JPH01230715A - Manufacture of high strength cold rolled steel sheet having superior press formability - Google Patents

Manufacture of high strength cold rolled steel sheet having superior press formability

Info

Publication number
JPH01230715A
JPH01230715A JP15518988A JP15518988A JPH01230715A JP H01230715 A JPH01230715 A JP H01230715A JP 15518988 A JP15518988 A JP 15518988A JP 15518988 A JP15518988 A JP 15518988A JP H01230715 A JPH01230715 A JP H01230715A
Authority
JP
Japan
Prior art keywords
steel sheet
cold rolled
austenite
temperature
press formability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15518988A
Other languages
Japanese (ja)
Inventor
Hiroshi Takechi
弘 武智
Hiroshi Kato
弘 加藤
Osamu Matsumura
松村 理
Koji Sakuma
康治 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP15518988A priority Critical patent/JPH01230715A/en
Publication of JPH01230715A publication Critical patent/JPH01230715A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a high strength cold rolled steel sheet having superior press formability by successively subjecting a steel sheet contg. specified amts. of C, Si, Mn and Al and obtd. by finish hot rolling at a specified temp. to cold rolling at a specified draft, heating to a specified temp. and cooling at stepwise varied cooling rates. CONSTITUTION:A steel contg., by weight, 0.12-0.40% C, 0.50-2.00% Si, 0.20-2.50% Mn and 0.005-0.10% sol. Al is hot rolled at 700-850 deg.C finishing temp., cold rolled and heat-treated to regulate the ratio of pearlite : retained austenite to (1.5-2.5):1. The resulting steel sheet is pickled and cold rolled at 35-65% draft. This cold rolled steel sheet is heated to 730-900 deg.C, cooled to 600-700 deg.C at 1-10 deg.C/sec cooling rate, further cooled to 200-400 deg.C at 20-200 deg.C/sec cooling rate, held for 2-50sec, further held at 350-450 deg.C for 15sec-10min and then cooled to <=150 deg.C within 30sec. A high strength cold rolled steel sheet having superior press formability can be manufactured.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はプレス成形性の著しく優れた高強度冷延鋼板の
製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for manufacturing a high-strength cold-rolled steel sheet with extremely excellent press formability.

(従来の技術) ここ数年、乗用車においては快適性や走行性能の向上を
目的とした電子制御部品と乗員の安全を確実にする補強
部材がモデルチェンジのたびにその数を増し、また車体
投影面積も増加する傾向にある。一方で車体総重量はほ
とんど変化していないが、これは主要な構成材料である
自動車用薄鋼板の高強度化により相殺されているためで
ある。
(Conventional technology) In recent years, the number of electronic control parts for improving comfort and driving performance and reinforcing members to ensure the safety of passengers has increased with each model change in passenger cars. is also on the rise. On the other hand, the total weight of the car body has remained almost unchanged, but this is offset by the increased strength of the automobile thin steel sheets that are the main constituent material.

生活水準の向上を背景とする高級化・高性能化指向は今
後とも続くと思われるが、一方でオイルショックの経験
に根ざすコストパフォーマンスに対する鋭敏化した感覚
もあり、この1頃向は今後−層強まると予想される。し
たがって自動車用31@板に要求される強度レベルも引
張強度80〜100kgf/−以上と今まで考えられな
かったものとなろう。しかし、所要の部材を得るために
はプレス加工が必要であり、張り出し性、曲げ性、伸び
フランジ性をはじめとするさまざまな成形性を従来同様
にあわせ持つ必要がある。
It is thought that the trend toward higher quality and higher performance will continue in the future due to improvements in living standards, but on the other hand, there is also a heightened sense of cost performance rooted in the experience of the oil crisis, and this trend will continue in the future. It is expected to strengthen. Therefore, the strength level required for the 31@ plate for automobiles will be a tensile strength of 80 to 100 kgf/- or higher, which has never been thought of before. However, in order to obtain the required member, press working is required, and it is necessary to have various formability such as extensibility, bendability, stretch flangeability, etc. as in the past.

このような要求に応えようとした鋼として、特公昭56
−11741号公報等で提案されているような、軟質な
フェライトに伸びを、硬質なマルテンサイトに強度を分
担させ、その結合により改善された強度延性バランスを
有するフェライト・マルテンサイト二相m(Dual−
phase鋼)が存在する。しかし、この鋼でも引張強
度と全伸びの積はたかだか2000kgf/−・%であ
り、100 kgf/mj内外以上の引張強度レベルに
なると曲げ性や伸びフランジ性が極端に悪化するばかり
か、その特徴であった張り出し性も著しく劣化し、自動
車用薄鋼板に要求される厳しい成形性を満たすにはまだ
相当の難しさを残していた。また曲げ性を重視する立場
からは、鉄と綱、67(1981L 51181に記載
されているようにベイナイト均一に近い組織が推奨され
ているが、この場合100 kgf/mi級の引張強度
に対する全伸びはlO〜15%程度と小さいため極めて
限られた成形様式にしか適用できなかった。
As a steel that tried to meet these demands, the special public
As proposed in Japanese Patent No. 11741, elongation is shared by soft ferrite and strength is shared by hard martensite, and the ferrite-martensite dual phase m (Dual −
phase steel). However, even with this steel, the product of tensile strength and total elongation is at most 2000 kgf/-%, and when the tensile strength level exceeds 100 kgf/mj, not only does the bendability and stretch flangeability deteriorate dramatically, but the characteristics However, the stretchability of the steel sheet deteriorated significantly, and there remained considerable difficulty in meeting the strict formability requirements of thin steel sheets for automobiles. In addition, from the perspective of placing emphasis on bendability, a structure close to uniform bainite is recommended as described in Iron and Steel, 67 (1981L 51181), but in this case, the total elongation for a tensile strength of 100 kgf/mi class is recommended. Since it is as small as lO~15%, it could only be applied to extremely limited molding methods.

ところが最近になって、高価な合金元素を含まない単純
なC−C−5i−系ながら15%以上の残留オーステナ
イトを含有し、その変態誘起塑性(Transform
ation Induced Plasticitいを
利用することにより、30%以上と従来者えられなかっ
たような全伸びを有しながら80〜120 kgf/m
j程度もの引張強度を有する高強度鋼板が、特開昭60
−43430号公報等に開示されている如く製造できる
ことが見い出された。残留オーステナイトを有するこの
種の鋼板は、その量と変形に対する安定度に応じて、変
態誘起塑性に起因する穫めて良好な成形性を有する。ま
た、軟鋼板用の連続焼鈍サイクルに準じた熱処理条件で
製造できるため、工業上広流な利用が期待され°ている
。しかし、上記開示技術による鋼は極めてC量が高く残
留オーステナイトとともに存在するベイナイト中には比
較的大きなサイズの炭化物が密に存在するため、曲げ性
や伸びフランジ性等の張り出し性以外の成形性の劣化が
見られ、また自動車の安全強度部材として用いられる際
に必須である衝撃性も優れない。
However, recently, although it is a simple C-C-5i system that does not contain expensive alloying elements, it has been discovered that it contains more than 15% retained austenite, and its transformation-induced plasticity (Transform-induced plasticity) has increased.
By using cation induced plastic, it has a total elongation of more than 30%, which was previously unachievable, while achieving a total elongation of 80 to 120 kgf/m.
A high-strength steel plate with a tensile strength of J
It has been found that it can be manufactured as disclosed in Japanese Patent No.-43430 and the like. Steel sheets of this type with retained austenite, depending on its amount and stability against deformation, have very good formability due to transformation-induced plasticity. In addition, because it can be manufactured under heat treatment conditions similar to the continuous annealing cycle for mild steel plates, it is expected to be widely used in industry. However, the steel according to the disclosed technology has an extremely high C content and relatively large carbides are densely present in the bainite that exists together with retained austenite. Deterioration is observed, and impact resistance, which is essential when used as a safety and strength member for automobiles, is not excellent.

