JP2566068B2 - Method for manufacturing steel bar with excellent cold workability - Google Patents
Method for manufacturing steel bar with excellent cold workabilityInfo
- Publication number
- JP2566068B2 JP2566068B2 JP3098822A JP9882291A JP2566068B2 JP 2566068 B2 JP2566068 B2 JP 2566068B2 JP 3098822 A JP3098822 A JP 3098822A JP 9882291 A JP9882291 A JP 9882291A JP 2566068 B2 JP2566068 B2 JP 2566068B2
- Authority
- JP
- Japan
- Prior art keywords
- rolling
- less
- steel
- temperature
- cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は冷間加工性の優れた棒鋼
の製造方法にかかわり、さらに詳しくは、自動車用部
品、建設機械用部品等の製造に際して、軟化焼鈍を必要
とせず圧延ままで引き抜き、切削、冷間鍛造等の冷間加
工を容易に行うことができる棒鋼の製造方法に関するも
のである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a steel bar having excellent cold workability. More specifically, in the production of automobile parts, construction machine parts, etc., softening annealing is not required and rolling is performed as is. The present invention relates to a steel bar manufacturing method capable of easily performing cold working such as drawing, cutting, and cold forging.
【0002】[0002]
【従来の技術】従来、自動車用部品、建設機械用部品等
は、引き抜き、切削、冷間鍛造等の冷間加工の前に冷間
加工性の向上を目的として、軟化焼鈍が行われている。
これらの焼鈍は通常数時間を要し、焼鈍処理のコストは
近年のエネルギ高騰とともにこれらの機械部品の製造コ
ストのなかで大きなウェイトを占めようになってきてい
る。このために、さらにまた生産性の向上の観点から冷
間加工の前の軟化焼鈍省略の指向は強い。これに対し
て、特公平1−12815号公報には、特定組成からな
る鋼をAc3変態点以上に加熱して熱間圧延し、Ac3変態
点〜Ac3変態点+200℃で総減面率40%以上の仕上
げ圧延を行った後、冷却速度0.05〜0.29℃/秒
で徐冷する冷間加工性の優れた低合金鋼の製造方法が示
されている。2. Description of the Related Art Conventionally, parts for automobiles, parts for construction machinery, etc. have been softened and annealed for the purpose of improving cold workability before cold working such as drawing, cutting and cold forging. .
These anneals usually take several hours, and the cost of the anneal treatment has come to occupy a large weight in the manufacturing costs of these mechanical parts with the recent increase in energy. Therefore, from the viewpoint of further improving productivity, there is a strong tendency to omit softening annealing before cold working. On the other hand, in Japanese Examined Patent Publication No. 1-181515, steel having a specific composition is heated to an A c3 transformation point or higher and hot-rolled, and the total surface reduction is performed at the A c3 transformation point to the A c3 transformation point + 200 ° C. A method for producing a low alloy steel having excellent cold workability is shown, in which after finishing rolling with a rate of 40% or more, slow cooling is performed at a cooling rate of 0.05 to 0.29 ° C./sec.
【0003】[0003]
【発明が解決しようとする課題】前記した特公平1−1
2815号公報の方法では、圧延仕上げ直後のオーステ
ナイト結晶粒度を6番以上とし、熱間圧延ままで微細な
フェライト・パーライト組織を得ることを狙いとしてい
る。しかしながら、この方法で得られる熱間圧延ままで
の鋼材の冷間加工性は、従来の軟化焼鈍に比べて不十分
であり、実用化に至っていないのが現状である。[Problems to be Solved by the Invention] Japanese Patent Publication No. 1-1
In the method disclosed in Japanese Patent No. 2815, the austenite grain size immediately after rolling finishing is set to 6 or more, and the aim is to obtain a fine ferrite-pearlite structure as hot-rolled. However, the cold workability of the as-hot-rolled steel obtained by this method is insufficient as compared with the conventional softening annealing, and it is the current situation that it has not been put to practical use.
【0004】本発明の目的は、熱間圧延ままで従来の軟
化焼鈍レベルの優れた冷間加工性を保証し得る棒鋼の製
造方法を提供しようとするものである。An object of the present invention is to provide a method of manufacturing a steel bar which can guarantee the conventional cold workability at the softening annealing level as it is while hot rolling.
【0005】[0005]
【課題を解決するための手段、作用】本発明者らは、熱
間圧延ままで従来の軟化焼鈍レベルの優れた冷間加工性
を保証し得る棒鋼を実現するために、鋭意検討を行ない
次の知見を得た。[Means and Actions for Solving the Problems] The inventors of the present invention have conducted extensive studies in order to realize a steel bar capable of guaranteeing excellent cold workability at the level of conventional softening annealing as hot rolling. I got the knowledge of.
【0006】(1) 従来の軟化焼鈍材と同等レベルの
冷間加工 性を熱間圧延ままで得るためには、圧延仕上
げ直後のオーステナイト結晶粒度を8番以上として、熱
間圧延ままでベイナイト分率が5%以下で且つ微細なフ
ェライト・パーライト組織を得なければならない。(1) In order to obtain the same level of cold workability as that of the conventional softened and annealed material in the as-hot-rolled state, the austenite grain size immediately after rolling finishing should be 8 or more, and the bainite content in the as-hot-rolled state. The ratio must be 5% or less and a fine ferrite-pearlite structure must be obtained.
