size can be reduced to 3 μm or less by simpler manufacturing conditions than before, and high strength is maintained while maintaining good toughness. It is an object of the present invention to provide a novel method for producing a fine grain structure steel capable of achieving the above.
[0013]
[Means for Solving the Problems]
The production method of the present invention that has solved the above problems is: C: 0.01 to 0.3% (meaning of mass%, the same applies hereinafter), Si: 0.01 to 2%, Mn: 0.1 to 0.1% In a method for producing steel by hot working steel containing 2%, a ferrite-austenite two-phase state in which the occupation ratio of the ferrite phase is 5 to 70% in area ratio at the final stage of the series of hot working Is processed in one pass under the conditions of strain rate: 0.05 to 20 / second and total strain amount: 0.8 to 3.0; or when processing two or more passes, the strain rate in each pass : 0.05 to 20 / second, total strain: 1.0 to 3.0, time between passes: after processing under conditions of 5 seconds or less, cooling at least to 550 ° C in a temperature range of 5 ° C / second or more It has a gist where it cools at a speed.
[0014]
Here, the steel is further Nb: 0.05% or less (not including 0%), Ti: 0.1% or less (not including 0%), and V: 0.1% or less (0% It is a preferred embodiment of the present invention that contains at least one selected from the group consisting of:
[0015]
DETAILED DESCRIPTION OF THE INVENTION
As described above, it is known that if the crystal grains of steel are refined, it is known that the toughness is improved while maintaining good toughness. However, in the conventionally proposed grain refinement method, the crystal grain size is 3 μm. It is difficult to miniaturize below, and even if it can be miniaturized to a desired particle size, the processing conditions and cooling conditions have to be strictly controlled for that purpose, which is not practical. .
[0016]
Therefore, the present inventors have intensively studied to provide a novel production method capable of efficiently obtaining a fine grain structure steel composed of crystal grains of 3 μm or less by a simpler and easier method than the conventional one, and as a result, The inventors have found that a desired object can be achieved by adopting the requirements, and have completed the present invention.
[0017]
The method of the present invention basically employs a method of refining crystal grains by strongly processing in a two-phase state of a ferrite phase and an austenite phase. The methods described in Japanese Patent Publication No. Sho 62-5212 and Japanese Patent Publication No. Sho 62-7247 also adopt this method. However, strong processing and rapid cooling must be performed within an extremely short time, and in actual operation. It had a problem that the production management of was extremely difficult. In contrast, the method of the present invention achieves both the refinement in the non-recrystallization temperature range processing of the austenite phase in the ferrite-austenite two-phase state and the refinement by recrystallization of the ferrite phase, and the grain boundary migration at the ferrite-austenite phase interface. It has the most important point in finding the optimal ferrite phase occupancy in which grain growth is suppressed by the suppression effect, and if using a ferrite-austenite two-phase steel consisting of such ferrite occupancy, Even if mild and simpler processing and cooling conditions are applied, there is a technical significance in that a fine grain structure steel having a crystal grain size of 3 μm or less can be easily obtained.
[0018]
Hereinafter, the steel composition constituting the method of the present invention, processing / cooling conditions, and the reasons for limiting the structure during processing will be described.
First, the component composition of steel used in the method of the present invention will be described.
[0019]
C: 0.01 to 0.3%
The main purpose of the present invention is to improve the strength. If the C concentration is too low, the strength is lowered. Therefore, the lower limit of C is set to 0.01%. On the other hand, if C exceeds 0.3%, the deformation resistance increases and it becomes difficult to perform strong processing. Therefore, the upper limit is set to 0.3%.
[0020]
Si: 0.01-2%
Si is effective not only as a deoxidizing element but also as a steel strengthening element, but if less than 0.01%, the effect cannot be obtained. Si is useful because it increases the A 3 point and can broaden the two-phase region to a high temperature range where recrystallization of ferrite easily occurs, but if it exceeds 2%, the toughness and ductility deteriorate. Therefore, the upper limit of Si is set to 2% or less.
[0021]
Mn: 0.1 to 2%
Mn is effective as a steel strengthening element, but if it is less than 0.1%, its effect cannot be exhibited. On the other hand, if it exceeds 2%, toughness and ductility deteriorate, so the upper limit is made 2%.
[0022]
In the present invention, steel that essentially contains the above-described elements is used, and the balance is composed of iron and inevitable impurities. You may actively add seeds or two or more.
[0023]
Contains at least one selected from the group consisting of Nb: 0.05% or less, Ti: 0.1% or less, and V: 0.1% or less (all not including 0%) Each element has a crystal grain refining effect and a precipitation strengthening effect by suppressing crystal grain growth, but if it is less than 0.005%, a desired effect cannot be sufficiently obtained. On the other hand, since the toughness deteriorates if added excessively, the upper limit values are Nb: 0.05%, Ti: 0.1%, and V: 0.1%.
[0024]
Next, the steel is hot worked. Here, there is no particular limitation on temperature history leading up to the process, for example, it may be processed in the course of cooling from the A austenite single-phase temperature region or point 3, or heating the first 2-phase temperature region Then, processing may be started. This is because the method of the present invention does not expect a refining action by recrystallization or reverse transformation of the austenite phase, and the desired fine effect can be sufficiently obtained only by the constituent requirements specified by the method of the present invention.
[0025]
In the method of the present invention, the most important point is that the processing conditions at the final stage of a series of hot processing, the structure fraction at that time, and the subsequent cooling conditions are specified as follows.
[0026]
First, the final stage of hot working needs to be performed in a two-phase region of ferrite and austenite, and the occupation ratio of the ferrite phase in the two-phase region must be 5 to 70% in terms of area ratio. If the amount of ferrite at this time is out of the above range, the phase interface area becomes small, and the effect of suppressing grain growth cannot be exhibited sufficiently. Moreover, when there is too much ferrite amount, there also exists a malfunction that a distortion sufficient for a ferrite to recrystallize cannot be provided after a process. Based on these reasons, the ferrite occupancy during the final stage of hot working was controlled to 5% or more and 70% or less.