特開昭61−157625号公報等で提案されているよ
うに加熱温度域をフェライトとオーステナイトの二相共
存域とすれば、C濃度がより低い鋼においても残留オー
ステナイトを含みそのTRIP効果が発揮される80〜
120 kgf/mj級の引張強度を得ることができ、
曲げ性も満足できるレベルに到達する。しかし、この開
示技術を用いた場合も第一段の加工中に残留オーステナ
イトがマルテンサイトに加工誘発変態した後で第二段の
加工を行うと、その時許容される加工範囲は所謂二相鋼
(Dual phase鋼)と同程度に限られる。した
がって、伸びフランジ性等は同一強度を有する従来鋼板
と同等のレベルにとどまるため、厳しい成形性を必要と
する部品に通用することは困難であり、自動車用薄鋼板
としての広範な実用化を妨げていた。
If the heating temperature range is set to the two-phase coexistence region of ferrite and austenite, as proposed in JP-A-61-157625, even steel with a lower C concentration will contain residual austenite and its TRIP effect will be exhibited. 80~
A tensile strength of 120 kgf/mj class can be obtained,
The bendability also reaches a satisfactory level. However, even when this disclosed technology is used, if the second stage is performed after residual austenite undergoes work-induced transformation into martensite during the first stage, the permissible working range at that time is the so-called duplex steel ( Dual phase steel). Therefore, stretch flangeability, etc. remains at the same level as conventional steel sheets with the same strength, making it difficult to be used in parts that require strict formability, and preventing widespread practical use as thin steel sheets for automobiles. was.

(発明が解決しようとする課題) 本発明は前記したような従来技術の有する問題点を解決
し、8〜25%の残留オーステナイトを含み張り出し性
・曲げ性・伸びフランジ性をはじめとしたプレス成形性
の優れた高強度冷延鋼板の製造方法を提供するものであ
る。
(Problems to be Solved by the Invention) The present invention solves the problems of the prior art as described above, and contains 8 to 25% retained austenite, which improves press forming properties including stretchability, bendability, and stretch flangeability. The present invention provides a method for manufacturing a high-strength cold-rolled steel sheet with excellent properties.

(課題を解決するための手段) 本発明による高強度冷延鋼板はフェライト、ベイナイト
と8〜25%の残留オーステナイトを主体とした混合組
織を有する。70kgf/mjを超す高い引張強度はベ
イナイト、残留オーステナイトあるいは加工誘発変態に
より生成したマルテンサイトが存在することにより得ら
れるが、清浄なフェライトとともに存在するCが濃化し
て安定化した残留オーステナイトの変態誘起塑性により
もたらされる大きな伸びは、その強度では従来得られな
かったような優れた張り出し性を付与する。ここで残留
オーステナイトの粒径を小さくし安定度を高めて変態誘
起塑性をより効果的なものとすれば張り出し性はさらに
改善される。同時に加工誘発変態により生成するマルテ
ンサイトの量を減することができるから、その粒が微細
化していることと併せて伸びフランジ性を大幅に改善で
きる。また残留オーステナイトの加工誘発変態は歪を拡
散し良好な曲げ性をもたらすが、加工誘発変態に伴う歪
が過大な場合でも清浄で高延性のフェライトが存在すれ
ばその歪を解放できるためさらに欠陥が生じに(くなる
。このようにフェライトやベイナイトと共に微細な残留
オーステナイトを均一分散させた金属組織は張り出し性
・曲げ性・伸びフランジ性をはじめとしたプレス成形性
に好ましいものであるが、それは一連の熱処理開始以前
における組織を微細に整えると同時に最終的に得ようと
する組織での合金元素分配に近い状態としておくことが
肝要であることに本発明者らは着目した。
(Means for Solving the Problems) The high-strength cold-rolled steel sheet according to the present invention has a mixed structure mainly composed of ferrite, bainite, and 8 to 25% retained austenite. A high tensile strength exceeding 70 kgf/mj is obtained by the presence of bainite, retained austenite, or martensite generated by deformation-induced transformation, but the transformation of retained austenite, which is stabilized by concentration of C present together with clean ferrite, is induced by the transformation of retained austenite. The large elongation brought about by plasticity provides excellent stretchability that could not previously be obtained with that strength. Here, if the grain size of the retained austenite is made smaller and the stability is increased to make the transformation-induced plasticity more effective, the stretchability will be further improved. At the same time, it is possible to reduce the amount of martensite generated by processing-induced transformation, and in addition to making the grains finer, stretch flangeability can be greatly improved. In addition, the deformation-induced transformation of retained austenite diffuses strain and provides good bendability, but even if the strain associated with deformation-induced transformation is excessive, the presence of clean, highly ductile ferrite can release the strain, which can cause further defects. In this way, a metal structure in which fine retained austenite is uniformly dispersed together with ferrite and bainite is favorable for press formability including stretchability, bendability, and stretch flangeability. The present inventors have focused on the fact that it is important to finely prepare the structure before the start of the heat treatment and at the same time maintain a state close to the distribution of alloying elements in the structure to be finally obtained.

そして熱間圧延の仕上温度と巻取後冷却した時点での金
属組織および冷間圧延の圧延率を適正な範囲に制御する
ことで目的が達せられることを見い出し本発明をなした
ものである。
The present invention was based on the discovery that the object can be achieved by controlling the finishing temperature of hot rolling, the metal structure at the time of cooling after coiling, and the rolling ratio of cold rolling within appropriate ranges.

即ち、本発明は重量%でC:0.12〜0.40%、S
i:0、50〜2.00%、  Mn: 0.20〜2
.50%、  Sol、/’J:0、 OO5〜0.1
0%を含み、残部Feおよび不可避的不純物からなる鋼
を700〜850℃を仕上温度として熱延して得られた
フェライトとパーライトからなり、パーライトの比率を
冷延とひき続く一連のサイクルからなる熱処理の完了後
に得る残留オーステナイトの比率の1.5〜2.5倍と
した鋼板を、酸洗と圧延率35〜65%の冷延を行って
から、730〜900 ℃の二相共存温度域に加熱し、
15秒〜5分保持後、600〜700℃までを1〜10
℃/ s、それ以下を20〜200℃/Sの速度で20
0〜400℃まで冷却し、この温度域内で2〜50秒保
持してから350〜450℃に15秒〜10分保定し、
その後30秒以内に150℃以下まで冷却することを特
徴とする8〜25%の残留オーステナイトを含み張り出
し性・曲げ性・伸びフランジ性をはじめとしたプレス成
形性の優れた高強度冷延鋼板の製造方法である。
That is, in the present invention, C: 0.12 to 0.40%, S
i: 0, 50-2.00%, Mn: 0.20-2
.. 50%, Sol, /'J:0, OO5~0.1
It consists of ferrite and pearlite obtained by hot rolling steel containing 0% Fe and unavoidable impurities at a finishing temperature of 700 to 850°C, and consists of a series of cycles in which the ratio of pearlite is reduced by cold rolling. A steel plate with a residual austenite ratio of 1.5 to 2.5 times the ratio obtained after completion of heat treatment is pickled and cold rolled at a rolling reduction of 35 to 65%, and then rolled in a two-phase coexistence temperature range of 730 to 900 °C. Heat to
After holding for 15 seconds to 5 minutes, heat to 600 to 700℃ for 1 to 10 minutes.
℃/s, below 20 at a speed of 20 to 200℃/s
Cool to 0 to 400°C, hold within this temperature range for 2 to 50 seconds, and then maintain at 350 to 450°C for 15 seconds to 10 minutes,
A high-strength cold-rolled steel sheet containing 8 to 25% retained austenite and excellent press formability including stretchability, bendability, and stretch-flangeability. This is the manufacturing method.