【0007】(2) 圧延仕上げ直後のオーステナイト
結晶粒度を8番以上とするためには、次の3点が必須で
ある。(2) In order to make the austenite grain size immediately after rolling finish to be No. 8 or above, the following three points are essential.
【0008】 特定量のAl、N等の炭窒化物生成元
素を含有する鋼材を用い、圧延加熱温度を900〜12
50℃に限定して、圧延加熱時のオーステナイト粒の粗
大化を防止すること。A steel material containing a specific amount of carbonitride-forming element such as Al or N is used, and the rolling heating temperature is 900 to 12
Limiting to 50 ° C to prevent coarsening of austenite grains during rolling heating.
【0009】 880℃以上の温度範囲で総減面率5
0%以上の圧延を行い、再結晶によりオーステナイト粒
を6〜7番程度に細粒化すること。A total area reduction rate of 5 at a temperature range of 880 ° C. or higher
Rolling by 0% or more and refining the austenite grains to a grain size of about 6 to 7.
【0010】 880℃未満の温度範囲で、「減面率
10%以上の圧延後、直ちに鋼材表面温度が一旦Ms点
〜700℃となるように冷却し、引き続いて減面率10
%以上の圧延を行う」工程を1回以上有する工程で圧延
を行うことにより、各パスでの歪を累積し、累積大歪に
よる再結晶細粒化を促進し、さらに最終圧延出側の鋼材
表面温度を700〜880℃とすることにより、オース
テナイト粒の成長粗大化を抑制すること。In a temperature range of less than 880 ° C., “the steel material surface temperature is immediately cooled to Ms point to 700 ° C. immediately after rolling with a surface reduction rate of 10% or more, and then the surface reduction rate is 10%.
By performing rolling in a process having one or more steps of "performing rolling of at least%", strains in each pass are accumulated, recrystallization grain refinement due to accumulated large strain is promoted, and further steel material on the final rolling exit side Suppressing the growth coarsening of austenite grains by setting the surface temperature to 700 to 880 ° C.
【0011】(3) さらに、ベイナイト分率を5%以
下に抑え て良好な冷間加工性を有するためには、仕上
げ圧延後700〜500℃を平均冷却速度で0.05〜
0.7℃/秒で冷却することが必要である。(3) Further, in order to suppress the bainite fraction to 5% or less and to have good cold workability, after finishing rolling 700 to 500 ° C. at an average cooling rate of 0.05 to
It is necessary to cool at 0.7 ° C./sec.
【0012】本発明は以上の新規なる知見にもとづいて
なされたものであって、その要旨とするところは、 重量比として、 C:0.10〜0.80%、 Si:0.01〜0.40%、 Mn:0.25〜1.70%、 S:0.01〜0.15%、 Al:0.015〜0.05% 、 N:0.003〜0.020% 、を含有し、 P:0.035%以下に制限し、さらにまたは、 Cr:1.5%以下、 Ni:3.5%以下、 Mo:1.0%以下、 B:0.005%以下の1種または2種以上を含有し、
さらにまたは、 Ti:0.005〜0.04%、 Nb:0.005〜0.1%、 V:0.03〜0.3% の1種または2種以上を含有し、残部が鉄および不可避
的不純物からなる鋼を熱間圧延するに際して、 (A) 900〜1250℃に加熱する工程と、 (B) 880℃以上の温度範囲で総減面率50%以上
の圧延を行う工程と、 (C) その後、880℃未満の温度範囲で、「減面率
10%以上の圧延後、直ちに鋼材表面温度が一旦Ms点
〜700℃となるように冷却し、引き続いて減面率10
%以上の圧延を行う」工程を1回以上有する工程で圧延
を行い、最終圧延出側の鋼材表面温度を700〜880
℃とする工程と、 (D) 仕上げ圧延後、700〜500℃の温度範囲を
平均冷却速度で0.05〜0.7℃/秒で冷却する工程
とを有してなることを特徴とする冷間加工性の優れた棒
鋼の製造方法にある。The present invention has been made on the basis of the above new findings, and the gist thereof is as follows: C: 0.10 to 0.80%, Si: 0.01 to 0 as a weight ratio. 40%, Mn: 0.25 to 1.70%, S: 0.01 to 0.15%, Al: 0.015 to 0.05%, N: 0.003 to 0.020% P: 0.035% or less, or further, Cr: 1.5% or less, Ni: 3.5% or less, Mo: 1.0% or less, B: 0.005% or less, one kind Or containing two or more,
Furthermore, it contains one or more of Ti: 0.005 to 0.04%, Nb: 0.005 to 0.1%, V: 0.03 to 0.3%, and the balance is iron and When hot-rolling steel consisting of inevitable impurities, (A) a step of heating to 900 to 1250 ° C., and (B) a step of rolling at a total surface reduction rate of 50% or more in a temperature range of 880 ° C. or more, (C) After that, in a temperature range of less than 880 ° C., “after the rolling with a surface reduction rate of 10% or more, immediately, the steel surface temperature is once cooled to the Ms point to 700 ° C., and then the surface reduction rate is 10%.
% Rolling is performed at least once, and the steel surface temperature on the final rolling exit side is 700 to 880.