[0027]
Further, the total strain amount during processing (true strain) must be controlled to 0.8 to 3.0 in the case of one-pass processing, and 1.0 to 3.0 in the case of processing two or more passes. If the total strain amount is too small, the nucleation site cannot be sufficiently supplied to the austenite phase, and recrystallization of the ferrite phase does not occur. Therefore, in the case of one-pass processing, the true strain is set to 0.8 or more. Preferably it is 0.9 or more. In addition, when giving a strain by processing of two or more passes, a part of the strain added in the time between passes is released, so the lower limit value of the total strain amount is set to 1 for the true strain. Preferably it is 1.5 or more. However, if the time between passes is too long, all the added strain is released and the strain is not accumulated, so the time between passes was set to 5 seconds or less. Preferably, it is within 4 seconds. On the other hand, processing with a true strain of 3 or more is extremely difficult at a practical level, so the upper limit is set to 3 from the viewpoint of practicality.
[0028]
Furthermore, the strain rate must be controlled in the range of 0.05 to 20 / second. If the strain rate is too slow, the strain is released during processing, so that the strain is not accumulated. On the other hand, if the strain rate is too fast, the heat generated by the processing increases, and the processing is not effectively thrown into and stored in the steel. For these reasons, the strain rate is set to 0.05 / second or more and 20 / second or less. Preferably they are 0.1 / sec or more and 10 / sec or less.
[0029]
As for the cooling rate, it is necessary to cool at a temperature range of at least 550 ° C. at 5 ° C./second or more. The cooling rate has a great influence on the crystal grain growth, and if the cooling in a relatively high temperature range is too slow, crystal grain growth occurs during cooling. It was to be. Preferably, it is 10 ° C./second or more. The cooling rate in the temperature range of 550 ° C. or lower is not particularly limited.
[0030]
The method of the present invention is configured as described above. While controlling the amount of carbon in the steel to the minimum range necessary for steel strengthening, it becomes a metal structure mainly containing martensite and partly containing bainite by quenching. In this way, the amount of alloying elements and production conditions are controlled, and fine grained steel with excellent strength and toughness can be easily and efficiently produced even if the tempering treatment that has been performed after quenching is conventionally omitted. Very useful in terms.
[0031]
Hereinafter, the present invention will be described in detail based on examples. However, the following examples are not intended to limit the present invention, and all modifications made without departing from the spirit of the preceding and following descriptions are encompassed in the technical scope of the present invention.
[0032]
【Example】
Steel (150 kg) having the component composition shown in Table 1 was melted by vacuum melting and the ingot was forged, and then a mechanical heat treatment test piece having a thickness of 80 mm-60 mm-160 mm was obtained by machining. Next, after heating this test piece to 1030 to 800 ° C., a temperature range of 850 to 750 ° C. was processed at a true strain of 0.7 to 2.3 and a strain rate of 0.01 to 10 / sec. Cooling was performed at a cooling rate of ˜12 ° C./second. The processed specimen was observed with an optical microscope, the crystal grain size was measured, and the strength and elongation were measured by a tensile test. In addition, the ferrite occupation rate at the time of processing was separately calculated by measuring the fraction of ferrite and martensite in a sample that was quenched immediately before processing.
[0033]
Table 2 shows the steel types used, the processing conditions, and the ferrite fraction during processing, together with the crystal grain size, strength, and elongation obtained as described above.
[0034]
[Table 1]
Figure 0004116708
[0035]
[Table 2]
Figure 0004116708
[0036]
From the table, it can be considered as follows.
In the table, Nos. 1 to 15 are examples of the present invention that satisfy the requirements of the present invention. Steel numbers A to J satisfying the steel composition of the present invention are used, and processing and heat treatment are performed based on the production conditions specified by the present invention. , Cooled. It can be seen that the average crystal grain sizes of the examples of the present invention thus obtained are all 3 μm or less, have high strength, and ensure ductility.
[0037]
On the other hand, No. 16-20 uses steel number A that satisfies the component range of the present invention, but is processed, heat-treated and cooled under conditions outside the range specified by the present invention. No. 16 and 17 because the ferrite occupancy is outside the range specified in the present invention; No. 18 is too small in the true working strain, No. 19 is too slow in cooling, and No. 20 is between the passes. Since the time is too long, the crystal grain size becomes large in all cases, and the strength is remarkably lowered as compared with the examples of the present invention. Nos. 21 to 24 were tested using steel numbers H to L that do not satisfy the component ranges specified in the present invention, but No. 21 uses steel H with a large amount of C. No. 22 and No. 23 use steel I with a large amount of Si and steel K with a large amount of Mn, respectively, so that the crystal grain size is small and the strength is high, but the elongation deteriorates. No. 24 uses steel L with a small amount of C, and thus has problems such as large crystal grain size and reduced strength.
[0038]
In this way, a fine grain structure steel having an average grain size of 3 μm or less can be obtained only by controlling the component composition of steel; the processing structure, processing, and cooling conditions within the scope of the present invention. It can be seen that the strength is achieved and the ductility can be secured. Among these, No. 9 having an average crystal grain size of 2 μm or less is a high strength steel having a strength exceeding 700 MPa and having a significantly increased strength.
[0039]
【The invention's effect】
The method of the present invention is configured as described above. By controlling the composition of steel, the structure during processing, the processing conditions, and the cooling conditions, high strength and ductility are achieved despite the small amount of alloy addition. It is possible to efficiently produce the secured fine grain structure steel, which is extremely useful industrially.