(作 用) 最初に本発明の対象とする鋼の成分範囲の限定理由につ
いて述べる。
(Function) First, the reason for limiting the range of components of steel that is the object of the present invention will be described.

まずCはオーステナイト中に濃縮し、そのMs点を室温
以下とする。これにより変態誘起望性による大きな伸び
をもたらす残留オーステナイトを得ることができる。そ
の量は溶接性や衝撃性の観点からは低いことが望ましい
が、0.12%未満では高強度にしてプレス成形性を優
れたものとすることは不可能であり、目的を容易に実現
するためには0.15%以上が望ましい。一方、0.4
0%を超えると残留オーステナイト量を確保するのは容
易であるものの、共存する組織が比較的大きなサイズの
炭化物が密に存在するベイナイトを主体とすることにな
るため衝撃性の劣化が著しく実用に耐えないものとなる
First, C is concentrated in austenite, and its Ms point is set to below room temperature. This makes it possible to obtain retained austenite that provides large elongation due to transformation-induced desirability. It is desirable that the amount is low from the viewpoint of weldability and impact resistance, but if it is less than 0.12%, it is impossible to achieve high strength and excellent press formability, so the purpose can be easily achieved. For this reason, it is desirable that the content be 0.15% or more. On the other hand, 0.4
If it exceeds 0%, it is easy to ensure the amount of retained austenite, but the coexisting structure will be mainly composed of bainite in which comparatively large carbides are densely present, resulting in a significant deterioration of impact resistance, making it impractical for practical use. It becomes intolerable.

Siはセメンタイト中に固溶しないためその析出を抑制
する作用があり、200〜450“Cのベイナイト変態
温度域においてCを過飽和に固溶している未変態オース
テナイト中へさらなる濃化を図ることができる。しかし
、本発明のC量の範囲ではSi含有量が0.50%未満
の場合にその効果は認められす、できれば0.80%以
上が望ましい。−方、2.00%を超えることは高温で
表面にスケールを生じやすくするのみならず、Cを黒鉛
として析出させることもあるから避ける必要がある。ま
たStはA、変態点を極端に高くするから、その添加量
が多いと連続焼鈍における加熱温度を相当に高めなけれ
ばならずコスト上昇を招くので、1.50%未満とする
ことが望ましい。
Since Si does not form a solid solution in cementite, it has the effect of suppressing its precipitation, and in the bainite transformation temperature range of 200 to 450"C, it is possible to further concentrate C into untransformed austenite, which has a supersaturated solid solution. However, within the C content range of the present invention, the effect is recognized when the Si content is less than 0.50%, preferably 0.80% or more. It is necessary to avoid this because it not only tends to cause scale on the surface at high temperatures, but also causes C to precipitate as graphite.Also, since St makes the transformation point of A extremely high, if it is added in a large amount, it will cause continuous Since the heating temperature during annealing must be considerably increased, which increases cost, it is desirable that the content be less than 1.50%.

またMnはオーステナイト形成元素としてその中に濃化
してオーステナイトの安定化をもたらすと同時にその強
度を上昇させる。また二相域からベイナイト変態温度域
への冷却に際しパーライトへの分解を抑制する上で必要
である。その含有量が0.20%未満では熱間圧延に際
して熱間脆性を引き起こす危険性が大であるため避けな
ければならず、安定した冷却速度で目的を達成するため
には1.00%以上が望ましい。一方2.50%を超え
ると期待した効果が飽和するのみならず、著しいバンド
組織が形成される原因となり顕著な特性劣化を招くので
適当でない。そして溶接性を良好とし、合金コストの上
昇を抑えるためには2.00%以下とすることが望まし
い。
Further, Mn is concentrated in the austenite forming element, thereby stabilizing the austenite and increasing its strength. It is also necessary to suppress decomposition into pearlite during cooling from the two-phase region to the bainite transformation temperature region. If the content is less than 0.20%, there is a high risk of causing hot brittleness during hot rolling, so it must be avoided, and in order to achieve the objective with a stable cooling rate, the content should be 1.00% or more. desirable. On the other hand, if it exceeds 2.50%, not only will the expected effect be saturated, but it will also cause a significant band structure to be formed, resulting in significant characteristic deterioration, which is not appropriate. In order to improve weldability and suppress increases in alloy costs, it is desirable that the content be 2.00% or less.

さらにsol、A lは脱酸元素として、またAffN
による熱延素材の細粒化、および一連の熱処理工程にお
ける結晶粒の粗大化を抑制することを通じて材質の向上
を図るため0.005〜0.10%の添加を必要とする
。その量が0.005%未満では目的とする効果が得に
くく脱酸も不十分となる。一方0.10%を超える添加
は介在物による靭性劣化をもたらすため避ける必要があ
る。
Furthermore, sol and Al are used as deoxidizing elements, and AffN
It is necessary to add 0.005 to 0.10% to improve the quality of the material by reducing the grain size of the hot rolled material and suppressing the coarsening of crystal grains during a series of heat treatment steps. If the amount is less than 0.005%, it is difficult to obtain the desired effect and deoxidation becomes insufficient. On the other hand, it is necessary to avoid adding more than 0.10% since it causes deterioration of toughness due to inclusions.

本発明の鋼は以上を基本成分とするが、本発明鋼板はこ
れらの元素およびFe以外にP、S、Nその他の一般に
鋼に対し不可避的に混入する不純物を含むものである。
The steel of the present invention has the above-mentioned basic components, but the steel sheet of the present invention contains, in addition to these elements and Fe, impurities such as P, S, N, and other impurities that are generally inevitably mixed into steel.

またオーステナイト形成元素であるNiやCu、 Co
を1%以下、あるいは焼入性を増すCrを1%以下添加
することは残留オーステナイト量を増加させ本発明の目
的を達成する上で好ましい。
Also, austenite-forming elements such as Ni, Cu, and Co
It is preferable to add 1% or less of Cr, or 1% or less of Cr, which increases hardenability, to increase the amount of retained austenite and achieve the object of the present invention.

次に工程上の限定理由を詳述する。Next, the reasons for the limitations on the process will be explained in detail.