C., and (D) after finish rolling, cooling in a temperature range of 700 to 500 ° C. at an average cooling rate of 0.05 to 0.7 ° C./sec. It is a method of manufacturing a steel bar having excellent cold workability.
【0013】以下に、本発明を詳細に説明する。The present invention will be described in detail below.
【0014】まず、Cは機械部品としての最終製品の強
度を増加させるのに有効な元素であるが、0.10%未
満では最終製品の強度が不足し、また0.80%を超え
るとむしろ最終製品の靭性の劣化を招くので、含有量を
0.10〜0.80%とした。First, C is an element effective for increasing the strength of the final product as a mechanical part, but if the content is less than 0.10%, the strength of the final product will be insufficient, and if it exceeds 0.80%. Since the toughness of the final product is deteriorated, the content is set to 0.10 to 0.80%.
【0015】次に、Siは脱酸元素としておよび固溶体
硬化による最終製品の強度を増加させることを目的とし
て添加するが、0.01%未満ではこれらの効果は不十
分であり、一方、0.4%を超えるとこれらの効果は飽
和しむしろ最終製品の靭性の劣化を招くので、その含有
量を0.01〜0.4%とした。Next, Si is added as a deoxidizing element and for the purpose of increasing the strength of the final product by solid solution hardening, but if it is less than 0.01%, these effects are insufficient. If it exceeds 4%, these effects are saturated and rather the toughness of the final product is deteriorated, so the content was made 0.01 to 0.4%.
【0016】Mnは焼入れ性の向上を通じて、最終製品
の強度を増加させるのに有効な元素であるが、0.25
%未満ではこの効果は不十分であり、一方、1.7%を
超えるとこの効果は飽和しむしろ最終製品の靭性の劣化
を招くので、その含有量を0.25〜1.7%とした。Mn is an element effective in increasing the strength of the final product by improving the hardenability, but 0.25
If it is less than 0.1%, this effect is insufficient, while if it exceeds 1.7%, this effect is saturated and rather the toughness of the final product is deteriorated. Therefore, the content is made 0.25 to 1.7%. .
【0017】また、Sは鋼中でMnSとして存在し、被
削性の向上および組織の微細化に寄与するが、0.01
%未満ではその効果は不十分である。一方、0.15%
を超えるとその効果は飽和し、むしろ靭性の劣化及び異
方性の増加を招く。以上の理由から、Sの含有量を0.
01〜0.15%とした。Further, S exists as MnS in steel and contributes to improvement of machinability and refinement of the structure, but 0.01
%, The effect is insufficient. On the other hand, 0.15%
If it exceeds, the effect is saturated and rather causes deterioration of toughness and increase of anisotropy. For the above reasons, the S content is set to 0.
It was set to 01 to 0.15%.
【0018】次に、Alは脱酸元素および結晶粒微細化
元素として添加するが、0.015%未満ではその効果
は不十分であり、一方、0.05%を超えるとその効果
は飽和し、むしろ靭性を劣化させるので、その含有量を
0.015〜0.05%とした。Next, Al is added as a deoxidizing element and a crystal grain refining element, but if it is less than 0.015%, its effect is insufficient, while if it exceeds 0.05%, its effect is saturated. However, it rather deteriorates the toughness, so the content was made 0.015 to 0.05%.
【0019】さらに、NはAlNの析出挙動を通じて、
オーステナイト粒/フェライト・パーライト組織の微細
化に寄与するが、0.003%未満ではその効果は不十
分であり、一方、0.020%超では、その効果は飽和
しむしろ靭性の劣化を招くので、その含有量をN:0.
003〜0.020%とした。In addition, N is the precipitation behavior of AlN,
Although it contributes to the refinement of the austenite grain / ferrite / pearlite structure, if it is less than 0.003%, the effect is insufficient, while if it exceeds 0.020%, the effect is saturated and rather the toughness deteriorates. , Its content is N: 0.
It was set to 003 to 0.020%.
【0020】一方、Pは鋼中で粒界偏析や中心偏析を起
こし、靭性劣化の原因となる。特にPが0.035%を
超えると靭性の劣化が顕著となるため、0.035%を
上限とした。On the other hand, P causes grain boundary segregation and center segregation in the steel and causes deterioration of toughness. In particular, when P exceeds 0.035%, deterioration of toughness becomes remarkable, so 0.035% was made the upper limit.
【0021】次に本発明で用いる鋼においては、Cr,
Ni,Mo,Bの1種又は2種以上を含有させることが
できる。これらの元素は焼入れ性の増加により最終製品
の強度を増加させるために添加する。ただしこれらの元
素の多量添加は熱間圧延ままでベイナイト、マルテンサ
イト組織を生じて硬さの増加を招き、また経済性の点で
好ましくないためその含有量を、 Cr:1.5%以下、 Ni:3.5%以下、 Mo:1.0%以下、 B:0.005%以下とした。Next, in the steel used in the present invention, Cr,
One, two or more of Ni, Mo and B may be contained. These elements are added to increase the strength of the final product by increasing the hardenability. However, if a large amount of these elements is added, hot rolling causes bainite and martensite structure to increase hardness, and it is not preferable from the economical point of view, so that the content of Cr is 1.5% or less, Ni: 3.5% or less, Mo: 1.0% or less, B: 0.005% or less.
【0022】さらに本発明においては、粒度調整の目的
で、Ti,Nb,Vの1種又は2種以上を必須元素とし
て含有させることができる。しかしながら、Ti含有量
が0.005%未満、Nb含有量が0.005%未満、
V含有量が0.03%未満ではその効果は不十分であ
り、一方、Ti:0.040%超、Nb:0.10%
超、V:0.30%超では、その効果は飽和し、むしろ
靭性を劣化させるので、これらの含有量をTi:0.0
05〜0.040%,Nb:0.005〜0.1%,
V:0.03〜0.3%とした。Further, in the present invention, one or more of Ti, Nb and V may be contained as an essential element for the purpose of adjusting the grain size. However, the Ti content is less than 0.005%, the Nb content is less than 0.005%,
If the V content is less than 0.03%, its effect is insufficient, while Ti: more than 0.040%, Nb: 0.10%.
If V exceeds 0.30%, the effect is saturated and rather the toughness is deteriorated.
05-0.040%, Nb: 0.005-0.1%,
V: 0.03 to 0.3%.
【0023】次に、本発明において、熱間圧延条件を限
定した理由について述べる。Next, the reason for limiting the hot rolling conditions in the present invention will be described.
【0024】まず、加熱温度を900〜1250℃とし
たのは、900℃未満の加熱温度では粗圧延−中間圧延
温度が低くなり再結晶域圧延によるオーステナイト粒の
細粒化が不十分であるためであり、また1250℃以上
の加熱温度ではオーステナイト結晶粒が顕著に粗大化す
るためである。First, the heating temperature is set to 900 to 1250 ° C., because the heating temperature lower than 900 ° C. lowers the rough rolling-intermediate rolling temperature, and the austenite grains are not sufficiently refined by the recrystallization zone rolling. This is because the austenite crystal grains are remarkably coarsened at a heating temperature of 1250 ° C. or higher.
【0025】次に、880℃以上の温度範囲で総減面率
50%以上の圧延を行うのは、再結晶によりオーステナ
イト粒を6〜7番程度に細粒化するためであり、総減面
率50%以上としたのは、これ未満では再結晶細粒化の
効果が小さいためである。Next, rolling at a total area reduction rate of 50% or more in the temperature range of 880 ° C. or higher is to recrystallize the austenite grains into fine grains of about 6 to 7. The reason for setting the rate to 50% or more is that if it is less than 50%, the effect of recrystallizing and refining is small.
【0026】また、880℃未満の温度範囲で、「減面
率10%以上の圧延後、直ちに鋼材表面温度が一旦Ms
点〜700℃となるように冷却し、引き続いて減面率を
10%以上の圧延を行う」工程を1回以上有する工程で
圧延を行い、最終圧延出側の鋼材表面温度を700〜8
80℃とするのは、以下の理由による。880℃未満の
温度範囲における圧延では、通常、再結晶が困難で、主
として回復により加工歪の解放が起こるため、オーステ
ナイト粒の細粒化は困難である。これに対して、圧延後
直ちに冷却して回復による加工歪の解放を抑制して歪を
累積させ、実質的に大きな歪を残存させれば、再結晶細
粒化が可能である。この現象は、「減面率10%以上の
圧延後、直ちに鋼材表面温度が一旦Ms点〜700℃と
なるように冷却し、引き続いて減面率10%以上の圧延
を行う」工程を1回以上有する工程で圧延を行うことに
よって実現可能である。ここで、冷却前後の減面率10
%以上としたのは、減面率10%未満では累積される歪
量が小さいため再結晶細粒化に対する効果が不十分なた
めである。また、冷却後の表面温度をMs点〜700℃
としたのは、冷却後の表面温度が700℃を超えると加
工歪の解放の抑制が不十分であり、一方Ms点未満であ
ると表層にマルテンサイト組織が生じるためである。な
お、加工歪の解放の抑制の効果は、600℃未満に冷却
することによって特に顕著になることから、可能ならば
冷却後の表面温度をMs点以上、600℃未満とするの
が望ましい。また、本発明では、880℃未満の温度範
囲において、「減面率10%以上の圧延後、直ちに鋼材
表面温度が一旦Ms点〜700℃となるように冷却し、
引き続いて減面率10%以上の圧延を行う」工程の前後
に任意の圧延を行うことが可能であり、またこの工程を
2回以上繰り返す場合、連続して行っても、任意の圧延
をはさんで行っても良い。次に、最終圧延出側の鋼材表
面温度を700〜880℃の範囲とするのは、700℃
未満の仕上げ温度では、仕上げ圧延前または仕上げ圧延
中に鋼材表層部分でフェライトが生成する危険性があ
り、また仕上げ温度が880℃を超えた場合、圧延直後
のオーステナイト粒が成長粗大化する危険性があるため
である。ここで、最終圧延出側の鋼材表面温度は次の要
因で決まる。棒鋼サイズ、圧延速度、圧延前の加
熱温度、圧延の途中での冷却直後の鋼材表面温度(冷
却停止温度)。そのため、最終圧延出側の鋼材表面温度
を700〜800℃とするには、棒鋼サイズに応じて、
圧延速度、加熱温度および上記の冷却停止温度を本願発
明で規定した範囲内で操作することによる。中間での冷
却を複数回行う場合も同様である。本発明における棒鋼
圧延においては、圧延時に顕著な加工発熱が起きるた
め、圧延後に鋼材の表面温度は上昇する。棒鋼サイズ、
圧延速度が影響するのは、この加工発熱量と関係するた
めである。また、圧延の途中で冷却装置により強制的に
冷却することにより、鋼材表面温度を一旦Ms点〜70
0℃とするが、この時、内部の温度は鋼材表面温度より
も高いために、冷却終了後には、鋼材表面温度は内部の
温度の影響を受けて上昇、つまり復熱する。そのため、
最終圧延出側の鋼材表面温度を規定の範囲内とするに
は、この冷却停止温度の操作が特に重要である。図1
に、880℃未満の温度範囲で、「減面率10%以上の
圧延後、直ちに鋼材表面温度が一旦Ms点〜700℃と
なるように冷却し、引き続いて減面率を10%以上の圧
延を行う」工程を一回有する工程で圧延を行い、最終圧
延出側の表面温度を700〜880℃とする本発明の鋼
材表面の温度履歴の一例を示す。圧延時の加工発熱のた
め、圧延A,B,Fの後には鋼材の表面温度は上昇す
る。また、圧延Aの後、冷却装置により強制的に冷却す
ることにより、鋼材表面温度は一旦Ms点〜700℃
(T 1 )とするが、冷却終了後には、復熱により鋼材表
面温度は上昇する。圧延Fは最終圧延であり、T F が最
終圧延出側の表面温度であり、これを700〜880℃
とする。T 1 からT F への鋼材の表面温度の上昇は、冷
却後の復熱と圧延による加工発熱による。したがって、
圧延の途中で加熱を必要とする訳ではない。次に、図2
は、880℃未満の温度範囲で、「減面率10%以上の
圧延後、直ちに鋼材表面温度が一旦Ms点〜700℃と
なるように冷却し、引き続いて減面率を10%以上の圧
延を行う」工程を2回有する工程で圧延を行い、最終圧
延出側の表面温度を700〜880℃とする本発明の鋼
材表面の温度履歴の一例を示したものである。圧延1A
〜圧延1Bが一つのサイクルの歪み蓄積処理であり、こ
れを2回繰り返した後、圧延Fの最終圧延を行ってい
る。1回目の歪み蓄積処理を行った後の、つまり圧延1
Bの後の鋼材の表面温度は、冷却後の復熱と圧延による
加工発熱により冷却直後の鋼材の表面温度に比較し て上
昇している。そのため、引き続いて、2回目の歪み蓄積
処理(圧延2A〜圧延2B)を連続的に行うことが可能
である。したがって、やはり、圧延の途中で加熱を必要
とする訳ではない。 Further, in the temperature range of less than 880 ° C., “the surface temperature of the steel material is once Ms immediately after the rolling with a surface reduction rate of 10% or more.
The steel surface temperature on the delivery side of the final rolling is 700 to 8 after cooling in a process having one or more steps of "cooling to a temperature of ~ 700 ° C and then rolling with a surface reduction rate of 10% or more".
The reason why the temperature is 80 ° C. is as follows. In rolling in a temperature range of less than 880 ° C., recrystallization is usually difficult, and release of work strain mainly occurs by recovery, so that it is difficult to make austenite grains fine. On the other hand, if the strain is accumulated by suppressing the release of the processing strain due to the recovery by cooling immediately after rolling and leaving a substantially large strain, the recrystallized grains can be refined. This phenomenon is caused by one process of "immediately after rolling with a surface reduction rate of 10% or more, the steel surface temperature is once cooled to the Ms point to 700 ° C, and then rolling with a surface reduction rate of 10% or more" is performed once. It can be realized by rolling in the steps described above. Here, the surface reduction rate before and after cooling is 10
The reason why the content is set to be not less than 10% is that if the surface reduction rate is less than 10%, the amount of accumulated strain is small and the effect on recrystallization grain refinement is insufficient. Moreover, the surface temperature after cooling is Ms point to 700 ° C.
The reason is that when the surface temperature after cooling exceeds 700 ° C., the release of work strain is insufficiently suppressed, while when it is less than the Ms point, a martensite structure is generated in the surface layer. It should be noted that the effect of suppressing the release of processing strain becomes particularly remarkable by cooling to less than 600 ° C. Therefore, it is desirable to set the surface temperature after cooling to Ms point or more and less than 600 ° C. if possible. Further, in the present invention, in a temperature range of less than 880 ° C., “the steel material surface temperature is immediately cooled to Ms point to 700 ° C. immediately after rolling with a surface reduction rate of 10% or more,
It is possible to carry out any rolling before and after the step of "following the step of rolling with a surface reduction rate of 10% or more". Also, when this step is repeated twice or more, even if it is carried out continuously, any rolling can be performed. You can go there too. Next, the temperature of the steel material surface on the delivery side of the final rolling is set to 700 to 880 ° C.
If the finishing temperature is lower than, there is a risk that ferrite will be generated in the steel surface layer before or during finish rolling, and if the finishing temperature exceeds 880 ° C, the risk of growth and coarsening of austenite grains immediately after rolling will occur. Because there is. Here, the steel surface temperature at the final rolling exit side is
It depends on the reason. Steel bar size, rolling speed, processing before rolling
Heat temperature, steel surface temperature immediately after cooling during rolling (cooling
Stop temperature). Therefore, the surface temperature of the steel material on the delivery side of the final rolling
To 700-800 ° C, depending on the steel bar size,
The rolling speed, heating temperature and cooling stop temperature mentioned above are issued by the present application.
By operating within the range specified in the description. Cold in the middle
The same applies when the rejection is performed multiple times. Steel bar in the present invention
In rolling, remarkable processing heat is generated during rolling.
Therefore, the surface temperature of the steel material increases after rolling. Steel bar size,
The influence of the rolling speed is related to this processing heat value.
It is. Also, in the middle of rolling, it is forced by a cooling device.
By cooling, the surface temperature of the steel material is once set at Ms point to 70
0 ℃, but at this time, the internal temperature is higher than the steel surface temperature
Since it is also high, the surface temperature of the steel material is
It rises under the influence of temperature, that is, it recovers heat. for that reason,
To keep the surface temperature of the steel material on the delivery side of the final rolling within the specified range
The operation of this cooling stop temperature is particularly important. Figure 1
In a temperature range of less than 880 ° C, "a surface reduction rate of 10% or more
Immediately after rolling, the surface temperature of the steel material once becomes Ms point to 700 ° C.
To reduce the area reduction rate to 10% or more.
Rolling is performed in a process that has one process of "rolling"
Steel of the present invention having a surface temperature on the extension side of 700 to 880 ° C
An example of the temperature history of the material surface is shown. Processing heat generated during rolling
Therefore, the surface temperature of steel material increases after rolling A, B, F.
It In addition, after rolling A, the cooling device forcibly cools it.
By doing so, the surface temperature of the steel material is once Ms point to 700 ° C.
(T 1 ), but after cooling, the steel surface
The surface temperature rises. Rolling F is the final rolling, and T F is the maximum.
It is the surface temperature on the delivery side of the final rolling, which is 700 to 880 ° C.
And The rise of the surface temperature of steel from T 1 to T F
It is due to the recuperation after rejection and the heat generated by processing due to rolling. Therefore,
No heating is required during rolling. Next, FIG.
At a temperature range of less than 880 ° C, "a surface reduction rate of 10% or more
Immediately after rolling, the surface temperature of the steel material once becomes Ms point to 700 ° C.
To reduce the area reduction rate to 10% or more.
Rolling is performed in a process that has two steps of "rolling" and final pressure is applied.
Steel of the present invention having a surface temperature on the extension side of 700 to 880 ° C
It is an example of a temperature history of the material surface. Rolling 1A
~ Rolling 1B is one cycle of strain accumulation processing.
After repeating this twice, the final rolling of rolling F is performed.
It After performing the first strain accumulation process, that is, rolling 1
The surface temperature of the steel after B is due to recuperation and rolling after cooling.
Compared to the surface temperature of steel immediately after cooling due to heat generated by processing ,
It is rising. Therefore, the second strain accumulation continues.
Processing (rolling 2A to rolling 2B) can be performed continuously
It is. Therefore, again, heating is required during rolling.
It does not mean that.
【0027】次に、仕上げ圧延後700〜500℃の温
度範囲を平均冷却速度で0.05〜0.7℃/秒で冷却
するのは、仕上げ圧延後700〜500℃の冷却速度が
0.7℃/秒を超えると、圧延冷却後の組織が、ベイナ
イトが5%以上混在する組織となるためであり、一方
0.05℃/秒未満では徐冷の効果が飽和し、いたずら
に時間を消費するためである。なお、仕上げ圧延後70
0℃までは空冷以上の冷却速度で冷却するのが望まし
い。また、500℃以下の冷却は任意の冷却速度を選ぶ
ことができる。調整冷却の方法として、徐冷カバーをか
ける等の方法が考えられる。Next, the temperature range of 700 to 500 ° C. after finish rolling is cooled at an average cooling rate of 0.05 to 0.7 ° C./sec. This is because if it exceeds 7 ° C / sec, the structure after rolling and cooling becomes a structure in which 5% or more of bainite is mixed. It is for consumption. After finishing rolling, 70
Up to 0 ° C, it is desirable to cool at a cooling rate higher than air cooling. Further, for cooling at 500 ° C. or lower, any cooling rate can be selected. As a method for adjusting cooling, a method such as attaching a slow cooling cover can be considered.
【0028】以下に、本発明の効果を実施例により、さ
らに具体的に示す。The effects of the present invention will be more specifically described below with reference to examples.
【0029】[0029]
【実施例】第1表に供試材の化学成分を示す。[Examples] Table 1 shows the chemical components of the test materials.
【0030】これらはいずれも転炉溶製後連続鋳造で鋳
造された。162mm角鋼片に分塊圧延後、第2表に示
す圧延条件で丸棒鋼に圧延した。本発明法については、
圧延後、冷却床に徐冷カバーをかけることにより調整冷
却を行った。また、比較例で圧延した材料についての
み、680℃×2時間加熱放冷の条件で軟化焼鈍を行っ
た。All of these were cast by continuous casting after melting in a converter. After slab-rolling into a 162 mm square steel piece, it was rolled into a round bar steel under the rolling conditions shown in Table 2. Regarding the method of the present invention,
After rolling, controlled cooling was performed by covering the cooling floor with a slow cooling cover. Further, only the material rolled in the comparative example was soft-annealed under the condition of heating and cooling at 680 ° C. for 2 hours.
【0031】冷間加工性の指標として硬さの評価を行っ
た。第3表に各鋼材の材質特性を本発明と比較例を対比
して示す。これから明らかなように、本発明の圧延まま
材ではベイナイト分率が5%以下に抑えられ、また硬さ
レベルは比較例の圧延まま材に比べて概ねHVで10以
上軟化しており、この結果、「比較例(従来法)の圧延
材→軟化焼鈍」材とほぼ同等の軟質化レベルを達成して
いる。Hardness was evaluated as an index of cold workability. Table 3 shows the material characteristics of each steel material in comparison with the present invention and a comparative example. As is clear from this, the as-rolled material of the present invention has a bainite fraction of 5% or less, and the hardness level is softened by 10 or more at HV as compared with the as-rolled material of the comparative example. , A softening level almost equal to that of the “comparative example (conventional method) rolled material → softening annealed” material is achieved.
【0032】[0032]
【表1】 [Table 1]
【0033】[0033]
【表2】 [Table 2]
【0034】[0034]
【表3】 [Table 3]
【0035】[0035]
【表4】 [Table 4]
【0036】[0036]
【表5】 [Table 5]
【0037】[0037]
【発明の効果】以上述べたごとく、本発明法を用いれ
ば、熱間圧延ままで従来の軟化焼鈍レベルの優れた冷間
加工性を保証し得る棒鋼の製造が可能であり、冷間加工
の前の軟化焼鈍の省略が可能で、大幅な製造コスト低減
と生産性の向上が可能となり、産業上の効果は極めて顕
著なるものがある。As described above, by using the method of the present invention, it is possible to manufacture a steel bar which can guarantee the excellent cold workability of the conventional softening annealing level as it is in the hot rolling. Since the previous softening anneal can be omitted, the manufacturing cost can be greatly reduced and the productivity can be improved, and the industrial effect is extremely remarkable.
【図1】880℃未満の温度範囲で、「減面率10%以
上の圧延後、直ちに鋼材表面温度が一旦Ms点〜700
℃となるように冷却し、引き続いて減面率を10%以上
の圧延を行う」工程を1回有する工程で圧延を行い、最
終圧延出側の表面温度を700〜880℃とする本発明
の鋼材表面の温度履歴の一例を示す図である。 FIG. 1 shows a surface area reduction rate of 10% or less in a temperature range of less than 880 ° C.
Immediately after the above rolling, the steel surface temperature is once Ms point to 700
Cool to 0 ° C, and subsequently reduce the surface area by 10% or more.
Rolling is performed in a process that has one process.
The present invention in which the surface temperature on the delivery side of final rolling is 700 to 880 ° C
It is a figure which shows an example of the temperature history of the steel material surface.
【図2】880℃未満の温度範囲で、「減面率10%以
上の圧延後、直ちに鋼材表面温度が一旦Ms点〜700
℃となるように冷却し、引き続いて減面率を10%以上
の圧延を行う」工程を2回有する工程で圧延を行い、最
終圧延出側の表面温度を700〜880℃とする本発明
の鋼材表面の温度履歴の一例を示す図である。 [Fig. 2] In a temperature range of less than 880 ° C, "reduction rate of 10% or less
Immediately after the above rolling, the steel surface temperature is once Ms point to 700
Cool to 0 ° C, and subsequently reduce the surface area by 10% or more.
Rolling is performed in a process that has two steps of "rolling
The present invention in which the surface temperature on the delivery side of final rolling is 700 to 880 ° C
It is a figure which shows an example of the temperature history of the steel material surface.
Claims (3)
的不純物からなる鋼を熱間圧延するに際して、 (A) 900〜1250℃に加熱する工程と、 (B) 880℃以上の温度範囲で総減面率50%以上
の圧延を行う工程と、 (C) その後、880℃未満の温度範囲で、「減面率
10%以上の圧延後、直ちに鋼材表面温度が一旦Ms点
〜700℃となるように冷却し、引き続いて減面率10
%以上の圧延を行う」工程を1回以上有する工程で圧延
を行い、最終圧延出側の鋼材表面温度を700〜880
℃とする工程と、 (D) 仕上げ圧延後、700〜500℃の温度範囲を
平均冷却速度で0.05〜0.7℃/秒で冷却する工程
とを有してなることを特徴とする冷間加工性の優れた棒
鋼の製造方法。1. A weight ratio of C: 0.10 to 0.80%, Si: 0.01 to 0.40%, Mn: 0.25 to 1.70%, S: 0.01 to 0. Steel containing 15%, Al: 0.015 to 0.05%, N: 0.003 to 0.020%, P: 0.035% or less, the balance being iron and inevitable impurities (A) heating to 900 to 1250 ° C., (B) rolling to a total area reduction of 50% or more in a temperature range of 880 ° C. or higher, and (C) after that, 880 In a temperature range of less than 0 ° C., immediately after the rolling with a surface reduction rate of 10% or more, the steel surface temperature is once cooled to Ms point to 700 ° C., and then the surface reduction rate is 10%.
% Rolling is performed at least once, and the steel surface temperature on the final rolling exit side is 700 to 880.
C., and (D) after finish rolling, cooling in a temperature range of 700 to 500 ° C. at an average cooling rate of 0.05 to 0.7 ° C./sec. A method for manufacturing a steel bar having excellent cold workability.
工性の優れた棒鋼の製造方法。2. The steel further contains one or more of Cr: 1.5% or less, Ni: 3.5% or less, Mo: 1.0% or less, B: 0.005% or less. The method for producing a steel bar having excellent cold workability according to claim 1.
の冷間加工性の優れた棒鋼の製造方法。3. The steel further comprises one or more of Ti: 0.005 to 0.04%, Nb: 0.005 to 0.1%, V: 0.03 to 0.3%. The method for producing a steel bar having excellent cold workability according to claim 1 or 2, which contains.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3098822A JP2566068B2 (en) | 1990-05-30 | 1991-04-30 | Method for manufacturing steel bar with excellent cold workability |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2-140291 | 1990-05-30 | ||
JP14029190 | 1990-05-30 | ||
JP3098822A JP2566068B2 (en) | 1990-05-30 | 1991-04-30 | Method for manufacturing steel bar with excellent cold workability |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04228519A JPH04228519A (en) | 1992-08-18 |
JP2566068B2 true JP2566068B2 (en) | 1996-12-25 |
Family
ID=26439931
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3098822A Expired - Lifetime JP2566068B2 (en) | 1990-05-30 | 1991-04-30 | Method for manufacturing steel bar with excellent cold workability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2566068B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2697543B2 (en) * | 1993-02-04 | 1998-01-14 | 住友金属工業株式会社 | Manufacturing method of high strength low yield ratio steel for rebar |
DE69905963T2 (en) * | 1998-04-21 | 2004-01-22 | Kabushiki Kaisha Kobe Seiko Sho Also Known As Kobe Steel Ltd. | Wire rod or steel bars with good cold formability and machine parts made from them |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6121992B2 (en) * | 1977-12-22 | 1986-05-29 | Konzuruta Hemii Gmbh | |
JPS6219985U (en) * | 1985-07-22 | 1987-02-06 | ||
JPH0352694B2 (en) * | 1984-04-06 | 1991-08-12 | Nippon Electric Co |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6121992U (en) * | 1984-07-16 | 1986-02-08 | 株式会社精工舎 | clock mechanical body |
JPH0639358Y2 (en) * | 1986-11-26 | 1994-10-12 | 株式会社精工舎 | Watch machine |
JP3052694U (en) * | 1998-03-27 | 1998-09-29 | 努 清野 | Potter's wheel |
-
1991
- 1991-04-30 JP JP3098822A patent/JP2566068B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6121992B2 (en) * | 1977-12-22 | 1986-05-29 | Konzuruta Hemii Gmbh | |
JPH0352694B2 (en) * | 1984-04-06 | 1991-08-12 | Nippon Electric Co | |
JPS6219985U (en) * | 1985-07-22 | 1987-02-06 |
Also Published As
Publication number | Publication date |
---|---|
JPH04228519A (en) | 1992-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4018905B2 (en) | Hot rolled wire rod and bar for machine structure and manufacturing method thereof | |
JP3554505B2 (en) | Hot-rolled wire rod / steel bar for machine structure and manufacturing method thereof | |
JP2876968B2 (en) | High-strength steel sheet having high ductility and method for producing the same | |
JP4057930B2 (en) | Machine structural steel excellent in cold workability and method for producing the same | |
JPH0713257B2 (en) | Method for manufacturing soft wire without as-rolled surface abnormal phase | |
JP3738004B2 (en) | Case-hardening steel with excellent cold workability and prevention of coarse grains during carburizing, and its manufacturing method | |
JPH01230715A (en) | Manufacture of high strength cold rolled steel sheet having superior press formability | |
JP3879440B2 (en) | Manufacturing method of high strength cold-rolled steel sheet | |
JP4012475B2 (en) | Machine structural steel excellent in cold workability and low decarburization and method for producing the same | |
JP5266804B2 (en) | Method for producing rolled non-heat treated steel | |
JP3554506B2 (en) | Manufacturing method of hot-rolled wire and bar for machine structure | |
JP3422865B2 (en) | Method for producing high-strength martensitic stainless steel member | |
JPS6159379B2 (en) | ||
JP2756534B2 (en) | Manufacturing method for high ductility steel bars | |
JP2566068B2 (en) | Method for manufacturing steel bar with excellent cold workability | |
JP2655901B2 (en) | Manufacturing method of direct quenching type high strength steel sheet with excellent toughness | |
JP2002363685A (en) | Low yield ratio high strength cold rolled steel sheet | |
JPH09209039A (en) | Production of high strength cold rolled steel sheet excellent in deep drawability | |
JPH0112815B2 (en) | ||
JPH0696742B2 (en) | High strength / high toughness non-heat treated steel manufacturing method | |
JP4116708B2 (en) | Manufacturing method of fine grain structure steel | |
JPH0813028A (en) | Production of precipitation hardening steel material having high tensile strength and high toughness | |
JPH10265841A (en) | Production of high strength cold forging parts | |
JP2937346B2 (en) | Method for producing high carbon steel for spheroidizing annealing | |
JP3274028B2 (en) | Manufacturing method of non-heat treated high strength high toughness hot forged parts |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19960730 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071003 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081003 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091003 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101003 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101003 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111003 Year of fee payment: 15 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111003 Year of fee payment: 15 |