Claims (3)

C:0.01〜0.3%(質量%の意味、以下同じ),Si:0.01〜2%,Mn:0.1〜2%を含有し、残部:Feおよび不可避的不純物からなる鋼を熱間加工して鋼材を製造する方法において、
一連の熱間加工の終段において、フェライト相の占有率が面積率で5〜45%であるフェライト・オーステナイト2相状態の鋼を、歪み速度:0.05〜20/秒、総歪み量:0.8〜3.0の条件で1パス加工した後、少なくとも550℃までの温度範囲を5℃/秒以上の冷却速度で冷却することを特徴とする微細結晶粒組織鋼の製造方法。
C: 0.01 to 0.3% (meaning of mass%, the same applies hereinafter), Si: 0.01 to 2%, Mn: 0.1 to 2% , the balance: Fe and unavoidable impurities In a method of manufacturing steel by hot working steel,
In the final stage of the series of hot working, a steel in a ferrite-austenite two-phase state in which the occupancy ratio of the ferrite phase is 5 to 45 %, strain rate: 0.05 to 20 / second, total strain amount: A method for producing a fine grain structure steel, characterized by cooling at a cooling rate of 5 ° C./second or more in a temperature range of at least 550 ° C. after one pass processing under conditions of 0.8 to 3.0.
C:0.01〜0.3%,Si:0.01〜2%,Mn:0.1〜2%を含有し、残部:Feおよび不可避的不純物からなる鋼を熱間加工して鋼材を製造する方法において、
一連の熱間加工の終段において、フェライト相の占有率が面積率で5〜45%であるフェライト・オーステナイト2相状態の鋼を、各パスにおける歪み速度:0.05〜20/秒、総歪み量:1.0〜3.0、パス間時間:5秒以内の条件で2パス以上加工した後、少なくとも550℃までの温度範囲を5℃/秒以上の冷却速度で冷却することを特徴とする微細結晶粒組織鋼の製造方法。
Steel: C: 0.01 to 0.3%, Si: 0.01 to 2%, Mn: 0.1 to 2% , the balance: steel made of Fe and inevitable impurities In the manufacturing method,
In the final stage of the series of hot working, a steel in a ferrite-austenite two-phase state in which the ferrite phase occupancy is 5 to 45 % in area ratio, strain rate in each pass: 0.05 to 20 / second, total Distortion amount: 1.0 to 3.0, time between passes: after processing for 2 passes or more under the condition of 5 seconds or less, the temperature range up to at least 550 ° C is cooled at a cooling rate of 5 ° C / second or more. A method for producing fine grain structure steel.
前記鋼が、更にNb:0.05%以下(0%を含まない),Ti:0.1%以下(0%を含まない),およびV:0.1%以下(0%を含まない)よりなる群から選択される少なくとも1種を含有するものである請求項1または2に記載の微細結晶粒組織鋼の製造方法。  The steel is further Nb: 0.05% or less (not including 0%), Ti: 0.1% or less (not including 0%), and V: 0.1% or less (not including 0%) The method for producing fine grain structure steel according to claim 1 or 2, comprising at least one selected from the group consisting of:
JP27027698A 1998-09-24 1998-09-24 Manufacturing method of fine grain structure steel Expired - Fee Related JP4116708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27027698A JP4116708B2 (en) 1998-09-24 1998-09-24 Manufacturing method of fine grain structure steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27027698A JP4116708B2 (en) 1998-09-24 1998-09-24 Manufacturing method of fine grain structure steel