本発明による鋼の熱間圧延は仕上温度を700〜850
 ℃とする。かかる条件で熱間圧延を行うのは熱間圧延
終了後の組織が通常の条件で熱間圧延を終了するよりも
結晶粒が微細でその均一性が良いため、冷延後に本発明
で規定する一連の熱処理を行って得られる残留オーステ
ナイトが微細化するとともに均一に分布するようになり
、また安定度も向上する結果、伸びフランジ性・曲げ性
ともに改善が図られるからである。仕上温度が850℃
を超えても冷延後適当な熱処理を行えばフェライト、ベ
イナイト、残留オーステナイトの混合組織を有する高強
度冷延鋼板が得られ張り出し性も従来になく良好となる
ものの、残留オーステナイト粒は本発明によって得られ
るよりも大きく伸びフランジ性の劣化が認められる。一
方、仕上温度を700℃未満とすると組織に不均一を生
じやすく期待することが得られない。また温度が低いと
圧下刃が莫大なものになるが、かかる困難を排除するに
見合った効果を得るためには750℃以上で仕上げるこ
とが望ましい。
In the hot rolling of steel according to the present invention, the finishing temperature is 700-850.
℃. The reason why hot rolling is performed under such conditions is that the structure after hot rolling has finer grains and better uniformity than when hot rolling is completed under normal conditions, so it is specified in the present invention after cold rolling. This is because retained austenite obtained through a series of heat treatments becomes finer and more uniformly distributed, and stability is also improved, resulting in improvements in both stretch flangeability and bendability. Finishing temperature is 850℃
Even if the temperature exceeds 100%, if an appropriate heat treatment is performed after cold rolling, a high-strength cold-rolled steel sheet with a mixed structure of ferrite, bainite, and retained austenite can be obtained, and the elongation property will be better than ever before. The deterioration of stretch flangeability was observed to be greater than that obtained. On the other hand, if the finishing temperature is less than 700° C., the structure tends to become non-uniform and the desired results cannot be obtained. Also, if the temperature is low, the reduction blade will become enormous, but in order to obtain an effect commensurate with eliminating such difficulties, it is desirable to finish at a temperature of 750° C. or higher.

本発明では熱間圧延をかかる温度で仕上げた後に巻取後
冷却した時点での組織をフェライトとパーライトとしパ
ーライトの比率を冷延とひき続く一連のサイクルからな
る熱処理の完了後に得る残留オーステナイトの比率の1
.5〜2.5倍とする。
In the present invention, after finishing hot rolling at such temperature, the structure at the time of cooling after coiling is ferrite and pearlite, and the ratio of pearlite is cold rolling, and the ratio of retained austenite obtained after completion of heat treatment consisting of a series of subsequent cycles. No. 1
.. 5 to 2.5 times.

このような組織とすることにより、割れ等を発生せずに
所定の圧延率で冷延を行うことができ、またその後の熱
処理で二相共存温度域に加熱した時にすみやかに炭化物
が消滅すると同時にフェライトとオーステナイトの間で
Mn等の合金元素分配が発生し、その後のヒートサイク
ルを経ることによリオーステナイトの残存が容易となる
。この時点での組織にマルテンサイトが混入すると冷延
が困難となる。またパーライトの比率が冷延とひき続く
一連のサイクルからなる熱処理の完了後に得る残留オー
ステナイトの比率の1.5倍より小さいと加熱時にオー
ステナイトを十分な量得るのに長時間を要することとな
り連続ラインでの生産を困難とする。一方その割合が2
.5倍を超すと最終的に得る組織でベイナイトの量が不
足し目的とする強度を得に(い。
By creating such a structure, it is possible to perform cold rolling at a predetermined rolling rate without causing cracks, etc. In addition, when heated to a two-phase coexistence temperature range in the subsequent heat treatment, carbides disappear quickly and at the same time. Distribution of alloying elements such as Mn occurs between ferrite and austenite, and through the subsequent heat cycle, reaustenite easily remains. If martensite is mixed into the structure at this point, cold rolling becomes difficult. Furthermore, if the ratio of pearlite is less than 1.5 times the ratio of retained austenite obtained after the completion of heat treatment consisting of cold rolling and a series of subsequent cycles, it will take a long time to obtain a sufficient amount of austenite during heating, resulting in a continuous production line. This makes production difficult. On the other hand, the ratio is 2
.. If it exceeds 5 times, the amount of bainite will be insufficient in the final structure to obtain the desired strength.

本発明ではこのような金属組織を有する熱延鋼板につい
て酸洗と圧延率35〜65%の冷間圧延を行うが、これ
はその後二相域加熱時にフェライト粒とオーステナイト
粒を微細に分散させることにより残留オーステナイトの
確保を容易とし、高強度と優れたプレス成形性を両立す
る組織を最終的に得ることを目的とする。この圧延率が
35%未満では組織の微細化が不十分であるため、一連
の熱処理完了後に十分な量の残留オーステナイトが得ら
れず、伸びが小さく張り出し性が劣る。また粗大なマル
テンサイトが形成されるため曲げ性や伸びフランジ性も
優れない。一方、圧延率が65%を越えると、冷間圧延
時にボイドの形成が顕著となるため、その後熱処理を行
っても残存し、プレス成形時に応力集中のちととなって
曲げ性や伸びフランジ性を著しく劣化させるので避けな
ければならない。
In the present invention, a hot-rolled steel sheet having such a metallographic structure is pickled and cold-rolled at a rolling reduction of 35 to 65%. The purpose of this is to make it easier to secure retained austenite and to finally obtain a structure that has both high strength and excellent press formability. When this rolling ratio is less than 35%, the structure is not sufficiently refined, so that a sufficient amount of retained austenite cannot be obtained after the series of heat treatments are completed, resulting in low elongation and poor extrusion properties. Furthermore, since coarse martensite is formed, bendability and stretch flangeability are not excellent. On the other hand, if the rolling reduction exceeds 65%, voids will become noticeable during cold rolling, and will remain even after subsequent heat treatment, resulting in stress concentration during press forming and impairing bendability and stretch flangeability. This should be avoided as it will cause significant deterioration.

この冷延後に本発明では一連のサイクルからなる熱処理
を行うが、まず最初に730〜900℃の二相共存温度
域に加熱し、15秒〜5分保持する。本発明の成分系を
有する鋼板においては、この加熱を行うと固溶限以上の
炭化物はほとんど消滅し、オーステナイトがほぼ40〜
80%存在し、フェライトが残余を占める組織状態が現
出される。
In the present invention, after this cold rolling, a heat treatment consisting of a series of cycles is performed. First, the material is heated to a two-phase coexistence temperature range of 730 to 900° C. and held for 15 seconds to 5 minutes. In the steel sheet having the composition system of the present invention, when this heating is performed, most of the carbides exceeding the solid solubility limit disappear, and the austenite becomes approximately 40 to 40%.
A structural state appears in which 80% of the ferrite is present and ferrite occupies the remainder.

拡散定数の大きいCはオーステナイトに濃化し、フェラ
イト中では希薄となるが、加熱前の金属組織を先に規定
したものとすることでMnについてもある程度の分配が
図られる。これは引き続く一連の熱処理を完了し室温ま
で持ち来たした際に8〜25%のオーステナイトを残留
させ、高強度と優れたプレス成形性を確保する上で必要
な状態である。
C, which has a large diffusion constant, is concentrated in austenite and diluted in ferrite, but by defining the metal structure before heating, a certain degree of distribution of Mn can also be achieved. This is a necessary condition to ensure that 8 to 25% of austenite remains after the subsequent series of heat treatments are completed and brought to room temperature, ensuring high strength and excellent press formability.

加熱温度が730℃未満では、工業的に実用性のあるよ
うな加熱時間とした場合には未熔解炭化物の存在する可
能性が大であり、固溶しているCの量が不十分となるた
め、引き続く一連の熱処理を行っても十分な量の残留オ
ーステナイトが確保できないため伸びが小さい。一方、
900℃を越すような加熱温度ではフェライトがごく僅
かしか存在せず、またさらには全く存在せずオーステナ
イト単相となるため、合金元素の分布は全体としての希
薄なレベルにとどまる。このため、以下の工程でオース
テナイト中への合金元素濃縮を意図しても不十分にしか
達成することができず、最終的に伸びの向上に寄与する
残留オーステナイトの確保が困難となり、高強度にして
同時にプレス成形性を優れたものとすることはできない
If the heating temperature is less than 730°C, there is a high possibility that unmelted carbides will exist if the heating time is set to be industrially practical, and the amount of solid solution C will be insufficient. Therefore, even if a series of subsequent heat treatments are performed, a sufficient amount of retained austenite cannot be secured, resulting in low elongation. on the other hand,
At heating temperatures exceeding 900° C., only a small amount of ferrite, or even no ferrite exists, resulting in a single phase of austenite, so that the overall distribution of alloying elements remains at a dilute level. For this reason, even if alloying elements are intended to be enriched in austenite in the following steps, it can only be achieved insufficiently, and it becomes difficult to secure residual austenite that ultimately contributes to improving elongation, making it difficult to achieve high strength. At the same time, it is not possible to achieve excellent press formability.

この温度域での保持時間が15秒未満であると未溶解炭
化物が存在する可能性があり、また再結晶が完了せず冷
間圧延による歪が解放されないため成形性の劣化が著し
い。一方、5分を超えて保持することは連続ラインでの
生産性を低下させるだけでなく、結晶粒の粗大化を招い
て一連の熱処理を完了した時点での鋼板の機械的性質が
劣化するおそれもある。
If the holding time in this temperature range is less than 15 seconds, undissolved carbides may be present, and recrystallization is not completed and strain caused by cold rolling is not released, resulting in significant deterioration of formability. On the other hand, holding the steel plate for more than 5 minutes not only reduces productivity on a continuous line, but also leads to coarsening of crystal grains, which may deteriorate the mechanical properties of the steel sheet after a series of heat treatments are completed. There is also.

本発明では引き続いて600〜700℃までを1〜10
 ℃/ sで冷却するが、これは変態誘起塑性による伸
びの向上を効果的なものとする上で必要な清浄なフェラ
イトを十分な量確保することを目的とする。この場合の
冷却速度が1 ”C/ s未満だとオーステナイトがパ
ーライトに分解するため熱処理完了後十分な量の残留オ
ーステナイトを得ることができない。また10℃/ S
を超えると生成するフェライトの清浄度が不十分となっ
て延性が劣化するため、残留オーステナイトの変態誘起
塑性がもたらす効果を減することとなる。この1〜10
″C,/sの緩徐の終了温度が700℃よりも高いとフ
ェライトの生成が僅かであり、またオーステナイト中へ
の合金元素濃化が不十分となるために、また600℃未
満になるとオーステナイトのほとんどがパーライトに分
解してしまうために陳腐な機械的性質しかもたらされな
い。なお、強度とプレス成形性のバランスが最良となる
のは660〜700 ℃までを1〜10℃/sで緩徐し
た時である。
In the present invention, the temperature is continuously increased from 1 to 10°C to 600 to 700°C.
The purpose of this is to ensure a sufficient amount of clean ferrite necessary for effective elongation improvement due to transformation-induced plasticity. In this case, if the cooling rate is less than 1"C/s, austenite will decompose into pearlite, making it impossible to obtain a sufficient amount of residual austenite after the heat treatment is completed.
If it exceeds 1, the cleanliness of the ferrite produced becomes insufficient and its ductility deteriorates, which reduces the effect of the transformation-induced plasticity of retained austenite. These 1 to 10
If the slow end temperature of ``C,/s is higher than 700℃, ferrite will be slightly formed and the concentration of alloying elements in austenite will be insufficient, and if it is lower than 600℃, austenite will be Most of it decomposes into pearlite, resulting in only obsolete mechanical properties.The best balance between strength and press formability is achieved when the temperature is slowly increased from 660 to 700°C at a rate of 1 to 10°C/s. It is.

た時である。It was time.

600〜700℃で緩徐を終了した温度から200〜4
00℃までを本発明では20〜200℃/ sで冷却す
る。その目的とするところは、緩徐終了時に存在するフ
ェライトとオーステナイトをそのままの状態で以後保持
°、保定するベイナイト変態域に持ち来たすことである
。この温度範囲内における冷却速度が20℃/s未満で
はパーライトが生成することで強度延性バランスが悪化
する。一方、200℃/ sを超えるような時には目的
とした温度で冷却を終了することはきわめて困難である
し、薄鋼板全体にわたっての均一な冷却がなされないと
その形状が実用に適さないものとなる。また100℃/
 sを超すような時には針状のフェライトが形成するこ
ともあり、成形性を害することもあるので20〜100
℃/sが最善の冷却速度である。この冷却が400℃よ
りも高い温度で終了するとその後の保持中に低強度のベ
イナイトが急激に生成するため所要の鋼板強度を得るこ
とが極めて難しく、また一部ではパーライトを生成する
可能性もあって残留オーステナイトを確保できない。ま
た200℃未満まで冷却するとオーステナイトがマルテ
ンサイトに変態してフェライト・マルテンサイト二相鋼
となるため張り出し性1曲げ性、伸びフランジ性とも要
求されるレベルには程遠いものとなる。この冷却終了温
度がひき続く保定温度よりもあまりに低い時にはその温
度域にもちきたすまでに要するエネルギーコストが大き
くなるので、250〜400℃が実用上適当な範囲であ
る。
200-4 from the temperature that finished slowing at 600-700℃
In the present invention, the temperature up to 00°C is cooled at 20 to 200°C/s. The purpose of this is to bring the ferrite and austenite present at the end of the slow process to the bainite transformation region where they will be retained and maintained as they are thereafter. If the cooling rate within this temperature range is less than 20° C./s, pearlite will be produced and the strength-ductility balance will deteriorate. On the other hand, when the temperature exceeds 200°C/s, it is extremely difficult to finish the cooling at the desired temperature, and if the entire thin steel plate is not cooled uniformly, its shape becomes unsuitable for practical use. . Also 100℃/
If it exceeds s, needle-shaped ferrite may be formed, which may impair the formability, so the
C/s is the best cooling rate. If this cooling ends at a temperature higher than 400°C, low-strength bainite will rapidly form during subsequent holding, making it extremely difficult to obtain the required strength of the steel sheet, and in some cases, pearlite may also form. retained austenite cannot be secured. Furthermore, when cooled to less than 200° C., austenite transforms into martensite and becomes a ferrite-martensitic dual-phase steel, so that both stretchability, bendability, and stretch flangeability are far from the required levels. If this cooling end temperature is too lower than the subsequent holding temperature, the energy cost required to reach that temperature range will increase, so 250 to 400°C is a practically appropriate range.

適当な範囲である。This is within an appropriate range.

この冷却を終了後、本発明でば200〜400℃に2〜
50秒保持してから、350〜450℃に15秒〜10
分保定し、その後30秒以内に150℃以下まで冷却す
る。これは8〜25%の残留オーステナイトがフェライ
ト、ベイナイトと混在する状態を実現することを目的と
する。すなわち前述したように合金元素として含まれる
Stの効果により、オーステナイトからベイナイトへの
変態が2段に分離し、その中間段階では炭化物をほとん
ど含まないベイナイトと、その部分から吐き出されたC
が濃化した未変態オーステナイトの混在した状態となり
、このオーステナイトが室温まで冷却しても残留するわ
けである。最初の2〜50秒の短時間保持は主として急
速な冷却によって発生する恐れのある温度むらを解消し
、板厚・板幅の全域にわたって均一な温度分布を実現す
ることにあるが、特にこの温度を引き続く15秒〜10
分の保定温度よりも低(設定した時には緩徐終了時に存
在するオーステナイトのうちで最初に変態するCやMn
の比較的希薄な部分をより高強度のベイナイトとするこ
とができるため強度とプレス成形性を同時に改善でき、
得られる鋼板の特性が一層向上する。この時間が2秒未
満では復熱等の可能性が大であり、目的を達せられない
。また50秒を超す保持は連続ラインの生産性を低下し
現実的ではない。引き続いて350〜450 ℃に15
秒〜10分保定するが、この温度が450 ℃を超すと
オーステナイトがパーライトに分解し、 一方350℃未満の時には微細な炭化物がすみやかに析
出するのでいずれの場合も室温まで冷却した時には残留
オーステナイトは存在せず、強度とプレス成形性のバラ
ンスはさして改善されない。
After finishing this cooling, according to the present invention, the temperature is 2 to 200°C to 400°C.
Hold for 50 seconds, then heat to 350-450℃ for 15 seconds-10
Hold for 30 minutes, then cool to 150°C or less within 30 seconds. The purpose of this is to achieve a state in which 8 to 25% of retained austenite is mixed with ferrite and bainite. In other words, as mentioned above, due to the effect of St contained as an alloying element, the transformation from austenite to bainite separates into two stages, and in the intermediate stage, bainite containing almost no carbide and C discharged from that part.
This results in a state in which concentrated untransformed austenite is mixed, and this austenite remains even after cooling to room temperature. The purpose of the initial holding for a short time of 2 to 50 seconds is to eliminate temperature irregularities that may occur due to rapid cooling, and to achieve a uniform temperature distribution over the entire plate thickness and width. 15 seconds to 10
lower than the retention temperature of
Since the relatively thin part of bainite can be made into higher strength bainite, strength and press formability can be improved at the same time.
The properties of the obtained steel sheet are further improved. If this time is less than 2 seconds, there is a high possibility of reheating, etc., and the purpose cannot be achieved. Furthermore, holding for more than 50 seconds is not practical as it reduces the productivity of continuous lines. Subsequently heated to 350-450℃ for 15 minutes.
If the temperature exceeds 450°C, the austenite decomposes into pearlite, while if the temperature is below 350°C, fine carbides will precipitate quickly. It does not exist, and the balance between strength and press formability is not significantly improved.

また保定時間が15秒未満ではベイナイト変態の進行が
不十分であり、Cが十分に濃化していないオーステナイ
トは室温まで冷却する途中でマルテンサイトとなり、得
られる鋼板は高強度なものの成形性は非常に劣る。一方
、保定時間が10分を超すと炭化物を析出してベイナイ
トに分解するオーステナイトが多くなるため、室温まで
冷却した時に8〜25%もは残留しない。この後150
 ℃以下まで冷却する時に30秒を超す時間を要した場
合も同様であり、意図したような高強度、優れたプレス
成形性のいずれとも得ることができない。
In addition, if the holding time is less than 15 seconds, the progress of bainite transformation is insufficient, and austenite whose C content is not sufficiently concentrated becomes martensite during cooling to room temperature, and the resulting steel sheet has high strength but very poor formability. inferior to On the other hand, if the retention time exceeds 10 minutes, a large amount of austenite will precipitate carbides and decompose into bainite, so that less than 8 to 25% will remain when cooled to room temperature. After this 150
The same is true if it takes more than 30 seconds to cool down to below .degree. C., and neither the intended high strength nor excellent press formability can be obtained.

なお、以上に説明してきた工程において、二相域別熱温
度や冷却後にごく短時間保持する温度やその後の保定温
度は規定された温度域内であれば一定である必要はなく
、その範囲内で変動したとしても最終製品の特性を何ら
劣化させはしない。
In addition, in the process explained above, the heat temperature for each two-phase region, the temperature held for a very short time after cooling, and the subsequent holding temperature do not need to be constant as long as they are within the specified temperature range. Even if it fluctuates, it will not deteriorate the properties of the final product in any way.

また熱延仕上後の冷却速度あるいは巻取処理を行なう際
にはその巻取温度等は特に問題としない。
Further, the cooling rate after hot rolling finishing or the winding temperature during winding treatment are not particularly important.

(実施例) 第1表に成分を示した鋼を、第2表に記す条件で熱間圧
延、冷間圧延と熱処理を行い、0.8%の調質圧延後、
JIS 5号引張試験片を採取し、ゲージ長さ50mm
、引張速度10mm/minで常温引張試験を行なった
ところ、同表に記載するような引張強度と全伸びを得た
。また、曲げ性の評価指標である最小曲げ半径と伸びフ
ランジ性の評価指標である穴拡げ比は同表記載の結果が
得られた。ここで最小曲げ半径とは幅40IIII11
、長さ150mmの試験片を用いてポンチ角度90°の
V曲げ試験を行った時に割れが全く発生しないポンチ先
端半径の最小値であり、穴拡げ比とはポンチに10−φ
の穴を打抜き加工した薄鋼板を張り出し加工する際に穴
の周囲に割れが発生しはじめた時の直径の打抜き加工直
後の穴の直径に対する比である。
(Example) The steel whose ingredients are shown in Table 1 was hot rolled, cold rolled and heat treated under the conditions shown in Table 2, and after temper rolling of 0.8%,
A JIS No. 5 tensile test piece was taken, and the gauge length was 50 mm.
When a room temperature tensile test was conducted at a tensile speed of 10 mm/min, the tensile strength and total elongation as shown in the table were obtained. In addition, the results shown in the same table were obtained for the minimum bending radius, which is an evaluation index of bendability, and the hole expansion ratio, which is an evaluation index of stretch flangeability. Here, the minimum bending radius is width 40III11
, is the minimum value of the punch tip radius at which no cracks occur when performing a V-bending test with a punch angle of 90° using a test piece with a length of 150 mm.
This is the ratio of the diameter when cracks begin to occur around the hole when a thin steel plate with holes punched out is stretched out to the diameter of the hole immediately after punching.

本発明である試料No、2.6,8,12,14゜16
,19,20,25,28.30,33゜36.39,
40,42,44,45.4B。
Sample No. of the present invention, 2.6, 8, 12, 14°16
,19,20,25,28.30,33°36.39,
40, 42, 44, 45.4B.

49.50はいずれも引張強度と全伸びの積が2800
 kgf/mm2・%を超えることかられかるように高
強度にもかかわらず大きな伸びを有し張り出し性が優れ
たものであるが、同時に最小曲げ半径0.5 mm以下
、穴拡げ比1.30以上と曲げ性・伸びフランジ性の指
標値とも良好な範囲にあり、従来技術では実現できなか
った広範囲にわたる厳しいプレス成形に対応できるもの
である。
49.50, the product of tensile strength and total elongation is 2800
Despite its high strength, it has a large elongation and excellent overhang properties, as can be seen from the fact that it exceeds kgf/mm2.%.At the same time, it has a minimum bending radius of 0.5 mm or less and a hole expansion ratio of 1.30. Both of the index values of bendability and stretch flangeability are in good ranges, and it is possible to handle a wide range of severe press forming that could not be achieved with conventional techniques.

これに対し、本発明成分範囲外の鋼a、f、g。On the other hand, steels a, f, and g are outside the composition range of the present invention.

iは最適と考えうる条件の熱間圧延、冷間圧延と一連の
サイクルからなる熱処理を経たとしても試料No、l、
  46. 47. 51にあるように、また本発明成
分鋼であって規定した条件を満足する熱間圧延、冷間圧
延を行っても熱処理条件に一つでも不適切なところが存
在すると試料No、15.17゜18.21〜24,2
6,27,29,31゜32.34,35,37.3B
、41.43のように強度が不足するか張り出し性、曲
げ性、伸びフランジ性の一つあるいはそれ以上が劣った
ものとなり本発明の目的は達しえない。また本発明成分
鋼で規定の熱処理を行った場合でも試料No、 3〜5
.7.9〜11.13のように熱間圧延の仕上温度や巻
取・冷却後の金属組織あるいは冷間圧延条件が本発明の
条件をはずれる場合には以上に説明してきたような本発
明で規定する熱延と冷延を施こした場合と比較して、い
ずれか一つ以上の特性に劣化が見られる。
Even if sample i undergoes heat treatment consisting of a series of cycles of hot rolling and cold rolling under conditions considered to be optimal, sample No.
46. 47. 51, even if the composition steel of the present invention is hot-rolled or cold-rolled to satisfy the specified conditions, if there is even one unsuitable part in the heat treatment conditions, sample No. 15.17° 18.21-24,2
6, 27, 29, 31° 32.34, 35, 37.3B
, 41.43, the object of the present invention cannot be achieved because the strength is insufficient or one or more of the stretchability, bendability, and stretch flangeability is poor. Moreover, even when the prescribed heat treatment was performed on the steel of the present invention, samples No. 3 to 5
.. 7.9 to 11.13, when the finishing temperature of hot rolling, the metallographic structure after coiling and cooling, or the cold rolling conditions deviate from the conditions of the present invention, the present invention as explained above cannot be applied. Deterioration is seen in one or more of the properties compared to the case of hot rolling and cold rolling as specified.

(発明の効果) 以上の実施例からも明らかなように本発明の成分鋼に規
定の熱間圧延・冷間圧延と一連のサイクルからなる熱処
理を行えば、微細な残留オーステナイトが8〜25%の
体積を占め、プレス成形時に変B誘起塑性を起こすため
、引張強度70kgf/−以上の高強度ながら張り出し
性・曲げ性・伸びフランジ性をはじめとしたプレス成形
性の優れた鋼板を工業的に実用上困難を伴うことなく製
造でき、産業土掻めて顕著な効果を有するものである。
(Effects of the Invention) As is clear from the above examples, if the component steel of the present invention is subjected to heat treatment consisting of a prescribed hot rolling/cold rolling and a series of cycles, fine retained austenite will be reduced to 8 to 25%. occupies a volume of It can be manufactured without any practical difficulties and has a remarkable effect in industrial applications.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は規定の熱間圧延と冷間圧延の後で鋼板に施こす
熱処理のヒートサイクルを示す図である。 第1図
FIG. 1 is a diagram showing a heat cycle of heat treatment applied to a steel plate after prescribed hot rolling and cold rolling. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 重量%でC:0.12〜0.40%、Si:0.50〜
2.00%、Mn:0.20〜2.50%、sol.A
l:0.005〜0.10%を含み、残部Feおよび不
可避的不純物からなる鋼を700〜850℃を仕上温度
として熱延して得られたフェライトとパーライトからな
り、パーライトの比率を冷延とひき続く一連のサイクル
からなる熱処理の完了後に得る残留オーステナイトの比
率の1.5〜2.5倍とした鋼板を、酸洗と圧延率35
〜65%の冷延を行ってから、730〜900℃の二相
共存温度域に加熱し、15秒〜5分保持後、600〜7
00℃までを1〜10℃/s、それ以下を20〜200
℃/sの速度で200〜400℃まで冷却し、この温度
域内で2〜50秒保持してから350〜450℃に15
秒〜10分保定し、その後30秒以内に150℃以下ま
で冷却することを特徴とする8〜25%の残留オーステ
ナイトを含み張り出し性・曲げ性・伸びフランジ性をは
じめとしたプレス成形性の優れた高強度冷延鋼板の製造
方法。
C: 0.12-0.40%, Si: 0.50-0.50% by weight
2.00%, Mn: 0.20-2.50%, sol. A
l: 0.005~0.10%, the balance is Fe and unavoidable impurities, and the steel is hot rolled at a finishing temperature of 700~850°C. A steel plate with a retained austenite ratio of 1.5 to 2.5 times the ratio obtained after completion of heat treatment consisting of a series of subsequent cycles is pickled and rolled at a rolling rate of 35.
~65% cold rolling, then heated to a two-phase coexistence temperature range of 730~900°C, held for 15 seconds~5 minutes, and then heated to a temperature range of 600~700°C.
1~10℃/s up to 00℃, 20~200℃ below
Cool to 200-400℃ at a rate of ℃/s, hold within this temperature range for 2-50 seconds, and then cool to 350-450℃ for 15 seconds.
Contains 8-25% retained austenite and has excellent press formability including stretchability, bendability, and stretch-flangeability. A method for producing high-strength cold-rolled steel sheets.
JP15518988A 1987-06-26 1988-06-23 Manufacture of high strength cold rolled steel sheet having superior press formability Pending JPH01230715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15518988A JPH01230715A (en) 1987-06-26 1988-06-23 Manufacture of high strength cold rolled steel sheet having superior press formability

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP15789587 1987-06-26
JP62-157895 1987-06-26
JP62-288344 1987-11-17
JP15518988A JPH01230715A (en) 1987-06-26 1988-06-23 Manufacture of high strength cold rolled steel sheet having superior press formability

Publications (1)

Publication Number Publication Date
JPH01230715A true JPH01230715A (en) 1989-09-14

Family

ID=26483258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15518988A Pending JPH01230715A (en) 1987-06-26 1988-06-23 Manufacture of high strength cold rolled steel sheet having superior press formability

Country Status (1)

Country Link
JP (1) JPH01230715A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6517955B1 (en) 1999-02-22 2003-02-11 Nippon Steel Corporation High strength galvanized steel plate excellent in adhesion of plated metal and formability in press working and high strength alloy galvanized steel plate and method for production thereof
JP2009503267A (en) * 2005-08-04 2009-01-29 アルセロールミタル・フランス Method for producing high-strength steel sheet having excellent ductility and steel sheet produced thereby
WO2009125874A1 (en) 2008-04-10 2009-10-15 新日本製鐵株式会社 High-strength steel sheets which are extremely excellent in the balance between burring workability and ductility and excellent in fatigue endurance, zinc-coated steel sheets, and processes for production of both
US7736449B2 (en) 2003-01-15 2010-06-15 Nippon Steel Corporation High-strength hot-dip galvanized steel sheet and method for producing the same
WO2012133057A1 (en) * 2011-03-31 2012-10-04 株式会社神戸製鋼所 High-strength steel sheet with excellent workability and manufacturing process therefor
JP2012214868A (en) * 2011-03-31 2012-11-08 Kobe Steel Ltd High-rigidity steel plate excellent in processability and its manufacturing method
JP2012214869A (en) * 2011-03-31 2012-11-08 Kobe Steel Ltd High-rigidity steel plate excellent in processability and its manufacturing method
WO2013047739A1 (en) 2011-09-30 2013-04-04 新日鐵住金株式会社 High-strength hot-dip galvanized steel sheet with excellent mechanical cutting characteristics, high-strength alloyed hot-dip galvanized steel sheet, and method for producing said sheets
KR20170122823A (en) 2015-03-31 2017-11-06 신닛테츠스미킨 카부시키카이샤 METHOD FOR PRODUCING THE SAME, AND HOT STAMP FORMED PRODUCT
US10066274B2 (en) 2013-09-27 2018-09-04 Kobe Steel, Ltd. High-strength steel sheet having excellent ductility and low-temperature toughness, and method for producing same
KR20190007055A (en) 2016-09-21 2019-01-21 신닛테츠스미킨 카부시키카이샤 Steel plate
KR20190031533A (en) 2016-08-16 2019-03-26 신닛테츠스미킨 카부시키카이샤 The hot press-formed member
US10808291B2 (en) 2015-07-13 2020-10-20 Nippon Steel Corporation Steel sheet, hot-dip galvanized steel sheet, galvannealed steel sheet, and manufacturing methods therefor
US10822672B2 (en) 2015-07-13 2020-11-03 Nippon Steel Corporation Steel sheet, hot-dip galvanized steel sheet, galvanized steel sheet, and manufacturing methods therefor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61217529A (en) * 1985-03-22 1986-09-27 Nippon Steel Corp Manufacture of high strength steel sheet superior in ductility
JPS62139821A (en) * 1985-12-11 1987-06-23 Kobe Steel Ltd Production of high-ductility high-strength cold rolled steel sheet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61217529A (en) * 1985-03-22 1986-09-27 Nippon Steel Corp Manufacture of high strength steel sheet superior in ductility
JPS62139821A (en) * 1985-12-11 1987-06-23 Kobe Steel Ltd Production of high-ductility high-strength cold rolled steel sheet

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6517955B1 (en) 1999-02-22 2003-02-11 Nippon Steel Corporation High strength galvanized steel plate excellent in adhesion of plated metal and formability in press working and high strength alloy galvanized steel plate and method for production thereof
US7736449B2 (en) 2003-01-15 2010-06-15 Nippon Steel Corporation High-strength hot-dip galvanized steel sheet and method for producing the same
JP2009503267A (en) * 2005-08-04 2009-01-29 アルセロールミタル・フランス Method for producing high-strength steel sheet having excellent ductility and steel sheet produced thereby
US9732404B2 (en) 2005-08-04 2017-08-15 Arcelormittal France Method of producing high-strength steel plates with excellent ductility and plates thus produced
US8460481B2 (en) 2008-04-10 2013-06-11 Nippon Steel & Sumitomo Metal Corporation High-strength steel sheet and galvanized steel sheet having very good balance between hole expansibility and ductility, and also excellent in fatigue resistance, and methods of producing the steel sheets
WO2009125874A1 (en) 2008-04-10 2009-10-15 新日本製鐵株式会社 High-strength steel sheets which are extremely excellent in the balance between burring workability and ductility and excellent in fatigue endurance, zinc-coated steel sheets, and processes for production of both
WO2012133057A1 (en) * 2011-03-31 2012-10-04 株式会社神戸製鋼所 High-strength steel sheet with excellent workability and manufacturing process therefor
JP2012214869A (en) * 2011-03-31 2012-11-08 Kobe Steel Ltd High-rigidity steel plate excellent in processability and its manufacturing method
JP2012214868A (en) * 2011-03-31 2012-11-08 Kobe Steel Ltd High-rigidity steel plate excellent in processability and its manufacturing method
WO2013047739A1 (en) 2011-09-30 2013-04-04 新日鐵住金株式会社 High-strength hot-dip galvanized steel sheet with excellent mechanical cutting characteristics, high-strength alloyed hot-dip galvanized steel sheet, and method for producing said sheets
US9708679B2 (en) 2011-09-30 2017-07-18 Nippon Steel & Sumitomo Metal Corporation High-strength hot-dip galvanized steel sheet and high-strength alloyed hot-dip galvanized steel sheet excellent in mechanical cutting property, and manufacturing method thereof
US10066274B2 (en) 2013-09-27 2018-09-04 Kobe Steel, Ltd. High-strength steel sheet having excellent ductility and low-temperature toughness, and method for producing same
KR20170122823A (en) 2015-03-31 2017-11-06 신닛테츠스미킨 카부시키카이샤 METHOD FOR PRODUCING THE SAME, AND HOT STAMP FORMED PRODUCT
US10808291B2 (en) 2015-07-13 2020-10-20 Nippon Steel Corporation Steel sheet, hot-dip galvanized steel sheet, galvannealed steel sheet, and manufacturing methods therefor
US10822672B2 (en) 2015-07-13 2020-11-03 Nippon Steel Corporation Steel sheet, hot-dip galvanized steel sheet, galvanized steel sheet, and manufacturing methods therefor
KR20190031533A (en) 2016-08-16 2019-03-26 신닛테츠스미킨 카부시키카이샤 The hot press-formed member
US11028469B2 (en) 2016-08-16 2021-06-08 Nippon Steel Corporation Hot press-formed part
KR20190007055A (en) 2016-09-21 2019-01-21 신닛테츠스미킨 카부시키카이샤 Steel plate
US10787727B2 (en) 2016-09-21 2020-09-29 Nippon Steel Corporation Steel sheet

Similar Documents

Publication Publication Date Title
KR100517674B1 (en) Hot rolled wire or steel bar for machine structural use capable of dispensing with annealing, and method for producing the same
JP3858146B2 (en) Manufacturing method of high-strength cold-rolled steel sheet and high-strength hot-dip galvanized steel sheet
JPH0524205B2 (en)
JP3424619B2 (en) High tensile cold rolled steel sheet and method for producing the same
JPS6111291B2 (en)
US20040177905A1 (en) Method for producing cold rolled steel plate of super high strength
JP3433687B2 (en) High-strength hot-rolled steel sheet excellent in workability and method for producing the same
JPH01230715A (en) Manufacture of high strength cold rolled steel sheet having superior press formability
JP2876968B2 (en) High-strength steel sheet having high ductility and method for producing the same
JP4057930B2 (en) Machine structural steel excellent in cold workability and method for producing the same
JPH0823048B2 (en) Method for producing hot rolled steel sheet with excellent bake hardenability and workability
JP4012475B2 (en) Machine structural steel excellent in cold workability and low decarburization and method for producing the same
JP3864663B2 (en) Manufacturing method of high strength steel sheet
JP3037767B2 (en) Low yield ratio high strength hot-dip galvanized steel sheet and method for producing the same
JPH1180890A (en) High strength hot rolled steel plate and its production
JP3422865B2 (en) Method for producing high-strength martensitic stainless steel member
JP3422864B2 (en) Stainless steel with excellent workability and method for producing the same
KR100470671B1 (en) A method for manufacturing non-hteat-treated steel with excellent cold formability
JP3551878B2 (en) High-ductility, high-hole-expansion high-tensile steel sheet and method for producing the same
CN111465710B (en) High yield ratio type high strength steel sheet and method for manufacturing same
JP2621744B2 (en) Ultra-high tensile cold rolled steel sheet and method for producing the same
JPH02101117A (en) Production of high strength steel sheet having satisfactory formability
JPH0394017A (en) Production of high strength sheet metal excellent in local elongation
JPH0949065A (en) Wear resistant hot rolled steel sheet excellent in stretch-flanging property and its production
JPS60103128A (en) Production of cold rolled steel sheet having composite structure