Publications (2)

Publication Number Publication Date
JP2000096137A JP2000096137A (en) 2000-04-04
JP4116708B2 true JP4116708B2 (en) 2008-07-09

Family

ID=17484008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27027698A Expired - Fee Related JP4116708B2 (en) 1998-09-24 1998-09-24 Manufacturing method of fine grain structure steel

Country Status (1)

Country Link
JP (1) JP4116708B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3525180B2 (en) * 1998-08-31 2004-05-10 独立行政法人物質・材料研究機構 Manufacturing method of ultra-fine structure steel
JP4577999B2 (en) * 2001-01-25 2010-11-10 新日本製鐵株式会社 Low C-Mn ultrafine grain steel and method for producing the same
CN101812636A (en) * 2010-04-28 2010-08-25 南京钢铁股份有限公司 Q390D-Z35 low-alloy high-strength plank with thickness of 75mm and manufacturing method thereof
CN104451379A (en) * 2014-11-06 2015-03-25 南京钢铁股份有限公司 High-strength low-alloy niobium-vanadium structural steel and preparation method thereof

Also Published As

Publication number Publication date
JP2000096137A (en) 2000-04-04

Similar Documents

Publication Publication Date Title
JP3314295B2 (en) Method of manufacturing thick steel plate with excellent low temperature toughness
JP4405026B2 (en) Method for producing high-tensile strength steel with fine grain
JP3383148B2 (en) Manufacturing method of high strength steel with excellent toughness
JP3242303B2 (en) High-strength hot-rolled steel sheet having ultrafine grains and excellent in ductility, toughness, fatigue properties and strength-ductility balance, and method for producing the same
JP4116708B2 (en) Manufacturing method of fine grain structure steel
JP3255790B2 (en) Method for producing thick steel sheet with excellent brittle crack arrestability and low temperature toughness
JP3246993B2 (en) Method of manufacturing thick steel plate with excellent low temperature toughness
JP3261515B2 (en) Method of manufacturing thick steel plate with excellent low temperature toughness
JPH083635A (en) Production of steel plate excellent in toughness
JP2002363685A (en) Low yield ratio high strength cold rolled steel sheet
JPH0629480B2 (en) Hot-rolled high-strength steel sheet excellent in strength, ductility, toughness, and fatigue characteristics, and method for producing the same
JP3635803B2 (en) Method for producing high-tensile steel with excellent toughness
JP3229107B2 (en) Manufacturing method of low yield ratio high strength steel sheet with excellent uniform elongation
JP4179486B2 (en) Steel sheet having fine grain structure and method for producing the same
JP3212348B2 (en) Manufacturing method of fine grain thick steel plate
JP3462922B2 (en) Manufacturing method of high strength steel sheet with excellent strength and toughness
JP2003034825A (en) Method for manufacturing high strength cold-rolled steel sheet
JP4286700B2 (en) High strength and high toughness non-heat treated steel
JP3348359B2 (en) Structural steel with excellent arrest performance and its manufacturing method
JP3325146B2 (en) Manufacturing method for high yield strength steel sheet with low yield ratio
JP2937346B2 (en) Method for producing high carbon steel for spheroidizing annealing
JP2566068B2 (en) Method for manufacturing steel bar with excellent cold workability
JP3502809B2 (en) Method of manufacturing steel with excellent toughness
JP3485737B2 (en) Manufacturing method of thick steel plate with excellent low temperature toughness
JP3502850B2 (en) High-efficiency manufacturing method for steel with excellent toughness

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040810

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080418

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees