WO2012133057A1 - High-strength steel sheet with excellent workability and manufacturing process therefor - Google Patents

High-strength steel sheet with excellent workability and manufacturing process therefor Download PDF

Info

Publication number
WO2012133057A1
WO2012133057A1 PCT/JP2012/057210 JP2012057210W WO2012133057A1 WO 2012133057 A1 WO2012133057 A1 WO 2012133057A1 JP 2012057210 W JP2012057210 W JP 2012057210W WO 2012133057 A1 WO2012133057 A1 WO 2012133057A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
bainite
steel sheet
temperature range
temperature
Prior art date
Application number
PCT/JP2012/057210
Other languages
French (fr)
Japanese (ja)
Inventor
二村 裕一
道治 中屋
高行 木村
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011197671A external-priority patent/JP5685167B2/en
Priority claimed from JP2011197670A external-priority patent/JP5685166B2/en
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to KR1020157009749A priority Critical patent/KR101604963B1/en
Priority to EP12765664.3A priority patent/EP2695961B1/en
Priority to US14/008,875 priority patent/US20140044988A1/en
Priority to KR1020137025521A priority patent/KR101574400B1/en
Priority to CN201280015849.5A priority patent/CN103459638B/en
Publication of WO2012133057A1 publication Critical patent/WO2012133057A1/en
Priority to US15/239,858 priority patent/US20160355920A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • Y10T428/12799Next to Fe-base component [e.g., galvanized]

Definitions

  • the present invention relates to a high-strength steel sheet excellent in workability having a tensile strength of 780 MPa or more or 590 MPa or more and a method for producing the same.
  • a TRIP (Transformation Induced Plasticity) steel plate is known as a steel plate having both strength and workability.
  • TRIP steel sheets TBF steel sheets containing bainitic ferrite as a parent phase and containing retained austenite (hereinafter sometimes referred to as residual ⁇ ) are known (Patent Documents 1 to 4).
  • residual ⁇ retained austenite
  • Patent Documents 1 to 4 high strength is obtained by the hard bainitic ferrite, and good elongation (EL) and stretch flangeability ( ⁇ ) are obtained by the fine residual ⁇ existing at the boundary of the bainitic ferrite.
  • Patent Documents 5 and 6 are known as techniques for improving stretchability and stretch flangeability to improve workability.
  • the martensite structure is utilized to increase the strength of the steel sheet, and the workability is improved by generating a predetermined amount of retained austenite.
  • Patent Document 6 the lower bainite structure and / or the martensite structure is utilized to increase the strength of the steel sheet, and workability is improved by generating a predetermined amount of retained austenite and tempered martensite.
  • the area ratio of polygonal ferrite is suppressed to 10% or less in order to ensure a tensile strength of 980 MPa or more.
  • Steel sheets that have both strength and workability include DP (Dual Phase) steel sheets whose structure is composed of ferrite and martensite, and TRIP (Transformation Induced Plasticity) using transformation-induced plasticity of retained austenite (residual ⁇ ). ) Steel plates are known.
  • Patent Document 7 discloses a technique for improving the strength and workability (particularly, elongation) of a steel sheet by making the metal structure of the steel sheet a composite structure in which martensite and residual ⁇ are mixed in ferrite.
  • Patent Document 8 discloses a technique for improving the press formability of a TRIP steel sheet by improving the balance between strength (TS) and elongation (EL) (specifically, TS ⁇ EL).
  • the metal structure in order to improve the press formability, is a structure containing ferrite, residual ⁇ , bainite and / or martensite. This document describes that the residual ⁇ has an effect of improving the elongation of the steel sheet.
  • the metallographic structure of the steel sheet is made a structure containing residual ⁇ , so that the strength of the steel sheet can be increased and the elongation characteristics can be improved.
  • the present invention has been made paying attention to the above-mentioned circumstances, and the purpose thereof is to improve the workability of both high elongation and local deformability of a high strength steel plate having a tensile strength of 780 MPa or more or 590 MPa or more.
  • An object of the present invention is to provide an excellent high-strength steel sheet and a method for producing the same.
  • the high-strength steel sheet according to the present invention that has solved the above-mentioned problems is, in mass%, C: 0.10 to 0.3%, Si: 1.0 to 3.0%, Mn: 1.5 to A steel plate containing 3%, Al: 0.005 to 3%, P: 0.1% or less, S: 0.05% or less, and the balance being iron and inevitable impurities.
  • the metal structure of the high-strength steel sheet includes bainite, polygonal ferrite, retained austenite, and tempered martensite. (1) When the metal structure is observed with a scanning electron microscope, (1a) the bainite is adjacent.
  • the polygonal ferrite has an area ratio c of 10 to In addition to satisfying 50%, (2) the volume fraction of the retained austenite measured by the saturation magnetization method is 5% or more with respect to the entire metal structure.
  • this high strength steel plate is sometimes referred to as a first high strength steel plate, and the first high strength steel plate satisfies a tensile strength of 780 MPa or more.
  • the first high-strength steel sheet When the first high-strength steel sheet has an MA mixed phase in which quenched martensite and residual austenite are present when the metal structure is observed with an optical microscope, the first high-strength steel sheet is based on the total number of MA mixed phases.
  • the number ratio of the MA mixed phase satisfying the equivalent circle diameter d of more than 7 ⁇ m in the observation cross section is preferably less than 15% (including 0%).
  • the average equivalent circle diameter D of the polygonal ferrite grains is preferably 10 ⁇ m or less (not including 0 ⁇ m).
  • the first high-strength steel plate as another element, (A) Cr: 1% or less (not including 0%) and / or Mo: 1% or less (not including 0%), (B) A group consisting of Ti: 0.15% or less (not including 0%), Nb: 0.15% or less (not including 0%), and V: 0.15% or less (not including 0%)
  • One or more elements selected from the group, Etc.
  • the present invention has a high-strength galvanized steel sheet having a hot-dip galvanized layer on the surface of the first high-strength steel sheet, and an alloyed hot-dip galvanized layer on the surface of the first high-strength steel sheet. Also included are high strength galvannealed steel sheets.
  • the first high-strength steel sheet of the present invention is heated to a temperature range of ⁇ (Ac 1 point + Ac 3 point) / 2 ⁇ + 20 ° C. or higher and Ac 3 point + 20 ° C. or lower, and held in the temperature range for 50 seconds or longer.
  • the process, the step of cooling to an arbitrary temperature T satisfying the following formula (1) at an average cooling rate of 2 ° C./second or more, and the temperature range satisfying the following formula (1) (T1 temperature range) are maintained for 10 to 100 seconds. It can be manufactured by a method including a step and a step of holding in a temperature range (T2 temperature range) satisfying the following formula (2) for 200 seconds or more in this order. 400 ° C. ⁇ T1 (° C.) ⁇ 540 ° C. (1) 200 ° C. ⁇ T2 (° C.) ⁇ 400 ° C. (2)
  • the other high-strength steel sheets according to the present invention that were able to solve the above problems are in mass%, C: 0.10 to 0.3%, Si: 1.0 to 3%, Mn: 1.0 to A steel plate containing 2.5%, Al: 0.005 to 3%, P: 0.1% or less, S: 0.05% or less, the balance being iron and inevitable impurities.
  • the metal structure of the high-strength steel sheet includes polygonal ferrite, bainite, tempered martensite, and retained austenite.
  • the area ratio a is more than 50% with respect to the entire metal structure
  • the bainite includes high-temperature region-generated bainite having an average interval of adjacent residual austenite and / or carbide of 1 ⁇ m or more, and adjacent residual austenite and And / or a composite structure with low-temperature region-generated bainite having an average interval of carbides of less than 1 ⁇ m
  • the area ratio b of the high-temperature region-generated bainite is 5 to 40% of the entire metal structure
  • the total area ratio c of bainite and the tempered martensite is 5 to 40% of the entire metal structure.
  • the gist is that the volume fraction of the retained austenite measured by the saturation magnetization method is 5% or more with respect to the entire metal structure.
  • this high strength steel plate may be referred to as a second high strength steel plate, and the second high strength steel plate satisfies a tensile strength of 590 MPa or more.
  • the total number of MA mixed phases is The number ratio of the MA mixed phase satisfying the equivalent circle diameter d of more than 7 ⁇ m in the observation cross section is preferably less than 15% (including 0%).
  • the average equivalent circle diameter D of the polygonal ferrite grains is preferably 10 ⁇ m or less (not including 0 ⁇ m).
  • the second high-strength steel plate as another element, (A) Cr: 1% or less (not including 0%) and / or Mo: 1% or less (not including 0%), (B) A group consisting of Ti: 0.15% or less (not including 0%), Nb: 0.15% or less (not including 0%), and V: 0.15% or less (not including 0%)
  • One or more elements selected from the group, Etc.
  • the present invention has a high-strength hot-dip galvanized steel sheet having a hot-dip galvanized layer on the surface of the second high-strength steel sheet, and an alloyed hot-dip galvanized layer on the surface of the second high-strength steel sheet. Also included are high strength galvannealed steel sheets.
  • the second high-strength steel sheet of the present invention includes a step of heating to a temperature range of Ac 1 point + 20 ° C. or higher and Ac 3 point + 20 ° C. or lower, a step of holding for 50 seconds or more in the temperature range, and the following formula (1): In the step of cooling at an average cooling rate of 2 to 50 ° C./second until an arbitrary temperature T to be satisfied, in the step of holding for 10 to 100 seconds in the temperature range satisfying the following formula (1), and in the temperature range satisfying the following formula (2) And a step of holding for 200 seconds or more in this order. 400 ° C. ⁇ T1 (° C.) ⁇ 540 ° C. (1) 200 ° C. ⁇ T2 (° C.) ⁇ 400 ° C. (2) In the present specification, “and / or” means including at least one of them.
  • bainite two types of bainite having different forms of residual ⁇ and carbide, which are generated in a high temperature range of 400 ° C. or higher and 540 ° C. or lower (hereinafter referred to as high temperature range generated bainite). And a bainite produced in a low temperature range of 200 ° C. or higher and lower than 400 ° C. (hereinafter sometimes referred to as low temperature range bainite) and a predetermined amount of polygonal ferrite.
  • the first high-strength steel sheet excellent in workability with good elongation and local deformability even in a high strength region of 780 MPa or more.
  • the manufacturing method of the 1st high strength steel plate which made compatible such high strength and favorable workability can be provided.
  • polygonal ferrite is generated so that the area ratio with respect to the entire metal structure exceeds 50%, and in particular, as bainite, there are two types of bainite in which residual ⁇ and carbide are different in form.
  • bainite generated in a high temperature range of 400 ° C. or higher and 540 ° C. or lower (high temperature range generated bainite)
  • bainite generated in a low temperature range of 200 ° C. or higher and lower than 400 ° C. low temperature range generated bainite
  • the manufacturing method of the 2nd high strength steel plate which made compatible such high strength and favorable workability can be provided.
  • FIG. 1 is a schematic view showing an example of an average interval between adjacent retained austenite and / or carbide.
  • FIG. 2 is a diagram schematically illustrating a distribution state of high-temperature region-generated bainite, low-temperature region-generated bainite, and the like (low-temperature region-generated bainite + tempered martensite).
  • FIG. 3 is a schematic diagram illustrating an example of a heat pattern in the T1 temperature range and the T2 temperature range.
  • FIG. 4 is a graph showing the relationship between tensile strength (TS) and elongation (EL).
  • FIG. 5 is a graph showing the relationship between tensile strength (TS) and elongation (EL).
  • the present inventors have repeatedly studied to improve the workability of the first high-strength steel sheet having a tensile strength of 780 MPa or more, particularly elongation and local deformability.
  • the metal structure of the steel sheet is a mixed structure containing bainite, polygonal ferrite, residual ⁇ , and tempered martensite, particularly as bainite.
  • High temperature region bainite which is 1 ⁇ m or more; (1b) If two types of bainite, a low temperature region bainite having an average distance between center positions such as residual ⁇ of less than 1 ⁇ m, are generated, the elongation and local deformability are improved. Being able to provide high-strength steel sheets, (2) Specifically, the high-temperature region-generated bainite contributes to improvement in elongation of the steel sheet, and the low-temperature region-generated bainite contributes to improvement in local deformability of the steel sheet, (3) Furthermore, if a predetermined amount of polygonal ferrite is generated as the metal structure, the elongation can be further improved without deteriorating the local deformability of the steel sheet.
  • the steel sheet is made into a two-phase temperature range of ferrite and austenite [specifically, ⁇ (Ac 1 point + Ac 3 point) / 2 ⁇ + 20 ° C. or higher, Ac 3 point + 20 Heating at a temperature of °C or less], (5)
  • any temperature range from 400 ° C. to 540 ° C. (hereinafter sometimes referred to as T1 temperature range).
  • T2 temperature range Is cooled at an average cooling rate of 2 ° C./second or more and maintained at this T1 temperature range for 10 to 100 seconds to form a high temperature range bainite, and then at a temperature range of 200 ° C. to less than 400 ° C. ( Hereinafter, it may be referred to as a T2 temperature range), and may be held for 200 seconds or more in this T2 temperature range.
  • the present invention has been completed.
  • the metal structure of the first high-strength steel sheet according to the present invention is a mixed structure composed of bainite, polygonal ferrite, residual ⁇ , and tempered martensite.
  • bainite includes bainitic ferrite.
  • Bainite is a structure in which carbide is precipitated
  • bainitic ferrite is a structure in which carbide is not precipitated.
  • the first high-strength steel sheet of the present invention is characterized in that bainite is composed of a composite structure of high-temperature region-generated bainite and low-temperature region-generated bainite having a higher strength than that of the high-temperature region-generated bainite.
  • High temperature zone bainite contributes to the improvement of elongation of the steel sheet
  • low temperature zone bainite contributes to improvement of local deformability of the steel plate.
  • the high temperature region bainite is ⁇ (Ac 1 point + Ac 3 point) / 2 ⁇ + 20 ° C. or higher and 400 ° C. or higher in the cooling process after heating to a temperature of Ac 3 point + 20 ° C. or lower (two-phase temperature range). It is a bainite structure generated in a T1 temperature range of 540 ° C. or lower.
  • High temperature region bainite is a structure in which an average interval of residual ⁇ and the like is 1 ⁇ m or more when a section of a steel plate that has undergone nital corrosion is observed with a scanning electron microscope (SEM).
  • the low temperature region bainite is a bainite structure generated in a T2 temperature region of 200 ° C. or more and less than 400 ° C. in the cooling process after heating to the two-phase temperature region.
  • Low-temperature region-generated bainite is a structure in which the average interval of residual ⁇ and the like is less than 1 ⁇ m when a cross section of a steel plate subjected to nital corrosion is observed with a scanning electron microscope (SEM).
  • the “average interval of residual ⁇ ” is the distance between the center positions of adjacent residual ⁇ , the distance between the center positions of adjacent carbides, or adjacent residual ⁇ when the steel sheet cross section is observed by SEM. It is the value which averaged the result of having measured the distance between center positions with a carbide
  • the distance between the center positions means a distance between the center positions obtained for each remaining ⁇ or each carbide when measured with respect to the most adjacent residual ⁇ and / or carbide.
  • the center position determines the major axis and minor axis of the residual ⁇ or carbide, and is the position where the major axis and minor axis intersect.
  • the distance between the center positions is the residual ⁇ and / or carbide.
  • the distance between the lines (the distance between the laths) formed by the residual ⁇ and / or carbides continuously in the major axis direction may be set as the distance between the center positions.
  • tempered martensite is a structure
  • the low-temperature region-generated bainite and the tempered martensite cannot be distinguished even by SEM observation. Therefore, in the present invention, the low-temperature region-generated bainite and the tempered martensite are collectively referred to as “low-temperature region-generated bainite and the like”.
  • the first high-strength steel sheet having improved workability in general can be realized by forming a composite bainite structure including high-temperature region-generated bainite and low-temperature region-generated bainite. That is, since the high temperature region generation bainite is softer than the low temperature region generation bainite and the like, it contributes to improving the workability by increasing the elongation (EL) of the steel sheet.
  • low temperature region bainite has low carbides and residual ⁇ , and stress concentration is reduced during deformation. Therefore, the stretch flangeability ( ⁇ ) and bendability (R) of the steel sheet are improved to improve local deformability. Contributes to improving processability.
  • the reason for distinguishing bainite into “high temperature region bainite” and “low temperature region bainite” by the difference in the generation temperature region and the difference in the average interval such as residual ⁇ as described above is a general academic reason. This is because it is difficult to clearly distinguish bainite in the tissue classification. For example, lath-shaped bainite and bainitic ferrite are classified into upper bainite and lower bainite according to the transformation temperature. However, in the steel type containing a large amount of Si of 1.0% or more as in the present invention, precipitation of carbides accompanying the bainite transformation is suppressed, so it is difficult to distinguish these including the martensite structure by SEM observation. It is. Therefore, in the present invention, bainite is not classified based on an academic organization definition, but is distinguished based on the difference in generation temperature range and the average interval such as residual ⁇ as described above.
  • the distribution state of the high temperature zone bainite and the low temperature zone bainite is not particularly limited, and both the high temperature zone bainite and the low temperature zone bainite may be generated in the old ⁇ grain, or for each old ⁇ grain A high temperature region generation bainite, a low temperature region generation bainite, or the like may be generated.
  • FIG. 2 schematically shows the distribution state of high temperature region bainite and low temperature region bainite.
  • the high temperature region generation bainite is hatched, and the low temperature region generation bainite is marked with fine dots.
  • FIG. 2 (a) shows a state in which both high-temperature region-generated bainite and low-temperature region-generated bainite are mixed and formed in the old ⁇ grain, and FIG. The high temperature region bainite and the low temperature region bainite are generated.
  • the black circles shown in FIG. 2 indicate the MA mixed phase. The MA mixed phase will be described later.
  • the area ratio of the high temperature region-generated bainite occupying the entire metal structure is a
  • the total area ratio of the low temperature region bainite and the like (low temperature region bainite and tempered martensite) occupying the entire metal structure is b
  • the area ratios a and b must satisfy 10 to 80%.
  • the reason why the total area ratio of the low temperature region-generated bainite and the tempered martensite is defined instead of the area ratio of the low temperature region-generated bainite is that, as described above, these structures cannot be distinguished by SEM observation.
  • the area ratio a is 10 to 80%.
  • generation bainite When there is too little production amount of high temperature range production
  • the total area ratio b is 10 to 80%. If there is too little production amount of low temperature region bainite etc., the local deformability of a steel plate will fall and workability cannot be improved. Therefore, the total area ratio b is 10% or more, preferably 15% or more, more preferably 20% or more. However, if the production amount of low temperature region bainite or the like becomes excessive, the effect of combining high temperature region bainite cannot be exhibited. Accordingly, the area ratio b of the low temperature region bainite or the like is 80% or less, preferably 70% or less, more preferably 60% or less, and still more preferably 50% or less.
  • the mixing ratio of the high temperature region bainite and the low temperature region bainite may be determined according to the characteristics required for the steel sheet. Specifically, in order to further improve the local deformability (especially stretch flangeability ( ⁇ )) of the workability of the steel sheet, the ratio of the high-temperature region-generated bainite is made as small as possible, and the ratio of the low-temperature region-generated bainite, etc. It should be as large as possible. On the other hand, in order to further improve the elongation of the workability of the steel sheet, the ratio of the high-temperature region-generated bainite should be as large as possible, and the ratio of the low-temperature region-generated bainite should be as small as possible. Further, in order to further increase the strength of the steel sheet, the ratio of the low temperature region bainite or the like may be increased as much as possible, and the ratio of the high temperature region bainite may be decreased as much as possible.
  • Polygonal ferrite is softer than bainite and is a structure that acts to improve the workability by increasing the elongation of the steel sheet.
  • the area ratio of polygonal ferrite is 10% or more, preferably 12% or more, more preferably 15% or more with respect to the entire metal structure.
  • the area ratio of polygonal ferrite is 50% or less, preferably 45% or less, and more preferably 40% or less with respect to the entire metal structure.
  • the average equivalent circle diameter D of the polygonal ferrite grains is preferably 10 ⁇ m or less (not including 0 ⁇ m).
  • the average equivalent circle diameter D of the polygonal ferrite grains is preferably 10 ⁇ m or less (not including 0 ⁇ m).
  • the metal structure of the first high-strength steel sheet of the present invention is composed of a mixed structure of bainite, polygonal ferrite, residual ⁇ , and tempered martensite. Therefore, it is considered that it is difficult to improve workability (particularly, the elongation improving effect due to the formation of polygonal ferrite) due to uneven concentration and local concentration of strains. Accordingly, the average equivalent circle diameter D of polygonal ferrite is preferably 10 ⁇ m or less, more preferably 8 ⁇ m or less, still more preferably 5 ⁇ m or less, and particularly preferably 3 ⁇ m or less.
  • the area ratio and the average equivalent circle diameter D of the polygonal ferrite can be measured by SEM observation.
  • 70% or more of the entire metal structure is satisfied. If the total area ratio (a + b + c) is less than 70%, the elongation may deteriorate.
  • the total area ratio (a + b + c) is more preferably 75% or more, and still more preferably 80% or more.
  • the upper limit of the total area ratio (a + b + c) is determined in consideration of the space factor of residual ⁇ measured by the saturation magnetization method, and is 95%, for example.
  • Residual ⁇ has the effect of accelerating the hardening of the deformed part by transforming into martensite when the steel sheet is deformed under stress, thereby preventing the concentration of strain, thereby improving the uniform deformability and achieving good elongation. Demonstrate. Such an effect is generally called a TRIP effect.
  • the volume fraction of residual ⁇ with respect to the entire metal structure needs to be contained by 5% or more when measured by the saturation magnetization method.
  • the residual ⁇ is preferably 8% by volume or more, more preferably 10% by volume or more.
  • the upper limit of the residual ⁇ is about 30% by volume, preferably 25% by volume.
  • Residual ⁇ is mainly generated between the laths of the metal structure, but as a part of the MA mixed phase, which will be described later, on the aggregate of the lath-like structure (for example, blocks and packets) and the grain boundaries of the old ⁇ May be present in bulk.
  • the metallographic structure of the first high-strength steel sheet according to the present invention includes bainite, polygonal ferrite, residual ⁇ , and tempered martensite. As long as the effects of the invention are not impaired, (a) an MA mixed phase in which quenched martensite and residual ⁇ are combined, and (b) a remaining structure such as pearlite may exist.
  • the MA mixed phase is generally known as a composite phase of quenched martensite and residual ⁇ , and a part of the structure existing as untransformed austenite before the final cooling is It is a structure formed by transformation into martensite at the time of final cooling, and the rest as austenite.
  • the MA mixed phase thus formed is a very hard structure because carbon is concentrated at a high concentration in the process of heat treatment (especially austempering), and a part thereof has a martensite structure. For this reason, the hardness difference between the bainite and the MA mixed phase is large, and stress is concentrated during deformation, which tends to be a starting point for voids.
  • the MA mixed phase when the MA mixed phase is excessively generated, stretch flangeability and bendability are deteriorated and local deformability is reduced. Decreases. Moreover, when MA mixed phase produces
  • the MA mixed phase is easily generated as the residual ⁇ amount is increased and the Si content is increased. However, the generated amount is preferably as small as possible.
  • the MA mixed phase is preferably 30 area% or less, more preferably 25 area% or less, still more preferably 20 area% or less with respect to the entire metal structure when the metal structure is observed with an optical microscope. .
  • the number ratio of MA mixed phases having an equivalent circle diameter d exceeding 7 ⁇ m is preferably less than 15% (including 0%) with respect to the total number of MA mixed phases.
  • a coarse MA mixed phase having an equivalent circle diameter d exceeding 7 ⁇ m adversely affects local deformability.
  • the ratio of the number of MA mixed phases having the equivalent circle diameter d exceeding 7 ⁇ m is preferably less than 10%, more preferably less than 5%, based on the total number of MA mixed phases.
  • the number ratio of the MA mixed phase having the equivalent circle diameter d exceeding 7 ⁇ m may be calculated by observing the cross-sectional surface parallel to the rolling direction with an optical microscope.
  • the MA mixed phase is recommended to be as small as possible because experiments have shown that the MA mixed phase tends to generate voids as its particle size increases.
  • the pearlite is preferably 20 area% or less with respect to the entire metal structure when the metal structure is observed by SEM. When the area ratio of pearlite exceeds 20%, elongation deteriorates and it becomes difficult to improve workability.
  • the area ratio of pearlite is more preferably 15% or less, further preferably 10% or less, and particularly preferably 5% or less with respect to the entire metal structure.
  • the above metal structure can be measured by the following procedure.
  • High temperature zone bainite, low temperature zone bainite, etc. (low temperature zone bainite + tempered martensite), polygonal ferrite, and pearlite are subjected to nital corrosion at 1/4 of the thickness of the cross section parallel to the rolling direction of the steel sheet. It can be identified by SEM observation at a magnification of about 3000 times.
  • High temperature region bainite and low temperature region bainite are mainly observed in gray, and are observed as a structure in which residual ⁇ and the like observed in white or light gray are dispersed in crystal grains. Therefore, according to SEM observation, since the high temperature region-generated bainite and the low temperature region-generated bainite include residual ⁇ and carbides, the area ratio including the residual ⁇ is calculated. Polygonal ferrite is observed as crystal grains that do not contain residual ⁇ and the like observed in white or light gray as described above inside the crystal grains. Pearlite is observed as a structure in which carbide and ferrite are layered.
  • both carbide and residual ⁇ are observed as a white or light gray structure, and it is difficult to distinguish them from each other.
  • carbides for example, cementite
  • cementite tend to precipitate in the lath more than between the laths as they are produced in the low temperature range, so when the spacing between the carbides is wide, it is considered that they were produced in the high temperature range, When the interval between the carbides is narrow, it can be considered that the carbides are generated in a low temperature range.
  • Residual ⁇ is usually generated between the laths, but the size of the lath becomes smaller as the tissue generation temperature decreases.
  • the distance between the residual ⁇ is wide, it is considered that the residual ⁇ was generated in a high temperature range.
  • the interval of is narrow, it can be considered that it was generated in a low temperature region. Therefore, in the present invention, when the cross-section subjected to Nital corrosion is observed by SEM, paying attention to the residual ⁇ etc. observed as white or light gray in the observation field, the distance between the center positions between the adjacent residual ⁇ etc. is measured.
  • a structure having an average value (average interval) of 1 ⁇ m or more is referred to as a high-temperature region generation bainite, and a structure having an average interval of less than 1 ⁇ m is referred to as a low-temperature region generation bainite.
  • the volume ratio is measured by the saturation magnetization method. This volume ratio value can be read as the area ratio as it is.
  • the detailed measurement principle by the saturation magnetization method may be referred to “R & D Kobe Steel Engineering Reports, Vol.52, No.3, 2002, p.43-46”.
  • the volume ratio (area ratio) of residual ⁇ is measured by the saturation magnetization method
  • the area ratio of high temperature region bainite and the like is measured by SEM observation including residual ⁇ . The sum may exceed 100%.
  • the MA mixed phase is observed as a white structure when subjected to repeller corrosion at a 1/4 position of the plate thickness in a cross section parallel to the rolling direction of the steel plate and observed with an optical microscope at a magnification of about 1000 times.
  • the first high-strength steel sheet of the present invention contains C: 0.10 to 0.3%, Si: 1.0 to 3.0%, Mn: 1.5 to 3%, Al: 0.005 to 3%. And P: 0.1% or less (not including 0%) and S: 0.05% or less (not including 0%). The reason for setting this range is as follows.
  • the amount of C is 0.10% or more, preferably 0.13% or more, more preferably 0.15% or more.
  • the C content is 0.3% or less, preferably 0.25% or less, more preferably 0.20% or less.
  • the Si contributes to increasing the strength of the steel sheet as a solid solution strengthening element, and suppresses the precipitation of carbide during holding in the T1 temperature range and T2 temperature range described later (during the austempering process), thereby reducing the residual ⁇ . It is an extremely important element for effective generation. Accordingly, the Si amount is 1.0% or more, preferably 1.2% or more, more preferably 1.3% or more. However, when Si is excessively contained, reverse transformation to the ⁇ phase does not occur during heating and soaking in annealing, and a large amount of polygonal ferrite remains, resulting in insufficient strength. In addition, Si scale is generated on the surface of the steel sheet during hot rolling to deteriorate the surface properties of the steel sheet. Accordingly, the Si content is 3.0% or less, preferably 2.5% or less, and more preferably 2.0% or less.
  • Mn is an element necessary for obtaining bainite and tempered martensite. Mn is an element that effectively acts to stabilize ⁇ and generate residual ⁇ . In order to exert such an effect, the amount of Mn is 1.5% or more, preferably 1.8% or more, more preferably 2.0% or more. However, when Mn is contained excessively, the generation of high temperature region bainite is remarkably suppressed. Further, excessive addition of Mn causes deterioration of weldability and workability due to segregation. Therefore, the Mn content is 3% or less, preferably 2.8% or less, more preferably 2.7% or less.
  • Al like Si, is an element that suppresses the precipitation of carbides during the austempering process and contributes to the formation of residual ⁇ .
  • Al is an element that acts as a deoxidizer in the steel making process. Therefore, the Al content is 0.005% or more, preferably 0.01% or more, more preferably 0.03% or more.
  • the Al content is 3% or less, preferably 1.5% or less, more preferably 1% or less, and still more preferably 0.5% or less.
  • the amount of P is an impurity element inevitably contained in steel, and when the amount of P becomes excessive, the weldability of the steel sheet deteriorates. Therefore, the amount of P is 0.1% or less, preferably 0.08% or less, more preferably 0.05% or less. The amount of P is preferably as small as possible, but it is industrially difficult to reduce it to 0%.
  • S is an impurity element inevitably contained in the steel, and is an element that deteriorates the weldability of the steel sheet as in the case of P described above. Further, S forms sulfide-based inclusions in the steel sheet, and when this increases, the workability decreases. Therefore, the amount of S is 0.05% or less, preferably 0.01% or less, more preferably 0.005% or less. The amount of S should be as small as possible, but it is industrially difficult to make it 0%.
  • the first high-strength steel sheet according to the present invention satisfies the above component composition, and the remaining components are iron and inevitable impurities other than P and S.
  • inevitable impurities include N, O (oxygen), and trump elements (eg, Pb, Bi, Sb, Sn, etc.).
  • the N content is preferably 0.01% or less (not including 0%)
  • the O content is preferably 0.01% or less (not including 0%).
  • N is an element that contributes to strengthening of the steel sheet by precipitating nitrides in the steel sheet.
  • the N content is preferably 0.01% or less, more preferably 0.008% or less, and still more preferably 0.005% or less.
  • O oxygen
  • the O content is preferably 0.01% or less, more preferably 0.005% or less, and still more preferably 0.003% or less.
  • the first high-strength steel sheet of the present invention is further added as another element, (A) Cr: 1% or less (not including 0%) and / or Mo: 1% or less (not including 0%), (B) A group consisting of Ti: 0.15% or less (not including 0%), Nb: 0.15% or less (not including 0%), and V: 0.15% or less (not including 0%) One or more elements selected from (C) Cu: 1% or less (not including 0%) and / or Ni: 1% or less (not including 0%), (D) B: 0.005% or less (excluding 0%), (E) Ca: 0.01% or less (not including 0%), Mg: 0.01% or less (not including 0%), and rare earth elements: 0.01% or less (not including 0%) One or more elements selected from the group, Etc. may be contained.
  • Cr and Mo are elements that act effectively to obtain bainite and tempered martensite. These elements can be used alone or in combination.
  • Cr and Mo are each preferably contained alone in an amount of 0.1% or more, more preferably 0.2% or more. However, when the content of Cr and Mo exceeds 1%, the generation of high temperature region bainite is remarkably suppressed. In addition, excessive addition increases the cost. Accordingly, Cr and Mo are each preferably 1% or less, more preferably 0.8% or less, and still more preferably 0.5% or less. When Cr and Mo are used in combination, the total amount is recommended to be 1.5% or less.
  • Ti, Nb, and V are elements that form precipitates such as carbides and nitrides in the steel sheet, strengthen the steel sheet, and also have the effect of refining the polygonal ferrite grains by refining the old ⁇ grains. is there.
  • Ti, Nb and V are each preferably contained in an amount of 0.01% or more, more preferably 0.02% or more.
  • carbide will precipitate to a grain boundary and the stretch flangeability and bendability of a steel plate will deteriorate. Therefore, Ti, Nb and V are each independently preferably 0.15% or less, more preferably 0.12% or less, and still more preferably 0.1% or less.
  • Ti, Nb, and V may each be contained alone, or may contain two or more elements that are arbitrarily selected.
  • Cu and Ni are elements that effectively act to stabilize ⁇ and generate residual ⁇ . These elements can be used alone or in combination. In order to exhibit such an action effectively, it is preferable to contain Cu and Ni individually by 0.05% or more, more preferably 0.1% or more. However, when Cu and Ni are contained excessively, the hot workability deteriorates. Accordingly, Cu and Ni are each preferably preferably 1% or less, more preferably 0.8% or less, and still more preferably 0.5% or less. In addition, when Cu is contained in excess of 1%, hot workability deteriorates. However, when Ni is added, deterioration of hot workability is suppressed. However, Cu may be added in excess of 1%.
  • B is an element that acts effectively to produce bainite and tempered martensite, as in the case of Mn, Cr and Mo.
  • B is preferably contained in an amount of 0.0005% or more, more preferably 0.001% or more.
  • the B content is preferably 0.005% or less, more preferably 0.004% or less, and still more preferably 0.003% or less.
  • Ca, Mg and rare earth elements are elements that act to finely disperse inclusions in the steel sheet.
  • Ca, Mg and rare earth elements are each preferably contained in an amount of 0.0005% or more, more preferably 0.001% or more.
  • Ca, Mg, and rare earth elements are each independently preferably 0.01% or less, more preferably 0.005% or less, and still more preferably 0.003% or less.
  • the rare earth element means a lanthanoid element (15 elements from La to Lu), Sc (scandium) and Y (yttrium), and among these elements, it is selected from the group consisting of La, Ce and Y. It is preferable to contain at least one kind of element, more preferably La and / or Ce.
  • the first high-strength steel sheet according to the present invention is excellent in workability because it has a tensile strength of 780 MPa or more, excellent local deformability, and good elongation.
  • This first high-strength steel plate is suitably used as a material for structural parts of automobiles.
  • Structural parts of automobiles include, for example, front and rear side members and crashing parts such as crash boxes, reinforcing materials such as pillars (for example, center pillar reinforcement), roof rail reinforcing materials, side sills, floor members, Examples include vehicle body components such as kick parts, shock-absorbing parts such as bumper reinforcements and door impact beams, and seat parts.
  • the first high-strength steel sheet can be suitably used as a material for warm forming because of its good workability in warm conditions.
  • warm processing means forming in a temperature range of about 50 to 500 ° C.
  • the metal structure and component composition of the first high-strength steel sheet according to the present invention have been described above.
  • the first high-strength steel sheet heats a steel sheet satisfying the above component composition to a temperature range (two-phase temperature range) of ⁇ (Ac 1 point + Ac 3 point) / 2 ⁇ + 20 ° C. or higher and Ac 3 point + 20 ° C. or lower.
  • a step, a step of holding for 50 seconds or more in the temperature range, a step of cooling at an average cooling rate of 2 ° C./second or more to an arbitrary temperature T satisfying the following formula (1), and a temperature range satisfying the following formula (1) Can be produced by including a step of holding for 10 to 100 seconds in this order and a step of holding for 200 seconds or more in a temperature range satisfying the following formula (2) in this order.
  • each step will be described in order. 400 ° C. ⁇ T1 (° C.) ⁇ 540 ° C. (1) 200 ° C. ⁇ T2 (° C.) ⁇ 400 ° C. (2)
  • a hot rolled steel sheet obtained by rolling and cold rolling is prepared.
  • the finish rolling temperature may be set to, for example, 800 ° C. or more, and the winding temperature may be set to, for example, 700 ° C. or less.
  • the rolling may be performed with the cold rolling rate in the range of 10 to 70%, for example.
  • the cold-rolled steel sheet obtained by cold rolling is heated to a temperature range of ⁇ (Ac 1 point + Ac 3 point) / 2 ⁇ + 20 ° C. or higher and Ac 3 point + 20 ° C. or lower in a continuous annealing line. Hold for 50 seconds or more and soak.
  • the heating temperature is Ac 3 point + 20 ° C. or less, preferably Ac 3 point + 10 ° C. or less, more preferably less than Ac 3 point.
  • the heating temperature is Ac 3 point + 20 ° C. or less, preferably Ac 3 point + 10 ° C. or less, more preferably less than Ac 3 point.
  • the heating temperature is ⁇ (Ac 1 point + Ac 3 point) / 2 ⁇ + 20 ° C. or higher, preferably ⁇ (Ac 1 point + Ac 3 point) / 2 ⁇ + 30 ° C. or higher, more preferably ⁇ (Ac 1 point + Ac 3 point). ) / 2 ⁇ + 50 ° C. or higher.
  • the soaking time in the above two-phase temperature range is less than 50 seconds, the steel sheet cannot be heated uniformly, so the formation of residual ⁇ is suppressed, elongation and local deformability are reduced, and workability cannot be improved. Therefore, the soaking time is 50 seconds or longer, preferably 100 seconds or longer. However, if the soaking time is too long, the austenite grain size becomes large, and the polygonal ferrite grains are coarsened accordingly, and the elongation and local deformability tend to deteriorate. Therefore, the soaking time is preferably 500 seconds or shorter, more preferably 450 seconds or shorter.
  • the Ac 1 point and Ac 3 point are calculated from the following formulas (a) and (b) described in “Leslie Steel Materials Science” (Maruzen Co., Ltd., issued May 31, 1985, P.273). it can.
  • [] indicates the content (mass%) of each element, and the content of elements not included in the steel sheet may be calculated as 0 mass%.
  • the average cooling rate in this section is preferably 5 ° C./second or more, more preferably 10 ° C./second or more.
  • the upper limit of the average cooling rate in the section is not particularly limited, but if the average cooling rate becomes too high, temperature control becomes difficult, and therefore the upper limit may be about 100 ° C./second, for example.
  • the amount of high-temperature region-generated bainite can be controlled by holding in the T1 temperature region for a predetermined time, and the untransformed austenite is converted into low-temperature region-generated bainite or martensite by the austempering process that is maintained in the T2 temperature region for a predetermined time. While transforming into sites, carbon can be concentrated to austenite to generate residual ⁇ , and a metal structure defined in the present invention can be generated.
  • the phenomenon of carbon concentration to untransformed austenite will be described. It is known that the bainite transformation also stops because the concentration of carbon is limited to the concentration indicated by the To line where the free energy of ferrite and austenite becomes equal. Since the To line becomes lower in carbon concentration as the temperature is higher, if the austempering process is performed at a relatively high temperature, the bainite transformation stops at a certain level even if the processing time is increased. At this time, since the stability of untransformed austenite is low, a coarse MA mixed phase is generated.
  • the allowable amount of C concentration to the untransformed austenite can be increased by holding in the T2 temperature range, so the low temperature range is higher than the high temperature range.
  • the bainite transformation proceeds and the MA mixed phase becomes smaller.
  • the size of the lath-like structure is smaller when held at the T2 temperature range than when held at the T1 temperature range, the MA mixed phase itself is subdivided even if the MA mixed phase exists. Thus, the MA mixed phase can be reduced.
  • the temperature is cooled from the two-phase temperature range to an arbitrary temperature satisfying the formula (2) without being held in the T1 temperature range, and held only in the T2 temperature range satisfying the formula (2).
  • the size of the lath-like structure is reduced, so that the MA mixed phase can be reduced.
  • the temperature is not maintained in the T1 temperature range, almost no high temperature range bainite is generated, the dislocation density of the base lath structure is increased, elongation and local deformability are reduced, and workability is reduced. Deteriorates.
  • the T1 temperature range defined by the above formula (1) is specifically 400 ° C. or more and 540 ° C. or less.
  • high temperature range bainite can be generated. That is, when the temperature is maintained at a temperature exceeding 540 ° C., the formation of high temperature bainite is suppressed.
  • polygonal ferrite is excessively generated and pseudo pearlite is generated, so that desired characteristics cannot be obtained. Therefore, the upper limit of the T1 temperature range is 540 ° C, preferably 520 ° C, more preferably 500 ° C.
  • the lower limit of the T1 temperature range is 400 ° C, preferably 420 ° C.
  • the time for holding in the T1 temperature range is 10 to 100 seconds. If the holding time exceeds 100 seconds, the high-temperature region-generated bainite is excessively generated. Therefore, as will be described later, the amount of low-temperature region-generated bainite or the like cannot be ensured even if the predetermined time is maintained in the T2 temperature region. Accordingly, it is impossible to achieve both strength and workability. Further, if the temperature is held for a long time in the T1 temperature range, carbon is excessively concentrated in the austenite, so that a coarse MA mixed phase is generated even if austempering is performed in the T2 temperature range, and workability deteriorates. Therefore, the holding time is 100 seconds or less, preferably 90 seconds or less, more preferably 80 seconds or less.
  • the holding time in the T1 temperature range is 10 seconds or longer, preferably 15 seconds or longer, more preferably 20 seconds or longer, and even more preferably 30 seconds or longer.
  • the holding time in the T1 temperature range means the time from when the surface temperature of the steel sheet reaches the upper limit temperature in the T1 temperature range to the lower limit temperature in the T1 temperature range. That is, it is the time from when the surface temperature of the steel sheet reaches 540 ° C. until it reaches 400 ° C.
  • FIG. 3 (i) shows an example in which the temperature is rapidly cooled from the two-phase temperature range to an arbitrary temperature T satisfying the above formula (1), and then kept at this temperature T for a predetermined time. It is cooled to any temperature that satisfies.
  • FIG. 3 (i) shows a case where one-stage constant temperature holding is performed, the present invention is not limited to this, and two or more constant temperature holdings having different holding temperatures are performed as long as they are within the T1 temperature range. May be.
  • FIG. 3 (ii) shows that after rapidly cooling from the two-phase temperature range to an arbitrary temperature T satisfying the above formula (1), the cooling rate is changed, and after cooling for a predetermined time within the range of the T1 temperature range, In this example, the cooling rate is changed and the cooling is performed to an arbitrary temperature satisfying the above formula (2).
  • FIG. 3 (ii) shows a case where the cooling is performed for a predetermined time within the range of the T1 temperature range, but the present invention is not limited to this. And a step of heating may be included, and cooling and heating may be repeated as appropriate. Further, as shown in FIG. 3 (ii), not only one-stage cooling but also two-stage or more multi-stage cooling with different cooling rates may be performed. Further, one-stage heating or multi-stage heating of two or more stages may be performed (not shown).
  • FIG. 3 (iii) shows that after rapidly cooling from the two-phase temperature range to an arbitrary temperature T satisfying the above formula (1), the cooling rate is changed and the same cooling is performed until an arbitrary temperature satisfying the above formula (2).
  • This is an example of slow cooling at a speed. Even in such a case of slow cooling, the residence time in the T1 temperature range may be 10 to 100 seconds.
  • the present invention is not intended to be limited to the heat patterns shown in (i) to (iii) of FIG. 3, and any other heat pattern can be adopted as long as the requirements of the present invention are satisfied.
  • the T2 temperature range defined by the above formula (2) is specifically 200 ° C. or more and less than 400 ° C.
  • untransformed austenite that has not been transformed in the T1 temperature range can be transformed into low temperature range bainite or martensite.
  • the bainite transformation proceeds, finally residual ⁇ is generated, and the MA mixed phase is subdivided.
  • this martensite exists as quenching martensite immediately after transformation, it is tempered while being maintained in the T2 temperature region, and remains as tempered martensite.
  • This tempered martensite exhibits the same characteristics as low temperature region bainite generated in the temperature region where martensitic transformation occurs.
  • the T2 temperature range is less than 400 ° C., preferably 390 ° C. or less, more preferably 380 ° C. or less.
  • low-temperature region-generated bainite is not generated, so the carbon concentration in ⁇ is low, the amount of residual ⁇ cannot be secured, and more hardened martensite is generated. It becomes high and elongation and local deformability deteriorate.
  • the lower limit of the T2 temperature range is 200 ° C, preferably 250 ° C, more preferably 280 ° C.
  • the time for holding in the T2 temperature range that satisfies the above formula (2) is 200 seconds or more. If the holding time is less than 200 seconds, the amount of low temperature region bainite and the like is reduced, the carbon concentration in ⁇ is lowered, the amount of residual ⁇ cannot be secured, and more hardened martensite is generated, so the strength is increased. It becomes high and elongation and local deformability deteriorate. Further, since carbon concentration is not promoted, the amount of residual ⁇ is reduced, and the elongation cannot be improved. Moreover, since the MA mixed phase produced
  • the holding time is 200 seconds or longer, preferably 250 seconds or longer, more preferably 300 seconds or longer.
  • the upper limit of the holding time is not particularly limited, productivity decreases when held for a long time, and concentrated carbon cannot be precipitated as carbides to generate residual ⁇ , resulting in a decrease in elongation and workability. to degrade. Therefore, the upper limit of the holding time may be 1800 seconds, for example.
  • the holding time in the T2 temperature range means the time from when the surface temperature of the steel sheet reaches the upper limit temperature in the T2 temperature range to the lower limit temperature in the T2 temperature range. That is, it is the time from reaching the temperature of less than 400 ° C. to reaching the temperature of 200 ° C.
  • the method of holding in the T2 temperature range is not particularly limited as long as the residence time in the T2 temperature range is 200 seconds or more, and may be held at a constant temperature as in the heat pattern in the T1 temperature range, or the T2 temperature. It may be cooled or heated in the zone. Further, multistage holding may be performed at different holding temperatures.
  • the first high-strength steel sheet according to the present invention can be manufactured by cooling to room temperature after holding for a predetermined time in the T2 temperature range.
  • a hot-dip galvanized layer or an alloyed hot-dip galvanized layer may be formed on the surface of the first high-strength steel plate.
  • the conditions for forming the hot-dip galvanized layer or the alloyed hot-dip galvanized layer are not particularly limited, and known conditions can be adopted.
  • the hot dip galvanized layer is preferably formed at a plating bath temperature of 400 to 500 ° C., more preferably 440 to 470 ° C.
  • the composition of the plating bath is not particularly limited, and a known hot dip galvanizing bath may be used.
  • An alloyed hot-dip galvanized steel sheet can be produced by subjecting the hot-dip galvanized steel sheet on which the hot-dip galvanized layer is formed to a conventional alloying treatment.
  • the alloying treatment may be performed, for example, at about 450 to 600 ° C. (particularly about 480 to 570 ° C.) and held for about 5 to 30 seconds (particularly about 10 to 25 seconds).
  • the alloying process may be performed using, for example, a heating furnace, a direct fire, or an infrared heating furnace.
  • the heating means is not particularly limited, and for example, conventional means such as gas heating, induction heater heating (heating by a high frequency induction heating device) can be adopted.
  • the technique of the present invention can be suitably used particularly for a thin steel plate having a thickness of 3 mm or less.
  • the first high strength steel sheet according to the present invention has been described above.
  • the second high strength steel plate according to the present invention will be described.
  • the present inventors have repeatedly studied to improve the workability of the second high-strength steel sheet having a tensile strength of 590 MPa or more, particularly the elongation and local deformability.
  • the metal structure of the steel sheet is mainly composed of polygonal ferrite (specifically, the area ratio with respect to the entire metal structure is more than 50%), and then a mixed structure containing bainite, tempered martensite, and residual ⁇ , Especially as bainite, (1a)
  • the average interval of the distances between the center positions of adjacent residual ⁇ , adjacent carbides, or adjacent residual ⁇ and adjacent carbides (hereinafter, these may be collectively referred to as residual ⁇ ).
  • High temperature region bainite which is 1 ⁇ m or more; (1b) Excellent processability with improved local deformability without deteriorating elongation if two types of bainite, low temperature region bainite, with an average distance between center positions such as residual ⁇ of less than 1 ⁇ m are generated.
  • the high-temperature region-generated bainite contributes to improvement in elongation of the steel sheet
  • the low-temperature region-generated bainite contributes to improvement in local deformability of the steel sheet
  • any temperature range from 400 ° C. to 540 ° C.
  • T1 temperature range (hereinafter sometimes referred to as T1 temperature range). Is cooled at an average cooling rate of 2 ° C./second or more and maintained at this T1 temperature range for 10 to 100 seconds to form a high temperature range bainite, and then at a temperature range of 200 ° C. to less than 400 ° C. ( Hereinafter, it may be referred to as a T2 temperature range), and may be held for 200 seconds or more in this T2 temperature range.
  • T1 temperature range Is cooled at an average cooling rate of 2 ° C./second or more and maintained at this T1 temperature range for 10 to 100 seconds to form a high temperature range bainite, and then at a temperature range of 200 ° C. to less than 400 ° C.
  • T2 temperature range a temperature range of 200 ° C. to less than 400 ° C.
  • the present invention has been completed.
  • the metal structure of the second high-strength steel sheet according to the present invention is a mixed structure composed of polygonal ferrite, bainite, tempered martensite, and residual ⁇ .
  • the metal structure of the second high-strength steel sheet of the present invention is mainly composed of polygonal ferrite.
  • the main body means that the area ratio with respect to the whole metal structure is more than 50%.
  • Polygonal ferrite is softer than bainite and is a structure that acts to improve the workability by increasing the elongation of the steel sheet.
  • the area ratio of polygonal ferrite is more than 50%, preferably 55% or more, more preferably 60% or more with respect to the entire metal structure.
  • the upper limit of the area ratio of polygonal ferrite is determined in consideration of the space factor of residual ⁇ measured by the saturation magnetization method, and is, for example, 85%.
  • the average equivalent circle diameter D of the polygonal ferrite grains is preferably 10 ⁇ m or less (not including 0 ⁇ m).
  • the average equivalent circle diameter D of the polygonal ferrite grains is preferably 10 ⁇ m or less (not including 0 ⁇ m).
  • the metal structure of the second high-strength steel sheet according to the present invention is composed of a mixed structure of polygonal ferrite, bainite, tempered martensite, and residual ⁇ . Therefore, it is considered that it is difficult to improve workability (particularly, the elongation improving effect due to the formation of polygonal ferrite) due to uneven concentration and local concentration of strains. Therefore, the average equivalent circle diameter D of polygonal ferrite is preferably 10 ⁇ m or less, more preferably 8 ⁇ m or less, still more preferably 5 ⁇ m or less, and particularly preferably 4 ⁇ m or less.
  • the area ratio and the average equivalent circle diameter D of the polygonal ferrite can be measured by observing with a scanning electron microscope (SEM).
  • the second high-strength steel sheet of the present invention is characterized in that the bainite is composed of a composite structure of a high-temperature region-generated bainite and a low-temperature region-generated bainite having a strength higher than that of the high-temperature region-generated bainite.
  • High temperature zone bainite contributes to the improvement of elongation of the steel sheet
  • low temperature zone bainite contributes to improvement of local deformability of the steel plate.
  • the high temperature range bainite is a T1 temperature range of 400 ° C. or more and 540 ° C. or less in the cooling process after heating to a temperature of Ac 1 point + 20 ° C. or higher and Ac 3 point + 20 ° C. or lower (two-phase temperature range). It is a bainite structure to be generated.
  • High temperature region bainite is a structure in which the average interval of residual ⁇ and the like is 1 ⁇ m or more when a cross section of a steel plate that has undergone nital corrosion is observed by SEM.
  • the low temperature region bainite is a bainite structure generated in a T2 temperature region of 200 ° C. or more and less than 400 ° C. in the cooling process after heating to the two-phase temperature region.
  • Low-temperature region-generated bainite is a structure in which the average interval of residual ⁇ and the like is less than 1 ⁇ m when a steel cross section subjected to nital corrosion is observed by SEM.
  • tempered martensite is a structure
  • the low-temperature region-generated bainite and the tempered martensite cannot be distinguished even by SEM observation. Therefore, in the present invention, the low-temperature region-generated bainite and the tempered martensite are collectively referred to as “low-temperature region-generated bainite and the like”.
  • the second high-strength steel sheet with improved workability in general can be realized by making the bainite a composite bainite structure including a high-temperature region-generated bainite and a low-temperature region-generated bainite. That is, since the high temperature region generation bainite is softer than the low temperature region generation bainite and the like, it contributes to improving the workability by increasing the elongation (EL) of the steel sheet.
  • low temperature region bainite has low carbides and residual ⁇ , and stress concentration is reduced during deformation. Therefore, the stretch flangeability ( ⁇ ) and bendability (R) of the steel sheet are improved to improve local deformability. Contributes to improving processability. And in this invention, since such high temperature range production
  • the reason for distinguishing bainite into “high temperature region bainite” and “low temperature region bainite” by the difference in the generation temperature region and the difference in the average interval such as residual ⁇ as described above is a general academic reason. This is because it is difficult to clearly distinguish bainite in the tissue classification. For example, lath-shaped bainite and bainitic ferrite are classified into upper bainite and lower bainite according to the transformation temperature. However, in the steel type containing a large amount of Si of 1.0% or more as in the present invention, precipitation of carbides accompanying the bainite transformation is suppressed, so it is difficult to distinguish these including the martensite structure by SEM observation. It is. Therefore, in the present invention, bainite is not classified based on an academic organization definition, but is distinguished based on the difference in generation temperature range and the average interval such as residual ⁇ as described above.
  • the distribution state of the high temperature zone bainite and the low temperature zone bainite is not particularly limited, and both the high temperature zone bainite and the low temperature zone bainite may be generated in the old ⁇ grain, or for each old ⁇ grain A high temperature region generation bainite, a low temperature region generation bainite, or the like may be generated.
  • the distribution state of the high temperature region bainite and the low temperature region bainite is as schematically shown in FIG.
  • the area ratio of the high temperature region bainite occupying the entire metal structure is b
  • the total area ratio of the low temperature region bainite and the like (low temperature region bainite and tempered martensite) occupying the entire metal structure is c
  • the area ratios b and c must satisfy 5 to 40%.
  • the reason why the total area ratio of the low temperature region-generated bainite and the tempered martensite is defined instead of the area ratio of the low temperature region-generated bainite is that, as described above, these structures cannot be distinguished by SEM observation.
  • the area ratio b is 5-40%.
  • generation bainite When there is too little production amount of high temperature range production
  • the area ratio b of the high temperature region bainite is 40% or less, preferably 35% or less, more preferably 30% or less, and still more preferably 25% or less.
  • the total area ratio c is 5 to 40%. If there is too little production amount of low temperature region bainite etc., the local deformability of a steel plate will fall and workability cannot be improved. Therefore, the total area ratio c is 5% or more, preferably 8% or more, more preferably 10% or more. However, if the production amount of low temperature region bainite or the like becomes excessive, the balance of the production amount with the high temperature region bainite is deteriorated, and the effect of combining the low temperature region bainite and the high temperature region bainite is not exhibited. Accordingly, the area ratio c of the low temperature region bainite or the like is 40% or less, preferably 35% or less, more preferably 30% or less, and still more preferably 25% or less.
  • the mixing ratio of the high temperature region bainite and the low temperature region bainite may be determined according to the characteristics required for the steel sheet. Specifically, in order to further improve the local deformability (especially stretch flangeability ( ⁇ )) of the workability of the steel sheet, the ratio of the high-temperature region-generated bainite is made as small as possible, and the ratio of the low-temperature region-generated bainite, etc. It should be as large as possible. On the other hand, in order to further improve the elongation of the workability of the steel sheet, the ratio of the high-temperature region-generated bainite should be as large as possible, and the ratio of the low-temperature region-generated bainite should be as small as possible. Further, in order to further increase the strength of the steel sheet, the ratio of the low temperature region bainite or the like may be increased as much as possible, and the ratio of the high temperature region bainite may be decreased as much as possible.
  • bainite includes bainitic ferrite.
  • Bainite is a structure in which carbide is precipitated
  • bainitic ferrite is a structure in which carbide is not precipitated.
  • 70% or more of the entire metal structure is satisfied. If the total area ratio (a + b + c) is less than 70%, the elongation may deteriorate.
  • the total area ratio (a + b + c) is more preferably 75% or more, and still more preferably 80% or more.
  • the upper limit of the total area ratio (a + b + c) is determined in consideration of the space factor of residual ⁇ measured by the saturation magnetization method, and is 95%, for example.
  • the metal structure of the second high-strength steel sheet according to the present invention includes polygonal ferrite, bainite, tempered martensite, and residual ⁇ , and may be composed only of these. As long as the effects of the invention are not impaired, (a) an MA mixed phase in which quenched martensite and residual ⁇ are combined, and (b) a remaining structure such as pearlite may exist. Since the contents of (a) MA mixed phase and (b) pearlite are the same as those of the first high-strength steel sheet, description thereof is omitted. Since the measurement procedure of the metal structure is the same as the procedure described in the first high-strength steel plate, the description is omitted.
  • the second high-strength steel sheet of the present invention contains C: 0.10 to 0.3%, Si: 1.0 to 3%, Mn: 1.0 to 2.5%, Al: 0.005 to 3%. And P: 0.1% or less (not including 0%) and S: 0.05% or less (not including 0%).
  • the reason for setting such a range is the same as that of the first high-strength steel plate except for Si and Mn, and therefore the description is omitted.
  • Si and Mn will be described.
  • the Si contributes to increasing the strength of the steel sheet as a solid solution strengthening element, and suppresses the precipitation of carbide during holding in the T1 temperature range and T2 temperature range described later (during the austempering process), thereby reducing the residual ⁇ . It is an extremely important element for effective generation. Accordingly, the Si amount is 1.0% or more, preferably 1.2% or more, more preferably 1.3% or more. However, when Si is excessively contained, reverse transformation to the ⁇ phase does not occur during heating and soaking in annealing, and a large amount of polygonal ferrite remains, resulting in insufficient strength. In addition, Si scale is generated on the surface of the steel sheet during hot rolling to deteriorate the surface properties of the steel sheet. Therefore, the amount of Si is 3% or less, preferably 2.50% or less, more preferably 2.0% or less.
  • Mn is an element necessary for obtaining bainite and tempered martensite. Mn is an element that effectively acts to stabilize ⁇ and generate residual ⁇ . In order to exert such an effect, the amount of Mn is set to 1.0% or more, preferably 1.5% or more, more preferably 1.8% or more. However, when Mn is contained excessively, the generation of high temperature region bainite is remarkably suppressed. Further, excessive addition of Mn causes deterioration of weldability and workability due to segregation. Therefore, the Mn content is 2.5% or less, preferably 2.4% or less, and more preferably 2.3% or less.
  • the second high-strength steel sheet according to the present invention is excellent in workability because the tensile strength is 590 MPa or more, the elongation is excellent, and the local deformability is also good.
  • This second high-strength steel plate is suitably used as a material for structural parts of automobiles, like the first high-strength steel plate.
  • the second high-strength steel sheet has good workability in the warm condition, and can be suitably used as a material for warm forming.
  • the second high-strength steel plate includes a step of heating a steel plate satisfying the above component composition to a temperature range (two-phase temperature range) of Ac 1 point + 20 ° C. or higher and Ac 3 point + 20 ° C. or lower, and 50 seconds in the temperature range.
  • a step of holding for 200 seconds or more in a temperature range satisfying the following formula (2) in this order will be described in order. 400 ° C. ⁇ T1 (° C.) ⁇ 540 ° C. (1) 200 ° C. ⁇ T2 (° C.) ⁇ 400 ° C. (2)
  • a hot-rolled steel sheet obtained by hot rolling a slab according to a conventional method as a high-strength steel sheet before heating to a two-phase temperature range [temperature range of Ac 1 point + 20 ° C. or higher, Ac 3 point + 20 ° C. or lower] Prepare a cold rolled product.
  • the finish rolling temperature may be set to, for example, 800 ° C. or more, and the winding temperature may be set to, for example, 700 ° C. or less.
  • the rolling may be performed with the cold rolling rate in the range of 10 to 70%, for example.
  • the cold-rolled steel sheet obtained by cold rolling is heated to a temperature range of Ac 1 point + 20 ° C. or higher and Ac 3 point + 20 ° C. or lower in a continuous annealing line, and kept at this temperature range for 50 seconds or more and soaking. To do.
  • the heating temperature is Ac 3 point + 20 ° C. or less, preferably Ac 3 point + 10 ° C. or less, more preferably less than Ac 3 point.
  • the heating temperature is Ac 3 point + 20 ° C. or less, preferably Ac 3 point + 10 ° C. or less, more preferably less than Ac 3 point.
  • the heating temperature is Ac 1 point + 20 ° C. or higher, preferably Ac 1 point + 30 ° C. or higher, more preferably Ac 1 point + 50 ° C. or higher.
  • the soaking time in the above two-phase temperature range is less than 50 seconds, the steel sheet cannot be heated uniformly, so the formation of residual ⁇ is suppressed, elongation and local deformability are reduced, and workability cannot be improved. Therefore, the soaking time is 50 seconds or longer, preferably 100 seconds or longer. However, if the soaking time is too long, the austenite grain size becomes large, and the polygonal ferrite grains are coarsened accordingly, and the elongation and local deformability tend to deteriorate. Therefore, the soaking time is preferably 500 seconds or shorter, more preferably 450 seconds or shorter.
  • the Ac 1 point and the Ac 3 point are the same as the first high-strength steel plate in the formula (a) described in “Leslie Steel Material Science” (Maruzen Co., Ltd., issued May 31, 1985, P.273). ) And formula (b).
  • the average cooling rate in this section is preferably 5 ° C./second or more, more preferably 10 ° C./second or more.
  • the average cooling rate in the section is 50 ° C./second or less, preferably 40 ° C./second or less, more preferably 30 ° C./second or less.
  • the second high-strength steel sheet according to the present invention can be produced by cooling to room temperature after holding in the T2 temperature range for a predetermined time.
  • a hot-dip galvanized layer or an alloyed hot-dip galvanized layer may be formed on the surface of the first high-strength steel plate.
  • the conditions for forming the hot-dip galvanized layer or the alloyed hot-dip galvanized layer are not particularly limited, and known conditions can be adopted. Since the specific conditions are the same as those of the first high-strength steel plate, description thereof is omitted.
  • the technology of the present invention can be suitably used particularly for a thin steel plate having a thickness of 3 mm or less.
  • the second high strength steel sheet according to the present invention has been described above.
  • Japanese Patent Application No. 2011-080953 filed on March 31, 2011, Japanese Patent Application No. 2011-080954 filed on March 31, 2011, September 9, 2011 It claims the benefit of priority based on the Japanese Patent Application No. 2011-197670 filed and the Japanese Patent Application No. 2011-197671 filed on September 9, 2011.
  • Japanese Patent Application No. 2011-080953 filed on March 31, 2011, Japanese Patent Application No. 2011-080954 filed on March 31, 2011, filed on September 9, 2011 The entire contents of Japanese Patent Application No. 2011-197670 and Japanese Patent Application No. 2011-197671 filed on September 9, 2011 are incorporated herein by reference.
  • Example 1 is an example for the first high-strength steel plate
  • Example 2 is an example for the second high-strength steel plate.
  • the obtained experimental slab was hot-rolled, cold-rolled, and then continuously annealed to produce a test material.
  • Specific conditions are as follows.
  • the experimental slab was heated and held at 1250 ° C. for 30 minutes, then hot rolled so that the reduction rate was about 90% and the final rolling temperature was 920 ° C., and wound at this temperature at an average cooling rate of 30 ° C./second. It cooled to the temperature of 500 degreeC and wound up. After winding, it was kept at this winding temperature (500 ° C.) for 30 minutes, and then cooled to room temperature to produce a hot rolled steel sheet having a thickness of 2.6 mm.
  • the obtained hot-rolled steel sheet was pickled to remove the surface scale, and then cold-rolled at a cold rolling rate of 46% to produce a cold-rolled steel sheet having a thickness of 1.4 mm.
  • the obtained cold-rolled steel sheet was heated to the temperature (° C.) shown in the following Table 3 to Table 5, held for the time shown in the following Table 3 to Table 5, and soaked, and then any one of the following four patterns
  • the sample was cooled and continuously annealed to produce a specimen.
  • Table 3 shows the stay time (seconds) in the T1 temperature range and the stay time (seconds) in the T2 temperature range.
  • start temperature Of the start temperature, end temperature, and start temperature in the T2 temperature range shown in Tables 3 to 5, the values marked with * are the T1 temperature range or T2 temperature defined in the present invention. Although it is out of the range, for convenience of explanation, the temperature is described in each column in order to show the heat pattern.
  • the obtained specimens were observed for metal structure and evaluated for mechanical properties in the following procedure.
  • the average interval between residual ⁇ and carbides observed as white or light gray was measured based on the method described above.
  • the area ratios of the high-temperature region-generated bainite and the low-temperature region-generated bainite, which are distinguished by these average intervals, were measured by a point calculation method.
  • Tables 6 to 8 below show the area ratio a (%) of the high-temperature region generated bainite, the total area ratio b (%) of the low-temperature region generated bainite and tempered martensite, and the area ratio c (%) of polygonal ferrite.
  • the total area ratio (a + b + c) of the area ratio a, the total area ratio b, and the area ratio c is also shown.
  • volume fraction of residual ⁇ was measured by the saturation magnetization method. Specifically, the saturation magnetization (I) of the specimen and the saturation magnetization (Is) of a standard sample heat-treated at 400 ° C. for 15 hours were measured, and the volume fraction (V ⁇ r) of residual ⁇ was obtained from the following formula.
  • the surface of the cross section parallel to the rolling direction of the test material is polished, and observed with five optical fields at an observation magnification of 1000 times using an optical microscope, corresponding to a circle of MA mixed phase in which residual ⁇ and quenching martensite are combined.
  • the diameter d was measured.
  • the ratio of the number of MA mixed phases in which the equivalent circle diameter d in the observation cross section exceeds 7 ⁇ m was calculated with respect to the total number of MA mixed phases.
  • the evaluation results are shown in Tables 6 to 8 below, assuming that the number ratio is less than 15% as pass ( ⁇ ), and the case where the number ratio is 15% or more as fail ( ⁇ ).
  • Tensile strength (TS) and elongation (EL) were measured by conducting a tensile test based on JIS Z2241.
  • the test piece used was a No. 5 test piece defined in JIS Z2201 cut out from the test material such that the direction perpendicular to the rolling direction of the test material was the longitudinal direction. The measurement results are shown in Tables 6 to 8 below.
  • the critical bending radius (R) was measured by performing a V-bending test based on JIS Z2248.
  • the test piece is No. 1 test piece (sheet thickness: 1.4 mm) defined in JIS Z2204 so that the direction perpendicular to the rolling direction of the specimen is the longitudinal direction (the bending ridge line coincides with the rolling direction). ) was cut out from the test material.
  • the V-bending test was performed after mechanical grinding was performed on the end face in the longitudinal direction of the test piece so as not to cause cracks.
  • the angle between the die and the punch is 90 °
  • the tip radius of the punch is changed in units of 0.5 mm
  • a V-bending test is performed
  • the radius of the tip of the punch that can be bent without cracks is determined as the limit bending radius (R). It was.
  • the measurement results are shown in Tables 6 to 8 below.
  • the presence or absence of crack generation was observed using a loupe, and the determination was made based on the absence of hair crack generation.
  • the Eriksen value was measured by conducting an Eriksen test based on JIS Z2247.
  • the test piece used was cut from the test material so as to be 90 mm ⁇ 90 mm ⁇ 1.4 mm in thickness.
  • the Eriksen test was performed using a punch having a diameter of 20 mm.
  • Tables 6 to 8 The measurement results are shown in Tables 6 to 8 below.
  • the composite effect by both the total elongation characteristic and local ductility of a steel plate can be evaluated.
  • the mechanical properties of the specimens were evaluated according to the criteria of elongation (EL), hole expansion ratio ( ⁇ ), critical bending radius (R), and Erichsen value according to tensile strength (TS). That is, since EL, ⁇ , R, and Erichsen values required by steel sheet TS differ, mechanical characteristics were evaluated according to the following criteria according to the TS level.
  • the first high-strength steel sheet is based on the premise that TS is 780 MPa or more and less than 1370 MPa.
  • TS is 780 MPa or more and less than 1370 MPa.
  • EL, ⁇ , R, and Erichsen values were good. However, it is treated as exempt.
  • Table 1 to table 8 can be considered as follows. Nos. Shown in Tables 6 to 8 below. No. 1-70 Nos. 4, 29, 31, 38, 55, 65, and 67 are examples of cooling with the above pattern i. Nos. 7, 11, 14, and 33 are examples of cooling with the above pattern iii. 8 and 15 are examples cooled with the pattern iv, and the rest are examples cooled with the pattern ii.
  • No. in Table 6 No. 8 is an example in which the holding time in the T1 temperature range is too long, and the cooling is performed without holding in the T2 temperature range, and the generation of low temperature range bainite or the like is suppressed. In addition, a large amount of coarse MA mixed phase was produced. Accordingly, ⁇ is reduced and workability is deteriorated.
  • No. in Table 6 13 is an example in which the average cooling rate to an arbitrary temperature T satisfying the above formula (1) is too low after being heated and held in a two-phase temperature range, pearlite transformation occurs, the residual ⁇ amount is not ensured, and elongation Decreases and the workability deteriorates. No. in Table 6 No.
  • No. in Table 6 No. 31 is an example in which the holding time in the T1 temperature range is too short, and since the amount of high-temperature region-generated bainite is too small, elongation is lowered and workability is deteriorated.
  • No. in Table 7 34 is an example in which the holding time in the T1 temperature range is long and not held in the T2 temperature range, and the generation of low temperature range bainite or the like is suppressed. Moreover, many coarse MA mixed phases are producing
  • No. in Table 7 In No. 37 since the heating temperature is too high, polygonal ferrite is not generated and elongation is lowered. Therefore, the workability of the steel sheet cannot be improved.
  • No. in Table 7 In 41 the heating temperature is too low, so polygonal ferrite is excessively generated and the strength is lowered.
  • No. in Table 7 No. 46 is an example in which the holding time in the two-phase temperature range is too short, and since the generation of residual ⁇ is suppressed, the elongation is reduced. Moreover, the Erichsen value is small and local deformability is reduced. Therefore, the workability of the steel sheet cannot be improved.
  • No. in Table 7 No. 48 is an example in which after soaking, it is held at a temperature exceeding the temperature in the T1 temperature range defined in the present invention, not held in the T1 temperature range, but cooled to the T2 temperature range and held in this temperature range. Polygonal ferrite is excessively generated, and the amount of high-temperature region-generated bainite is small, so that elongation is lowered and workability cannot be improved. No.
  • Table 7 No. 52 is an example in which, after being held in the T1 temperature range, cooled to a temperature lower than the T2 temperature range and not maintained in the T2 temperature range, almost no low temperature range bainite was generated, and coarse MA mixing was observed by SEM observation It is confirmed that a large amount of phase is present, and the strength is too high due to the presence of a large amount of quenched martensite.
  • No. in Table 8 No. 60 is an example in which the amount of C is too small. Since the amount of residual ⁇ produced is too small, the elongation and Erichsen values are small, and the workability is deteriorated.
  • No. in Table 8 61 is an example in which the amount of Si is too large. Polygonal ferrite is excessively generated, and generation of high temperature region bainite, low temperature region bainite, and the like is suppressed. Therefore, the desired strength cannot be ensured.
  • No. in Table 8 62 is an example in which the amount of Si is too small, and the amount of residual ⁇ produced cannot be secured. Accordingly, the elongation is lowered and the workability is deteriorated. No.
  • Table 8 63 is an example in which the amount of Mn is too small, and quenching is not sufficiently performed, so that polygonal ferrite is excessively generated during cooling, and on the other hand, generation of low-temperature region-generated bainite and the like is suppressed. Accordingly, the elongation and hole expansion rate are small, the Erichsen value is also small, and the workability is deteriorated.
  • FIG. 4 shows the relationship between tensile strength (TS) and elongation (EL) for 32, 33, 35, 36, 38 to 40, 42).
  • TS tensile strength
  • EL elongation
  • the elongation (EL) can be increased by suppressing the average equivalent circle diameter D of the polygonal ferrite grains to 10 ⁇ m or less, and the workability is further improved. I understand that I can do it.
  • the steel of the chemical composition shown in Table 9 below (the balance is iron and inevitable impurities other than P, S, N, and O) was vacuum-melted to produce an experimental slab.
  • Table 9 below REM used misch metal containing about 50% La and about 30% Ce.
  • the obtained experimental slab was hot-rolled, cold-rolled, and then continuously annealed to produce a test material.
  • Specific conditions are as follows.
  • the experimental slab was heated and held at 1250 ° C. for 30 minutes, then hot rolled so that the reduction rate was about 90% and the final rolling temperature was 920 ° C., and wound at this temperature at an average cooling rate of 30 ° C./second. It cooled to the temperature of 500 degreeC and wound up. After winding, it was kept at this winding temperature (500 ° C.) for 30 minutes, and then cooled to room temperature to produce a hot rolled steel sheet having a thickness of 2.6 mm.
  • the obtained hot-rolled steel sheet was pickled to remove the surface scale, and then cold-rolled at a cold rolling rate of 46% to produce a cold-rolled steel sheet having a thickness of 1.4 mm.
  • the obtained cold-rolled steel sheet was heated to the temperature (° C.) shown in the following Table 10 and Table 11, held for the time shown in the following Table 10 and Table 11, and soaked, and then any one of the following four patterns
  • the sample was cooled and continuously annealed to produce a specimen.
  • the values marked with * are outside the T1 temperature range or T2 temperature range defined in the present invention.
  • the temperature is described in each column in order to show the heat pattern.
  • the obtained specimens were observed for metal structure and evaluated for mechanical properties in the following procedure.
  • the average interval between residual ⁇ and carbides observed as white or light gray was measured based on the method described above.
  • the area ratios of the high-temperature region-generated bainite and the low-temperature region-generated bainite, which are distinguished by these average intervals, were measured by a point calculation method.
  • Tables 12 and 13 below show the area ratio a (%) of polygonal ferrite, the area ratio b (%) of the high temperature region bainite, and the total area ratio c (%) of the low temperature region bainite and tempered martensite. Further, the total area ratio (a + b + c) of the area ratio a, the area ratio b, and the total area ratio c is also shown.
  • volume fraction of residual ⁇ was measured by the saturation magnetization method. Specifically, the saturation magnetization (I) of the specimen and the saturation magnetization (Is) of a standard sample heat-treated at 400 ° C. for 15 hours were measured, and the volume fraction (V ⁇ r) of residual ⁇ was obtained from the following formula.
  • the surface of the cross section parallel to the rolling direction of the test material is polished, and observed with five optical fields at an observation magnification of 1000 times using an optical microscope, corresponding to a circle of MA mixed phase in which residual ⁇ and quenching martensite are combined.
  • the diameter d was measured.
  • the ratio of the number of MA mixed phases in which the equivalent circle diameter d in the observation cross section exceeds 7 ⁇ m was calculated with respect to the total number of MA mixed phases.
  • Tables 12 and 13 below, with the case where the number ratio is less than 15% as pass ( ⁇ ) and the case where the number ratio is 15% or more as failure (X).
  • Tensile strength (TS) and elongation (EL) were measured by conducting a tensile test based on JIS Z2241.
  • the test piece used was a No. 5 test piece defined in JIS Z2201 cut out from the test material such that the direction perpendicular to the rolling direction of the test material was the longitudinal direction. The measurement results are shown in Tables 12 and 13 below.
  • the critical bending radius (R) was measured by performing a V-bending test based on JIS Z2248.
  • the test piece is No. 1 test piece (sheet thickness: 1.4 mm) defined in JIS Z2204 so that the direction perpendicular to the rolling direction of the specimen is the longitudinal direction (the bending ridge line coincides with the rolling direction). ) was cut out from the test material.
  • the V-bending test was performed after mechanical grinding was performed on the end face in the longitudinal direction of the test piece so as not to cause cracks.
  • the angle between the die and the punch is 90 °
  • the tip radius of the punch is changed in units of 0.5 mm
  • a V-bending test is performed
  • the radius of the tip of the punch that can be bent without cracks is determined as the limit bending radius (R). It was.
  • the measurement results are shown in Tables 12 and 13 below.
  • the presence or absence of crack generation was observed using a loupe, and the determination was made based on the absence of hair crack generation.
  • the Eriksen value was measured by conducting an Eriksen test based on JIS Z2247.
  • the test piece used was cut from the test material so as to be 90 mm ⁇ 90 mm ⁇ 1.4 mm in thickness.
  • the Eriksen test was performed using a punch having a diameter of 20 mm.
  • the measurement results are shown in Tables 12 and 13 below.
  • the composite effect by both the total elongation characteristic and local ductility of a steel plate can be evaluated.
  • the mechanical properties of the specimens were evaluated according to the criteria of elongation (EL), hole expansion ratio ( ⁇ ), critical bending radius (R), and Erichsen value according to tensile strength (TS). That is, since EL, ⁇ , R, and Erichsen values required by steel sheet TS differ, mechanical characteristics were evaluated according to the following criteria according to the TS level.
  • TS is 590 MPa or more and less than 1270 MPa.
  • EL, ⁇ , R, and Erichsen values were good. However, it is treated as exempt.
  • Table 9 to Table 13 can be considered as follows. No. shown in Table 12 and Table 13 below. No. 1 to 43 Nos. 1, 3, 4, 11, 14, 15, 20, and 28 are examples of cooling with the above pattern i. Nos. 2 and 6 are examples cooled with the above pattern iii. Reference numeral 19 is an example of cooling with the pattern iv, and the rest is an example of cooling with the pattern ii.
  • No. in Table 12 No. 4 is an example in which the average cooling rate when cooling to an arbitrary temperature T satisfying the above formula (1) after being heated and held in the two-phase temperature range is too small, causing pearlite transformation, and the desired residual ⁇ amount is Not obtained. Therefore, the strength is insufficient.
  • No. in Table 12 No. 8 is an example in which the holding time in the two-phase temperature range is too short, and the amount of residual ⁇ was not secured, so that the strength was insufficient.
  • No. in Table 12 No. 9 is an example in which after soaking, the temperature is maintained at a temperature exceeding the temperature in the T1 temperature range defined in the present invention, not maintained in the T1 temperature range, but cooled to the T2 temperature range and maintained in this temperature range.
  • No. in Table 12 No. 12 is an example in which, after being held in the T1 temperature range, cooled to a temperature lower than the T2 temperature range, it was not maintained in the T2 temperature range, and low temperature range bainite was hardly generated, and coarse MA mixing was observed by SEM observation. It was confirmed that a large amount of phase was present, and a lot of quenched martensite was present. Accordingly, all of the elongation, the hole expansion ratio, the critical bending radius, and the Erichsen value do not satisfy the acceptance criteria defined in the present invention, and the workability cannot be improved. No.
  • Table 12 15 is an example in which the holding time in the T1 temperature range is long and not held in the T2 temperature range, and the generation of low temperature range bainite or the like is suppressed. Moreover, many coarse MA mixed phases are producing
  • the temperature is not maintained in the T1 temperature range but is cooled to the T2 temperature range at a stretch, and is maintained at two temperatures in this temperature range. Since the temperature is maintained only in the T2 temperature range, almost no high-temperature range bainite is generated and almost no residual ⁇ is generated. Accordingly, the elongation and the Erichsen value are lowered, and the workability is deteriorated.
  • No. in Table 13 No. 31 was an example in which the heating temperature was too low, and the amount of polygonal ferrite produced increased, and high temperature region bainite, low temperature region bainite, etc., and residual ⁇ were not produced at all. Accordingly, the elongation is lowered and the workability cannot be improved.
  • No. in Table 13 No. 34 is an example in which the amount of C is too small. Since the amount of residual ⁇ produced is too small, the elongation and Erichsen values are small, and the workability is deteriorated.
  • No. in Table 13 No. 35 is an example in which the amount of Si is too small. Since the amount of residual ⁇ produced is too small, elongation is lowered and workability is deteriorated.
  • No. in Table 13 36 is an example in which the amount of Mn is too small, and quenching has not been sufficiently performed. Thus, formation of polygonal ferrite is promoted during cooling, but generation of low-temperature region bainite and the like is suppressed. Accordingly, the elongation, the hole expansion rate, and the limit bending radius are reduced, and the workability is deteriorated.
  • represents the result of the average equivalent circle diameter D of the polygonal ferrite grains being 10 ⁇ m or less
  • represents the result of the average equivalent circle diameter D of the polygonal ferrite grains exceeding 10 ⁇ m.
  • the elongation (EL) can be increased by suppressing the average equivalent circle diameter D of the polygonal ferrite grains to 10 ⁇ m or less, and the workability is further improved. I understand that I can do it.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

Provided are: a high-strength steel sheet which is improved in both elongation and local formability and thus exhibits excellent workability; and a manufacturing process therefor. The high-strength steel sheet contains C, Si, Mn, Al, P and S with the balance being iron and unavoidable impurities, and has a metal structure which comprises polygonal ferrite, bainite, tempered martensite, and retained austenite and which has the characteristics: (1) the bainite, as the metal structure is observed through a scanning electron microscope, is composed of a composite structure consisting of both a high-temperature -created bainite wherein the average spacing between adjacent retained austenite and/or carbide regions is 1μm or more and a low-temperature-created bainite wherein the average spacing between adjacent retained austenite and/or carbide regions is less than 1μm; and (2) the volume fraction of the retained austenite as determined by a saturation magnetization method is 5% or more relative to the whole metal structure.

Description

加工性に優れた高強度鋼板およびその製造方法High-strength steel sheet with excellent workability and method for producing the same
 本発明は、引張強度が780MPa以上または590MPa以上の加工性に優れた高強度鋼板およびその製造方法に関するものである。 The present invention relates to a high-strength steel sheet excellent in workability having a tensile strength of 780 MPa or more or 590 MPa or more and a method for producing the same.
 自動車業界では、CO2排出規制など、地球環境問題への対応が急務となっている。一方、乗客の安全性を確保という観点から、自動車の衝突安全基準が強化され、乗車空間における安全性を充分に確保できる構造設計が進められている。これらの要求を同時に達成するには、自動車の構造部材として引張強度が780MPa以上の高強度鋼板を用い、これを更に薄肉化して車体を軽量化することが有効である。しかし一般に、鋼板の強度を大きくすると加工性が劣化するため、上記高強度鋼板を自動車部材に適用するには、加工性の改善は避けられない課題である。 In the automobile industry, there is an urgent need to deal with global environmental problems such as CO 2 emission regulations. On the other hand, from the viewpoint of ensuring the safety of passengers, the collision safety standards for automobiles have been strengthened, and structural designs that can sufficiently ensure the safety in the riding space are being advanced. In order to achieve these requirements at the same time, it is effective to use a high-strength steel plate having a tensile strength of 780 MPa or more as a structural member of an automobile and further reduce the thickness thereof to reduce the weight of the vehicle body. However, generally, when the strength of the steel plate is increased, the workability deteriorates. Therefore, in order to apply the high strength steel plate to an automobile member, improvement of the workability is an unavoidable issue.
 強度と加工性を兼ね備えた鋼板としては、TRIP(Transformation Induced Plasticity:変態誘起塑性)鋼板が知られている。TRIP鋼板の一つとして母相をベイニティックフェライトとし、残留オーステナイト(以下、残留γと表記することがある。)を含むTBF鋼板が知られている(特許文献1~4)。TBF鋼板では、硬質のベイニティックフェライトによって高い強度が得られ、ベイニティックフェライトの境界に存在する微細な残留γによって良好な伸び(EL)と伸びフランジ性(λ)が得られる。 A TRIP (Transformation Induced Plasticity) steel plate is known as a steel plate having both strength and workability. As one of TRIP steel sheets, TBF steel sheets containing bainitic ferrite as a parent phase and containing retained austenite (hereinafter sometimes referred to as residual γ) are known (Patent Documents 1 to 4). In the TBF steel sheet, high strength is obtained by the hard bainitic ferrite, and good elongation (EL) and stretch flangeability (λ) are obtained by the fine residual γ existing at the boundary of the bainitic ferrite.
 伸びと伸びフランジ性を高めて加工性を改善する技術として、特許文献5、6が知られている。これらのうち特許文献5では、マルテンサイト組織を活用して鋼板の高強度化を図るとともに、残留オーステナイトを所定量生成させることによって加工性を改善している。特許文献6では、下部ベイナイト組織および/またはマルテンサイト組織を活用して鋼板の高強度化を図るとともに、残留オーステナイトと焼戻しマルテンサイトを所定量生成させることによって加工性を改善している。これらの文献では、980MPa以上の引張強度を確保するためにポリゴナルフェライトの面積率を10%以下に抑えている。 Patent Documents 5 and 6 are known as techniques for improving stretchability and stretch flangeability to improve workability. Among these, in Patent Document 5, the martensite structure is utilized to increase the strength of the steel sheet, and the workability is improved by generating a predetermined amount of retained austenite. In Patent Document 6, the lower bainite structure and / or the martensite structure is utilized to increase the strength of the steel sheet, and workability is improved by generating a predetermined amount of retained austenite and tempered martensite. In these documents, the area ratio of polygonal ferrite is suppressed to 10% or less in order to ensure a tensile strength of 980 MPa or more.
 上述した要求を同時に達成するには、自動車の構造部材として引張強度が590MPa以上の高強度鋼板を用い、これを更に薄肉化して車体を軽量化することも有効である。しかし上述したように、一般に、鋼板の強度を大きくすると加工性が劣化するため、上記高強度鋼板を自動車部材に適用するには、加工性の改善は避けられない課題である。 In order to achieve the above requirements at the same time, it is also effective to use a high-strength steel plate having a tensile strength of 590 MPa or more as a structural member of an automobile, and further reduce the thickness thereof to reduce the weight of the vehicle body. However, as described above, generally, when the strength of the steel sheet is increased, the workability deteriorates. Therefore, in order to apply the high-strength steel sheet to an automobile member, improvement of workability is an unavoidable problem.
 強度と加工性を兼ね備えた鋼板としては、金属組織がフェライトとマルテンサイトからなるDP(Dual Phase)鋼板や、残留オーステナイト(残留γ)の変態誘起塑性を利用したTRIP(Transformation Induced Plasticity:変態誘起塑性)鋼板が知られている。 Steel sheets that have both strength and workability include DP (Dual Phase) steel sheets whose structure is composed of ferrite and martensite, and TRIP (Transformation Induced Plasticity) using transformation-induced plasticity of retained austenite (residual γ). ) Steel plates are known.
 これらのうち強度と加工性を備えたTRIP鋼板としては、例えば特許文献7の鋼板が知られている。この文献には、鋼板の金属組織を、マルテンサイトおよび残留γがフェライト中に混在する複合組織とすることによって、鋼板の強度と加工性(特に、伸び)を改善する技術が開示されている。 Among these, as a TRIP steel plate having strength and workability, for example, a steel plate of Patent Document 7 is known. This document discloses a technique for improving the strength and workability (particularly, elongation) of a steel sheet by making the metal structure of the steel sheet a composite structure in which martensite and residual γ are mixed in ferrite.
 また、特許文献8には、TRIP鋼板について、強度(TS)と伸び(EL)のバランス(具体的には、TS×EL)を改善してプレス成形性を向上させる技術が開示されている。この文献では、プレス成形性を改善するために、金属組織を、フェライト、残留γ、ベイナイトおよび/またはマルテンサイトを含む組織としている。そしてこの文献には、残留γは、鋼板の伸びを向上させる作用を有していると記載されている。 Patent Document 8 discloses a technique for improving the press formability of a TRIP steel sheet by improving the balance between strength (TS) and elongation (EL) (specifically, TS × EL). In this document, in order to improve the press formability, the metal structure is a structure containing ferrite, residual γ, bainite and / or martensite. This document describes that the residual γ has an effect of improving the elongation of the steel sheet.
 上記特許文献7、8に開示されているように、鋼板の金属組織を、残留γを含む組織にすることによって鋼板の強度を高めたうえで、伸び特性を向上させることができる。 As disclosed in Patent Documents 7 and 8 described above, the metallographic structure of the steel sheet is made a structure containing residual γ, so that the strength of the steel sheet can be increased and the elongation characteristics can be improved.
特開2005-240178号公報JP-A-2005-240178 特開2006-274417号公報JP 2006-274417 A 特開2007-321236号公報JP 2007-32236 A 特開2007-321237号公報JP 2007-32237 A 特開2010-65272号公報JP 2010-65272 A 特開2010-65273号公報JP 2010-65273 A 特開平11-279691号公報Japanese Patent Application Laid-Open No. 11-296991 特開2007-126747号公報JP 2007-126747 A
 最近では鋼板の加工性に対する要求特性が益々厳しくなっており、例えばピラーやメンバーなどに用いる鋼板には、従来にも増して厳しい条件で張り出し成形や絞り成形することが求められている。そのため鋼板には、加工性のうち特に伸びを一段と高めることが望まれている。しかし一般に、伸びを高めると、伸びフランジ性(λ)や曲げ性(R)などの局所変形能が低下することが知られている。よってTRIP鋼板には、強度と伸びを劣化させることなく、伸びフランジ性(λ)や曲げ性(R)などの局所変形能を改善することが求められている。しかし上述したTRIP鋼板は、残留γが加工中に、非常に硬いマルテンサイトに変態するため、伸びフランジ性や曲げ性などの局所変形能に劣るという問題がある。 Recently, the required properties for workability of steel sheets are becoming more and more severe. For example, steel sheets used for pillars and members are required to be formed and drawn under severer conditions than ever before. Therefore, it is desired for the steel sheet to further increase the elongation, particularly among the workability. However, it is generally known that when the elongation is increased, local deformability such as stretch flangeability (λ) and bendability (R) decreases. Therefore, TRIP steel sheets are required to improve local deformability such as stretch flangeability (λ) and bendability (R) without deteriorating strength and elongation. However, the above-described TRIP steel sheet has a problem in that the residual γ is transformed into very hard martensite during processing, and therefore the local deformability such as stretch flangeability and bendability is inferior.
 本発明は上記の様な事情に着目してなされたものであって、その目的は、引張強度が780MPa以上または590MPa以上の高強度鋼板について、伸びと局所変形能の両方を改善した加工性に優れた高強度鋼板、およびその製造方法を提供することにある。 The present invention has been made paying attention to the above-mentioned circumstances, and the purpose thereof is to improve the workability of both high elongation and local deformability of a high strength steel plate having a tensile strength of 780 MPa or more or 590 MPa or more. An object of the present invention is to provide an excellent high-strength steel sheet and a method for producing the same.
 上記課題を解決することのできた本発明に係る高強度鋼板とは、質量%で、C:0.10~0.3%、Si:1.0~3.0%、Mn:1.5~3%、Al:0.005~3%を含有し、且つP:0.1%以下、S:0.05%以下を満足し、残部が鉄および不可避不純物からなる鋼板である。そして該高強度鋼板の金属組織は、ベイナイト、ポリゴナルフェライト、残留オーステナイト、および焼戻しマルテンサイトを含み、(1)金属組織を走査型電子顕微鏡で観察したときに、(1a)前記ベイナイトは、隣接する残留オーステナイトおよび/または炭化物の平均間隔が1μm以上である高温域生成ベイナイトと、隣接する残留オーステナイトおよび/または炭化物の平均間隔が1μm未満である低温域生成ベイナイトとの複合組織で構成されており、前記高温域生成ベイナイトの面積率aが金属組織全体に対して10~80%、前記低温域生成ベイナイトと前記焼戻しマルテンサイトとの合計面積率bが金属組織全体に対して10~80%を満足し、(1b)前記ポリゴナルフェライトの面積率cが金属組織全体に対して10~50%を満足すると共に、(2)飽和磁化法で測定した前記残留オーステナイトの体積率が金属組織全体に対して5%以上である点に要旨を有している。以下、この高強度鋼板を第一高強度鋼板ということがあり、該第一高強度鋼板は引張強度が780MPa以上を満足している。 The high-strength steel sheet according to the present invention that has solved the above-mentioned problems is, in mass%, C: 0.10 to 0.3%, Si: 1.0 to 3.0%, Mn: 1.5 to A steel plate containing 3%, Al: 0.005 to 3%, P: 0.1% or less, S: 0.05% or less, and the balance being iron and inevitable impurities. The metal structure of the high-strength steel sheet includes bainite, polygonal ferrite, retained austenite, and tempered martensite. (1) When the metal structure is observed with a scanning electron microscope, (1a) the bainite is adjacent. It is composed of a composite structure of high temperature zone bainite having an average interval of retained austenite and / or carbide of 1 μm or more and low temperature zone bainite having an average interval of adjacent residual austenite and / or carbide of less than 1 μm. The area ratio a of the high-temperature region-generated bainite is 10 to 80% with respect to the entire metal structure, and the total area rate b of the low-temperature region-generated bainite and the tempered martensite is 10 to 80% with respect to the entire metal structure. (1b) The polygonal ferrite has an area ratio c of 10 to In addition to satisfying 50%, (2) the volume fraction of the retained austenite measured by the saturation magnetization method is 5% or more with respect to the entire metal structure. Hereinafter, this high strength steel plate is sometimes referred to as a first high strength steel plate, and the first high strength steel plate satisfies a tensile strength of 780 MPa or more.
 上記第一高強度鋼板は、その金属組織を光学顕微鏡で観察したときに、焼入れマルテンサイトおよび残留オーステナイトが複合したMA混合相が存在している場合には、MA混合相の全個数に対して、観察断面での円相当直径dが7μm超を満足するMA混合相の個数割合が15%未満(0%を含む)であることが好ましい。 When the first high-strength steel sheet has an MA mixed phase in which quenched martensite and residual austenite are present when the metal structure is observed with an optical microscope, the first high-strength steel sheet is based on the total number of MA mixed phases. The number ratio of the MA mixed phase satisfying the equivalent circle diameter d of more than 7 μm in the observation cross section is preferably less than 15% (including 0%).
 前記ポリゴナルフェライト粒の平均円相当直径Dは、10μm以下(0μmを含まない)であることが好ましい。 The average equivalent circle diameter D of the polygonal ferrite grains is preferably 10 μm or less (not including 0 μm).
 前記第一高強度鋼板は、更に他の元素として、
(a)Cr:1%以下(0%を含まない)および/またはMo:1%以下(0%を含まない)、
(b)Ti:0.15%以下(0%を含まない)、Nb:0.15%以下(0%を含まない)およびV:0.15%以下(0%を含まない)よりなる群から選択される1種以上の元素、
(c)Cu:1%以下(0%を含まない)および/またはNi:1%以下(0%を含まない)、
(d)B:0.005%以下(0%を含まない)、
(e)Ca:0.01%以下(0%を含まない)、Mg:0.01%以下(0%を含まない)および希土類元素:0.01%以下(0%を含まない)よりなる群から選択される1種以上の元素、
等を含有してもよい。
The first high-strength steel plate, as another element,
(A) Cr: 1% or less (not including 0%) and / or Mo: 1% or less (not including 0%),
(B) A group consisting of Ti: 0.15% or less (not including 0%), Nb: 0.15% or less (not including 0%), and V: 0.15% or less (not including 0%) One or more elements selected from
(C) Cu: 1% or less (not including 0%) and / or Ni: 1% or less (not including 0%),
(D) B: 0.005% or less (excluding 0%),
(E) Ca: 0.01% or less (not including 0%), Mg: 0.01% or less (not including 0%), and rare earth elements: 0.01% or less (not including 0%) One or more elements selected from the group,
Etc. may be contained.
 本発明には、上記第一高強度鋼板の表面に溶融亜鉛めっき層を有している高強度溶融亜鉛めっき鋼板、および上記第一高強度鋼板の表面に合金化溶融亜鉛めっき層を有している高強度合金化溶融亜鉛めっき鋼板も包含される。 The present invention has a high-strength galvanized steel sheet having a hot-dip galvanized layer on the surface of the first high-strength steel sheet, and an alloyed hot-dip galvanized layer on the surface of the first high-strength steel sheet. Also included are high strength galvannealed steel sheets.
 本発明の第一高強度鋼板は、{(Ac1点+Ac3点)/2}+20℃以上、Ac3点+20℃以下の温度域に加熱する工程と、該温度域で50秒間以上保持する工程と、下記式(1)を満たす任意の温度Tまで平均冷却速度2℃/秒以上で冷却する工程と、下記式(1)を満たす温度域(T1温度域)で10~100秒間保持する工程と、下記式(2)を満たす温度域(T2温度域)で200秒間以上保持する工程と、をこの順で含む方法よって製造できる。
400℃≦T1(℃)≦540℃  ・・・(1)
200℃≦T2(℃)<400℃  ・・・(2)
The first high-strength steel sheet of the present invention is heated to a temperature range of {(Ac 1 point + Ac 3 point) / 2} + 20 ° C. or higher and Ac 3 point + 20 ° C. or lower, and held in the temperature range for 50 seconds or longer. The process, the step of cooling to an arbitrary temperature T satisfying the following formula (1) at an average cooling rate of 2 ° C./second or more, and the temperature range satisfying the following formula (1) (T1 temperature range) are maintained for 10 to 100 seconds. It can be manufactured by a method including a step and a step of holding in a temperature range (T2 temperature range) satisfying the following formula (2) for 200 seconds or more in this order.
400 ° C. ≦ T1 (° C.) ≦ 540 ° C. (1)
200 ° C. ≦ T2 (° C.) <400 ° C. (2)
 上記課題を解決することのできた本発明に係る他の高強度鋼板とは、質量%で、C:0.10~0.3%、Si:1.0~3%、Mn:1.0~2.5%、Al:0.005~3%を含有し、且つP:0.1%以下、S:0.05%以下を満足し、残部が鉄および不可避不純物からなる鋼板である。そして該高強度鋼板の金属組織は、ポリゴナルフェライト、ベイナイト、焼戻しマルテンサイト、および残留オーステナイトを含み、(1)金属組織を走査型電子顕微鏡で観察したときに、(1a)前記ポリゴナルフェライトの面積率aが金属組織全体に対して50%超であり、(1b)前記ベイナイトは、隣接する残留オーステナイトおよび/または炭化物の平均間隔が1μm以上である高温域生成ベイナイトと、隣接する残留オーステナイトおよび/または炭化物の平均間隔が1μm未満である低温域生成ベイナイトとの複合組織で構成されており、前記高温域生成ベイナイトの面積率bが金属組織全体に対して5~40%、前記低温域生成ベイナイトと前記焼戻しマルテンサイトとの合計面積率cが金属組織全体に対して5~40%を満足し、(2)飽和磁化法で測定した前記残留オーステナイトの体積率が金属組織全体に対して5%以上である点に要旨を有している。以下、この高強度鋼板を第二高強度鋼板ということがあり、該第二高強度鋼板は引張強度が590MPa以上を満足している。 The other high-strength steel sheets according to the present invention that were able to solve the above problems are in mass%, C: 0.10 to 0.3%, Si: 1.0 to 3%, Mn: 1.0 to A steel plate containing 2.5%, Al: 0.005 to 3%, P: 0.1% or less, S: 0.05% or less, the balance being iron and inevitable impurities. The metal structure of the high-strength steel sheet includes polygonal ferrite, bainite, tempered martensite, and retained austenite. (1) When the metal structure is observed with a scanning electron microscope, (1a) The area ratio a is more than 50% with respect to the entire metal structure, and (1b) the bainite includes high-temperature region-generated bainite having an average interval of adjacent residual austenite and / or carbide of 1 μm or more, and adjacent residual austenite and And / or a composite structure with low-temperature region-generated bainite having an average interval of carbides of less than 1 μm, and the area ratio b of the high-temperature region-generated bainite is 5 to 40% of the entire metal structure, The total area ratio c of bainite and the tempered martensite is 5 to 40% of the entire metal structure. In addition, (2) the gist is that the volume fraction of the retained austenite measured by the saturation magnetization method is 5% or more with respect to the entire metal structure. Hereinafter, this high strength steel plate may be referred to as a second high strength steel plate, and the second high strength steel plate satisfies a tensile strength of 590 MPa or more.
 上記第二高強度鋼板は、その金属組織を光学顕微鏡で観察したときに、焼入れマルテンサイトおよび残留オーステナイトが複合したMA混合相が存在している場合には、MA混合相の全個数に対して、観察断面での円相当直径dが7μm超を満足するMA混合相の個数割合が15%未満(0%を含む)であることが好ましい。 When the second high-strength steel sheet has an MA mixed phase in which hardened martensite and retained austenite are present when the metal structure is observed with an optical microscope, the total number of MA mixed phases is The number ratio of the MA mixed phase satisfying the equivalent circle diameter d of more than 7 μm in the observation cross section is preferably less than 15% (including 0%).
 前記ポリゴナルフェライト粒の平均円相当直径Dは、10μm以下(0μmを含まない)であることが好ましい。 The average equivalent circle diameter D of the polygonal ferrite grains is preferably 10 μm or less (not including 0 μm).
 前記第二高強度鋼板は、更に他の元素として、
(a)Cr:1%以下(0%を含まない)および/またはMo:1%以下(0%を含まない)、
(b)Ti:0.15%以下(0%を含まない)、Nb:0.15%以下(0%を含まない)およびV:0.15%以下(0%を含まない)よりなる群から選択される1種以上の元素、
(c)Cu:1%以下(0%を含まない)および/またはNi:1%以下(0%を含まない)、
(d)B:0.005%以下(0%を含まない)、
(e)Ca:0.01%以下(0%を含まない)、Mg:0.01%以下(0%を含まない)および希土類元素:0.01%以下(0%を含まない)よりなる群から選択される1種以上の元素、
等を含有してもよい。
The second high-strength steel plate, as another element,
(A) Cr: 1% or less (not including 0%) and / or Mo: 1% or less (not including 0%),
(B) A group consisting of Ti: 0.15% or less (not including 0%), Nb: 0.15% or less (not including 0%), and V: 0.15% or less (not including 0%) One or more elements selected from
(C) Cu: 1% or less (not including 0%) and / or Ni: 1% or less (not including 0%),
(D) B: 0.005% or less (excluding 0%),
(E) Ca: 0.01% or less (not including 0%), Mg: 0.01% or less (not including 0%), and rare earth elements: 0.01% or less (not including 0%) One or more elements selected from the group,
Etc. may be contained.
 本発明には、上記第二高強度鋼板の表面に溶融亜鉛めっき層を有している高強度溶融亜鉛めっき鋼板、および上記第二高強度鋼板の表面に合金化溶融亜鉛めっき層を有している高強度合金化溶融亜鉛めっき鋼板も包含される。 The present invention has a high-strength hot-dip galvanized steel sheet having a hot-dip galvanized layer on the surface of the second high-strength steel sheet, and an alloyed hot-dip galvanized layer on the surface of the second high-strength steel sheet. Also included are high strength galvannealed steel sheets.
 本発明の第二高強度鋼板は、Ac1点+20℃以上、Ac3点+20℃以下の温度域に加熱する工程と、該温度域で50秒間以上保持する工程と、下記式(1)を満たす任意の温度Tまで平均冷却速度2~50℃/秒で冷却する工程と、下記式(1)を満たす温度域で10~100秒間保持する工程と、下記式(2)を満たす温度域で200秒間以上保持する工程と、をこの順で含む方法によって製造できる。
400℃≦T1(℃)≦540℃  ・・・(1)
200℃≦T2(℃)<400℃  ・・・(2)
 なお、本明細書において「および/または」とは、少なくともいずれか一方を含むことを意味する。
The second high-strength steel sheet of the present invention includes a step of heating to a temperature range of Ac 1 point + 20 ° C. or higher and Ac 3 point + 20 ° C. or lower, a step of holding for 50 seconds or more in the temperature range, and the following formula (1): In the step of cooling at an average cooling rate of 2 to 50 ° C./second until an arbitrary temperature T to be satisfied, in the step of holding for 10 to 100 seconds in the temperature range satisfying the following formula (1), and in the temperature range satisfying the following formula (2) And a step of holding for 200 seconds or more in this order.
400 ° C. ≦ T1 (° C.) ≦ 540 ° C. (1)
200 ° C. ≦ T2 (° C.) <400 ° C. (2)
In the present specification, “and / or” means including at least one of them.
 本発明によれば、特にベイナイトとして、残留γと炭化物の存在形態が異なる2種類のベイナイトであって、400℃以上、540℃以下の高温域で生成するベイナイト(以下、高温域生成ベイナイトと表記することがある。)と、200℃以上、400℃未満の低温域で生成するベイナイト(以下、低温域生成ベイナイトと表記することがある。)とを両方生成させると共に、所定量のポリゴナルフェライトを生成させることによって、780MPa以上の高強度域であっても伸びと局所変形能が良好な加工性に優れた第一高強度鋼板を実現できる。また、本発明によれば、こうした高強度と良好な加工性を両立した第一高強度鋼板の製造方法を提供できる。 According to the present invention, particularly as bainite, two types of bainite having different forms of residual γ and carbide, which are generated in a high temperature range of 400 ° C. or higher and 540 ° C. or lower (hereinafter referred to as high temperature range generated bainite). And a bainite produced in a low temperature range of 200 ° C. or higher and lower than 400 ° C. (hereinafter sometimes referred to as low temperature range bainite) and a predetermined amount of polygonal ferrite. By producing the first high-strength steel sheet excellent in workability with good elongation and local deformability even in a high strength region of 780 MPa or more. Moreover, according to this invention, the manufacturing method of the 1st high strength steel plate which made compatible such high strength and favorable workability can be provided.
 また、本発明によれば、金属組織全体に対する面積率が50%を超えるようにポリゴナルフェライトを生成させたうえで、特にベイナイトとして、残留γと炭化物の存在形態が異なる2種類のベイナイトであって、400℃以上、540℃以下の高温域で生成するベイナイト(高温域生成ベイナイト)と、200℃以上、400℃未満の低温域で生成するベイナイト(低温域生成ベイナイト)とを両方生成させることによって、590MPa以上の高強度域であっても伸びと局所変形能が良好な加工性に優れた第二高強度鋼板を実現できる。また、本発明によれば、こうした高強度と良好な加工性を両立した第二高強度鋼板の製造方法を提供できる。 In addition, according to the present invention, polygonal ferrite is generated so that the area ratio with respect to the entire metal structure exceeds 50%, and in particular, as bainite, there are two types of bainite in which residual γ and carbide are different in form. Thus, both bainite generated in a high temperature range of 400 ° C. or higher and 540 ° C. or lower (high temperature range generated bainite) and bainite generated in a low temperature range of 200 ° C. or higher and lower than 400 ° C. (low temperature range generated bainite) are generated. Thus, even in a high strength region of 590 MPa or more, it is possible to realize a second high strength steel plate excellent in workability with good elongation and local deformability. Moreover, according to this invention, the manufacturing method of the 2nd high strength steel plate which made compatible such high strength and favorable workability can be provided.
図1は、隣接する残留オーステナイトおよび/または炭化物の平均間隔の一例を示す模式図である。FIG. 1 is a schematic view showing an example of an average interval between adjacent retained austenite and / or carbide. 図2は、高温域生成ベイナイトおよび低温域生成ベイナイト等(低温域生成ベイナイト+焼戻しマルテンサイト)の分布状態を模式的に示す図である。FIG. 2 is a diagram schematically illustrating a distribution state of high-temperature region-generated bainite, low-temperature region-generated bainite, and the like (low-temperature region-generated bainite + tempered martensite). 図3は、T1温度域とT2温度域におけるヒートパターンの一例を示す模式図である。FIG. 3 is a schematic diagram illustrating an example of a heat pattern in the T1 temperature range and the T2 temperature range. 図4は、引張強度(TS)と伸び(EL)との関係を示すグラフである。FIG. 4 is a graph showing the relationship between tensile strength (TS) and elongation (EL). 図5は、引張強度(TS)と伸び(EL)との関係を示すグラフである。FIG. 5 is a graph showing the relationship between tensile strength (TS) and elongation (EL).
 まず、本発明に係る第一高強度鋼板について説明する。 First, the first high-strength steel sheet according to the present invention will be described.
 本発明者らは、引張強度が780MPa以上の第一高強度鋼板の加工性、特に伸びと局所変形能を改善するために検討を重ねてきた。その結果、
(1)鋼板の金属組織を、ベイナイト、ポリゴナルフェライト、残留γ、および焼戻しマルテンサイトを含む混合組織とし、特にベイナイトとして、
(1a)隣接する残留γ同士、隣接する炭化物同士、或いは隣接する残留γと隣接する炭化物(以下、これらをまとめて残留γ等と表記することがある。)の中心位置間距離の平均間隔が1μm以上である高温域生成ベイナイトと、
(1b)残留γ等の中心位置間距離の平均間隔が1μm未満である低温域生成ベイナイトの2種類のベイナイトを生成させれば、伸びおよび局所変形能が改善された加工性に優れた第一高強度鋼板を提供できること、
(2)具体的には、上記高温域生成ベイナイトは鋼板の伸び向上に寄与し、上記低温域生成ベイナイトは鋼板の局所変形能向上に寄与すること、
(3)更に、上記金属組織としてポリゴナルフェライトを所定量生成させれば、鋼板の局所変形能を劣化させることなく伸びを一段と向上できること、
(4)ポリゴナルフェライトを所定量生成させるには、鋼板をフェライトとオーステナイトの二相温度域[具体的には、{(Ac1点+Ac3点)/2}+20℃以上、Ac3点+20℃以下の温度]で加熱すればよいこと、
(5)2種類のベイナイトを所定量生成させるには、上記二相温度域で加熱した後、400℃以上、540℃以下の温度域(以下、T1温度域と呼ぶことがある。)の任意の温度Tまでを平均冷却速度2℃/秒以上で冷却し、このT1温度域で10~100秒間保持して高温域生成ベイナイトを生成させた後、200℃以上、400℃未満の温度域(以下、T2温度域と呼ぶことがある。)に冷却し、このT2温度域で200秒間以上保持すればよいこと、
を見出し、本発明を完成した。
The present inventors have repeatedly studied to improve the workability of the first high-strength steel sheet having a tensile strength of 780 MPa or more, particularly elongation and local deformability. as a result,
(1) The metal structure of the steel sheet is a mixed structure containing bainite, polygonal ferrite, residual γ, and tempered martensite, particularly as bainite.
(1a) The average interval of the distances between the center positions of adjacent residual γ, adjacent carbides, or adjacent residual γ and adjacent carbides (hereinafter, these may be collectively referred to as residual γ). High temperature region bainite which is 1 μm or more;
(1b) If two types of bainite, a low temperature region bainite having an average distance between center positions such as residual γ of less than 1 μm, are generated, the elongation and local deformability are improved. Being able to provide high-strength steel sheets,
(2) Specifically, the high-temperature region-generated bainite contributes to improvement in elongation of the steel sheet, and the low-temperature region-generated bainite contributes to improvement in local deformability of the steel sheet,
(3) Furthermore, if a predetermined amount of polygonal ferrite is generated as the metal structure, the elongation can be further improved without deteriorating the local deformability of the steel sheet.
(4) In order to produce a predetermined amount of polygonal ferrite, the steel sheet is made into a two-phase temperature range of ferrite and austenite [specifically, {(Ac 1 point + Ac 3 point) / 2} + 20 ° C. or higher, Ac 3 point + 20 Heating at a temperature of ℃ or less],
(5) In order to produce a predetermined amount of two types of bainite, after heating in the two-phase temperature range, any temperature range from 400 ° C. to 540 ° C. (hereinafter sometimes referred to as T1 temperature range). Is cooled at an average cooling rate of 2 ° C./second or more and maintained at this T1 temperature range for 10 to 100 seconds to form a high temperature range bainite, and then at a temperature range of 200 ° C. to less than 400 ° C. ( Hereinafter, it may be referred to as a T2 temperature range), and may be held for 200 seconds or more in this T2 temperature range.
The present invention has been completed.
 まず、本発明に係る第一高強度鋼板を特徴づける金属組織について説明する。 First, the metal structure that characterizes the first high-strength steel sheet according to the present invention will be described.
 《金属組織について》
 本発明に係る第一高強度鋼板の金属組織は、ベイナイト、ポリゴナルフェライト、残留γ、および焼戻しマルテンサイトで構成される混合組織である。
《Metallic structure》
The metal structure of the first high-strength steel sheet according to the present invention is a mixed structure composed of bainite, polygonal ferrite, residual γ, and tempered martensite.
 [ベイナイトおよび焼戻しマルテンサイト]
 まず、本発明を最も特徴付けるベイナイトについて説明する。なお、本発明において、ベイナイトには、ベイニティックフェライトも含まれる。ベイナイトは炭化物が析出した組織であり、ベイニティックフェライトは炭化物が析出していない組織である。
[Bainite and tempered martensite]
First, the bainite that best characterizes the present invention will be described. In the present invention, bainite includes bainitic ferrite. Bainite is a structure in which carbide is precipitated, and bainitic ferrite is a structure in which carbide is not precipitated.
 本発明の第一高強度鋼板は、ベイナイトが、高温域生成ベイナイトと、高温域生成ベイナイトに比べて強度が高い低温域生成ベイナイトとの複合組織から構成されているところに特徴がある。高温域生成ベイナイトは鋼板の伸び向上に寄与し、低温域生成ベイナイトは鋼板の局所変形能向上に寄与する。そしてこれら2種類のベイナイト組織を含むことにより、良好な局所変形能を確保した上で、伸びを高めることができ、加工性全般が高められる。これは強度レベルの異なるベイナイト組織を複合化することによって不均一変形が生じるため、加工硬化能が上昇することに起因すると考えられる。 The first high-strength steel sheet of the present invention is characterized in that bainite is composed of a composite structure of high-temperature region-generated bainite and low-temperature region-generated bainite having a higher strength than that of the high-temperature region-generated bainite. High temperature zone bainite contributes to the improvement of elongation of the steel sheet, and low temperature zone bainite contributes to improvement of local deformability of the steel plate. By including these two types of bainite structures, it is possible to increase the elongation while ensuring good local deformability, and to improve the workability in general. This is thought to be due to the fact that work hardening ability is increased because non-uniform deformation occurs by combining bainite structures having different strength levels.
 上記高温域生成ベイナイトとは、{(Ac1点+Ac3点)/2}+20℃以上、Ac3点+20℃以下の温度(二相温度域)に加熱した後の冷却過程において、400℃以上、540℃以下のT1温度域で生成するベイナイト組織である。高温域生成ベイナイトは、ナイタール腐食した鋼板断面を走査型電子顕微鏡(SEM)で観察したときに、残留γ等の平均間隔が1μm以上になっている組織である。 The high temperature region bainite is {(Ac 1 point + Ac 3 point) / 2} + 20 ° C. or higher and 400 ° C. or higher in the cooling process after heating to a temperature of Ac 3 point + 20 ° C. or lower (two-phase temperature range). It is a bainite structure generated in a T1 temperature range of 540 ° C. or lower. High temperature region bainite is a structure in which an average interval of residual γ and the like is 1 μm or more when a section of a steel plate that has undergone nital corrosion is observed with a scanning electron microscope (SEM).
 一方、上記低温域生成ベイナイトとは、上記二相温度域に加熱した後の冷却過程において、200℃以上、400℃未満のT2温度域で生成するベイナイト組織である。低温域生成ベイナイトは、ナイタール腐食した鋼板断面を走査型電子顕微鏡(SEM)で観察したときに、残留γ等の平均間隔が1μm未満になっている組織である。 On the other hand, the low temperature region bainite is a bainite structure generated in a T2 temperature region of 200 ° C. or more and less than 400 ° C. in the cooling process after heating to the two-phase temperature region. Low-temperature region-generated bainite is a structure in which the average interval of residual γ and the like is less than 1 μm when a cross section of a steel plate subjected to nital corrosion is observed with a scanning electron microscope (SEM).
 ここで「残留γ等の平均間隔」とは、鋼板断面をSEM観察したとき、隣接する残留γ同士の中心位置間距離、隣接する炭化物同士の中心位置間距離、または隣接する残留γと隣接する炭化物との中心位置間距離を測定した結果を平均した値である。上記中心位置間距離は、最も隣接している残留γおよび/または炭化物について測定したときに、各残留γまたは各炭化物について中心位置を求め、この中心位置同士の距離を意味する。上記中心位置は、残留γまたは炭化物について長径と短径を決定し、長径と短径が交差する位置とする。 Here, the “average interval of residual γ” is the distance between the center positions of adjacent residual γ, the distance between the center positions of adjacent carbides, or adjacent residual γ when the steel sheet cross section is observed by SEM. It is the value which averaged the result of having measured the distance between center positions with a carbide | carbonized_material. The distance between the center positions means a distance between the center positions obtained for each remaining γ or each carbide when measured with respect to the most adjacent residual γ and / or carbide. The center position determines the major axis and minor axis of the residual γ or carbide, and is the position where the major axis and minor axis intersect.
 但し、残留γまたは炭化物がラスの境界上に析出する場合は、複数の残留γと炭化物が連なってその形態は針状または板状になるため、中心位置間距離は、残留γおよび/または炭化物同士の距離ではなく、図1に示すように、残留γおよび/または炭化物が長径方向に連なって形成する線と線の間隔(ラス間距離)を中心位置間距離とすればよい。 However, when residual γ or carbide precipitates on the lath boundary, a plurality of residual γ and carbide are connected to form a needle or plate, so the distance between the center positions is the residual γ and / or carbide. Instead of the distance between each other, as shown in FIG. 1, the distance between the lines (the distance between the laths) formed by the residual γ and / or carbides continuously in the major axis direction may be set as the distance between the center positions.
 また、焼戻しマルテンサイトは、上記低温域生成ベイナイトと同様の作用を有する組織であり、鋼板の局所変形能向上に寄与する。なお、上記低温域生成ベイナイトと焼戻しマルテンサイトは、SEM観察しても区別できないため、本発明では、低温域生成ベイナイトと焼戻しマルテンサイトをまとめて「低温域生成ベイナイト等」と呼ぶこととする。 Moreover, tempered martensite is a structure | tissue which has the effect | action similar to the said low temperature range production | generation bainite, and contributes to the local deformability improvement of a steel plate. Note that the low-temperature region-generated bainite and the tempered martensite cannot be distinguished even by SEM observation. Therefore, in the present invention, the low-temperature region-generated bainite and the tempered martensite are collectively referred to as “low-temperature region-generated bainite and the like”.
 本発明では、高温域生成ベイナイトおよび低温域生成ベイナイト等を含む複合ベイナイト組織とすることによって加工性全般を改善した第一高強度鋼板を実現できる。即ち、高温域生成ベイナイトは、低温域生成ベイナイト等よりも軟質であるため、鋼板の伸び(EL)を高めて加工性を改善するのに寄与する。一方、低温域生成ベイナイト等は、炭化物および残留γが小さく、変形に際して応力集中が軽減されるため、鋼板の伸びフランジ性(λ)や曲げ性(R)を高めて局所変形能を向上して加工性を改善するのに寄与する。そして本発明では、こうした高温域生成ベイナイトと低温域生成ベイナイト等を混在させているため、加工硬化能が向上し、伸びが向上して加工性が改善される。 In the present invention, the first high-strength steel sheet having improved workability in general can be realized by forming a composite bainite structure including high-temperature region-generated bainite and low-temperature region-generated bainite. That is, since the high temperature region generation bainite is softer than the low temperature region generation bainite and the like, it contributes to improving the workability by increasing the elongation (EL) of the steel sheet. On the other hand, low temperature region bainite has low carbides and residual γ, and stress concentration is reduced during deformation. Therefore, the stretch flangeability (λ) and bendability (R) of the steel sheet are improved to improve local deformability. Contributes to improving processability. And in this invention, since such high temperature range production | generation bainite, low temperature range production | generation bainite, etc. are mixed, work hardening ability improves, elongation improves and workability is improved.
 本発明において、ベイナイトを上記のように生成温度域の相違および残留γ等の平均間隔の相違によって「高温域生成ベイナイト」と「低温域生成ベイナイト等」に区別した理由は、一般的な学術的組織分類ではベイナイトを明瞭に区別し難いからである。例えば、ラス状のベイナイトとベイニティックフェライトは、変態温度に応じて上部ベイナイトと下部ベイナイトに分類される。しかし本発明のようにSiを1.0%以上と多く含んだ鋼種では、ベイナイト変態に伴う炭化物の析出が抑制されるため、SEM観察では、マルテンサイト組織も含めてこれらを区別することは困難である。そこで本発明では、ベイナイトを学術的な組織定義により分類するのではなく、上記のように生成温度域の相違および残留γ等の平均間隔に基づいて区別した次第である。 In the present invention, the reason for distinguishing bainite into “high temperature region bainite” and “low temperature region bainite” by the difference in the generation temperature region and the difference in the average interval such as residual γ as described above is a general academic reason. This is because it is difficult to clearly distinguish bainite in the tissue classification. For example, lath-shaped bainite and bainitic ferrite are classified into upper bainite and lower bainite according to the transformation temperature. However, in the steel type containing a large amount of Si of 1.0% or more as in the present invention, precipitation of carbides accompanying the bainite transformation is suppressed, so it is difficult to distinguish these including the martensite structure by SEM observation. It is. Therefore, in the present invention, bainite is not classified based on an academic organization definition, but is distinguished based on the difference in generation temperature range and the average interval such as residual γ as described above.
 高温域生成ベイナイトと低温域生成ベイナイト等の分布状態は特に限定されず、旧γ粒内に高温域生成ベイナイトと低温域生成ベイナイト等の両方が生成していてもよいし、旧γ粒毎に高温域生成ベイナイトと低温域生成ベイナイト等が夫々生成していてもよい。 The distribution state of the high temperature zone bainite and the low temperature zone bainite is not particularly limited, and both the high temperature zone bainite and the low temperature zone bainite may be generated in the old γ grain, or for each old γ grain A high temperature region generation bainite, a low temperature region generation bainite, or the like may be generated.
 高温域生成ベイナイトと低温域生成ベイナイト等の分布状態を模式的に図2に示す。図2では、高温域生成ベイナイトには斜線を付し、低温域生成ベイナイト等には細かい点々を付した。図2(a)は、旧γ粒内に高温域生成ベイナイトと低温域生成ベイナイト等の両方が混合して生成している様子を示しており、図2(b)は、旧γ粒毎に高温域生成ベイナイトと低温域生成ベイナイト等が夫々生成している様子を示している。図2中に示した黒丸は、MA混合相を示している。MA混合相については後述する。 FIG. 2 schematically shows the distribution state of high temperature region bainite and low temperature region bainite. In FIG. 2, the high temperature region generation bainite is hatched, and the low temperature region generation bainite is marked with fine dots. FIG. 2 (a) shows a state in which both high-temperature region-generated bainite and low-temperature region-generated bainite are mixed and formed in the old γ grain, and FIG. The high temperature region bainite and the low temperature region bainite are generated. The black circles shown in FIG. 2 indicate the MA mixed phase. The MA mixed phase will be described later.
 本発明では、金属組織全体に占める高温域生成ベイナイトの面積率をaとし、金属組織全体に占める低温域生成ベイナイト等(低温域生成ベイナイトと焼戻しマルテンサイト)の合計面積率をbとしたとき、該面積率aおよびbは、いずれも10~80%を満足していることが必要である。ここで、低温域生成ベイナイトの面積率ではなく、低温域生成ベイナイトと焼戻しマルテンサイトの合計面積率を規定した理由は、前述したようにSEM観察ではこれらの組織を区別できないからである。 In the present invention, when the area ratio of the high temperature region-generated bainite occupying the entire metal structure is a, and when the total area ratio of the low temperature region bainite and the like (low temperature region bainite and tempered martensite) occupying the entire metal structure is b, The area ratios a and b must satisfy 10 to 80%. Here, the reason why the total area ratio of the low temperature region-generated bainite and the tempered martensite is defined instead of the area ratio of the low temperature region-generated bainite is that, as described above, these structures cannot be distinguished by SEM observation.
 上記面積率aは、10~80%とする。高温域生成ベイナイトの生成量が少な過ぎると鋼板の伸びが低下して加工性を改善できない。従って上記面積率aは10%以上、好ましくは15%以上、より好ましくは20%以上である。しかし高温域生成ベイナイトの生成量が過剰になると低温域生成ベイナイト等の複合化による効果が発揮されない。従って高温域生成ベイナイトの面積率aは80%以下、好ましくは70%以下、より好ましくは60%以下、更に好ましくは50%以下とする。 The area ratio a is 10 to 80%. When there is too little production amount of high temperature range production | generation bainite, the elongation of a steel plate will fall and workability cannot be improved. Therefore, the area ratio a is 10% or more, preferably 15% or more, more preferably 20% or more. However, if the amount of high-temperature region-generated bainite is excessive, the effect of combining low-temperature region-generated bainite or the like is not exhibited. Accordingly, the area ratio a of the high temperature region bainite is 80% or less, preferably 70% or less, more preferably 60% or less, and still more preferably 50% or less.
 また、上記合計面積率bは、10~80%とする。低温域生成ベイナイト等の生成量が少な過ぎると鋼板の局所変形能が低下して加工性を改善できない。従って上記合計面積率bは10%以上、好ましくは15%以上、より好ましくは20%以上である。しかし低温域生成ベイナイト等の生成量が過剰になると高温域生成ベイナイトの複合化による効果が発揮されない。従って低温域生成ベイナイト等の面積率bは80%以下、好ましくは70%以下、より好ましくは60%以下、更に好ましくは50%以下とする。 Also, the total area ratio b is 10 to 80%. If there is too little production amount of low temperature region bainite etc., the local deformability of a steel plate will fall and workability cannot be improved. Therefore, the total area ratio b is 10% or more, preferably 15% or more, more preferably 20% or more. However, if the production amount of low temperature region bainite or the like becomes excessive, the effect of combining high temperature region bainite cannot be exhibited. Accordingly, the area ratio b of the low temperature region bainite or the like is 80% or less, preferably 70% or less, more preferably 60% or less, and still more preferably 50% or less.
 上記面積率aと上記合計面積率bの関係は、それぞれの範囲が上記範囲を満足していれば特に限定されず、a>b、a<b、a=bのいずれの態様も含まれる。 The relationship between the area ratio a and the total area ratio b is not particularly limited as long as each range satisfies the above range, and includes any form of a> b, a <b, and a = b.
 高温域生成ベイナイトと、低温域生成ベイナイト等の混合比率は、鋼板に要求される特性に応じて定めればよい。具体的には、鋼板の加工性のうち局所変形能(特に、伸びフランジ性(λ))を一層向上させるには、高温域生成ベイナイトの比率をできるだけ小さくし、低温域生成ベイナイト等の比率をできるだけ大きくすればよい。一方、鋼板の加工性のうち伸びを一層向上させるには、高温域生成ベイナイトの比率をできるだけ大きくし、低温域生成ベイナイト等の比率をできるだけ小さくすればよい。また、鋼板の強度を一層高めるには、低温域生成ベイナイト等の比率をできるだけ大きくし、高温域生成ベイナイトの比率をできるだけ小さくすればよい。 The mixing ratio of the high temperature region bainite and the low temperature region bainite may be determined according to the characteristics required for the steel sheet. Specifically, in order to further improve the local deformability (especially stretch flangeability (λ)) of the workability of the steel sheet, the ratio of the high-temperature region-generated bainite is made as small as possible, and the ratio of the low-temperature region-generated bainite, etc. It should be as large as possible. On the other hand, in order to further improve the elongation of the workability of the steel sheet, the ratio of the high-temperature region-generated bainite should be as large as possible, and the ratio of the low-temperature region-generated bainite should be as small as possible. Further, in order to further increase the strength of the steel sheet, the ratio of the low temperature region bainite or the like may be increased as much as possible, and the ratio of the high temperature region bainite may be decreased as much as possible.
 [ポリゴナルフェライト]
 ポリゴナルフェライトは、ベイナイトに比べて軟質であり、鋼板の伸びを高めて加工性を改善するのに作用する組織である。こうした作用を発揮させるには、ポリゴナルフェライトの面積率は、金属組織全体に対して10%以上、好ましくは12%以上、より好ましくは15%以上とする。しかしポリゴナルフェライトの生成量が過剰になると、強度が低くなる。従ってポリゴナルフェライトの面積率は、金属組織全体に対して50%以下、好ましくは45%以下、より好ましくは40%以下とする。
[Polygonal ferrite]
Polygonal ferrite is softer than bainite and is a structure that acts to improve the workability by increasing the elongation of the steel sheet. In order to exert such an effect, the area ratio of polygonal ferrite is 10% or more, preferably 12% or more, more preferably 15% or more with respect to the entire metal structure. However, when the amount of polygonal ferrite produced becomes excessive, the strength decreases. Therefore, the area ratio of polygonal ferrite is 50% or less, preferably 45% or less, and more preferably 40% or less with respect to the entire metal structure.
 上記ポリゴナルフェライト粒の平均円相当直径Dは、10μm以下(0μmを含まない)であることが好ましい。ポリゴナルフェライト粒の平均円相当直径Dを小さくし、細かく分散させることによって、鋼板の伸びを一段と向上させることができる。この詳細なメカニズムは明らかではないが、ポリゴナルフェライトを微細化することによって、金属組織全体に対するポリゴナルフェライトの分散状態が均一になるため、不均一な変形が起こりにくくなり、これが伸びの一層の向上に寄与していると考えられる。即ち、本発明の第一高強度鋼板の金属組織は、ベイナイト、ポリゴナルフェライト、残留γ、および焼戻しマルテンサイトの混合組織で構成されているため、ポリゴナルフェライト粒の粒径が大きくなると、個々の組織の大きさにバラツキが生じるため、不均一な変形が生じて歪が局所的に集中して加工性(特に、ポリゴナルフェライト生成による伸び向上作用)を改善することが難しくなると考えられる。従ってポリゴナルフェライトの平均円相当直径Dは、10μm以下であることが好ましく、より好ましくは8μm以下、更に好ましくは5μm以下、特に好ましくは3μm以下である。 The average equivalent circle diameter D of the polygonal ferrite grains is preferably 10 μm or less (not including 0 μm). By reducing the average equivalent circle diameter D of the polygonal ferrite grains and finely dispersing them, the elongation of the steel sheet can be further improved. Although the detailed mechanism is not clear, by making the polygonal ferrite finer, the dispersion state of the polygonal ferrite with respect to the entire metal structure becomes uniform, so that non-uniform deformation is less likely to occur, which further increases the elongation. It is thought that it contributes to improvement. In other words, the metal structure of the first high-strength steel sheet of the present invention is composed of a mixed structure of bainite, polygonal ferrite, residual γ, and tempered martensite. Therefore, it is considered that it is difficult to improve workability (particularly, the elongation improving effect due to the formation of polygonal ferrite) due to uneven concentration and local concentration of strains. Accordingly, the average equivalent circle diameter D of polygonal ferrite is preferably 10 μm or less, more preferably 8 μm or less, still more preferably 5 μm or less, and particularly preferably 3 μm or less.
 上記ポリゴナルフェライトの面積率および平均円相当直径Dは、SEM観察によって測定できる。 The area ratio and the average equivalent circle diameter D of the polygonal ferrite can be measured by SEM observation.
 [ベイナイト+焼戻しマルテンサイト+ポリゴナルフェライト]
 本発明では、上記高温域生成ベイナイトの面積率a、上記低温域生成ベイナイト等(低温域生成ベイナイト+焼戻しマルテンサイト)の合計面積率b、および上記ポリゴナルフェライトの面積率cの合計(a+b+c)が、金属組織全体に対して70%以上を満足していることが好ましい。合計面積率(a+b+c)が70%を下回ると、伸びが劣化することがある。合計面積率(a+b+c)は、より好ましくは75%以上、更に好ましくは80%以上である。合計面積率(a+b+c)の上限は、飽和磁化法で測定される残留γの占積率を考慮して決定されるが、例えば、95%である。
[Bainite + Tempered Martensite + Polygonal Ferrite]
In the present invention, the area ratio a of the high-temperature region-generated bainite, the total area ratio b of the low-temperature region-generated bainite and the like (low-temperature region-generated bainite + tempered martensite), and the total area ratio c of the polygonal ferrite (a + b + c) However, it is preferable that 70% or more of the entire metal structure is satisfied. If the total area ratio (a + b + c) is less than 70%, the elongation may deteriorate. The total area ratio (a + b + c) is more preferably 75% or more, and still more preferably 80% or more. The upper limit of the total area ratio (a + b + c) is determined in consideration of the space factor of residual γ measured by the saturation magnetization method, and is 95%, for example.
 [残留γ]
 残留γは、鋼板が応力を受けて変形する際にマルテンサイトに変態することによって変形部の硬化を促し、歪の集中を防ぐ効果があり、それにより均一変形能が向上して良好な伸びを発揮する。こうした効果は、一般的にTRIP効果と呼ばれている。
[Residual γ]
Residual γ has the effect of accelerating the hardening of the deformed part by transforming into martensite when the steel sheet is deformed under stress, thereby preventing the concentration of strain, thereby improving the uniform deformability and achieving good elongation. Demonstrate. Such an effect is generally called a TRIP effect.
 これらの効果を発揮させるために、金属組織全体に対する残留γの体積率は、飽和磁化法で測定したとき、5%以上含有させる必要がある。残留γは、好ましくは8体積%以上、より好ましくは10体積%以上である。しかし残留γの生成量が多くなり過ぎると、後述するMA混合相も過剰に生成し、MA混合相が粗大化し易くなるため、局所変形能(伸びフランジ性および曲げ性)を低下させてしまう。従って残留γの上限は30体積%程度、好ましくは25体積%である。 In order to exert these effects, the volume fraction of residual γ with respect to the entire metal structure needs to be contained by 5% or more when measured by the saturation magnetization method. The residual γ is preferably 8% by volume or more, more preferably 10% by volume or more. However, if the amount of residual γ generated is too large, the MA mixed phase described later is excessively generated and the MA mixed phase is likely to be coarsened, so that the local deformability (stretch flangeability and bendability) is lowered. Therefore, the upper limit of the residual γ is about 30% by volume, preferably 25% by volume.
 残留γは、主に金属組織のラス間に生成しているが、ラス状組織の集合体(例えば、ブロックやパケットなど)や旧γの粒界上に、後述するMA混合相の一部として塊状に存在することもある。 Residual γ is mainly generated between the laths of the metal structure, but as a part of the MA mixed phase, which will be described later, on the aggregate of the lath-like structure (for example, blocks and packets) and the grain boundaries of the old γ May be present in bulk.
 [その他]
 本発明に係る第一高強度鋼板の金属組織は、上述したように、ベイナイト、ポリゴナルフェライト、残留γ、および焼戻しマルテンサイトを含むものであり、これらのみから構成されていてもよいが、本発明の効果を損なわない範囲で、(a)焼入れマルテンサイトと残留γとが複合したMA混合相や、(b)パーライト等の残部組織が存在していてもよい。
[Others]
As described above, the metallographic structure of the first high-strength steel sheet according to the present invention includes bainite, polygonal ferrite, residual γ, and tempered martensite. As long as the effects of the invention are not impaired, (a) an MA mixed phase in which quenched martensite and residual γ are combined, and (b) a remaining structure such as pearlite may exist.
 (a)MA混合相
 MA混合相は、焼入れマルテンサイトと残留γとの複合相として一般的に知られており、最終冷却前までは未変態のオーステナイトとして存在していた組織の一部が、最終冷却時にマルテンサイトに変態し、残りはオーステナイトのまま残存することによって生成する組織である。こうして生成するMA混合相は、熱処理(特に、オーステンパ処理)の過程で炭素が高濃度に濃化し、しかも一部がマルテンサイト組織になっているため、非常に硬い組織である。そのためベイナイトとMA混合相との硬度差は大きく、変形に際して応力が集中してボイド発生の起点となりやすいので、MA混合相が過剰に生成すると、伸びフランジ性や曲げ性が低下して局所変形能が低下する。また、MA混合相が過剰に生成すると、強度が高くなり過ぎる傾向がある。MA混合相は、残留γ量が多くなるほど、またSi含有量が多くなるほど生成し易くなるが、その生成量はできるだけ少ない方が好ましい。
(A) MA mixed phase The MA mixed phase is generally known as a composite phase of quenched martensite and residual γ, and a part of the structure existing as untransformed austenite before the final cooling is It is a structure formed by transformation into martensite at the time of final cooling, and the rest as austenite. The MA mixed phase thus formed is a very hard structure because carbon is concentrated at a high concentration in the process of heat treatment (especially austempering), and a part thereof has a martensite structure. For this reason, the hardness difference between the bainite and the MA mixed phase is large, and stress is concentrated during deformation, which tends to be a starting point for voids. Therefore, when the MA mixed phase is excessively generated, stretch flangeability and bendability are deteriorated and local deformability is reduced. Decreases. Moreover, when MA mixed phase produces | generates excessively, there exists a tendency for intensity | strength to become high too much. The MA mixed phase is easily generated as the residual γ amount is increased and the Si content is increased. However, the generated amount is preferably as small as possible.
 上記MA混合相は、金属組織を光学顕微鏡で観察したときに、金属組織全体に対して30面積%以下であることが好ましく、より好ましくは25面積%以下、更に好ましくは20面積%以下である。 The MA mixed phase is preferably 30 area% or less, more preferably 25 area% or less, still more preferably 20 area% or less with respect to the entire metal structure when the metal structure is observed with an optical microscope. .
 上記MA混合相は、円相当直径dが7μmを超えるMA混合相の個数割合が、MA混合相の全個数に対して15%未満(0%を含む)であることが好ましい。円相当直径dが7μmを超える粗大なMA混合相は、局所変形能に悪影響を及ぼす。上記円相当直径dが7μmを超えるMA混合相の個数割合は、MA混合相の全個数に対して10%未満であることがより好ましく、更に好ましくは5%未満である。 In the MA mixed phase, the number ratio of MA mixed phases having an equivalent circle diameter d exceeding 7 μm is preferably less than 15% (including 0%) with respect to the total number of MA mixed phases. A coarse MA mixed phase having an equivalent circle diameter d exceeding 7 μm adversely affects local deformability. The ratio of the number of MA mixed phases having the equivalent circle diameter d exceeding 7 μm is preferably less than 10%, more preferably less than 5%, based on the total number of MA mixed phases.
 上記円相当直径dが7μmを超えるMA混合相の個数割合は、圧延方向に平行な断面表面を光学顕微鏡で観察して算出すればよい。 The number ratio of the MA mixed phase having the equivalent circle diameter d exceeding 7 μm may be calculated by observing the cross-sectional surface parallel to the rolling direction with an optical microscope.
 なお、上記MA混合相は、その粒径が大きくなるほどボイドが発生し易くなる傾向が実験により認められたため、MA混合相はできるだけ小さいことが推奨される。 It should be noted that the MA mixed phase is recommended to be as small as possible because experiments have shown that the MA mixed phase tends to generate voids as its particle size increases.
 (b)パーライト
 上記パーライトは、金属組織をSEM観察したときに、金属組織全体に対して20面積%以下であることが好ましい。パーライトの面積率が20%を超えると、伸びが劣化し、加工性を改善することが難しくなる。パーライトの面積率は、金属組織全体に対して15%以下であることがより好ましく、更に好ましくは10%以下、特に好ましくは5%以下である。
(B) Perlite The pearlite is preferably 20 area% or less with respect to the entire metal structure when the metal structure is observed by SEM. When the area ratio of pearlite exceeds 20%, elongation deteriorates and it becomes difficult to improve workability. The area ratio of pearlite is more preferably 15% or less, further preferably 10% or less, and particularly preferably 5% or less with respect to the entire metal structure.
 上記の金属組織は、次の手順で測定できる。 The above metal structure can be measured by the following procedure.
 高温域生成ベイナイト、低温域生成ベイナイト等(低温域生成ベイナイト+焼戻しマルテンサイト)、ポリゴナルフェライト、およびパーライトは、鋼板の圧延方向に平行な断面のうち、板厚の1/4位置をナイタール腐食し、倍率3000倍程度でSEM観察すれば識別できる。 High temperature zone bainite, low temperature zone bainite, etc. (low temperature zone bainite + tempered martensite), polygonal ferrite, and pearlite are subjected to nital corrosion at 1/4 of the thickness of the cross section parallel to the rolling direction of the steel sheet. It can be identified by SEM observation at a magnification of about 3000 times.
 高温域生成ベイナイトおよび低温域生成ベイナイト等は、主に灰色で観察され、結晶粒の中に白色もしくは薄い灰色で観察される残留γ等が分散している組織として観察される。従ってSEM観察によれば、高温域生成ベイナイトおよび低温域生成ベイナイト等には、残留γや炭化物も含まれるため、残留γ等も含めた面積率として算出される。ポリゴナルフェライトは、結晶粒の内部に上述した白色もしくは薄い灰色で観察される残留γ等を含まない結晶粒として観察される。パーライトは、炭化物とフェライトが層状になった組織として観察される。 High temperature region bainite and low temperature region bainite are mainly observed in gray, and are observed as a structure in which residual γ and the like observed in white or light gray are dispersed in crystal grains. Therefore, according to SEM observation, since the high temperature region-generated bainite and the low temperature region-generated bainite include residual γ and carbides, the area ratio including the residual γ is calculated. Polygonal ferrite is observed as crystal grains that do not contain residual γ and the like observed in white or light gray as described above inside the crystal grains. Pearlite is observed as a structure in which carbide and ferrite are layered.
 鋼板の断面をナイタール腐食すると、炭化物と残留γは、いずれも白色もしくは薄い灰色の組織として観察され、両者を区別することは困難である。これらのうち炭化物(例えば、セメンタイト)は、低温域で生成するほど、ラス間よりもラス内に析出する傾向があるため、炭化物同士の間隔が広い場合は、高温域で生成したと考えられ、炭化物同士の間隔が狭い場合は、低温域で生成したと考えることができる。残留γは、通常ラス間に生成するが、ラスの大きさは組織の生成温度が低くなるほど小さくなるため、残留γ同士の間隔が広い場合は、高温域で生成したと考えられ、残留γ同士の間隔が狭い場合は、低温域で生成したと考えることができる。従って本発明ではナイタール腐食した断面をSEM観察し、観察視野内に白色または薄い灰色として観察される残留γ等に着目し、隣接する残留γ等間の中心位置間距離を測定したときに、この平均値(平均間隔)が1μm以上である組織を高温域生成ベイナイト、平均間隔が1μm未満である組織を低温域生成ベイナイト等とする。 When the cross section of the steel plate is subjected to Nital corrosion, both carbide and residual γ are observed as a white or light gray structure, and it is difficult to distinguish them from each other. Among these, carbides (for example, cementite) tend to precipitate in the lath more than between the laths as they are produced in the low temperature range, so when the spacing between the carbides is wide, it is considered that they were produced in the high temperature range, When the interval between the carbides is narrow, it can be considered that the carbides are generated in a low temperature range. Residual γ is usually generated between the laths, but the size of the lath becomes smaller as the tissue generation temperature decreases. Therefore, when the distance between the residual γ is wide, it is considered that the residual γ was generated in a high temperature range. When the interval of is narrow, it can be considered that it was generated in a low temperature region. Therefore, in the present invention, when the cross-section subjected to Nital corrosion is observed by SEM, paying attention to the residual γ etc. observed as white or light gray in the observation field, the distance between the center positions between the adjacent residual γ etc. is measured. A structure having an average value (average interval) of 1 μm or more is referred to as a high-temperature region generation bainite, and a structure having an average interval of less than 1 μm is referred to as a low-temperature region generation bainite.
 残留γは、SEM観察による組織の同定ができないため、飽和磁化法により体積率を測定する。この体積率の値はそのまま面積率と読み替えることができる。飽和磁化法による詳細な測定原理は、「R&D神戸製鋼技報、Vol.52、No.3、2002年、p.43~46」を参照すれば良い。 Since the residual γ cannot be identified by SEM observation, the volume ratio is measured by the saturation magnetization method. This volume ratio value can be read as the area ratio as it is. The detailed measurement principle by the saturation magnetization method may be referred to “R & D Kobe Steel Engineering Reports, Vol.52, No.3, 2002, p.43-46”.
 このように残留γの体積率(面積率)は飽和磁化法で測定しているのに対し、高温域生成ベイナイトなどの面積率はSEM観察で残留γを含めて測定しているため、これらの合計は100%を超える場合がある。 Thus, while the volume ratio (area ratio) of residual γ is measured by the saturation magnetization method, the area ratio of high temperature region bainite and the like is measured by SEM observation including residual γ. The sum may exceed 100%.
 MA混合相は、鋼板の圧延方向に平行な断面のうち、板厚の1/4位置をレペラー腐食し、倍率1000倍程度で光学顕微鏡観察すれば、白色組織として観察される。 The MA mixed phase is observed as a white structure when subjected to repeller corrosion at a 1/4 position of the plate thickness in a cross section parallel to the rolling direction of the steel plate and observed with an optical microscope at a magnification of about 1000 times.
 次に、本発明に係る第一高強度鋼板の化学成分組成について説明する。 Next, the chemical component composition of the first high-strength steel sheet according to the present invention will be described.
 《成分組成について》
 本発明の第一高強度鋼板は、C:0.10~0.3%、Si:1.0~3.0%、Mn:1.5~3%、Al:0.005~3%を含有し、且つP:0.1%以下(0%を含まない)、S:0.05%以下(0%を含まない)を満足している。こうした範囲を定めた理由は次の通りである。
<Ingredient composition>
The first high-strength steel sheet of the present invention contains C: 0.10 to 0.3%, Si: 1.0 to 3.0%, Mn: 1.5 to 3%, Al: 0.005 to 3%. And P: 0.1% or less (not including 0%) and S: 0.05% or less (not including 0%). The reason for setting this range is as follows.
 Cは、鋼板の強度を高めると共に、残留γを生成させるために必要な元素である。従ってC量は0.10%以上、好ましくは0.13%以上、より好ましくは0.15%以上である。しかし、Cを過剰に含有すると溶接性が低下する。従ってC量は0.3%以下、好ましくは0.25%以下、より好ましくは0.20%以下とする。 C is an element necessary for increasing the strength of the steel sheet and generating residual γ. Therefore, the amount of C is 0.10% or more, preferably 0.13% or more, more preferably 0.15% or more. However, when C is contained excessively, weldability is lowered. Therefore, the C content is 0.3% or less, preferably 0.25% or less, more preferably 0.20% or less.
 Siは、固溶強化元素として鋼板の高強度化に寄与する他、後述するT1温度域およびT2温度域での保持中に(オーステンパ処理中に)炭化物が析出するのを抑制し、残留γを効果的に生成させるうえで大変重要な元素である。従ってSi量は1.0%以上、好ましくは1.2%以上、より好ましくは1.3%以上である。しかしSiを過剰に含有すると、焼鈍での加熱・均熱時にγ相への逆変態が起こらず、ポリゴナルフェライトが多量に残存し、強度不足になる。また、熱間圧延の際に鋼板表面にSiスケールを発生して鋼板の表面性状を悪化させる。従ってSi量は3.0%以下、好ましくは2.5%以下、より好ましくは2.0%以下である。 Si contributes to increasing the strength of the steel sheet as a solid solution strengthening element, and suppresses the precipitation of carbide during holding in the T1 temperature range and T2 temperature range described later (during the austempering process), thereby reducing the residual γ. It is an extremely important element for effective generation. Accordingly, the Si amount is 1.0% or more, preferably 1.2% or more, more preferably 1.3% or more. However, when Si is excessively contained, reverse transformation to the γ phase does not occur during heating and soaking in annealing, and a large amount of polygonal ferrite remains, resulting in insufficient strength. In addition, Si scale is generated on the surface of the steel sheet during hot rolling to deteriorate the surface properties of the steel sheet. Accordingly, the Si content is 3.0% or less, preferably 2.5% or less, and more preferably 2.0% or less.
 Mnは、ベイナイトおよび焼戻しマルテンサイトを得るために必要な元素である。またMnは、γを安定化させて残留γを生成させるのにも有効に作用する元素である。こうした作用を発揮させるために、Mn量は1.5%以上、好ましくは1.8%以上、より好ましくは2.0%以上とする。しかしMnを過剰に含有すると、高温域生成ベイナイトの生成が著しく抑制される。また、Mnの過剰添加は、溶接性の劣化や偏析による加工性の劣化を招く。従ってMn量は3%以下、好ましくは2.8%以下、より好ましくは2.7%以下とする。 Mn is an element necessary for obtaining bainite and tempered martensite. Mn is an element that effectively acts to stabilize γ and generate residual γ. In order to exert such an effect, the amount of Mn is 1.5% or more, preferably 1.8% or more, more preferably 2.0% or more. However, when Mn is contained excessively, the generation of high temperature region bainite is remarkably suppressed. Further, excessive addition of Mn causes deterioration of weldability and workability due to segregation. Therefore, the Mn content is 3% or less, preferably 2.8% or less, more preferably 2.7% or less.
 Alは、Siと同様に、オーステンパ処理中に炭化物が析出するのを抑制し、残留γを生成させるのに寄与する元素である。またAlは、製鋼工程で脱酸剤として作用する元素である。従ってAl量は0.005%以上、好ましくは0.01%以上、より好ましくは0.03%以上とする。しかしAlを過剰に含有すると、鋼板中の介在物が多くなり過ぎて延性が劣化する。従ってAl量は3%以下、好ましくは1.5%以下、より好ましくは1%以下、更に好ましくは0.5%以下とする。 Al, like Si, is an element that suppresses the precipitation of carbides during the austempering process and contributes to the formation of residual γ. Al is an element that acts as a deoxidizer in the steel making process. Therefore, the Al content is 0.005% or more, preferably 0.01% or more, more preferably 0.03% or more. However, when Al is contained excessively, the inclusions in the steel sheet increase so much that ductility deteriorates. Therefore, the Al content is 3% or less, preferably 1.5% or less, more preferably 1% or less, and still more preferably 0.5% or less.
 Pは、鋼に不可避的に含まれる不純物元素であり、P量が過剰になると鋼板の溶接性が劣化する。従ってP量は0.1%以下、好ましくは0.08%以下、より好ましくは0.05%以下である。P量はできるだけ少ない方が良いが、0%にするのは工業的に困難である。 P P is an impurity element inevitably contained in steel, and when the amount of P becomes excessive, the weldability of the steel sheet deteriorates. Therefore, the amount of P is 0.1% or less, preferably 0.08% or less, more preferably 0.05% or less. The amount of P is preferably as small as possible, but it is industrially difficult to reduce it to 0%.
 Sは、鋼に不可避的に含まれる不純物元素であり、上記Pと同様、鋼板の溶接性を劣化させる元素である。またSは、鋼板中に硫化物系介在物を形成し、これが増大すると加工性が低下する。従ってS量は0.05%以下、好ましくは0.01%以下、より好ましくは0.005%以下である。S量はできるだけ少ない方が良いが、0%にするのは工業的に困難である。 S is an impurity element inevitably contained in the steel, and is an element that deteriorates the weldability of the steel sheet as in the case of P described above. Further, S forms sulfide-based inclusions in the steel sheet, and when this increases, the workability decreases. Therefore, the amount of S is 0.05% or less, preferably 0.01% or less, more preferably 0.005% or less. The amount of S should be as small as possible, but it is industrially difficult to make it 0%.
 本発明に係る第一高強度鋼板は、上記成分組成を満足するものであり、残部成分は鉄および上記P、S以外の不可避不純物である。不可避不純物としては、例えば、NやO(酸素)、トランプ元素(例えば、Pb、Bi、Sb、Snなど)などが含まれる。不可避不純物のうち、N量は0.01%以下(0%を含まない)、O量は0.01%以下(0%を含まない)であることが好ましい。 The first high-strength steel sheet according to the present invention satisfies the above component composition, and the remaining components are iron and inevitable impurities other than P and S. Examples of inevitable impurities include N, O (oxygen), and trump elements (eg, Pb, Bi, Sb, Sn, etc.). Of the inevitable impurities, the N content is preferably 0.01% or less (not including 0%), and the O content is preferably 0.01% or less (not including 0%).
 Nは、鋼板中に窒化物を析出させて鋼板の強化に寄与する元素であるが、Nを過剰に含有すると、窒化物が多量に析出して伸び、伸びフランジ性、および曲げ性の劣化を引き起こす。従ってN量は0.01%以下であることが好ましく、より好ましくは0.008%以下、更に好ましくは0.005%以下である。 N is an element that contributes to strengthening of the steel sheet by precipitating nitrides in the steel sheet. However, when N is excessively contained, a large amount of nitride precipitates and causes elongation, stretch flangeability, and deterioration of bendability. cause. Accordingly, the N content is preferably 0.01% or less, more preferably 0.008% or less, and still more preferably 0.005% or less.
 O(酸素)は、過剰に含有すると伸び、伸びフランジ性、および曲げ性の低下を招く元素である。従ってO量は0.01%以下であることが好ましく、より好ましくは0.005%以下、更に好ましくは0.003%以下である。 O (oxygen) is an element that, when contained excessively, causes a decrease in elongation, stretch flangeability, and bendability. Therefore, the O content is preferably 0.01% or less, more preferably 0.005% or less, and still more preferably 0.003% or less.
 本発明の第一高強度鋼板は、更に他の元素として、
(a)Cr:1%以下(0%を含まない)および/またはMo:1%以下(0%を含まない)、
(b)Ti:0.15%以下(0%を含まない)、Nb:0.15%以下(0%を含まない)およびV:0.15%以下(0%を含まない)よりなる群から選択される1種以上の元素、
(c)Cu:1%以下(0%を含まない)および/またはNi:1%以下(0%を含まない)、
(d)B:0.005%以下(0%を含まない)、
(e)Ca:0.01%以下(0%を含まない)、Mg:0.01%以下(0%を含まない)および希土類元素:0.01%以下(0%を含まない)よりなる群から選択される1種以上の元素、
等を含有しても良い。
The first high-strength steel sheet of the present invention is further added as another element,
(A) Cr: 1% or less (not including 0%) and / or Mo: 1% or less (not including 0%),
(B) A group consisting of Ti: 0.15% or less (not including 0%), Nb: 0.15% or less (not including 0%), and V: 0.15% or less (not including 0%) One or more elements selected from
(C) Cu: 1% or less (not including 0%) and / or Ni: 1% or less (not including 0%),
(D) B: 0.005% or less (excluding 0%),
(E) Ca: 0.01% or less (not including 0%), Mg: 0.01% or less (not including 0%), and rare earth elements: 0.01% or less (not including 0%) One or more elements selected from the group,
Etc. may be contained.
 (a)CrとMoは、上記Mnと同様に、ベイナイトと焼戻しマルテンサイトを得るために有効に作用する元素である。これらの元素は、単独で、或いは併用して使用できる。こうした作用を有効に発揮させるには、CrとMoは、夫々単独で、0.1%以上含有させることが好ましく、より好ましくは0.2%以上である。しかしCrとMoの含有量が、夫々1%を超えると、高温域生成ベイナイトの生成が著しく抑制される。また、過剰な添加はコスト高となる。従ってCrとMoは、夫々1%以下であることが好ましく、より好ましくは0.8%以下、更に好ましくは0.5%以下である。CrとMoを併用する場合は、合計量を1.5%以下とすることが推奨される。 (A) Similar to Mn, Cr and Mo are elements that act effectively to obtain bainite and tempered martensite. These elements can be used alone or in combination. In order to effectively exhibit such an action, Cr and Mo are each preferably contained alone in an amount of 0.1% or more, more preferably 0.2% or more. However, when the content of Cr and Mo exceeds 1%, the generation of high temperature region bainite is remarkably suppressed. In addition, excessive addition increases the cost. Accordingly, Cr and Mo are each preferably 1% or less, more preferably 0.8% or less, and still more preferably 0.5% or less. When Cr and Mo are used in combination, the total amount is recommended to be 1.5% or less.
 (b)Ti、NbおよびVは、鋼板中に炭化物や窒化物等の析出物を形成し、鋼板を強化すると共に、旧γ粒の微細化によりポリゴナルフェライト粒を細かくする作用も有する元素である。こうした作用を有効に発揮させるには、Ti、NbおよびVは、夫々単独で、0.01%以上含有させることが好ましく、より好ましくは0.02%以上である。しかし過剰に含有すると、粒界に炭化物が析出し、鋼板の伸びフランジ性や曲げ性が劣化する。従ってTi、NbおよびVは、夫々単独で、0.15%以下であることが好ましく、より好ましくは0.12%以下、更に好ましくは0.1%以下である。Ti、NbおよびVは、夫々単独で含有させてもよいし、任意に選ばれる2種以上の元素を含有させてもよい。 (B) Ti, Nb, and V are elements that form precipitates such as carbides and nitrides in the steel sheet, strengthen the steel sheet, and also have the effect of refining the polygonal ferrite grains by refining the old γ grains. is there. In order to exhibit such an action effectively, Ti, Nb and V are each preferably contained in an amount of 0.01% or more, more preferably 0.02% or more. However, when it contains excessively, carbide will precipitate to a grain boundary and the stretch flangeability and bendability of a steel plate will deteriorate. Therefore, Ti, Nb and V are each independently preferably 0.15% or less, more preferably 0.12% or less, and still more preferably 0.1% or less. Ti, Nb, and V may each be contained alone, or may contain two or more elements that are arbitrarily selected.
 (c)CuとNiは、γを安定化させて残留γを生成させるのに有効に作用する元素である。これらの元素は、単独で、或いは併用して使用できる。こうした作用を有効に発揮させるには、CuとNiは、夫々単独で0.05%以上含有させることが好ましく、より好ましくは0.1%以上である。しかしCuとNiを過剰に含有すると、熱間加工性が劣化する。従ってCuとNiは、夫々単独で1%以下とすることが好ましく、より好ましくは0.8%以下、更に好ましくは0.5%以下である。なお、Cuを1%を超えて含有させると熱間加工性が劣化するが、Niを添加すれば熱間加工性の劣化は抑制されるため、CuとNiを併用する場合は、コスト高となるが1%を超えてCuを添加してもよい。 (C) Cu and Ni are elements that effectively act to stabilize γ and generate residual γ. These elements can be used alone or in combination. In order to exhibit such an action effectively, it is preferable to contain Cu and Ni individually by 0.05% or more, more preferably 0.1% or more. However, when Cu and Ni are contained excessively, the hot workability deteriorates. Accordingly, Cu and Ni are each preferably preferably 1% or less, more preferably 0.8% or less, and still more preferably 0.5% or less. In addition, when Cu is contained in excess of 1%, hot workability deteriorates. However, when Ni is added, deterioration of hot workability is suppressed. However, Cu may be added in excess of 1%.
 (d)Bは、上記Mn、CrおよびMoと同様に、ベイナイトと焼戻しマルテンサイトを生成させるのに有効に作用する元素である。こうした作用を有効に発揮させるには、Bは0.0005%以上含有させることが好ましく、より好ましくは0.001%以上である。しかしBを過剰に含有すると、鋼板中にホウ化物を生成して延性を劣化させる。またBを過剰に含有すると、上記CrやMoと同様に、高温域生成ベイナイトの生成が著しく抑制される。従ってB量は0.005%以下であることが好ましく、より好ましくは0.004%以下、更に好ましくは0.003%以下である。 (D) B is an element that acts effectively to produce bainite and tempered martensite, as in the case of Mn, Cr and Mo. In order to exhibit such an action effectively, B is preferably contained in an amount of 0.0005% or more, more preferably 0.001% or more. However, when B is contained excessively, a boride is generated in the steel sheet and the ductility is deteriorated. Moreover, when B is contained excessively, the production | generation of high temperature range production | generation bainite will be suppressed remarkably similarly to said Cr and Mo. Accordingly, the B content is preferably 0.005% or less, more preferably 0.004% or less, and still more preferably 0.003% or less.
 (e)Ca、Mgおよび希土類元素(REM)は、鋼板中の介在物を微細分散させるのに作用する元素である。こうした作用を有効に発揮させるには、Ca、Mgおよび希土類元素は、夫々単独で、0.0005%以上含有させることが好ましく、より好ましくは0.001%以上である。しかし過剰に含有すると、鋳造性や熱間加工性などを劣化させ、製造し難くなる。また、過剰添加は、鋼板の延性を劣化させる原因となる。従ってCa、Mgおよび希土類元素は、夫々単独で、0.01%以下であることが好ましく、より好ましくは0.005%以下、更に好ましくは0.003%以下である。 (E) Ca, Mg and rare earth elements (REM) are elements that act to finely disperse inclusions in the steel sheet. In order to effectively exhibit such an action, Ca, Mg and rare earth elements are each preferably contained in an amount of 0.0005% or more, more preferably 0.001% or more. However, when it contains excessively, castability, hot workability, etc. will deteriorate and it will become difficult to manufacture. Further, excessive addition causes the ductility of the steel sheet to deteriorate. Therefore, Ca, Mg, and rare earth elements are each independently preferably 0.01% or less, more preferably 0.005% or less, and still more preferably 0.003% or less.
 上記希土類元素とは、ランタノイド元素(LaからLuまでの15元素)およびSc(スカンジウム)とY(イットリウム)を含む意味であり、これらの元素のなかでも、La、CeおよびYよりなる群から選ばれる少なくとも1種の元素を含有することが好ましく、より好ましくはLaおよび/またはCeを含有させるのがよい。 The rare earth element means a lanthanoid element (15 elements from La to Lu), Sc (scandium) and Y (yttrium), and among these elements, it is selected from the group consisting of La, Ce and Y. It is preferable to contain at least one kind of element, more preferably La and / or Ce.
 本発明に係る第一高強度鋼板は、引張強度が780MPa以上で、局所変形能に優れ、しかも伸びも良好であるため、加工性に優れている。この第一高強度鋼板は、自動車の構造部品の素材として好適に用いられる。自動車の構造部品としては、例えば、フロントやリア部サイドメンバやクラッシュボックスなどの正突部品をはじめ、ピラー類などの補強材(例えば、センターピラーリインフォース)、ルーフレールの補強材、サイドシル、フロアメンバー、キック部などの車体構成部品、バンパーの補強材やドアインパクトビームなどの耐衝撃吸収部品、シート部品などが挙げられる。 The first high-strength steel sheet according to the present invention is excellent in workability because it has a tensile strength of 780 MPa or more, excellent local deformability, and good elongation. This first high-strength steel plate is suitably used as a material for structural parts of automobiles. Structural parts of automobiles include, for example, front and rear side members and crashing parts such as crash boxes, reinforcing materials such as pillars (for example, center pillar reinforcement), roof rail reinforcing materials, side sills, floor members, Examples include vehicle body components such as kick parts, shock-absorbing parts such as bumper reinforcements and door impact beams, and seat parts.
 また、上記第一高強度鋼板は、温間での加工性が良好であるため、温間成形用の素材としても好適に用いることができる。なお、温間加工とは、50~500℃程度の温度範囲で成形することを意味している。 Also, the first high-strength steel sheet can be suitably used as a material for warm forming because of its good workability in warm conditions. Note that warm processing means forming in a temperature range of about 50 to 500 ° C.
 以上、本発明に係る第一高強度鋼板の金属組織と成分組成について説明した。 The metal structure and component composition of the first high-strength steel sheet according to the present invention have been described above.
 次に、上記第一高強度鋼板を製造できる方法について説明する。上記第一高強度鋼板は、上記成分組成を満足する鋼板を{(Ac1点+Ac3点)/2}+20℃以上、Ac3点+20℃以下の温度域(二相温度域)に加熱する工程と、該温度域で50秒間以上保持する工程と、下記式(1)を満たす任意の温度Tまで平均冷却速度2℃/秒以上で冷却する工程と、下記式(1)を満たす温度域で10~100秒間保持する工程と、下記式(2)を満たす温度域で200秒間以上保持する工程と、をこの順で含むことによって製造できる。以下、各工程について順を追って説明する。
400℃≦T1(℃)≦540℃  ・・・(1)
200℃≦T2(℃)<400℃  ・・・(2)
Next, a method capable of producing the first high-strength steel plate will be described. The first high-strength steel sheet heats a steel sheet satisfying the above component composition to a temperature range (two-phase temperature range) of {(Ac 1 point + Ac 3 point) / 2} + 20 ° C. or higher and Ac 3 point + 20 ° C. or lower. A step, a step of holding for 50 seconds or more in the temperature range, a step of cooling at an average cooling rate of 2 ° C./second or more to an arbitrary temperature T satisfying the following formula (1), and a temperature range satisfying the following formula (1) Can be produced by including a step of holding for 10 to 100 seconds in this order and a step of holding for 200 seconds or more in a temperature range satisfying the following formula (2) in this order. Hereinafter, each step will be described in order.
400 ° C. ≦ T1 (° C.) ≦ 540 ° C. (1)
200 ° C. ≦ T2 (° C.) <400 ° C. (2)
 まず、二相温度域[{(Ac1点+Ac3点)/2}+20℃以上、Ac3点+20℃以下の温度域]に加熱する前の高強度鋼板として、スラブを常法に従って熱間圧延し、得られた熱延鋼板を冷間圧延したものを準備する。熱間圧延は、仕上げ圧延温度を、例えば800℃以上、巻取り温度を、例えば700℃以下とすればよい。冷間圧延では、冷延率を、例えば10~70%の範囲として圧延すればよい。 First, as a high-strength steel plate before heating to a two-phase temperature range [{(Ac 1 point + Ac 3 point) / 2} + 20 ° C. or higher, Ac 3 point + 20 ° C. or lower temperature range] A hot rolled steel sheet obtained by rolling and cold rolling is prepared. In hot rolling, the finish rolling temperature may be set to, for example, 800 ° C. or more, and the winding temperature may be set to, for example, 700 ° C. or less. In cold rolling, the rolling may be performed with the cold rolling rate in the range of 10 to 70%, for example.
 冷間圧延して得られた冷延鋼板は、連続焼鈍ラインで、{(Ac1点+Ac3点)/2}+20℃以上、Ac3点+20℃以下の温度域に加熱し、この温度域で50秒間以上保持して均熱する。 The cold-rolled steel sheet obtained by cold rolling is heated to a temperature range of {(Ac 1 point + Ac 3 point) / 2} + 20 ° C. or higher and Ac 3 point + 20 ° C. or lower in a continuous annealing line. Hold for 50 seconds or more and soak.
 加熱温度をフェライトとオーステナイトの二相温度域にすることによって、所定量のポリゴナルフェライトを生成させることができる。即ち、加熱温度が高過ぎるとオーステナイト単相域となり、ポリゴナルフェライトの生成が抑制されるため、鋼板の伸びを改善できず、加工性が劣化する。従って加熱温度は、Ac3点+20℃以下、好ましくはAc3点+10℃以下、より好ましくはAc3点未満とする。なお、Ac3点以上に加熱すると、オーステナイト単相の温度域となるが、本発明で規定している均熱時間程度では、加熱温度がAc3点+20℃以下であれば、均熱保持を行っても少量のポリゴナルフェライトが残存するので、後述するように均熱後の平均冷却速度を調整することによって、所定量のポリゴナルフェライトを生成させることができる。しかし加熱温度が{(Ac1点+Ac3点)/2}+20℃を下回ると、ポリゴナルフェライトの生成量が過剰になり、ポリゴナルフェライトが50面積%を超えて生成するため、所望とする強度を確保できなくなる。従って加熱温度は、{(Ac1点+Ac3点)/2}+20℃以上、好ましくは{(Ac1点+Ac3点)/2}+30℃以上、より好ましくは{(Ac1点+Ac3点)/2}+50℃以上である。 By setting the heating temperature to a two-phase temperature range of ferrite and austenite, a predetermined amount of polygonal ferrite can be generated. That is, if the heating temperature is too high, an austenite single-phase region is formed, and the formation of polygonal ferrite is suppressed, so that the elongation of the steel sheet cannot be improved and the workability deteriorates. Accordingly, the heating temperature is Ac 3 point + 20 ° C. or less, preferably Ac 3 point + 10 ° C. or less, more preferably less than Ac 3 point. In addition, when heated to Ac 3 point or higher, it becomes the temperature range of the austenite single phase, but if the heating temperature is Ac 3 point + 20 ° C. or less in the soaking time specified in the present invention, the soaking is maintained. Since a small amount of polygonal ferrite remains even if it is carried out, a predetermined amount of polygonal ferrite can be generated by adjusting the average cooling rate after soaking as described later. However, if the heating temperature falls below {(Ac 1 point + Ac 3 point) / 2} + 20 ° C., the amount of polygonal ferrite produced becomes excessive, and polygonal ferrite is produced in excess of 50 area%. Strength cannot be secured. Accordingly, the heating temperature is {(Ac 1 point + Ac 3 point) / 2} + 20 ° C. or higher, preferably {(Ac 1 point + Ac 3 point) / 2} + 30 ° C. or higher, more preferably {(Ac 1 point + Ac 3 point). ) / 2} + 50 ° C. or higher.
 上記二相温度域での均熱時間が50秒を下回ると、鋼板を均一に加熱できないため、残留γの生成が抑制され、伸びおよび局所変形能が低下し、加工性を改善できない。従って均熱時間は50秒以上、好ましくは100秒以上とする。しかし均熱時間が長過ぎると、オーステナイト粒径が大きくなり、それに伴いポリゴナルフェライト粒も粗大化し、伸びおよび局所変形能が悪くなる傾向がある。従って均熱時間は、500秒以下とすることが好ましく、より好ましくは450秒以下である。 If the soaking time in the above two-phase temperature range is less than 50 seconds, the steel sheet cannot be heated uniformly, so the formation of residual γ is suppressed, elongation and local deformability are reduced, and workability cannot be improved. Therefore, the soaking time is 50 seconds or longer, preferably 100 seconds or longer. However, if the soaking time is too long, the austenite grain size becomes large, and the polygonal ferrite grains are coarsened accordingly, and the elongation and local deformability tend to deteriorate. Therefore, the soaking time is preferably 500 seconds or shorter, more preferably 450 seconds or shorter.
 なお、上記冷延鋼板を、上記二相温度域に加熱するときの平均加熱速度は、例えば1℃/秒以上とすればよい。 In addition, what is necessary is just to let the average heating rate when heating the said cold-rolled steel plate to the said 2 phase temperature range be 1 degree-C / sec or more, for example.
 上記Ac1点、Ac3点は、「レスリー鉄鋼材料科学」(丸善株式会社、1985年5月31日発行、P.273)に記載されている下記式(a)、式(b)から算出できる。下記式(a)、式(b)中、[ ]は各元素の含有量(質量%)を示しており、鋼板に含まれない元素の含有量は0質量%として計算すればよい。
Ac1(℃)=723-10.7×[Mn]-16.9×[Ni]+29.1×[Si]+16.9×[Cr]  ・・(a)
Ac3(℃)=910-203×[C]1/2+44.7×[Si]-30×[Mn]-11×[Cr]+31.5×[Mo]-20×[Cu]-15.2×[Ni]+400×[Ti]+104×[V]+700×[P]+400×[Al]  ・・(b)
The Ac 1 point and Ac 3 point are calculated from the following formulas (a) and (b) described in “Leslie Steel Materials Science” (Maruzen Co., Ltd., issued May 31, 1985, P.273). it can. In the following formulas (a) and (b), [] indicates the content (mass%) of each element, and the content of elements not included in the steel sheet may be calculated as 0 mass%.
Ac 1 (° C.) = 723-10.7 × [Mn] −16.9 × [Ni] + 29.1 × [Si] + 16.9 × [Cr] (a)
Ac 3 (° C.) = 910−203 × [C] 1/2 + 44.7 × [Si] −30 × [Mn] −11 × [Cr] + 31.5 × [Mo] −20 × [Cu] −15 2 × [Ni] + 400 × [Ti] + 104 × [V] + 700 × [P] + 400 × [Al] (b)
 上記二相温度域に加熱して50秒間以上保持して均熱化した後は、上記式(1)を満たす任意の温度Tまで平均冷却速度2℃/秒以上で冷却する。二相温度域から上記式(1)を満たす任意の温度Tまでの範囲を所定の平均冷却速度以上で冷却することによって、所定量のポリゴナルフェライトを生成させることができ、また高温域生成ベイナイトと低温域生成ベイナイト等の両方を生成させることができる。この温度域の平均冷却速度が2℃/秒を下回ると、パーライト変態を起こしてパーライトが過剰に生成し、伸びが低下して加工性が劣化する。この区間の平均冷却速度は、好ましくは5℃/秒以上、より好ましくは10℃/秒以上である。上記区間の平均冷却速度の上限は特に限定されないが、平均冷却速度が大きくなり過ぎると温度制御が困難となるため、上限は、例えば100℃/秒程度であればよい。 After heating to the above two-phase temperature range and holding for 50 seconds or more and soaking, it is cooled at an average cooling rate of 2 ° C./second or more to any temperature T satisfying the above formula (1). By cooling the range from the two-phase temperature range to an arbitrary temperature T satisfying the above formula (1) at a predetermined average cooling rate or higher, a predetermined amount of polygonal ferrite can be generated. And low temperature region bainite can be generated. When the average cooling rate in this temperature range is less than 2 ° C./second, pearlite transformation occurs, pearlite is excessively generated, elongation decreases, and workability deteriorates. The average cooling rate in this section is preferably 5 ° C./second or more, more preferably 10 ° C./second or more. The upper limit of the average cooling rate in the section is not particularly limited, but if the average cooling rate becomes too high, temperature control becomes difficult, and therefore the upper limit may be about 100 ° C./second, for example.
 上記式(1)を満たす任意の温度Tまで冷却した後は、上記式(1)を満たすT1温度域で10~100秒間保持した後、上記式(2)を満たすT2温度域で200秒間以上保持する。T1温度域とT2温度域に保持する時間を夫々適切に制御することによって、高温域生成ベイナイトと低温域生成ベイナイト等を所定量ずつ生成させることができる。具体的には、T1温度域で所定時間保持することにより、高温域生成ベイナイトの生成量を制御でき、T2温度域で所定時間保持するオーステンパ処理によって、未変態オーステナイトを低温域生成ベイナイト、またはマルテンサイトに変態させると共に、炭素をオーステナイトへ濃化させて残留γを生成させ、本発明で規定する金属組織を生成させることができる。 After cooling to an arbitrary temperature T satisfying the above formula (1), holding for 10 to 100 seconds in the T1 temperature range satisfying the above formula (1) and then 200 seconds or more in the T2 temperature range satisfying the above formula (2) Hold. By appropriately controlling the time for holding in the T1 temperature range and the T2 temperature range, it is possible to generate a predetermined amount of high temperature region bainite, low temperature region bainite, and the like. Specifically, the amount of high-temperature region-generated bainite can be controlled by holding in the T1 temperature region for a predetermined time, and the untransformed austenite is converted into low-temperature region-generated bainite or martensite by the austempering process that is maintained in the T2 temperature region for a predetermined time. While transforming into sites, carbon can be concentrated to austenite to generate residual γ, and a metal structure defined in the present invention can be generated.
 また、T1温度域における保持と、T2温度域における保持を組み合わせることにより、MA混合相の生成を抑制できる効果も発揮される。このメカニズムは、次のように考えられる。一般的に、SiやAlを添加すると、炭化物の析出が抑制されるため、鋼中にはフリーな炭素が存在することとなり、オーステンパ処理ではベイナイト変態と共に炭素が未変態オーステナイトへ濃化する現象が認められる。炭素が未変態オーステナイトへ濃化することにより、残留γを多く生成させることができる。 In addition, by combining the holding in the T1 temperature range and the holding in the T2 temperature range, the effect of suppressing the generation of the MA mixed phase is also exhibited. This mechanism is considered as follows. In general, when Si or Al is added, precipitation of carbides is suppressed, so that free carbon exists in the steel, and in the austempering process, carbon is concentrated to untransformed austenite along with bainite transformation. Is recognized. A large amount of residual γ can be generated by concentrating carbon to untransformed austenite.
 ここで炭素が未変態オーステナイトへ濃化する現象について説明する。炭素の濃化量は、フェライトとオーステナイトの自由エネルギーが等しくなるTo線で示される濃度までに制限されるため、ベイナイト変態も停止することが知られている。このTo線は、温度が高いほど低炭素濃度側になることから、オーステンパ処理を比較的高温で行うと、処理時間を長くしてもベイナイト変態がある程度のところで停止してしまう。このとき未変態のオーステナイトの安定性は低いため、粗大なMA混合相が生成する。 Here, the phenomenon of carbon concentration to untransformed austenite will be described. It is known that the bainite transformation also stops because the concentration of carbon is limited to the concentration indicated by the To line where the free energy of ferrite and austenite becomes equal. Since the To line becomes lower in carbon concentration as the temperature is higher, if the austempering process is performed at a relatively high temperature, the bainite transformation stops at a certain level even if the processing time is increased. At this time, since the stability of untransformed austenite is low, a coarse MA mixed phase is generated.
 そこで本発明では、上記T1温度域で保持した後、上記T2温度域で保持することにより未変態オーステナイトへのC濃度の許容量を多くすることができるため、高温域よりも低温域の方が、ベイナイト変態が進行し、MA混合相が小さくなる。また、上記T1温度域で保持する場合に比べて、上記T2温度域で保持する場合は、ラス状組織のサイズが小さくなるため、MA混合相が存在したとしても、MA混合相自体も細分化され、MA混合相を小さくできる。更に、T1温度域で所定時間保持した後、T2温度域で保持しているため、T2温度域での保持を開始した時点で、既に高温域生成ベイナイトが生成している。従ってT2温度域では、高温域生成ベイナイトがきっかけとなり、低温域生成ベイナイトの変態が促進されるため、オーステンパ処理の時間を短縮できるという効果も発揮される。 Therefore, in the present invention, after holding in the T1 temperature range, the allowable amount of C concentration to the untransformed austenite can be increased by holding in the T2 temperature range, so the low temperature range is higher than the high temperature range. The bainite transformation proceeds and the MA mixed phase becomes smaller. Further, since the size of the lath-like structure is smaller when held at the T2 temperature range than when held at the T1 temperature range, the MA mixed phase itself is subdivided even if the MA mixed phase exists. Thus, the MA mixed phase can be reduced. Furthermore, since it hold | maintains in T2 temperature range after hold | maintaining for a predetermined time in T1 temperature range, the high temperature range production | generation bainite has already produced | generated when the holding | maintenance in T2 temperature range was started. Accordingly, in the T2 temperature region, the high temperature region-generated bainite is a trigger, and the transformation of the low temperature region-generated bainite is promoted, so that the effect of shortening the time of the austempering treatment is also exhibited.
 なお、上記二相温度域から、上記T1温度域での保持を行わずに、上記式(2)を満たす任意の温度まで冷却し、この式(2)を満たすT2温度域のみで保持した場合(即ち、単純な低温保持のオーステンパ処理)であっても、ラス状組織のサイズは小さくなるため、MA混合相を小さくできる。しかしこの場合は、上記T1温度域で保持していないため、高温域生成ベイナイトが殆ど生成せず、また基地のラス状組織の転位密度が大きくなり、伸びおよび局所変形能が低下し、加工性が劣化する。 In the case where the temperature is cooled from the two-phase temperature range to an arbitrary temperature satisfying the formula (2) without being held in the T1 temperature range, and held only in the T2 temperature range satisfying the formula (2). Even in the simple austempering process at a low temperature, the size of the lath-like structure is reduced, so that the MA mixed phase can be reduced. However, in this case, since the temperature is not maintained in the T1 temperature range, almost no high temperature range bainite is generated, the dislocation density of the base lath structure is increased, elongation and local deformability are reduced, and workability is reduced. Deteriorates.
 本発明において、上記式(1)で規定するT1温度域は、具体的には、400℃以上、540℃以下とする。この温度域で所定時間保持することによって、高温域生成ベイナイトを生成させることができる。即ち、540℃を超える温度域で保持すると、高温域生成ベイナイトの生成が抑制され、その反面、ポリゴナルフェライトが過剰に生成し、また擬似パーライトが生成するため、所望の特性が得られない。従ってT1温度域の上限は540℃、好ましくは520℃、より好ましくは500℃である。一方、保持温度が400℃を下回ると、高温域生成ベイナイトが生成しないため、伸びが低下して加工性を改善できない。従ってT1温度域の下限は400℃、好ましくは420℃である。 In the present invention, the T1 temperature range defined by the above formula (1) is specifically 400 ° C. or more and 540 ° C. or less. By maintaining for a predetermined time in this temperature range, high temperature range bainite can be generated. That is, when the temperature is maintained at a temperature exceeding 540 ° C., the formation of high temperature bainite is suppressed. On the other hand, polygonal ferrite is excessively generated and pseudo pearlite is generated, so that desired characteristics cannot be obtained. Therefore, the upper limit of the T1 temperature range is 540 ° C, preferably 520 ° C, more preferably 500 ° C. On the other hand, if the holding temperature is lower than 400 ° C., high temperature region bainite is not generated, so that elongation is lowered and workability cannot be improved. Therefore, the lower limit of the T1 temperature range is 400 ° C, preferably 420 ° C.
 上記T1温度域で保持する時間は、10~100秒間とする。保持時間が100秒を超えると、高温域生成ベイナイトが過剰に生成するため、後述するように、上記T2温度域で所定時間保持しても低温域生成ベイナイト等の生成量を確保できない。従って強度と加工性を両立させることができない。また、T1温度域で長時間保持すると、炭素がオーステナイト中に濃化し過ぎるため、T2温度域でオーステンパ処理しても粗大なMA混合相が生成し、加工性が劣化する。従って保持時間は100秒以下とし、好ましくは90秒以下、より好ましくは80秒以下である。しかしT1温度域での保持時間が短過ぎると高温域生成ベイナイトの生成量が少なくなるため、伸びが低下し、加工性を改善できない。従ってT1温度域での保持時間は10秒以上とし、好ましくは15秒以上、より好ましくは20秒以上、更に好ましくは30秒以上である。 The time for holding in the T1 temperature range is 10 to 100 seconds. If the holding time exceeds 100 seconds, the high-temperature region-generated bainite is excessively generated. Therefore, as will be described later, the amount of low-temperature region-generated bainite or the like cannot be ensured even if the predetermined time is maintained in the T2 temperature region. Accordingly, it is impossible to achieve both strength and workability. Further, if the temperature is held for a long time in the T1 temperature range, carbon is excessively concentrated in the austenite, so that a coarse MA mixed phase is generated even if austempering is performed in the T2 temperature range, and workability deteriorates. Therefore, the holding time is 100 seconds or less, preferably 90 seconds or less, more preferably 80 seconds or less. However, if the holding time in the T1 temperature region is too short, the amount of high-temperature region-generated bainite is reduced, so that elongation is lowered and workability cannot be improved. Accordingly, the holding time in the T1 temperature range is 10 seconds or longer, preferably 15 seconds or longer, more preferably 20 seconds or longer, and even more preferably 30 seconds or longer.
 本発明において、T1温度域での保持時間とは、鋼板の表面温度が、T1温度域の上限温度に到達した時点から、T1温度域の下限温度に到達するまでの時間を意味する。即ち、鋼板の表面温度が、540℃に到達した時点から、400℃に到達するまでの時間である。 In the present invention, the holding time in the T1 temperature range means the time from when the surface temperature of the steel sheet reaches the upper limit temperature in the T1 temperature range to the lower limit temperature in the T1 temperature range. That is, it is the time from when the surface temperature of the steel sheet reaches 540 ° C. until it reaches 400 ° C.
 上記式(1)を満たすT1温度域で保持するには、例えば、図3の(i)~(iii)に示すヒートパターンを採用すればよい。 In order to maintain the temperature in the T1 temperature range that satisfies the above formula (1), for example, the heat patterns shown in (i) to (iii) of FIG.
 図3(i)は、二相温度域から上記式(1)を満たす任意の温度Tまで急冷した後、この温度Tで所定時間恒温保持する例であり、恒温保持後、上記式(2)を満足する任意の温度まで冷却している。図3(i)には、一段階の恒温保持を行った場合について示しているがこれに限定されず、T1温度域の範囲内であれば、保持温度が異なる2段階以上の恒温保持を行ってもよい。 FIG. 3 (i) shows an example in which the temperature is rapidly cooled from the two-phase temperature range to an arbitrary temperature T satisfying the above formula (1), and then kept at this temperature T for a predetermined time. It is cooled to any temperature that satisfies. Although FIG. 3 (i) shows a case where one-stage constant temperature holding is performed, the present invention is not limited to this, and two or more constant temperature holdings having different holding temperatures are performed as long as they are within the T1 temperature range. May be.
 図3(ii)は、二相温度域から上記式(1)を満たす任意の温度Tまで急冷した後、冷却速度を変更し、T1温度域の範囲内で所定時間かけて冷却した後、再度冷却速度を変更して上記式(2)を満足する任意の温度まで冷却する例である。図3(ii)には、T1温度域の範囲内で所定時間かけて冷却した場合を示しているが、本発明はこれに限定されず、T1温度域の範囲内であれば、所定時間かけて加熱する工程を含んでいても良いし、冷却と加熱を適宜繰り返してもよい。また、図3(ii)に示すように一段冷却ではなく、冷却速度が異なる二段以上の多段冷却を行ってもよい。また、一段加熱や、二段以上の多段加熱を行なってもよい(図示せず)。 FIG. 3 (ii) shows that after rapidly cooling from the two-phase temperature range to an arbitrary temperature T satisfying the above formula (1), the cooling rate is changed, and after cooling for a predetermined time within the range of the T1 temperature range, In this example, the cooling rate is changed and the cooling is performed to an arbitrary temperature satisfying the above formula (2). FIG. 3 (ii) shows a case where the cooling is performed for a predetermined time within the range of the T1 temperature range, but the present invention is not limited to this. And a step of heating may be included, and cooling and heating may be repeated as appropriate. Further, as shown in FIG. 3 (ii), not only one-stage cooling but also two-stage or more multi-stage cooling with different cooling rates may be performed. Further, one-stage heating or multi-stage heating of two or more stages may be performed (not shown).
 図3(iii)は、二相温度域から上記式(1)を満たす任意の温度Tまで急冷した後、冷却速度を変更し、上記式(2)を満足する任意の温度までを、同じ冷却速度で徐冷する例である。このように徐冷する場合であっても、T1温度域内での滞留時間が10~100秒間であればよい。 FIG. 3 (iii) shows that after rapidly cooling from the two-phase temperature range to an arbitrary temperature T satisfying the above formula (1), the cooling rate is changed and the same cooling is performed until an arbitrary temperature satisfying the above formula (2). This is an example of slow cooling at a speed. Even in such a case of slow cooling, the residence time in the T1 temperature range may be 10 to 100 seconds.
 本発明は図3の(i)~(iii)に示したヒートパターンに限定する趣旨ではなく、本発明の要件を満足する限り、上記以外のヒートパターンを適宜採用できる。 The present invention is not intended to be limited to the heat patterns shown in (i) to (iii) of FIG. 3, and any other heat pattern can be adopted as long as the requirements of the present invention are satisfied.
 本発明において、上記式(2)で規定するT2温度域は、具体的には、200℃以上、400℃未満とする。この温度域で所定時間保持することにより、上記T1温度域で変態しなかった未変態オーステナイトを、低温域生成ベイナイト、またはマルテンサイトに変態させることができる。また、充分な保持時間を確保することによりベイナイト変態が進行して、最終的に残留γが生成し、MA混合相も細分化される。このマルテンサイトは、変態直後は焼入れマルテンサイトとして存在するが、T2温度域で保持している間に焼戻され、焼戻しマルテンサイトとして残留する。この焼戻しマルテンサイトは、マルテンサイト変態が起こる温度域で生成する低温域生成ベイナイトと同等の特性を示す。しかし400℃以上で保持すると、粗大なMA混合相が生成するため、伸びや局所変形能が低下して加工性を改善できない。従ってT2温度域は、400℃未満、好ましくは390℃以下、より好ましくは380℃以下とする。一方、200℃を下回る温度で保持しても低温域生成ベイナイトが生成しないため、γ中の炭素濃度が低くなり、残留γ量を確保できず、さらに焼入れマルテンサイトが多く生成するので、強度が高くなり、伸びおよび局所変形能が悪くなる。また、γ中の炭素濃度が低くなり、残留γ量を確保できないため、伸びを高めることができない。従ってT2温度域の下限は200℃、好ましくは250℃、より好ましくは280℃である。 In the present invention, the T2 temperature range defined by the above formula (2) is specifically 200 ° C. or more and less than 400 ° C. By maintaining in this temperature range for a predetermined time, untransformed austenite that has not been transformed in the T1 temperature range can be transformed into low temperature range bainite or martensite. Further, by securing a sufficient holding time, the bainite transformation proceeds, finally residual γ is generated, and the MA mixed phase is subdivided. Although this martensite exists as quenching martensite immediately after transformation, it is tempered while being maintained in the T2 temperature region, and remains as tempered martensite. This tempered martensite exhibits the same characteristics as low temperature region bainite generated in the temperature region where martensitic transformation occurs. However, if it is kept at 400 ° C. or higher, a coarse MA mixed phase is generated, so that elongation and local deformability are lowered and workability cannot be improved. Accordingly, the T2 temperature range is less than 400 ° C., preferably 390 ° C. or less, more preferably 380 ° C. or less. On the other hand, even if it is kept at a temperature below 200 ° C., low-temperature region-generated bainite is not generated, so the carbon concentration in γ is low, the amount of residual γ cannot be secured, and more hardened martensite is generated. It becomes high and elongation and local deformability deteriorate. Further, since the carbon concentration in γ becomes low and the amount of residual γ cannot be secured, the elongation cannot be increased. Therefore, the lower limit of the T2 temperature range is 200 ° C, preferably 250 ° C, more preferably 280 ° C.
 上記式(2)を満たすT2温度域で保持する時間は、200秒間以上とする。保持時間が200秒を下回ると、低温域生成ベイナイト等の生成量が少なくなり、γ中の炭素濃度が低くなって残留γ量を確保できず、さらに焼入れマルテンサイトが多く生成するので、強度が高くなり、伸びおよび局所変形能が悪くなる。また、炭素の濃化が促進されないため、残留γ量が少なくなり、伸びを改善できない。また、上記T1温度域で生成したMA混合相を微細化できないため、局所変形能を改善できない。従って保持時間は200秒以上、好ましくは250秒以上、より好ましくは300秒以上とする。保持時間の上限は特に限定されないが、長時間保持すると生産性が低下するほか、濃化した炭素が炭化物として析出して残留γを生成させることができず、伸びの低下を招き、加工性が劣化する。従って保持時間の上限は、例えば1800秒とすればよい。 The time for holding in the T2 temperature range that satisfies the above formula (2) is 200 seconds or more. If the holding time is less than 200 seconds, the amount of low temperature region bainite and the like is reduced, the carbon concentration in γ is lowered, the amount of residual γ cannot be secured, and more hardened martensite is generated, so the strength is increased. It becomes high and elongation and local deformability deteriorate. Further, since carbon concentration is not promoted, the amount of residual γ is reduced, and the elongation cannot be improved. Moreover, since the MA mixed phase produced | generated in the said T1 temperature range cannot be refined | miniaturized, local deformability cannot be improved. Accordingly, the holding time is 200 seconds or longer, preferably 250 seconds or longer, more preferably 300 seconds or longer. Although the upper limit of the holding time is not particularly limited, productivity decreases when held for a long time, and concentrated carbon cannot be precipitated as carbides to generate residual γ, resulting in a decrease in elongation and workability. to degrade. Therefore, the upper limit of the holding time may be 1800 seconds, for example.
 本発明において、T2温度域での保持時間とは、鋼板の表面温度が、T2温度域の上限温度に到達した時点から、T2温度域の下限温度に到達するまでの時間を意味する。即ち、400℃未満に到達した時点から、200℃に到達するまでの時間である。 In the present invention, the holding time in the T2 temperature range means the time from when the surface temperature of the steel sheet reaches the upper limit temperature in the T2 temperature range to the lower limit temperature in the T2 temperature range. That is, it is the time from reaching the temperature of less than 400 ° C. to reaching the temperature of 200 ° C.
 上記T2温度域で保持する方法は、T2温度域での滞留時間が200秒間以上となれば特に限定されず、上記T1温度域内におけるヒートパターンのように、恒温保持してもよいし、T2温度域内で冷却または加熱してもよい。また、異なる保持温度で多段階保持を行ってもよい。 The method of holding in the T2 temperature range is not particularly limited as long as the residence time in the T2 temperature range is 200 seconds or more, and may be held at a constant temperature as in the heat pattern in the T1 temperature range, or the T2 temperature. It may be cooled or heated in the zone. Further, multistage holding may be performed at different holding temperatures.
 上記T2温度域で所定時間保持した後は、室温まで冷却することによって本発明に係る第一高強度鋼板を製造できる。 The first high-strength steel sheet according to the present invention can be manufactured by cooling to room temperature after holding for a predetermined time in the T2 temperature range.
 上記第一高強度鋼板の表面には、溶融亜鉛めっき層や合金化溶融亜鉛めっき層が形成されていてもよい。 A hot-dip galvanized layer or an alloyed hot-dip galvanized layer may be formed on the surface of the first high-strength steel plate.
 溶融亜鉛めっき層や合金化溶融亜鉛めっき層を形成するときの条件は特に限定されず、公知の条件を採用できる。 The conditions for forming the hot-dip galvanized layer or the alloyed hot-dip galvanized layer are not particularly limited, and known conditions can be adopted.
 例えばめっき浴温度を400~500℃として溶融亜鉛めっき層を形成することが好ましく、より好ましくは440~470℃である。めっき浴の組成は特に限定されず、公知の溶融亜鉛めっき浴を用いればよい。 For example, the hot dip galvanized layer is preferably formed at a plating bath temperature of 400 to 500 ° C., more preferably 440 to 470 ° C. The composition of the plating bath is not particularly limited, and a known hot dip galvanizing bath may be used.
 溶融亜鉛めっき層を形成した溶融亜鉛めっき鋼板に、常法の合金化処理を施すことによって、合金化溶融亜鉛めっき鋼板を製造できる。合金化処理は、例えば450~600℃程度(特に480~570℃程度)で、5~30秒程度(特に10~25秒程度)保持して行えばよい。合金化処理は、例えば加熱炉、直火、または赤外線加熱炉などを用いて行えばよい。加熱手段も特に限定されず、例えばガス加熱、インダクションヒーター加熱(高周波誘導加熱装置による加熱)など慣用の手段を採用できる。 An alloyed hot-dip galvanized steel sheet can be produced by subjecting the hot-dip galvanized steel sheet on which the hot-dip galvanized layer is formed to a conventional alloying treatment. The alloying treatment may be performed, for example, at about 450 to 600 ° C. (particularly about 480 to 570 ° C.) and held for about 5 to 30 seconds (particularly about 10 to 25 seconds). The alloying process may be performed using, for example, a heating furnace, a direct fire, or an infrared heating furnace. The heating means is not particularly limited, and for example, conventional means such as gas heating, induction heater heating (heating by a high frequency induction heating device) can be adopted.
 本発明の技術は、特に、板厚が3mm以下の薄鋼板に好適に採用できる。
 以上、本発明に係る第一高強度鋼板について説明した。
 次に、本発明に係る第二高強度鋼板について説明する。
The technique of the present invention can be suitably used particularly for a thin steel plate having a thickness of 3 mm or less.
The first high strength steel sheet according to the present invention has been described above.
Next, the second high strength steel plate according to the present invention will be described.
 本発明者らは、引張強度が590MPa以上の第二高強度鋼板の加工性、特に伸びと局所変形能を改善するために検討を重ねてきた。その結果、
(1)鋼板の金属組織を、ポリゴナルフェライト主体(具体的には、金属組織全体に対する面積率が50%超)としたうえで、ベイナイト、焼戻しマルテンサイト、および残留γを含む混合組織とし、特にベイナイトとして、
(1a)隣接する残留γ同士、隣接する炭化物同士、或いは隣接する残留γと隣接する炭化物(以下、これらをまとめて残留γ等と表記することがある。)の中心位置間距離の平均間隔が1μm以上である高温域生成ベイナイトと、
(1b)残留γ等の中心位置間距離の平均間隔が1μm未満である低温域生成ベイナイトの2種類のベイナイトを生成させれば、伸びを劣化させることなく局所変形能を改善した加工性に優れた第二高強度鋼板を提供できること、
(2)具体的には、上記高温域生成ベイナイトは鋼板の伸び向上に寄与し、上記低温域生成ベイナイトは鋼板の局所変形能向上に寄与すること、
(3)2種類のベイナイトを所定量生成させるには、上記二相温度域で加熱した後、400℃以上、540℃以下の温度域(以下、T1温度域と呼ぶことがある。)の任意の温度Tまでを平均冷却速度2℃/秒以上で冷却し、このT1温度域で10~100秒間保持して高温域生成ベイナイトを生成させた後、200℃以上、400℃未満の温度域(以下、T2温度域と呼ぶことがある。)に冷却し、このT2温度域で200秒間以上保持すればよいこと、
を見出し、本発明を完成した。
The present inventors have repeatedly studied to improve the workability of the second high-strength steel sheet having a tensile strength of 590 MPa or more, particularly the elongation and local deformability. as a result,
(1) The metal structure of the steel sheet is mainly composed of polygonal ferrite (specifically, the area ratio with respect to the entire metal structure is more than 50%), and then a mixed structure containing bainite, tempered martensite, and residual γ, Especially as bainite,
(1a) The average interval of the distances between the center positions of adjacent residual γ, adjacent carbides, or adjacent residual γ and adjacent carbides (hereinafter, these may be collectively referred to as residual γ). High temperature region bainite which is 1 μm or more;
(1b) Excellent processability with improved local deformability without deteriorating elongation if two types of bainite, low temperature region bainite, with an average distance between center positions such as residual γ of less than 1 μm are generated. Providing a second high-strength steel sheet,
(2) Specifically, the high-temperature region-generated bainite contributes to improvement in elongation of the steel sheet, and the low-temperature region-generated bainite contributes to improvement in local deformability of the steel sheet,
(3) In order to produce a predetermined amount of two types of bainite, after heating in the above two-phase temperature range, any temperature range from 400 ° C. to 540 ° C. (hereinafter sometimes referred to as T1 temperature range). Is cooled at an average cooling rate of 2 ° C./second or more and maintained at this T1 temperature range for 10 to 100 seconds to form a high temperature range bainite, and then at a temperature range of 200 ° C. to less than 400 ° C. ( Hereinafter, it may be referred to as a T2 temperature range), and may be held for 200 seconds or more in this T2 temperature range.
The present invention has been completed.
 まず、本発明に係る第二高強度鋼板を特徴づける金属組織について説明する。 First, the metal structure that characterizes the second high-strength steel sheet according to the present invention will be described.
 《金属組織について》
 本発明に係る第二高強度鋼板の金属組織は、ポリゴナルフェライト、ベイナイト、焼戻しマルテンサイト、および残留γで構成される混合組織である。
《Metallic structure》
The metal structure of the second high-strength steel sheet according to the present invention is a mixed structure composed of polygonal ferrite, bainite, tempered martensite, and residual γ.
 [ポリゴナルフェライト]
 本発明の第二高強度鋼板の金属組織は、ポリゴナルフェライトを主体としている。主体とは、金属組織全体に対する面積率が50%超であることを意味する。ポリゴナルフェライトは、ベイナイトに比べて軟質であり、鋼板の伸びを高めて加工性を改善するのに作用する組織である。こうした作用を発揮させるには、ポリゴナルフェライトの面積率は、金属組織全体に対して50%超、好ましくは55%以上、より好ましくは60%以上とする。ポリゴナルフェライトの面積率の上限は、飽和磁化法で測定される残留γの占積率を考慮して決定されるが、例えば、85%である。
[Polygonal ferrite]
The metal structure of the second high-strength steel sheet of the present invention is mainly composed of polygonal ferrite. The main body means that the area ratio with respect to the whole metal structure is more than 50%. Polygonal ferrite is softer than bainite and is a structure that acts to improve the workability by increasing the elongation of the steel sheet. In order to exert such an effect, the area ratio of polygonal ferrite is more than 50%, preferably 55% or more, more preferably 60% or more with respect to the entire metal structure. The upper limit of the area ratio of polygonal ferrite is determined in consideration of the space factor of residual γ measured by the saturation magnetization method, and is, for example, 85%.
 上記ポリゴナルフェライト粒の平均円相当直径Dは、10μm以下(0μmを含まない)であることが好ましい。ポリゴナルフェライト粒の平均円相当直径Dを小さくし、細かく分散させることによって、鋼板の伸びを一段と向上させることができる。この詳細なメカニズムは明らかではないが、ポリゴナルフェライトを微細化することによって、金属組織全体に対するポリゴナルフェライトの分散状態が均一になるため、不均一な変形が起こりにくくなり、これが伸びの一層の向上に寄与していると考えられる。即ち、本発明の第二高強度鋼板の金属組織は、ポリゴナルフェライト、ベイナイト、焼戻しマルテンサイト、および残留γの混合組織で構成されているため、ポリゴナルフェライト粒の粒径が大きくなると、個々の組織の大きさにバラツキが生じるため、不均一な変形が生じて歪が局所的に集中して加工性(特に、ポリゴナルフェライト生成による伸び向上作用)を改善することが難しくなると考えられる。従ってポリゴナルフェライトの平均円相当直径Dは、10μm以下であることが好ましく、より好ましくは8μm以下、更に好ましくは5μm以下、特に好ましくは4μm以下である。 The average equivalent circle diameter D of the polygonal ferrite grains is preferably 10 μm or less (not including 0 μm). By reducing the average equivalent circle diameter D of the polygonal ferrite grains and finely dispersing them, the elongation of the steel sheet can be further improved. Although the detailed mechanism is not clear, by making the polygonal ferrite finer, the dispersion state of the polygonal ferrite with respect to the entire metal structure becomes uniform, so that non-uniform deformation is less likely to occur, which further increases the elongation. It is thought that it contributes to improvement. That is, the metal structure of the second high-strength steel sheet according to the present invention is composed of a mixed structure of polygonal ferrite, bainite, tempered martensite, and residual γ. Therefore, it is considered that it is difficult to improve workability (particularly, the elongation improving effect due to the formation of polygonal ferrite) due to uneven concentration and local concentration of strains. Therefore, the average equivalent circle diameter D of polygonal ferrite is preferably 10 μm or less, more preferably 8 μm or less, still more preferably 5 μm or less, and particularly preferably 4 μm or less.
 上記ポリゴナルフェライトの面積率および平均円相当直径Dは、走査型電子顕微鏡(SEM)で観察することによって測定できる。 The area ratio and the average equivalent circle diameter D of the polygonal ferrite can be measured by observing with a scanning electron microscope (SEM).
 [ベイナイトおよび焼戻しマルテンサイト]
 本発明の第二高強度鋼板は、ベイナイトが、高温域生成ベイナイトと、高温域生成ベイナイトに比べて強度が高い低温域生成ベイナイトとの複合組織から構成されているところに特徴がある。高温域生成ベイナイトは鋼板の伸び向上に寄与し、低温域生成ベイナイトは鋼板の局所変形能向上に寄与する。そしてこれら2種類のベイナイト組織を含むことにより、鋼板の伸びを劣化させることなく、局所変形能を向上させることができ、鋼板の加工性全般を高めることができる。これは強度レベルの異なるベイナイト組織を複合化することによって不均一変形が生じるため、加工硬化能が上昇することに起因すると考えられる。
[Bainite and tempered martensite]
The second high-strength steel sheet of the present invention is characterized in that the bainite is composed of a composite structure of a high-temperature region-generated bainite and a low-temperature region-generated bainite having a strength higher than that of the high-temperature region-generated bainite. High temperature zone bainite contributes to the improvement of elongation of the steel sheet, and low temperature zone bainite contributes to improvement of local deformability of the steel plate. By including these two types of bainite structures, the local deformability can be improved without deteriorating the elongation of the steel sheet, and the overall workability of the steel sheet can be improved. This is thought to be due to the fact that work hardening ability is increased because non-uniform deformation occurs by combining bainite structures having different strength levels.
 上記高温域生成ベイナイトとは、Ac1点+20℃以上、Ac3点+20℃以下の温度(二相温度域)に加熱した後の冷却過程において、400℃以上、540℃以下のT1温度域で生成するベイナイト組織である。高温域生成ベイナイトは、ナイタール腐食した鋼板断面をSEM観察したときに、残留γ等の平均間隔が1μm以上になっている組織である。 The high temperature range bainite is a T1 temperature range of 400 ° C. or more and 540 ° C. or less in the cooling process after heating to a temperature of Ac 1 point + 20 ° C. or higher and Ac 3 point + 20 ° C. or lower (two-phase temperature range). It is a bainite structure to be generated. High temperature region bainite is a structure in which the average interval of residual γ and the like is 1 μm or more when a cross section of a steel plate that has undergone nital corrosion is observed by SEM.
 一方、上記低温域生成ベイナイトとは、上記二相温度域に加熱した後の冷却過程において、200℃以上、400℃未満のT2温度域で生成するベイナイト組織である。低温域生成ベイナイトは、ナイタール腐食した鋼板断面をSEM観察したときに、残留γ等の平均間隔が1μm未満になっている組織である。 On the other hand, the low temperature region bainite is a bainite structure generated in a T2 temperature region of 200 ° C. or more and less than 400 ° C. in the cooling process after heating to the two-phase temperature region. Low-temperature region-generated bainite is a structure in which the average interval of residual γ and the like is less than 1 μm when a steel cross section subjected to nital corrosion is observed by SEM.
 ここで「残留γ等の平均間隔」の意味は上記第一高強度鋼板の場合と同じである。 Here, the meaning of “average interval of residual γ” is the same as in the case of the first high-strength steel sheet.
 また、焼戻しマルテンサイトは、上記低温域生成ベイナイトと同様の作用を有する組織であり、鋼板の局所変形能向上に寄与する。なお、上記低温域生成ベイナイトと焼戻しマルテンサイトは、SEM観察しても区別できないため、本発明では、低温域生成ベイナイトと焼戻しマルテンサイトをまとめて「低温域生成ベイナイト等」と呼ぶこととする。 Moreover, tempered martensite is a structure | tissue which has the effect | action similar to the said low temperature range production | generation bainite, and contributes to the local deformability improvement of a steel plate. Note that the low-temperature region-generated bainite and the tempered martensite cannot be distinguished even by SEM observation. Therefore, in the present invention, the low-temperature region-generated bainite and the tempered martensite are collectively referred to as “low-temperature region-generated bainite and the like”.
 本発明では、ベイナイトを、高温域生成ベイナイトおよび低温域生成ベイナイト等を含む複合ベイナイト組織とすることによって加工性全般を改善した第二高強度鋼板を実現できる。即ち、高温域生成ベイナイトは、低温域生成ベイナイト等よりも軟質であるため、鋼板の伸び(EL)を高めて加工性を改善するのに寄与する。一方、低温域生成ベイナイト等は、炭化物および残留γが小さく、変形に際して応力集中が軽減されるため、鋼板の伸びフランジ性(λ)や曲げ性(R)を高めて局所変形能を向上して加工性を改善するのに寄与する。そして本発明では、こうした高温域生成ベイナイトと低温域生成ベイナイト等を混在させているため、加工硬化能が向上し、伸びを劣化させることなく局所変形能を改善できる。 In the present invention, the second high-strength steel sheet with improved workability in general can be realized by making the bainite a composite bainite structure including a high-temperature region-generated bainite and a low-temperature region-generated bainite. That is, since the high temperature region generation bainite is softer than the low temperature region generation bainite and the like, it contributes to improving the workability by increasing the elongation (EL) of the steel sheet. On the other hand, low temperature region bainite has low carbides and residual γ, and stress concentration is reduced during deformation. Therefore, the stretch flangeability (λ) and bendability (R) of the steel sheet are improved to improve local deformability. Contributes to improving processability. And in this invention, since such high temperature range production | generation bainite, low temperature range production | generation bainite, etc. are mixed, work hardening ability improves and local deformability can be improved without deteriorating elongation.
 本発明において、ベイナイトを上記のように生成温度域の相違および残留γ等の平均間隔の相違によって「高温域生成ベイナイト」と「低温域生成ベイナイト等」に区別した理由は、一般的な学術的組織分類ではベイナイトを明瞭に区別し難いからである。例えば、ラス状のベイナイトとベイニティックフェライトは、変態温度に応じて上部ベイナイトと下部ベイナイトに分類される。しかし本発明のようにSiを1.0%以上と多く含んだ鋼種では、ベイナイト変態に伴う炭化物の析出が抑制されるため、SEM観察では、マルテンサイト組織も含めてこれらを区別することは困難である。そこで本発明では、ベイナイトを学術的な組織定義により分類するのではなく、上記のように生成温度域の相違および残留γ等の平均間隔に基づいて区別した次第である。 In the present invention, the reason for distinguishing bainite into “high temperature region bainite” and “low temperature region bainite” by the difference in the generation temperature region and the difference in the average interval such as residual γ as described above is a general academic reason. This is because it is difficult to clearly distinguish bainite in the tissue classification. For example, lath-shaped bainite and bainitic ferrite are classified into upper bainite and lower bainite according to the transformation temperature. However, in the steel type containing a large amount of Si of 1.0% or more as in the present invention, precipitation of carbides accompanying the bainite transformation is suppressed, so it is difficult to distinguish these including the martensite structure by SEM observation. It is. Therefore, in the present invention, bainite is not classified based on an academic organization definition, but is distinguished based on the difference in generation temperature range and the average interval such as residual γ as described above.
 高温域生成ベイナイトと低温域生成ベイナイト等の分布状態は特に限定されず、旧γ粒内に高温域生成ベイナイトと低温域生成ベイナイト等の両方が生成していてもよいし、旧γ粒毎に高温域生成ベイナイトと低温域生成ベイナイト等が夫々生成していてもよい。 The distribution state of the high temperature zone bainite and the low temperature zone bainite is not particularly limited, and both the high temperature zone bainite and the low temperature zone bainite may be generated in the old γ grain, or for each old γ grain A high temperature region generation bainite, a low temperature region generation bainite, or the like may be generated.
 高温域生成ベイナイトと低温域生成ベイナイト等の分布状態は、模式的に上記図2に示した通りである。 The distribution state of the high temperature region bainite and the low temperature region bainite is as schematically shown in FIG.
 本発明では、金属組織全体に占める高温域生成ベイナイトの面積率をbとし、金属組織全体に占める低温域生成ベイナイト等(低温域生成ベイナイトと焼戻しマルテンサイト)の合計面積率をcとしたとき、該面積率bおよびcは、いずれも5~40%を満足していることが必要である。ここで、低温域生成ベイナイトの面積率ではなく、低温域生成ベイナイトと焼戻しマルテンサイトの合計面積率を規定した理由は、前述したようにSEM観察ではこれらの組織を区別できないからである。 In the present invention, when the area ratio of the high temperature region bainite occupying the entire metal structure is b, and the total area ratio of the low temperature region bainite and the like (low temperature region bainite and tempered martensite) occupying the entire metal structure is c, The area ratios b and c must satisfy 5 to 40%. Here, the reason why the total area ratio of the low temperature region-generated bainite and the tempered martensite is defined instead of the area ratio of the low temperature region-generated bainite is that, as described above, these structures cannot be distinguished by SEM observation.
 上記面積率bは、5~40%とする。高温域生成ベイナイトの生成量が少な過ぎると鋼板の伸びが低下して加工性を改善できない。従って上記面積率bは5%以上、好ましくは8%以上、より好ましくは10%以上である。しかし高温域生成ベイナイトの生成量が過剰になると低温域生成ベイナイト等との生成量のバランスが悪くなり、高温域生成ベイナイトと低温域生成ベイナイト等の複合化による効果が発揮されない。従って高温域生成ベイナイトの面積率bは40%以下、好ましくは35%以下、より好ましくは30%以下、更に好ましくは25%以下とする。 The area ratio b is 5-40%. When there is too little production amount of high temperature range production | generation bainite, the elongation of a steel plate will fall and workability cannot be improved. Therefore, the area ratio b is 5% or more, preferably 8% or more, more preferably 10% or more. However, when the amount of high-temperature region-generated bainite is excessive, the balance of the amount of low-temperature region-generated bainite and the like is deteriorated, and the effect of combining the high-temperature region-generated bainite and the low-temperature region-generated bainite is not exhibited. Therefore, the area ratio b of the high temperature region bainite is 40% or less, preferably 35% or less, more preferably 30% or less, and still more preferably 25% or less.
 また、上記合計面積率cは、5~40%とする。低温域生成ベイナイト等の生成量が少な過ぎると鋼板の局所変形能が低下して加工性を改善できない。従って上記合計面積率cは5%以上、好ましくは8%以上、より好ましくは10%以上である。しかし低温域生成ベイナイト等の生成量が過剰になると高温域生成ベイナイトとの生成量のバランスが悪くなり、低温域生成ベイナイト等と高温域生成ベイナイトの複合化による効果が発揮されない。従って低温域生成ベイナイト等の面積率cは40%以下、好ましくは35%以下、より好ましくは30%以下、更に好ましくは25%以下とする。 The total area ratio c is 5 to 40%. If there is too little production amount of low temperature region bainite etc., the local deformability of a steel plate will fall and workability cannot be improved. Therefore, the total area ratio c is 5% or more, preferably 8% or more, more preferably 10% or more. However, if the production amount of low temperature region bainite or the like becomes excessive, the balance of the production amount with the high temperature region bainite is deteriorated, and the effect of combining the low temperature region bainite and the high temperature region bainite is not exhibited. Accordingly, the area ratio c of the low temperature region bainite or the like is 40% or less, preferably 35% or less, more preferably 30% or less, and still more preferably 25% or less.
 上記面積率bと上記合計面積率cの関係は、それぞれの範囲が上記範囲を満足していれば特に限定されず、b>c、b<c、b=cのいずれの態様も含まれる。 The relationship between the area ratio b and the total area ratio c is not particularly limited as long as each range satisfies the above range, and includes any form of b> c, b <c, and b = c.
 高温域生成ベイナイトと、低温域生成ベイナイト等の混合比率は、鋼板に要求される特性に応じて定めればよい。具体的には、鋼板の加工性のうち局所変形能(特に、伸びフランジ性(λ))を一層向上させるには、高温域生成ベイナイトの比率をできるだけ小さくし、低温域生成ベイナイト等の比率をできるだけ大きくすればよい。一方、鋼板の加工性のうち伸びを一層向上させるには、高温域生成ベイナイトの比率をできるだけ大きくし、低温域生成ベイナイト等の比率をできるだけ小さくすればよい。また、鋼板の強度を一層高めるには、低温域生成ベイナイト等の比率をできるだけ大きくし、高温域生成ベイナイトの比率をできるだけ小さくすればよい。 The mixing ratio of the high temperature region bainite and the low temperature region bainite may be determined according to the characteristics required for the steel sheet. Specifically, in order to further improve the local deformability (especially stretch flangeability (λ)) of the workability of the steel sheet, the ratio of the high-temperature region-generated bainite is made as small as possible, and the ratio of the low-temperature region-generated bainite, etc. It should be as large as possible. On the other hand, in order to further improve the elongation of the workability of the steel sheet, the ratio of the high-temperature region-generated bainite should be as large as possible, and the ratio of the low-temperature region-generated bainite should be as small as possible. Further, in order to further increase the strength of the steel sheet, the ratio of the low temperature region bainite or the like may be increased as much as possible, and the ratio of the high temperature region bainite may be decreased as much as possible.
 なお、本発明において、ベイナイトには、ベイニティックフェライトも含まれる。ベイナイトは炭化物が析出した組織であり、ベイニティックフェライトは炭化物が析出していない組織である。 In the present invention, bainite includes bainitic ferrite. Bainite is a structure in which carbide is precipitated, and bainitic ferrite is a structure in which carbide is not precipitated.
 [ポリゴナルフェライト+ベイナイト+焼戻しマルテンサイト]
 本発明では、上記ポリゴナルフェライトの面積率a、上記高温域生成ベイナイトの面積率b、および上記低温域生成ベイナイト等(低温域生成ベイナイト+焼戻しマルテンサイト)の合計面積率cの合計(a+b+c)が、金属組織全体に対して70%以上を満足していることが好ましい。合計面積率(a+b+c)が70%を下回ると、伸びが劣化することがある。合計面積率(a+b+c)は、より好ましくは75%以上、更に好ましくは80%以上である。合計面積率(a+b+c)の上限は、飽和磁化法で測定される残留γの占積率を考慮して決定されるが、例えば、95%である。
[Polygonal ferrite + bainite + tempered martensite]
In the present invention, the total area ratio (a + b + c) of the area ratio a of the polygonal ferrite, the area ratio b of the high-temperature region-generated bainite, and the low-temperature region-generated bainite (low-temperature region-generated bainite + tempered martensite). However, it is preferable that 70% or more of the entire metal structure is satisfied. If the total area ratio (a + b + c) is less than 70%, the elongation may deteriorate. The total area ratio (a + b + c) is more preferably 75% or more, and still more preferably 80% or more. The upper limit of the total area ratio (a + b + c) is determined in consideration of the space factor of residual γ measured by the saturation magnetization method, and is 95%, for example.
 [残留γ]
 残留γについての規定内容は、上記第一高強度鋼板と同じであるため説明は割愛する。
[Residual γ]
Since the content of the regulation for the residual γ is the same as that of the first high-strength steel plate, the description is omitted.
 [その他]
 本発明に係る第二高強度鋼板の金属組織は、上述したように、ポリゴナルフェライト、ベイナイト、焼戻しマルテンサイト、および残留γを含むものであり、これらのみから構成されていてもよいが、本発明の効果を損なわない範囲で、(a)焼入れマルテンサイトと残留γとが複合したMA混合相や、(b)パーライト等の残部組織が存在していてもよい。
 (a)MA混合相および(b)パーライトについての規定内容は、上記第一高強度鋼板と同じであるため説明は割愛する。
 上記金属組織の測定手順は、上記第一高強度鋼板で説明した手順と同じであるため説明は割愛する。
[Others]
As described above, the metal structure of the second high-strength steel sheet according to the present invention includes polygonal ferrite, bainite, tempered martensite, and residual γ, and may be composed only of these. As long as the effects of the invention are not impaired, (a) an MA mixed phase in which quenched martensite and residual γ are combined, and (b) a remaining structure such as pearlite may exist.
Since the contents of (a) MA mixed phase and (b) pearlite are the same as those of the first high-strength steel sheet, description thereof is omitted.
Since the measurement procedure of the metal structure is the same as the procedure described in the first high-strength steel plate, the description is omitted.
 次に、本発明に係る第二高強度鋼板の化学成分組成について説明する。 Next, the chemical component composition of the second high-strength steel sheet according to the present invention will be described.
 《成分組成について》
 本発明の第二高強度鋼板は、C:0.10~0.3%、Si:1.0~3%、Mn:1.0~2.5%、Al:0.005~3%を含有し、且つP:0.1%以下(0%を含まない)、S:0.05%以下(0%を含まない)を満足している。こうした範囲を定めた理由は、SiとMn以外は、上記第一高強度鋼板と同じであるため説明は割愛し、以下、SiとMnについてのみ説明する。
<Ingredient composition>
The second high-strength steel sheet of the present invention contains C: 0.10 to 0.3%, Si: 1.0 to 3%, Mn: 1.0 to 2.5%, Al: 0.005 to 3%. And P: 0.1% or less (not including 0%) and S: 0.05% or less (not including 0%). The reason for setting such a range is the same as that of the first high-strength steel plate except for Si and Mn, and therefore the description is omitted. Hereinafter, only Si and Mn will be described.
 Siは、固溶強化元素として鋼板の高強度化に寄与する他、後述するT1温度域およびT2温度域での保持中に(オーステンパ処理中に)炭化物が析出するのを抑制し、残留γを効果的に生成させるうえで大変重要な元素である。従ってSi量は1.0%以上、好ましくは1.2%以上、より好ましくは1.3%以上である。しかしSiを過剰に含有すると、焼鈍での加熱・均熱時にγ相への逆変態が起こらず、ポリゴナルフェライトが多量に残存し、強度不足になる。また、熱間圧延の際に鋼板表面にSiスケールを発生して鋼板の表面性状を悪化させる。従ってSi量は3%以下、好ましくは2.50%以下、より好ましくは2.0%以下である。 Si contributes to increasing the strength of the steel sheet as a solid solution strengthening element, and suppresses the precipitation of carbide during holding in the T1 temperature range and T2 temperature range described later (during the austempering process), thereby reducing the residual γ. It is an extremely important element for effective generation. Accordingly, the Si amount is 1.0% or more, preferably 1.2% or more, more preferably 1.3% or more. However, when Si is excessively contained, reverse transformation to the γ phase does not occur during heating and soaking in annealing, and a large amount of polygonal ferrite remains, resulting in insufficient strength. In addition, Si scale is generated on the surface of the steel sheet during hot rolling to deteriorate the surface properties of the steel sheet. Therefore, the amount of Si is 3% or less, preferably 2.50% or less, more preferably 2.0% or less.
 Mnは、ベイナイトおよび焼戻しマルテンサイトを得るために必要な元素である。またMnは、γを安定化させて残留γを生成させるのにも有効に作用する元素である。こうした作用を発揮させるために、Mn量は1.0%以上、好ましくは1.5%以上、より好ましくは1.8%以上とする。しかしMnを過剰に含有すると、高温域生成ベイナイトの生成が著しく抑制される。また、Mnの過剰添加は、溶接性の劣化や偏析による加工性の劣化を招く。従ってMn量は2.5%以下、好ましくは2.4%以下、より好ましくは2.3%以下とする。 Mn is an element necessary for obtaining bainite and tempered martensite. Mn is an element that effectively acts to stabilize γ and generate residual γ. In order to exert such an effect, the amount of Mn is set to 1.0% or more, preferably 1.5% or more, more preferably 1.8% or more. However, when Mn is contained excessively, the generation of high temperature region bainite is remarkably suppressed. Further, excessive addition of Mn causes deterioration of weldability and workability due to segregation. Therefore, the Mn content is 2.5% or less, preferably 2.4% or less, and more preferably 2.3% or less.
 本発明の第二高強度鋼板においても上記第一高強度鋼板と同様、更に他の元素として、
(a)Cr:1%以下(0%を含まない)および/またはMo:1%以下(0%を含まない)、
(b)Ti:0.15%以下(0%を含まない)、Nb:0.15%以下(0%を含まない)およびV:0.15%以下(0%を含まない)よりなる群から選択される1種以上の元素、
(c)Cu:1%以下(0%を含まない)および/またはNi:1%以下(0%を含まない)、
(d)B:0.005%以下(0%を含まない)、
(e)Ca:0.01%以下(0%を含まない)、Mg:0.01%以下(0%を含まない)および希土類元素:0.01%以下(0%を含まない)よりなる群から選択される1種以上の元素、
等を含有しても良い。こうした範囲を定めた理由は、上記第一高強度鋼板と同じであるため説明は割愛する。
In the second high-strength steel plate of the present invention as well as the first high-strength steel plate, as other elements,
(A) Cr: 1% or less (not including 0%) and / or Mo: 1% or less (not including 0%),
(B) A group consisting of Ti: 0.15% or less (not including 0%), Nb: 0.15% or less (not including 0%), and V: 0.15% or less (not including 0%) One or more elements selected from
(C) Cu: 1% or less (not including 0%) and / or Ni: 1% or less (not including 0%),
(D) B: 0.005% or less (excluding 0%),
(E) Ca: 0.01% or less (not including 0%), Mg: 0.01% or less (not including 0%), and rare earth elements: 0.01% or less (not including 0%) One or more elements selected from the group,
Etc. may be contained. Since the reason for setting such a range is the same as that of the first high-strength steel sheet, the description is omitted.
 本発明に係る第二高強度鋼板は、引張強度が590MPa以上で、伸びに優れ、しかも局所変形能も良好であるため、加工性に優れている。この第二高強度鋼板は、上記第一高強度鋼板と同様、自動車の構造部品の素材として好適に用いられる。 The second high-strength steel sheet according to the present invention is excellent in workability because the tensile strength is 590 MPa or more, the elongation is excellent, and the local deformability is also good. This second high-strength steel plate is suitably used as a material for structural parts of automobiles, like the first high-strength steel plate.
 また、上記第二高強度鋼板は、温間での加工性が良好であるため、温間成形用の素材としても好適に用いることができる。なお、温間加工とは、50~500℃程度の温度範囲で成形することを意味している。 Further, the second high-strength steel sheet has good workability in the warm condition, and can be suitably used as a material for warm forming. Note that warm processing means forming in a temperature range of about 50 to 500 ° C.
 以上、本発明に係る第二高強度鋼板の金属組織と成分組成について説明した。 The metal structure and component composition of the second high-strength steel sheet according to the present invention have been described above.
 次に、上記第二高強度鋼板を製造できる方法について説明する。上記第二高強度鋼板は、上記成分組成を満足する鋼板をAc1点+20℃以上、Ac3点+20℃以下の温度域(二相温度域)に加熱する工程と、該温度域で50秒間以上保持する工程と、下記式(1)を満たす任意の温度Tまで平均冷却速度2~50℃/秒で冷却する工程と、下記式(1)を満たす温度域で10~100秒間保持する工程と、下記式(2)を満たす温度域で200秒間以上保持する工程と、をこの順で含むことによって製造できる。以下、各工程について順を追って説明する。
400℃≦T1(℃)≦540℃  ・・・(1)
200℃≦T2(℃)<400℃  ・・・(2)
Next, a method capable of producing the second high-strength steel plate will be described. The second high-strength steel plate includes a step of heating a steel plate satisfying the above component composition to a temperature range (two-phase temperature range) of Ac 1 point + 20 ° C. or higher and Ac 3 point + 20 ° C. or lower, and 50 seconds in the temperature range. The step of holding above, the step of cooling at an average cooling rate of 2 to 50 ° C./second to an arbitrary temperature T satisfying the following formula (1), and the step of holding for 10 to 100 seconds in a temperature range satisfying the following formula (1) And a step of holding for 200 seconds or more in a temperature range satisfying the following formula (2) in this order. Hereinafter, each step will be described in order.
400 ° C. ≦ T1 (° C.) ≦ 540 ° C. (1)
200 ° C. ≦ T2 (° C.) <400 ° C. (2)
 まず、二相温度域[Ac1点+20℃以上、Ac3点+20℃以下の温度域]に加熱する前の高強度鋼板として、スラブを常法に従って熱間圧延し、得られた熱延鋼板を冷間圧延したものを準備する。熱間圧延は、仕上げ圧延温度を、例えば800℃以上、巻取り温度を、例えば700℃以下とすればよい。冷間圧延では、冷延率を、例えば10~70%の範囲として圧延すればよい。 First, a hot-rolled steel sheet obtained by hot rolling a slab according to a conventional method as a high-strength steel sheet before heating to a two-phase temperature range [temperature range of Ac 1 point + 20 ° C. or higher, Ac 3 point + 20 ° C. or lower] Prepare a cold rolled product. In hot rolling, the finish rolling temperature may be set to, for example, 800 ° C. or more, and the winding temperature may be set to, for example, 700 ° C. or less. In cold rolling, the rolling may be performed with the cold rolling rate in the range of 10 to 70%, for example.
 冷間圧延して得られた冷延鋼板は、連続焼鈍ラインで、Ac1点+20℃以上、Ac3点+20℃以下の温度域に加熱し、この温度域で50秒間以上保持して均熱する。 The cold-rolled steel sheet obtained by cold rolling is heated to a temperature range of Ac 1 point + 20 ° C. or higher and Ac 3 point + 20 ° C. or lower in a continuous annealing line, and kept at this temperature range for 50 seconds or more and soaking. To do.
 加熱温度をフェライトとオーステナイトの二相温度域にすることによって、所定量のポリゴナルフェライトを生成させることができる。即ち、加熱温度が高過ぎるとオーステナイト単相域となり、ポリゴナルフェライトの生成が抑制されるため、鋼板の伸びを改善できず、加工性が劣化する。従って加熱温度は、Ac3点+20℃以下、好ましくはAc3点+10℃以下、より好ましくはAc3点未満とする。なお、Ac3点以上に加熱すると、オーステナイト単相の温度域となるが、本発明で規定している均熱時間程度では、加熱温度がAc3点+20℃以下であれば、均熱保持を行っても少量のポリゴナルフェライトが残存するので、後述するように均熱後の平均冷却速度を調整することによって、所定量のポリゴナルフェライトを生成させることができる。しかし加熱温度がAc1点+20℃を下回ると、ポリゴナルフェライトの生成量が過剰になり、所定量の高温域生成ベイナイト、低温域生成ベイナイト等、および残留γが得られないため、加工性が劣化する。従って加熱温度は、Ac1点+20℃以上、好ましくはAc1点+30℃以上、より好ましくはAc1点+50℃以上である。 By setting the heating temperature to a two-phase temperature range of ferrite and austenite, a predetermined amount of polygonal ferrite can be generated. That is, if the heating temperature is too high, an austenite single-phase region is formed, and the formation of polygonal ferrite is suppressed, so that the elongation of the steel sheet cannot be improved and the workability deteriorates. Accordingly, the heating temperature is Ac 3 point + 20 ° C. or less, preferably Ac 3 point + 10 ° C. or less, more preferably less than Ac 3 point. In addition, when heated to Ac 3 point or higher, it becomes the temperature range of the austenite single phase, but if the heating temperature is Ac 3 point + 20 ° C. or less in the soaking time specified in the present invention, the soaking is maintained. Since a small amount of polygonal ferrite remains even if it is carried out, a predetermined amount of polygonal ferrite can be generated by adjusting the average cooling rate after soaking as described later. However, if the heating temperature is less than Ac 1 point + 20 ° C., the amount of polygonal ferrite produced becomes excessive, and a predetermined amount of high temperature region bainite, low temperature region bainite, etc. and residual γ cannot be obtained, so workability is improved. to degrade. Accordingly, the heating temperature is Ac 1 point + 20 ° C. or higher, preferably Ac 1 point + 30 ° C. or higher, more preferably Ac 1 point + 50 ° C. or higher.
 上記二相温度域での均熱時間が50秒を下回ると、鋼板を均一に加熱できないため、残留γの生成が抑制され、伸びおよび局所変形能が低下し、加工性を改善できない。従って均熱時間は50秒以上、好ましくは100秒以上とする。しかし均熱時間が長過ぎると、オーステナイト粒径が大きくなり、それに伴いポリゴナルフェライト粒も粗大化し、伸びおよび局所変形能が悪くなる傾向がある。従って均熱時間は、500秒以下とすることが好ましく、より好ましくは450秒以下である。 If the soaking time in the above two-phase temperature range is less than 50 seconds, the steel sheet cannot be heated uniformly, so the formation of residual γ is suppressed, elongation and local deformability are reduced, and workability cannot be improved. Therefore, the soaking time is 50 seconds or longer, preferably 100 seconds or longer. However, if the soaking time is too long, the austenite grain size becomes large, and the polygonal ferrite grains are coarsened accordingly, and the elongation and local deformability tend to deteriorate. Therefore, the soaking time is preferably 500 seconds or shorter, more preferably 450 seconds or shorter.
 なお、上記冷延鋼板を、上記二相温度域に加熱するときの平均加熱速度は、例えば1℃/秒以上とすればよい。 In addition, what is necessary is just to let the average heating rate when heating the said cold-rolled steel plate to the said 2 phase temperature range be 1 degree-C / sec or more, for example.
 上記Ac1点、Ac3点は、上記第一高強度鋼板と同様、「レスリー鉄鋼材料科学」(丸善株式会社、1985年5月31日発行、P.273)に記載されている式(a)、式(b)から算出できる。 The Ac 1 point and the Ac 3 point are the same as the first high-strength steel plate in the formula (a) described in “Leslie Steel Material Science” (Maruzen Co., Ltd., issued May 31, 1985, P.273). ) And formula (b).
 上記二相温度域に加熱して50秒間以上保持して均熱化した後は、上記式(1)を満たす任意の温度Tまで平均冷却速度2~50℃/秒で冷却する。二相温度域から上記式(1)を満たす任意の温度Tまでの範囲を所定の平均冷却速度以上で冷却することによって、所定量のポリゴナルフェライトを生成させることができ、また高温域生成ベイナイトと低温域生成ベイナイト等の両方を生成させることができる。この温度域の平均冷却速度が2℃/秒を下回ると、パーライト変態を起こしてパーライトが過剰に生成し、伸びが低下して加工性が劣化する。この区間の平均冷却速度は、好ましくは5℃/秒以上、より好ましくは10℃/秒以上である。しかし上記区間の平均冷却速度が大き過ぎると、所定量のポリゴナルフェライトを確保できない。従って平均冷却速度は50℃/秒以下、好ましくは40℃/秒以下、より好ましくは30℃/秒以下とする。 After heating to the above two-phase temperature range and holding for 50 seconds or more and soaking, it is cooled at an average cooling rate of 2 to 50 ° C./second to any temperature T satisfying the above formula (1). By cooling the range from the two-phase temperature range to an arbitrary temperature T satisfying the above formula (1) at a predetermined average cooling rate or higher, a predetermined amount of polygonal ferrite can be generated. And low temperature region bainite can be generated. When the average cooling rate in this temperature range is less than 2 ° C./second, pearlite transformation occurs, pearlite is excessively generated, elongation decreases, and workability deteriorates. The average cooling rate in this section is preferably 5 ° C./second or more, more preferably 10 ° C./second or more. However, if the average cooling rate in the section is too large, a predetermined amount of polygonal ferrite cannot be secured. Therefore, the average cooling rate is 50 ° C./second or less, preferably 40 ° C./second or less, more preferably 30 ° C./second or less.
 上記式(1)を満たす任意の温度Tまで冷却した後は、上記式(1)を満たすT1温度域で10~100秒間保持した後、上記式(2)を満たすT2温度域で200秒間以上保持する。T1温度域とT2温度域に保持する時間を夫々適切に制御することによって、高温域生成ベイナイトと低温域生成ベイナイト等を所定量ずつ生成させることができる。
 T1温度域とT2温度域に保持するときの具体的な条件については上記第一高強度鋼板で説明した条件と同じであるため、説明は割愛する。
After cooling to an arbitrary temperature T satisfying the above formula (1), holding for 10 to 100 seconds in the T1 temperature range satisfying the above formula (1) and then 200 seconds or more in the T2 temperature range satisfying the above formula (2) Hold. By appropriately controlling the time for holding in the T1 temperature range and the T2 temperature range, it is possible to generate a predetermined amount of high temperature region bainite, low temperature region bainite, and the like.
The specific conditions for maintaining the temperature in the T1 temperature range and the T2 temperature range are the same as the conditions described in the first high-strength steel sheet, and thus the description thereof is omitted.
 上記T2温度域で所定時間保持した後は、室温まで冷却することによって本発明に係る第二高強度鋼板を製造できる。 The second high-strength steel sheet according to the present invention can be produced by cooling to room temperature after holding in the T2 temperature range for a predetermined time.
 上記第一高強度鋼板の表面には、上記第一高強度鋼板と同様、溶融亜鉛めっき層や合金化溶融亜鉛めっき層が形成されていてもよい。 As with the first high-strength steel plate, a hot-dip galvanized layer or an alloyed hot-dip galvanized layer may be formed on the surface of the first high-strength steel plate.
 溶融亜鉛めっき層や合金化溶融亜鉛めっき層を形成するときの条件は特に限定されず、公知の条件を採用できる。具体的な条件は、上記第一高強度鋼板と同じであるため説明は割愛する。 The conditions for forming the hot-dip galvanized layer or the alloyed hot-dip galvanized layer are not particularly limited, and known conditions can be adopted. Since the specific conditions are the same as those of the first high-strength steel plate, description thereof is omitted.
 本発明の技術は、特に、板厚が3mm以下の薄鋼板に好適に採用できる。 The technology of the present invention can be suitably used particularly for a thin steel plate having a thickness of 3 mm or less.
 以上、本発明に係る第二高強度鋼板について説明した。 The second high strength steel sheet according to the present invention has been described above.
 本願は、2011年3月31日に出願された日本国特許出願第2011-080953号、2011年3月31日に出願された日本国特許出願第2011-080954号、2011年9月9日に出願された日本国特許出願第2011-197670号、および2011年9月9日に出願された日本国特許出願第2011-197671号に基づく優先権の利益を主張するものである。2011年3月31日に出願された日本国特許出願第2011-080953号、2011年3月31日に出願された日本国特許出願第2011-080954号、2011年9月9日に出願された日本国特許出願第2011-197670号、および2011年9月9日に出願された日本国特許出願第2011-197671号の明細書の全内容が、本願に参考のため援用される。 The present application is Japanese Patent Application No. 2011-080953 filed on March 31, 2011, Japanese Patent Application No. 2011-080954 filed on March 31, 2011, September 9, 2011 It claims the benefit of priority based on the Japanese Patent Application No. 2011-197670 filed and the Japanese Patent Application No. 2011-197671 filed on September 9, 2011. Japanese Patent Application No. 2011-080953 filed on March 31, 2011, Japanese Patent Application No. 2011-080954 filed on March 31, 2011, filed on September 9, 2011 The entire contents of Japanese Patent Application No. 2011-197670 and Japanese Patent Application No. 2011-197671 filed on September 9, 2011 are incorporated herein by reference.
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明は下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に含まれる。なお、下記実施例1は、上記第一高強度鋼板についての実施例であり、下記実施例2は、上記第二高強度鋼板についての実施例である。
 [実施例1]
Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited by the following examples, and is implemented with appropriate modifications within a range that can meet the purpose described above and below. Of course, any of these is also included in the technical scope of the present invention. In addition, Example 1 below is an example for the first high-strength steel plate, and Example 2 below is an example for the second high-strength steel plate.
[Example 1]
 下記表1または表2に示す化学成分組成の鋼(残部は鉄およびP、S、N、O以外の不可避不純物)を真空溶製して実験用スラブを製造した。下記表1または表2において、REMは、Laを50%程度、Ceを30%程度含有するミッシュメタルを用いた。 The steel of the chemical composition shown in Table 1 or Table 2 below (the balance is iron and unavoidable impurities other than P, S, N, and O) was vacuum-melted to produce experimental slabs. In Table 1 or Table 2 below, REM used Misch metal containing about 50% La and about 30% Ce.
 下記表1または表2に示した化学成分と、上記式(a)に基づいてAc1点、上記式(b)に基づいてAc3点を算出し、結果を下記表3~表5に示した。 Based on the chemical components shown in Table 1 or 2 below and Ac 1 point based on the above formula (a) and Ac 3 point based on the above formula (b), the results are shown in Tables 3 to 5 below. It was.
 得られた実験用スラブを熱間圧延した後に冷間圧延し、次いで連続焼鈍して供試材を製造した。具体的な条件は次の通りである。 The obtained experimental slab was hot-rolled, cold-rolled, and then continuously annealed to produce a test material. Specific conditions are as follows.
 実験用スラブを1250℃で30分間加熱保持した後、圧下率を約90%とし、仕上げ圧延温度が920℃となるように熱間圧延し、この温度から平均冷却速度30℃/秒で巻取り温度500℃まで冷却して巻き取った。巻き取った後、この巻取り温度(500℃)で30分間保持し、次いで室温まで炉冷して板厚2.6mmの熱延鋼板を製造した。 The experimental slab was heated and held at 1250 ° C. for 30 minutes, then hot rolled so that the reduction rate was about 90% and the final rolling temperature was 920 ° C., and wound at this temperature at an average cooling rate of 30 ° C./second. It cooled to the temperature of 500 degreeC and wound up. After winding, it was kept at this winding temperature (500 ° C.) for 30 minutes, and then cooled to room temperature to produce a hot rolled steel sheet having a thickness of 2.6 mm.
 得られた熱延鋼板を酸洗して表面スケールを除去してから、冷延率46%で冷間圧延を行い、板厚1.4mmの冷延鋼板を製造した。 The obtained hot-rolled steel sheet was pickled to remove the surface scale, and then cold-rolled at a cold rolling rate of 46% to produce a cold-rolled steel sheet having a thickness of 1.4 mm.
 得られた冷延鋼板を、下記表3~表5に示す温度(℃)に加熱し、下記表3~表5に示す時間保持して均熱した後、次に示す4つの何れかのパターンに従って冷却し、連続焼鈍して供試材を製造した。 The obtained cold-rolled steel sheet was heated to the temperature (° C.) shown in the following Table 3 to Table 5, held for the time shown in the following Table 3 to Table 5, and soaked, and then any one of the following four patterns The sample was cooled and continuously annealed to produce a specimen.
 (冷却パターンi;上記図3の(i)に対応)
 均熱後、下記表3~表5に示す平均冷却速度(℃/秒)で下記表3~表5に示す開始温度T(℃)に冷却した後、この開始温度T(℃)で保持し、次いで下記表3~表5に示すT2温度域における開始温度(℃)まで冷却し、この開始温度で保持した。下記表3~表5には、T1温度域における滞在時間(秒)とT2温度域における滞在時間(秒)を示す。また、T1温度域で保持を完了した時点から、T2温度域における開始温度に到達するまでの時間(秒)を示した。
(Cooling pattern i; corresponding to (i) in FIG. 3)
After soaking, the sample is cooled to the starting temperature T (° C.) shown in the following Tables 3 to 5 at the average cooling rate (° C./second) shown in the following Tables 3 to 5, and then held at this starting temperature T (° C.). Then, it was cooled to the starting temperature (° C.) in the T2 temperature range shown in Tables 3 to 5 below, and kept at this starting temperature. Tables 3 to 5 below show the stay time (seconds) in the T1 temperature range and the stay time (seconds) in the T2 temperature range. In addition, the time (seconds) from the time when the holding is completed in the T1 temperature range until the start temperature in the T2 temperature range is reached is shown.
 (冷却パターンii;上記図3の(ii)に対応)
 均熱後、下記表3~表5に示す平均冷却速度(℃/秒)で下記表3~表5に示す開始温度T(℃)に冷却した後、下記表3~表5に示す終了温度(℃)まで冷却し、次いで下記表3~表5に示すT2温度域における開始温度(℃)まで冷却し、この開始温度で下記表3~表5に示す時間(秒)保持した。下記表3~表5には、T1温度域における滞在時間(秒)とT2温度域における滞在時間(秒)を示す。また、T1温度域で保持を完了した時点から、T2温度域における開始温度に到達するまでの時間(秒)を示した。
(Cooling pattern ii; corresponding to (ii) in FIG. 3)
After soaking, after cooling to the starting temperature T (° C.) shown in Table 3 to Table 5 at the average cooling rate (° C./second) shown in Table 3 to Table 5 below, the end temperature shown in Table 3 to Table 5 below is given. It was cooled to (° C.), then cooled to the starting temperature (° C.) in the T2 temperature range shown in Tables 3 to 5 below, and held at this starting temperature for the time (seconds) shown in Tables 3 to 5 below. Tables 3 to 5 below show the stay time (seconds) in the T1 temperature range and the stay time (seconds) in the T2 temperature range. In addition, the time (seconds) from the time when the holding is completed in the T1 temperature range until the start temperature in the T2 temperature range is reached is shown.
 (冷却パターンiii;上記図3の(iii)に対応)
 均熱後、下記表3、表4に示す平均冷却速度(℃/秒)で下記表3、表4に示す開始温度T(℃)に冷却した後、下記表3、表4に示すT2温度域における開始温度(℃)まで冷却し、この開始温度で保持した。下記表3、表4には、T1温度域における滞在時間(秒)とT2温度域における滞在時間(秒)を示す。
(Cooling pattern iii; corresponding to (iii) of FIG. 3 above)
After soaking, the sample was cooled to the starting temperature T (° C.) shown in Table 3 and Table 4 at the average cooling rate (° C./second) shown in Table 3 and Table 4, and then the T2 temperature shown in Table 3 and Table 4 below. Cooled to the starting temperature (° C.) in the zone and held at this starting temperature. Tables 3 and 4 below show the stay time (seconds) in the T1 temperature range and the stay time (seconds) in the T2 temperature range.
 (冷却パターンiv)
 均熱後、下記表3に示すT1温度域における開始温度(℃)またはT2温度域における開始温度(℃)まで冷却し、いずれかの開始温度で保持した。即ち、下記表3のNo.8は、均熱後、420℃で450秒間保持してから室温まで保持することなく一気に冷却(平均冷却速度は5℃/秒)した例であり、下記表3に示したT2温度域における滞在時間は、T2温度域を通過するのに要した時間を示している。下記表3のNo.15は、均熱後、380℃で450秒間保持してから室温まで保持することなく一気に冷却(平均冷却速度は5℃/秒)した例であり、下記表3に示したT1温度域における滞在時間は、T1温度域を通過するのに要した時間を示している。下記表3には、T1温度域における滞在時間(秒)とT2温度域における滞在時間(秒)を示す。
(Cooling pattern iv)
After soaking, the mixture was cooled to the start temperature (° C.) in the T1 temperature range or the start temperature (° C.) in the T2 temperature range shown in Table 3 below, and held at any start temperature. That is, No. in Table 3 below. 8 is an example in which after soaking, the sample was held at 420 ° C. for 450 seconds and then cooled at a time without holding it to room temperature (average cooling rate was 5 ° C./second), and stay in the T2 temperature range shown in Table 3 below. The time indicates the time required to pass through the T2 temperature range. No. in Table 3 below. 15 is an example in which after soaking, the sample was held at 380 ° C. for 450 seconds and then cooled at once without being held to room temperature (average cooling rate was 5 ° C./second), and stay in the T1 temperature range shown in Table 3 below The time indicates the time required to pass through the T1 temperature range. Table 3 below shows the stay time (seconds) in the T1 temperature range and the stay time (seconds) in the T2 temperature range.
 なお、表3~表5に示したT1温度域における開始温度、終了温度、T2温度域における開始温度のうち、※印を付けた値は、本発明で規定しているT1温度域またはT2温度域から外れているが、説明の便宜上、ヒートパターンを示すために、各欄に温度を記載した。 Of the start temperature, end temperature, and start temperature in the T2 temperature range shown in Tables 3 to 5, the values marked with * are the T1 temperature range or T2 temperature defined in the present invention. Although it is out of the range, for convenience of explanation, the temperature is described in each column in order to show the heat pattern.
 得られた供試材について、金属組織の観察と機械的特性の評価を次の手順で行った。 The obtained specimens were observed for metal structure and evaluated for mechanical properties in the following procedure.
 《金属組織の観察》
 金属組織のうち、高温域生成ベイナイト、低温域生成ベイナイト等(即ち、低温域生成ベイナイト+焼戻しマルテンサイト)、およびポリゴナルフェライトの面積率は走査型電子顕微鏡(SEM)観察した結果に基づいて算出し、残留γの体積率は飽和磁化法で測定した。
《Observation of metal structure》
Among metal structures, high-area bainite, low-temperature area bainite, etc. (that is, low-temperature area bainite + tempered martensite), and the area ratio of polygonal ferrite are calculated based on the results of observation with a scanning electron microscope (SEM). The volume fraction of residual γ was measured by the saturation magnetization method.
 [(1)高温域生成ベイナイト、低温域生成ベイナイト等、ポリゴナルフェライトの面積率]
 供試材の圧延方向に平行な断面について、表面を研磨し、更に電解研磨した後、ナイタール腐食させて板厚の1/4位置をSEMで、倍率3000倍で5視野観察した。観察視野は約50μm×約50μmとした。
[(1) Area ratio of polygonal ferrite, such as high temperature region bainite and low temperature region bainite]
About the cross section parallel to the rolling direction of the test material, the surface was polished, further electropolished, and then subjected to nital corrosion, and the 1/4 position of the plate thickness was observed with SEM at 5 magnifications at 3000 magnifications. The observation visual field was about 50 μm × about 50 μm.
 次に、観察視野内において、白色または薄い灰色として観察される残留γと炭化物の平均間隔を前述した方法に基づいて測定した。これらの平均間隔によって区別される高温域生成ベイナイトおよび低温域生成ベイナイト等の面積率は、点算法により測定した。 Next, in the observation field of view, the average interval between residual γ and carbides observed as white or light gray was measured based on the method described above. The area ratios of the high-temperature region-generated bainite and the low-temperature region-generated bainite, which are distinguished by these average intervals, were measured by a point calculation method.
 高温域生成ベイナイトの面積率a(%)、低温域生成ベイナイトと焼戻しマルテンサイトとの合計面積率b(%)、ポリゴナルフェライトの面積率c(%)を下記表6~表8に示す。また、上記面積率a、合計面積率b、および面積率cの合計面積率(a+b+c)も併せて示す。 Tables 6 to 8 below show the area ratio a (%) of the high-temperature region generated bainite, the total area ratio b (%) of the low-temperature region generated bainite and tempered martensite, and the area ratio c (%) of polygonal ferrite. In addition, the total area ratio (a + b + c) of the area ratio a, the total area ratio b, and the area ratio c is also shown.
 また、観察視野内に認められるポリゴナルフェライト粒の円相当直径を測定し、平均値を求めた。結果を下記表6~表8に示す。また、ポリゴナルフェライト粒の平均円相当直径Dが10μm以下の場合を評価○、10μm超の場合を評価△とし、評価結果を下記表6~表8に示す。 Further, the equivalent circle diameter of polygonal ferrite grains observed in the observation field was measured, and the average value was obtained. The results are shown in Tables 6 to 8 below. In addition, the case where the average equivalent circle diameter D of the polygonal ferrite grains is 10 μm or less is evaluated as ○, and the case where it exceeds 10 μm is evaluated as Δ.
 [(2)残留γの体積率]
 金属組織のうち、残留γの体積率は、飽和磁化法で測定した。具体的には、供試材の飽和磁化(I)と、400℃で15時間熱処理した標準試料の飽和磁化(Is)を測定し、下記式から残留γの体積率(Vγr)を求めた。飽和磁化の測定は、理研電子製の直流磁化B-H特性自動記録装置「model BHS-40」を用い、最大印加磁化を5000(Oe)として室温で測定した。
Vγr=(1-I/Is)×100
[(2) Volume ratio of residual γ]
Of the metal structure, the volume fraction of residual γ was measured by the saturation magnetization method. Specifically, the saturation magnetization (I) of the specimen and the saturation magnetization (Is) of a standard sample heat-treated at 400 ° C. for 15 hours were measured, and the volume fraction (Vγr) of residual γ was obtained from the following formula. The saturation magnetization was measured at room temperature using a direct current magnetization BH characteristic automatic recording device “model BHS-40” manufactured by Riken Denshi with a maximum applied magnetization of 5000 (Oe).
Vγr = (1−I / Is) × 100
 また、供試材の圧延方向に平行な断面の表面を研磨し、光学顕微鏡を用いて観察倍率1000倍で5視野について観察し、残留γと焼入れマルテンサイトとが複合したMA混合相の円相当直径dを測定した。MA混合相の全個数に対して、観察断面での円相当直径dが7μmを超えるMA混合相の個数割合を算出した。個数割合が15%未満である場合を合格(○)、15%以上である場合を不合格(×)として評価結果を下記表6~表8に示す。 Moreover, the surface of the cross section parallel to the rolling direction of the test material is polished, and observed with five optical fields at an observation magnification of 1000 times using an optical microscope, corresponding to a circle of MA mixed phase in which residual γ and quenching martensite are combined. The diameter d was measured. The ratio of the number of MA mixed phases in which the equivalent circle diameter d in the observation cross section exceeds 7 μm was calculated with respect to the total number of MA mixed phases. The evaluation results are shown in Tables 6 to 8 below, assuming that the number ratio is less than 15% as pass (◯), and the case where the number ratio is 15% or more as fail (×).
 《機械的特性の評価》
 供試材の機械的特性は、引張強度(TS)、伸び(EL)、穴拡げ率(λ)、限界曲げ半径(R)、エリクセン値に基づいて評価した。
<< Evaluation of mechanical properties >>
The mechanical properties of the specimens were evaluated based on tensile strength (TS), elongation (EL), hole expansion rate (λ), critical bending radius (R), and Erichsen value.
 (1)引張強度(TS)と伸び(EL)は、JIS Z2241に基づいて引張試験を行って測定した。試験片は、供試材の圧延方向に対して垂直な方向が長手方向となるように、JIS Z2201で規定される5号試験片を供試材から切り出したものを用いた。測定結果を下記表6~表8に示す。 (1) Tensile strength (TS) and elongation (EL) were measured by conducting a tensile test based on JIS Z2241. The test piece used was a No. 5 test piece defined in JIS Z2201 cut out from the test material such that the direction perpendicular to the rolling direction of the test material was the longitudinal direction. The measurement results are shown in Tables 6 to 8 below.
 (2)伸びフランジ性は、穴拡げ率によって評価する。穴拡げ率(λ)は、鉄鋼連盟規格JFST 1001に基づいて穴拡げ試験を行って測定した。測定結果を下記表6~表8に示す。 (2) Stretch flangeability is evaluated by the hole expansion rate. The hole expansion rate (λ) was measured by performing a hole expansion test based on the Steel Federation Standard JFST 1001. The measurement results are shown in Tables 6 to 8 below.
 (3)限界曲げ半径(R)は、JIS Z2248に基づいてV曲げ試験を行って測定した。試験片は、供試材の圧延方向に対して垂直な方向が長手方向(曲げ稜線が圧延方向と一致)となるように、JIS Z2204で規定される1号試験片(板厚:1.4mm)を供試材から切り出したものを用いた。なお、V曲げ試験は、亀裂が発生しないように試験片の長手方向の端面に機械研削を施してから行った。 (3) The critical bending radius (R) was measured by performing a V-bending test based on JIS Z2248. The test piece is No. 1 test piece (sheet thickness: 1.4 mm) defined in JIS Z2204 so that the direction perpendicular to the rolling direction of the specimen is the longitudinal direction (the bending ridge line coincides with the rolling direction). ) Was cut out from the test material. The V-bending test was performed after mechanical grinding was performed on the end face in the longitudinal direction of the test piece so as not to cause cracks.
 ダイとパンチの角度は90°とし、パンチの先端半径を0.5mm単位で変えてV曲げ試験を行い、亀裂が発生せずに曲げることができるパンチ先端半径を限界曲げ半径(R)として求めた。測定結果を下記表6~表8に示す。なお、亀裂発生の有無はルーペを用いて観察し、ヘアークラック発生なしを基準として判定した。 The angle between the die and the punch is 90 °, the tip radius of the punch is changed in units of 0.5 mm, a V-bending test is performed, and the radius of the tip of the punch that can be bent without cracks is determined as the limit bending radius (R). It was. The measurement results are shown in Tables 6 to 8 below. In addition, the presence or absence of crack generation was observed using a loupe, and the determination was made based on the absence of hair crack generation.
 (4)エリクセン値は、JIS Z2247に基づいてエリクセン試験を行って測定した。試験片は、90mm×90mm×厚み1.4mmとなるように供試材から切り出したものを用いた。エリクセン試験は、パンチ径が20mmのものを用いて行った。測定結果を下記表6~表8に示す。なお、エリクセン試験によれば、鋼板の全伸び特性と局部延性の両方による複合効果を評価できる。 (4) The Eriksen value was measured by conducting an Eriksen test based on JIS Z2247. The test piece used was cut from the test material so as to be 90 mm × 90 mm × 1.4 mm in thickness. The Eriksen test was performed using a punch having a diameter of 20 mm. The measurement results are shown in Tables 6 to 8 below. In addition, according to the Erichsen test, the composite effect by both the total elongation characteristic and local ductility of a steel plate can be evaluated.
 供試材の機械的特性は、引張強度(TS)に応じた伸び(EL)、穴拡げ率(λ)、限界曲げ半径(R)、エリクセン値の基準に従って評価した。即ち、鋼板のTSによって要求されるEL、λ、R、エリクセン値は異なるため、TSレベルに応じて下記基準に従って機械的特性を評価した。 The mechanical properties of the specimens were evaluated according to the criteria of elongation (EL), hole expansion ratio (λ), critical bending radius (R), and Erichsen value according to tensile strength (TS). That is, since EL, λ, R, and Erichsen values required by steel sheet TS differ, mechanical characteristics were evaluated according to the following criteria according to the TS level.
 下記評価基準に基づいて、EL、λ、R、エリクセン値の全ての特性が満足している場合を合格(○)、何れかの特性が基準値に満たない場合を不合格(×)とし、評価結果を下記表6~表8に示す。 Based on the following evaluation criteria, the case where all the characteristics of EL, λ, R, and Erichsen values are satisfied is accepted (◯), and the case where any characteristic is less than the reference value is rejected (×). The evaluation results are shown in Tables 6 to 8 below.
 (1)780MPa級の場合
  TS    :780MPa以上、980MPa未満
  EL    :25%以上
  λ     :30%以上
  R     :1.0mm以下
  エリクセン値:10.4mm以上
(1) In the case of 780 MPa class TS: 780 MPa or more and less than 980 MPa EL: 25% or more λ: 30% or more R: 1.0 mm or less Erichsen value: 10.4 mm or more
 (2)980MPa級の場合
  TS    :980MPa以上、1180MPa未満
  EL    :19%以上
  λ     :20%以上
  R     :3.0mm以下
  エリクセン値:10.0mm以上
(2) In the case of 980 MPa class TS: 980 MPa or more and less than 1180 MPa EL: 19% or more λ: 20% or more R: 3.0 mm or less Erichsen value: 10.0 mm or more
 (3)1180MPa級の場合
  TS    :1180MPa以上、1270MPa未満
  EL    :15%以上
  λ     :20%以上
  R     :4.5mm以下
  エリクセン値:9.6mm以上
(3) In the case of 1180 MPa class TS: 1180 MPa or more and less than 1270 MPa EL: 15% or more λ: 20% or more R: 4.5 mm or less Eriksen value: 9.6 mm or more
 (4)1270MPa級の場合
  TS    :1270MPa以上、1370MPa未満
  EL    :14%以上
  λ     :20%以上
  R     :5.5mm以下
  エリクセン値:9.4mm以上
(4) In the case of 1270 MPa class TS: 1270 MPa or more and less than 1370 MPa EL: 14% or more λ: 20% or more R: 5.5 mm or less Eriksen value: 9.4 mm or more
 なお、第一高強度鋼板では、TSが780MPa以上、1370MPa未満であることを前提としており、TSが780MPa未満であるか、1370MPa以上の場合は、EL、λ、R、エリクセン値が良好であっても対象外として扱う。 The first high-strength steel sheet is based on the premise that TS is 780 MPa or more and less than 1370 MPa. When TS is less than 780 MPa or 1370 MPa or more, EL, λ, R, and Erichsen values were good. However, it is treated as exempt.
 下記表1~表8から次のように考察できる。下記表6~表8に示したNo.1~70のうち、No.4、29、31、38、55、65、67は上記パターンiで冷却した例であり、No.7、11、14、33は上記パターンiiiで冷却した例であり、No.8、15は上記パターンivで冷却した例であり、残りは上記パターンiiで冷却した例である。 The following table 1 to table 8 can be considered as follows. Nos. Shown in Tables 6 to 8 below. No. 1-70 Nos. 4, 29, 31, 38, 55, 65, and 67 are examples of cooling with the above pattern i. Nos. 7, 11, 14, and 33 are examples of cooling with the above pattern iii. 8 and 15 are examples cooled with the pattern iv, and the rest are examples cooled with the pattern ii.
 下記表6~表8において、総合評価に○が付されている例は、いずれも本発明で規定する要件を満足している鋼板であり、各TSに応じて定めた機械的特性(EL、λ、R、エリクセン値)の基準値を満足している。従って本発明の高強度鋼板は、加工性全般に亘って良好であることが分かる。 In Tables 6 to 8 below, examples in which overall evaluation is marked with ○ are all steel plates that satisfy the requirements defined in the present invention, and mechanical properties (EL, (λ, R, Erichsen values) are satisfied. Therefore, it can be seen that the high-strength steel sheet of the present invention is good over the entire workability.
 一方、総合評価に×が付されている例(表6~表8に示したNo.8、13、15、29、31、34、37、41、46、48、52、60~63)は、本発明で規定するいずれかの要件を満足していない鋼板である。詳細には次の通りである。 On the other hand, examples in which the overall evaluation is marked with x (Nos. 8, 13, 15, 29, 31, 34, 37, 41, 46, 48, 52, 60 to 63 shown in Tables 6 to 8) The steel sheet does not satisfy any of the requirements defined in the present invention. Details are as follows.
 表6のNo.8は、T1温度域での保持時間が長過ぎ、しかもT2温度域で保持せずに冷却した例であり、低温域生成ベイナイト等の生成が抑制されている。また、粗大なMA混合相が多く生成した。従ってλが小さくなり、加工性が劣化している。表6のNo.13は、二相温度域で加熱保持した後、上記式(1)を満たす任意の温度Tまでの平均冷却速度が小さ過ぎる例であり、パーライト変態が起こり、残留γ量が確保されず、伸びが低下して加工性が劣化している。表6のNo.15は、均熱処理した後、T1温度域で保持せず、T2温度域まで一気に冷却し、この温度域で保持した例である。T2温度域のみで保持しているため、高温域生成ベイナイトが殆ど生成しておらず、伸びおよび局所変形能(エリクセン値)が低下し、加工性が劣化している。表6のNo.29は、均熱処理した後、T1温度域で保持せず、T2温度域まで一気に冷却し、この温度域で2種の温度で保持した例である。T2温度域のみで保持しているため、高温域生成ベイナイトが殆ど生成しておらず、伸びが低下し、加工性が劣化している。 No. in Table 6 No. 8 is an example in which the holding time in the T1 temperature range is too long, and the cooling is performed without holding in the T2 temperature range, and the generation of low temperature range bainite or the like is suppressed. In addition, a large amount of coarse MA mixed phase was produced. Accordingly, λ is reduced and workability is deteriorated. No. in Table 6 13 is an example in which the average cooling rate to an arbitrary temperature T satisfying the above formula (1) is too low after being heated and held in a two-phase temperature range, pearlite transformation occurs, the residual γ amount is not ensured, and elongation Decreases and the workability deteriorates. No. in Table 6 No. 15 is an example in which after the soaking process, the temperature is not maintained in the T1 temperature range, but is cooled to the T2 temperature range at once, and is maintained in this temperature range. Since it is held only in the T2 temperature range, almost no high temperature range bainite is generated, elongation and local deformability (Ericsen value) are lowered, and workability is deteriorated. No. in Table 6 No. 29 is an example in which after the soaking process, the temperature is not maintained in the T1 temperature range but is cooled to the T2 temperature range at a stretch, and is maintained at two temperatures in this temperature range. Since the temperature is maintained only in the T2 temperature range, almost no high temperature range bainite is generated, elongation is reduced, and workability is deteriorated.
 表6のNo.31は、T1温度域での保持時間が短過ぎる例であり、高温域生成ベイナイトの生成量が少な過ぎるため、伸びが低下し、加工性が劣化している。表7のNo.34は、T1温度域での保持時間が長く、T2温度域で保持していない例であり、低温域生成ベイナイト等の生成が抑制されている。また、粗大なMA混合相が多く生成している。従ってエリクセン値が小さくなり、局所変形能が低下して加工性を改善できていない。表7のNo.37は、加熱温度が高過ぎるため、ポリゴナルフェライトが生成せず、伸びが低下している。従って鋼板の加工性を改善できていない。表7のNo.41は、加熱温度が低過ぎるため、ポリゴナルフェライトが過剰に生成し、強度が低下している。 No. in Table 6 No. 31 is an example in which the holding time in the T1 temperature range is too short, and since the amount of high-temperature region-generated bainite is too small, elongation is lowered and workability is deteriorated. No. in Table 7 34 is an example in which the holding time in the T1 temperature range is long and not held in the T2 temperature range, and the generation of low temperature range bainite or the like is suppressed. Moreover, many coarse MA mixed phases are producing | generating. Accordingly, the Erichsen value becomes small, the local deformability is lowered, and the workability cannot be improved. No. in Table 7 In No. 37, since the heating temperature is too high, polygonal ferrite is not generated and elongation is lowered. Therefore, the workability of the steel sheet cannot be improved. No. in Table 7 In 41, the heating temperature is too low, so polygonal ferrite is excessively generated and the strength is lowered.
 表7のNo.46は、二相温度域における保持時間が短過ぎる例であり、残留γの生成が抑制されるため、伸びが低下している。また、エリクセン値が小さく、局所変形能が低下している。従って鋼板の加工性を改善できていない。表7のNo.48は、均熱処理した後、本発明で規定するT1温度域の温度を超える温度で保持し、T1温度域では保持せず、T2温度域まで冷却してこの温度域で保持した例である。ポリゴナルフェライトが過剰に生成していると共に、高温域生成ベイナイトの生成量が少ないため、伸びが低下し、加工性を改善できていない。表7のNo.52は、T1温度域で保持した後、T2温度域を下回る温度に冷却してT2温度域では保持しなかった例であり、低温域生成ベイナイトが殆ど生成せず、SEM観察により粗大なMA混合相が多量に存在していることが確認され、焼入れマルテンサイトが多く存在することで強度が高くなり過ぎている。 No. in Table 7 No. 46 is an example in which the holding time in the two-phase temperature range is too short, and since the generation of residual γ is suppressed, the elongation is reduced. Moreover, the Erichsen value is small and local deformability is reduced. Therefore, the workability of the steel sheet cannot be improved. No. in Table 7 No. 48 is an example in which after soaking, it is held at a temperature exceeding the temperature in the T1 temperature range defined in the present invention, not held in the T1 temperature range, but cooled to the T2 temperature range and held in this temperature range. Polygonal ferrite is excessively generated, and the amount of high-temperature region-generated bainite is small, so that elongation is lowered and workability cannot be improved. No. in Table 7 No. 52 is an example in which, after being held in the T1 temperature range, cooled to a temperature lower than the T2 temperature range and not maintained in the T2 temperature range, almost no low temperature range bainite was generated, and coarse MA mixing was observed by SEM observation It is confirmed that a large amount of phase is present, and the strength is too high due to the presence of a large amount of quenched martensite.
 表8のNo.60は、C量が少な過ぎる例であり、残留γの生成量が少な過ぎるため、伸びおよびエリクセン値が小さくなり、加工性が劣化している。表8のNo.61は、Si量が多過ぎる例であり、ポリゴナルフェライトが過剰に生成して高温域生成ベイナイトおよび低温域生成ベイナイト等の生成が抑制されている。従って所望の強度を確保できていない。表8のNo.62は、Si量が少な過ぎる例であり、残留γの生成量を確保できていない。従って伸びが低下し、加工性が劣化している。表8のNo.63は、Mn量が少な過ぎる例であり、焼入れが充分に行われていないため、冷却中にポリゴナルフェライトが過剰に生成し、その反面、低温域生成ベイナイト等の生成が抑制された。従って伸びおよび穴拡げ率が小さく、エリクセン値も小さくなり、加工性が劣化している。 No. in Table 8 No. 60 is an example in which the amount of C is too small. Since the amount of residual γ produced is too small, the elongation and Erichsen values are small, and the workability is deteriorated. No. in Table 8 61 is an example in which the amount of Si is too large. Polygonal ferrite is excessively generated, and generation of high temperature region bainite, low temperature region bainite, and the like is suppressed. Therefore, the desired strength cannot be ensured. No. in Table 8 62 is an example in which the amount of Si is too small, and the amount of residual γ produced cannot be secured. Accordingly, the elongation is lowered and the workability is deteriorated. No. in Table 8 63 is an example in which the amount of Mn is too small, and quenching is not sufficiently performed, so that polygonal ferrite is excessively generated during cooling, and on the other hand, generation of low-temperature region-generated bainite and the like is suppressed. Accordingly, the elongation and hole expansion rate are small, the Erichsen value is also small, and the workability is deteriorated.
 以上の結果より、本発明によれば、加工性を改善した高強度鋼板を提供できることが分かる。 From the above results, it can be seen that according to the present invention, a high-strength steel sheet with improved workability can be provided.
 次に、上記表6、表7に示した980MPa級の鋼板のうち、本発明で規定している要件を満足する例(No.3~7、9~12、14、16~27、30、32、33、35、36、38~40、42)について、引張強度(TS)と伸び(EL)の関係を図4に示す。図4において、●はポリゴナルフェライト粒の平均円相当直径Dが10μm以下の結果、■はポリゴナルフェライト粒の平均円相当直径Dが10μm超の結果を示している。 Next, among the 980 MPa grade steel sheets shown in Tables 6 and 7, examples satisfying the requirements defined in the present invention (Nos. 3 to 7, 9 to 12, 14, 16 to 27, 30, FIG. 4 shows the relationship between tensile strength (TS) and elongation (EL) for 32, 33, 35, 36, 38 to 40, 42). In FIG. 4, ● represents the result of the average equivalent circle diameter D of the polygonal ferrite grains being 10 μm or less, and ▪ represents the result of the average equivalent circle diameter D of the polygonal ferrite grains exceeding 10 μm.
 図4から明らかなように、引張強度(TS)が同じであっても、ポリゴナルフェライト粒の平均円相当直径Dを10μm以下に抑えることによって伸び(EL)を大きくでき、加工性を一段と改善できることが分かる。 As is clear from FIG. 4, even if the tensile strength (TS) is the same, the elongation (EL) can be increased by suppressing the average equivalent circle diameter D of the polygonal ferrite grains to 10 μm or less, and the workability is further improved. I understand that I can do it.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 [実施例2]
Figure JPOXMLDOC01-appb-T000008
[Example 2]
 下記表9に示す化学成分組成の鋼(残部は鉄およびP、S、N、O以外の不可避不純物)を真空溶製して実験用スラブを製造した。下記表9において、REMは、Laを50%程度、Ceを30%程度含有するミッシュメタルを用いた。 The steel of the chemical composition shown in Table 9 below (the balance is iron and inevitable impurities other than P, S, N, and O) was vacuum-melted to produce an experimental slab. In Table 9 below, REM used misch metal containing about 50% La and about 30% Ce.
 下記表9に示した化学成分と、上記式(a)に基づいてAc1点、上記式(b)に基づいてAc3点を算出し、結果を下記表10、表11に示した。 The Ac 1 point was calculated based on the chemical components shown in Table 9 below and the above formula (a), and the Ac 3 point was calculated based on the above formula (b). The results are shown in Table 10 and Table 11 below.
 得られた実験用スラブを熱間圧延した後に冷間圧延し、次いで連続焼鈍して供試材を製造した。具体的な条件は次の通りである。 The obtained experimental slab was hot-rolled, cold-rolled, and then continuously annealed to produce a test material. Specific conditions are as follows.
 実験用スラブを1250℃で30分間加熱保持した後、圧下率を約90%とし、仕上げ圧延温度が920℃となるように熱間圧延し、この温度から平均冷却速度30℃/秒で巻取り温度500℃まで冷却して巻き取った。巻き取った後、この巻取り温度(500℃)で30分間保持し、次いで室温まで炉冷して板厚2.6mmの熱延鋼板を製造した。 The experimental slab was heated and held at 1250 ° C. for 30 minutes, then hot rolled so that the reduction rate was about 90% and the final rolling temperature was 920 ° C., and wound at this temperature at an average cooling rate of 30 ° C./second. It cooled to the temperature of 500 degreeC and wound up. After winding, it was kept at this winding temperature (500 ° C.) for 30 minutes, and then cooled to room temperature to produce a hot rolled steel sheet having a thickness of 2.6 mm.
 得られた熱延鋼板を酸洗して表面スケールを除去してから、冷延率46%で冷間圧延を行い、板厚1.4mmの冷延鋼板を製造した。 The obtained hot-rolled steel sheet was pickled to remove the surface scale, and then cold-rolled at a cold rolling rate of 46% to produce a cold-rolled steel sheet having a thickness of 1.4 mm.
 得られた冷延鋼板を、下記表10、表11に示す温度(℃)に加熱し、下記表10、表11に示す時間保持して均熱した後、次に示す4つの何れかのパターンに従って冷却し、連続焼鈍して供試材を製造した。 The obtained cold-rolled steel sheet was heated to the temperature (° C.) shown in the following Table 10 and Table 11, held for the time shown in the following Table 10 and Table 11, and soaked, and then any one of the following four patterns The sample was cooled and continuously annealed to produce a specimen.
 (冷却パターンi;上記図3の(i)に対応)
 均熱後、下記表10、表11に示す平均冷却速度(℃/秒)で下記表10、表11に示す開始温度T(℃)に冷却した後、この開始温度T(℃)で保持し、次いで下記表10、表11に示すT2温度域における開始温度(℃)まで冷却し、この開始温度で保持した。下記表10、表11には、T1温度域における滞在時間(秒)とT2温度域における滞在時間(秒)を示す。また、T1温度域で保持を完了した時点から、T2温度域における開始温度に到達するまでの時間(秒)を示した。
(Cooling pattern i; corresponding to (i) in FIG. 3)
After soaking, the sample is cooled to the start temperature T (° C.) shown in Table 10 and Table 11 at the average cooling rate (° C./second) shown in Table 10 and Table 11 below, and then held at this start temperature T (° C.). Then, it was cooled to the starting temperature (° C.) in the T2 temperature range shown in Tables 10 and 11 below, and kept at this starting temperature. Tables 10 and 11 below show the stay time (seconds) in the T1 temperature range and the stay time (seconds) in the T2 temperature range. In addition, the time (seconds) from the time when the holding is completed in the T1 temperature range until the start temperature in the T2 temperature range is reached is shown.
 (冷却パターンii;上記図3の(ii)に対応)
 均熱後、下記表10、表11に示す平均冷却速度(℃/秒)で下記表10、表11に示す開始温度T(℃)に冷却した後、下記表10、表11に示す終了温度(℃)まで冷却し、次いで下記表10、表11に示すT2温度域における開始温度(℃)まで冷却し、この開始温度で下記表10、表11に示す時間(秒)保持した。下記表10、表11には、T1温度域における滞在時間(秒)とT2温度域における滞在時間(秒)を示す。また、T1温度域で保持を完了した時点から、T2温度域における開始温度に到達するまでの時間(秒)を示した。
(Cooling pattern ii; corresponding to (ii) in FIG. 3)
After soaking, after cooling to the start temperature T (° C.) shown in Table 10 and Table 11 below at the average cooling rate (° C./second) shown in Table 10 and Table 11 below, the end temperatures shown in Table 10 and Table 11 below are shown. It was cooled to (° C.), then cooled to the starting temperature (° C.) in the T2 temperature range shown in Table 10 and Table 11 below, and held at this starting temperature for the time (seconds) shown in Table 10 and Table 11 below. Tables 10 and 11 below show the stay time (seconds) in the T1 temperature range and the stay time (seconds) in the T2 temperature range. In addition, the time (seconds) from the time when the holding is completed in the T1 temperature range until the start temperature in the T2 temperature range is reached is shown.
 (冷却パターンiii;上記図3の(iii)に対応)
 均熱後、下記表10、表11に示す平均冷却速度(℃/秒)で下記表10、表11に示す開始温度T(℃)に冷却した後、下記表10、表11に示すT2温度域における開始温度(℃)まで冷却し、この開始温度で保持した。下記表10、表11には、T1温度域における滞在時間(秒)とT2温度域における滞在時間(秒)を示す。
(Cooling pattern iii; corresponding to (iii) of FIG. 3 above)
After soaking, the sample was cooled to the starting temperature T (° C.) shown in Table 10 and Table 11 at the average cooling rate (° C./second) shown in Table 10 and Table 11, and then the T2 temperature shown in Table 10 and Table 11 below. Cooled to the starting temperature (° C.) in the zone and held at this starting temperature. Tables 10 and 11 below show the stay time (seconds) in the T1 temperature range and the stay time (seconds) in the T2 temperature range.
 (冷却パターンiv)
 均熱後、下記表10に示すT1温度域における開始温度(℃)まで冷却し、この開始温度で保持した。即ち、下記表10のNo.19は、均熱後、420℃で450秒間保持してから室温まで保持することなく一気に冷却(平均冷却速度は5℃/秒)した例であり、下記表10に示したT2温度域における滞在時間は、T2温度域を通過するのに要した時間を示している。下記表10には、T1温度域における滞在時間(秒)とT2温度域における滞在時間(秒)を示す。
(Cooling pattern iv)
After soaking, it was cooled to the starting temperature (° C.) in the T1 temperature range shown in Table 10 below, and held at this starting temperature. That is, No. in Table 10 below. 19 is an example in which after soaking, the sample was held at 420 ° C. for 450 seconds and then cooled at a time without holding it to room temperature (average cooling rate was 5 ° C./second), and stay in the T2 temperature range shown in Table 10 below The time indicates the time required to pass through the T2 temperature range. Table 10 below shows the stay time (seconds) in the T1 temperature range and the stay time (seconds) in the T2 temperature range.
 なお、表10に示したT1温度域における開始温度、終了温度、T2温度域における開始温度のうち、※印を付けた値は、本発明で規定しているT1温度域またはT2温度域から外れているが、説明の便宜上、ヒートパターンを示すために、各欄に温度を記載した。 Of the start temperature and end temperature in the T1 temperature range shown in Table 10 and the start temperature in the T2 temperature range, the values marked with * are outside the T1 temperature range or T2 temperature range defined in the present invention. However, for convenience of explanation, the temperature is described in each column in order to show the heat pattern.
 得られた供試材について、金属組織の観察と機械的特性の評価を次の手順で行った。 The obtained specimens were observed for metal structure and evaluated for mechanical properties in the following procedure.
 《金属組織の観察》
 金属組織のうち、ポリゴナルフェライト、高温域生成ベイナイト、および低温域生成ベイナイト等(即ち、低温域生成ベイナイト+焼戻しマルテンサイト)の面積率は走査型電子顕微鏡(SEM)観察した結果に基づいて算出し、残留γの体積率は飽和磁化法で測定した。
《Observation of metal structure》
Among metal structures, the area ratio of polygonal ferrite, high temperature region bainite, low temperature region bainite, etc. (ie, low temperature region bainite + tempered martensite) is calculated based on the results of observation with a scanning electron microscope (SEM). The volume fraction of residual γ was measured by the saturation magnetization method.
 [(1)ポリゴナルフェライト、高温域生成ベイナイト、および低温域生成ベイナイト等の面積率]
 供試材の圧延方向に平行な断面について、表面を研磨し、更に電解研磨した後、ナイタール腐食させて板厚の1/4位置をSEMで、倍率3000倍で5視野観察した。観察視野は約50μm×約50μmとした。
[(1) Area ratios of polygonal ferrite, high-temperature region-generated bainite, low-temperature region-generated bainite, etc.]
About the cross section parallel to the rolling direction of the test material, the surface was polished, further electropolished, and then subjected to nital corrosion, and the 1/4 position of the plate thickness was observed with SEM at 5 magnifications at 3000 magnifications. The observation visual field was about 50 μm × about 50 μm.
 次に、観察視野内において、白色または薄い灰色として観察される残留γと炭化物の平均間隔を前述した方法に基づいて測定した。これらの平均間隔によって区別される高温域生成ベイナイトおよび低温域生成ベイナイト等の面積率は、点算法により測定した。 Next, in the observation field of view, the average interval between residual γ and carbides observed as white or light gray was measured based on the method described above. The area ratios of the high-temperature region-generated bainite and the low-temperature region-generated bainite, which are distinguished by these average intervals, were measured by a point calculation method.
 ポリゴナルフェライトの面積率a(%)、高温域生成ベイナイトの面積率b(%)、低温域生成ベイナイトと焼戻しマルテンサイトとの合計面積率c(%)を下記表12、表13に示す。また、上記面積率a、面積率b、および合計面積率cの合計面積率(a+b+c)も併せて示す。 Tables 12 and 13 below show the area ratio a (%) of polygonal ferrite, the area ratio b (%) of the high temperature region bainite, and the total area ratio c (%) of the low temperature region bainite and tempered martensite. Further, the total area ratio (a + b + c) of the area ratio a, the area ratio b, and the total area ratio c is also shown.
 また、観察視野内に認められるポリゴナルフェライト粒の円相当直径を測定し、平均値を求めた。結果を下記表12、表13に示す。また、ポリゴナルフェライト粒の平均円相当直径Dが10μm以下の場合を評価○、10μm超の場合を評価△とし、評価結果を下記表12、表13に示す。 Further, the equivalent circle diameter of polygonal ferrite grains observed in the observation field was measured, and the average value was obtained. The results are shown in Tables 12 and 13 below. In addition, the case where the average equivalent circle diameter D of the polygonal ferrite grains is 10 μm or less is evaluated as ◯, and the case where it exceeds 10 μm is evaluated as Δ.
 [(2)残留γの体積率]
 金属組織のうち、残留γの体積率は、飽和磁化法で測定した。具体的には、供試材の飽和磁化(I)と、400℃で15時間熱処理した標準試料の飽和磁化(Is)を測定し、下記式から残留γの体積率(Vγr)を求めた。飽和磁化の測定は、理研電子製の直流磁化B-H特性自動記録装置「model BHS-40」を用い、最大印加磁化を5000(Oe)として室温で測定した。
Vγr=(1-I/Is)×100
[(2) Volume ratio of residual γ]
Of the metal structure, the volume fraction of residual γ was measured by the saturation magnetization method. Specifically, the saturation magnetization (I) of the specimen and the saturation magnetization (Is) of a standard sample heat-treated at 400 ° C. for 15 hours were measured, and the volume fraction (Vγr) of residual γ was obtained from the following formula. The saturation magnetization was measured at room temperature using a direct current magnetization BH characteristic automatic recording device “model BHS-40” manufactured by Riken Denshi with a maximum applied magnetization of 5000 (Oe).
Vγr = (1−I / Is) × 100
 また、供試材の圧延方向に平行な断面の表面を研磨し、光学顕微鏡を用いて観察倍率1000倍で5視野について観察し、残留γと焼入れマルテンサイトとが複合したMA混合相の円相当直径dを測定した。MA混合相の全個数に対して、観察断面での円相当直径dが7μmを超えるMA混合相の個数割合を算出した。個数割合が15%未満である場合を合格(○)、15%以上である場合を不合格(×)として評価結果を下記表12、表13に示す。 Moreover, the surface of the cross section parallel to the rolling direction of the test material is polished, and observed with five optical fields at an observation magnification of 1000 times using an optical microscope, corresponding to a circle of MA mixed phase in which residual γ and quenching martensite are combined. The diameter d was measured. The ratio of the number of MA mixed phases in which the equivalent circle diameter d in the observation cross section exceeds 7 μm was calculated with respect to the total number of MA mixed phases. The evaluation results are shown in Tables 12 and 13 below, with the case where the number ratio is less than 15% as pass (◯) and the case where the number ratio is 15% or more as failure (X).
 《機械的特性の評価》
 供試材の機械的特性は、引張強度(TS)、伸び(EL)、穴拡げ率(λ)、限界曲げ半径(R)、エリクセン値に基づいて評価した。
<< Evaluation of mechanical properties >>
The mechanical properties of the specimens were evaluated based on tensile strength (TS), elongation (EL), hole expansion rate (λ), critical bending radius (R), and Erichsen value.
 (1)引張強度(TS)と伸び(EL)は、JIS Z2241に基づいて引張試験を行って測定した。試験片は、供試材の圧延方向に対して垂直な方向が長手方向となるように、JIS Z2201で規定される5号試験片を供試材から切り出したものを用いた。測定結果を下記表12、表13に示す。 (1) Tensile strength (TS) and elongation (EL) were measured by conducting a tensile test based on JIS Z2241. The test piece used was a No. 5 test piece defined in JIS Z2201 cut out from the test material such that the direction perpendicular to the rolling direction of the test material was the longitudinal direction. The measurement results are shown in Tables 12 and 13 below.
 (2)伸びフランジ性は、穴拡げ率によって評価する。穴拡げ率(λ)は、鉄鋼連盟規格JFST 1001に基づいて穴拡げ試験を行って測定した。測定結果を下記表12、表13に示す。 (2) Stretch flangeability is evaluated by the hole expansion rate. The hole expansion rate (λ) was measured by performing a hole expansion test based on the Steel Federation Standard JFST 1001. The measurement results are shown in Tables 12 and 13 below.
 (3)限界曲げ半径(R)は、JIS Z2248に基づいてV曲げ試験を行って測定した。試験片は、供試材の圧延方向に対して垂直な方向が長手方向(曲げ稜線が圧延方向と一致)となるように、JIS Z2204で規定される1号試験片(板厚:1.4mm)を供試材から切り出したものを用いた。なお、V曲げ試験は、亀裂が発生しないように試験片の長手方向の端面に機械研削を施してから行った。 (3) The critical bending radius (R) was measured by performing a V-bending test based on JIS Z2248. The test piece is No. 1 test piece (sheet thickness: 1.4 mm) defined in JIS Z2204 so that the direction perpendicular to the rolling direction of the specimen is the longitudinal direction (the bending ridge line coincides with the rolling direction). ) Was cut out from the test material. The V-bending test was performed after mechanical grinding was performed on the end face in the longitudinal direction of the test piece so as not to cause cracks.
 ダイとパンチの角度は90°とし、パンチの先端半径を0.5mm単位で変えてV曲げ試験を行い、亀裂が発生せずに曲げることができるパンチ先端半径を限界曲げ半径(R)として求めた。測定結果を下記表12、表13に示す。なお、亀裂発生の有無はルーペを用いて観察し、ヘアークラック発生なしを基準として判定した。 The angle between the die and the punch is 90 °, the tip radius of the punch is changed in units of 0.5 mm, a V-bending test is performed, and the radius of the tip of the punch that can be bent without cracks is determined as the limit bending radius (R). It was. The measurement results are shown in Tables 12 and 13 below. In addition, the presence or absence of crack generation was observed using a loupe, and the determination was made based on the absence of hair crack generation.
 (4)エリクセン値は、JIS Z2247に基づいてエリクセン試験を行って測定した。試験片は、90mm×90mm×厚み1.4mmとなるように供試材から切り出したものを用いた。エリクセン試験は、パンチ径が20mmのものを用いて行った。測定結果を下記表12、表13に示す。なお、エリクセン試験によれば、鋼板の全伸び特性と局部延性の両方による複合効果を評価できる。 (4) The Eriksen value was measured by conducting an Eriksen test based on JIS Z2247. The test piece used was cut from the test material so as to be 90 mm × 90 mm × 1.4 mm in thickness. The Eriksen test was performed using a punch having a diameter of 20 mm. The measurement results are shown in Tables 12 and 13 below. In addition, according to the Erichsen test, the composite effect by both the total elongation characteristic and local ductility of a steel plate can be evaluated.
 供試材の機械的特性は、引張強度(TS)に応じた伸び(EL)、穴拡げ率(λ)、限界曲げ半径(R)、エリクセン値の基準に従って評価した。即ち、鋼板のTSによって要求されるEL、λ、R、エリクセン値は異なるため、TSレベルに応じて下記基準に従って機械的特性を評価した。 The mechanical properties of the specimens were evaluated according to the criteria of elongation (EL), hole expansion ratio (λ), critical bending radius (R), and Erichsen value according to tensile strength (TS). That is, since EL, λ, R, and Erichsen values required by steel sheet TS differ, mechanical characteristics were evaluated according to the following criteria according to the TS level.
 下記評価基準に基づいて、EL、λ、R、エリクセン値の全ての特性が満足している場合を合格(○)、何れかの特性が基準値に満たない場合を不合格(×)とし、評価結果を下記表12、表13に示す。 Based on the following evaluation criteria, the case where all the characteristics of EL, λ, R, and Erichsen values are satisfied is accepted (◯), and the case where any characteristic is less than the reference value is rejected (×). The evaluation results are shown in Tables 12 and 13 below.
 (1)590MPa級の場合
  TS    :590MPa以上、780MPa未満
  EL    :34%以上
  λ     :30%以上
  R     :0.5mm以下
  エリクセン値:10.8mm以上
(1) In the case of 590 MPa class TS: 590 MPa or more and less than 780 MPa EL: 34% or more λ: 30% or more R: 0.5 mm or less Erichsen value: 10.8 mm or more
 (2)780MPa級の場合
  TS    :780MPa以上、980MPa未満
  EL    :25%以上
  λ     :30%以上
  R     :1.0mm以下
  エリクセン値:10.4mm以上
(2) In the case of 780 MPa class TS: 780 MPa or more and less than 980 MPa EL: 25% or more λ: 30% or more R: 1.0 mm or less Erichsen value: 10.4 mm or more
 (3)980MPa級の場合
  TS    :980MPa以上、1180MPa未満
  EL    :19%以上
  λ     :20%以上
  R     :3.0mm以下
  エリクセン値:10.0mm以上
(3) In the case of 980 MPa class TS: 980 MPa or more and less than 1180 MPa EL: 19% or more λ: 20% or more R: 3.0 mm or less Erichsen value: 10.0 mm or more
 (4)1180MPa級の場合
  TS    :1180MPa以上、1270MPa未満
  EL    :15%以上
  λ     :20%以上
  R     :4.5mm以下
  エリクセン値:9.6mm以上
(4) In the case of 1180 MPa class TS: 1180 MPa or more and less than 1270 MPa EL: 15% or more λ: 20% or more R: 4.5 mm or less Eriksen value: 9.6 mm or more
 なお、第二高強度鋼板では、TSが590MPa以上、1270MPa未満であることを前提としており、TSが590MPa未満であるか、1270MPa以上の場合は、EL、λ、R、エリクセン値が良好であっても対象外として扱う。 In the second high-strength steel plate, it is assumed that TS is 590 MPa or more and less than 1270 MPa. When TS is less than 590 MPa or 1270 MPa or more, EL, λ, R, and Erichsen values were good. However, it is treated as exempt.
 下記表9~表13から次のように考察できる。下記表12、表13に示したNo.1~43のうち、No.1、3、4、11、14、15、20、28は上記パターンiで冷却した例であり、No.2、6は上記パターンiiiで冷却した例であり、No.19は上記パターンivで冷却した例であり、残りは上記パターンiiで冷却した例である。 The following Table 9 to Table 13 can be considered as follows. No. shown in Table 12 and Table 13 below. No. 1 to 43 Nos. 1, 3, 4, 11, 14, 15, 20, and 28 are examples of cooling with the above pattern i. Nos. 2 and 6 are examples cooled with the above pattern iii. Reference numeral 19 is an example of cooling with the pattern iv, and the rest is an example of cooling with the pattern ii.
 下記表12、表13において、総合評価に○が付されている例は、いずれも本発明で規定する要件を満足している鋼板であり、各TSに応じて定めた機械的特性(EL、λ、R、エリクセン値)の基準値を満足している。従って本発明の高強度鋼板は、伸びおよび局所変形能に優れており、加工性全般に亘って良好であることが分かる。 In Tables 12 and 13 below, examples in which the overall evaluation is marked with a circle are steel plates that satisfy the requirements defined in the present invention, and mechanical properties (EL, (λ, R, Erichsen values) are satisfied. Therefore, it can be seen that the high-strength steel sheet of the present invention is excellent in elongation and local deformability, and is good throughout the workability.
 一方、総合評価に×が付されている例(表12、表13に示したNo.4、8、9、12、15、18~20、31、34~36)は、本発明で規定するいずれかの要件を満足していない鋼板である。詳細には次の通りである。 On the other hand, examples in which the overall evaluation is marked with x (Nos. 4, 8, 9, 12, 15, 18 to 20, 31, 34 to 36 shown in Table 12 and Table 13) are defined in the present invention. The steel sheet does not satisfy any of the requirements. Details are as follows.
 表12のNo.4は、二相温度域で加熱保持した後、上記式(1)を満たす任意の温度Tまで冷却するときの平均冷却速度が小さ過ぎる例であり、パーライト変態を起こし、所望の残留γ量が得られていない。従って強度不足となっている。表12のNo.8は、二相温度域における保持時間が短過ぎる例であり、残留γの生成量を確保できていないため、強度不足となった。表12のNo.9は、均熱処理した後、本発明で規定するT1温度域の温度を超える温度で保持し、T1温度域では保持せず、T2温度域まで冷却してこの温度域で保持した例である。ポリゴナルフェライトが多く生成したことによって高温域生成ベイナイトの生成量が少なく、残留γの生成量も少なくなったため、伸びおよびエリクセン値が低下し、加工性を改善できていない。 No. in Table 12 No. 4 is an example in which the average cooling rate when cooling to an arbitrary temperature T satisfying the above formula (1) after being heated and held in the two-phase temperature range is too small, causing pearlite transformation, and the desired residual γ amount is Not obtained. Therefore, the strength is insufficient. No. in Table 12 No. 8 is an example in which the holding time in the two-phase temperature range is too short, and the amount of residual γ was not secured, so that the strength was insufficient. No. in Table 12 No. 9 is an example in which after soaking, the temperature is maintained at a temperature exceeding the temperature in the T1 temperature range defined in the present invention, not maintained in the T1 temperature range, but cooled to the T2 temperature range and maintained in this temperature range. Since a large amount of polygonal ferrite is generated, the amount of high-temperature region bainite generated is small and the amount of residual γ is also small. Therefore, the elongation and Erichsen values are lowered, and workability cannot be improved.
 表12のNo.12は、T1温度域で保持した後、T2温度域を下回る温度に冷却したため、T2温度域では保持しなかった例であり、低温域生成ベイナイトが殆ど生成せず、SEM観察により粗大なMA混合相が多量に存在していることが確認され、焼入れマルテンサイトが多く存在していた。従って伸び、穴拡げ率、限界曲げ半径、エリクセン値の全てが本発明で規定する合格基準を満足しておらず、加工性を改善できていない。表12のNo.15は、T1温度域での保持時間が長く、T2温度域で保持していない例であり、低温域生成ベイナイト等の生成が抑制されている。また、粗大なMA混合相が多く生成している。従って穴拡げ率、限界曲げ半径が小さく、エリクセン値も小さくなって局所変形能が低下し、鋼板の加工性を改善できていない。 No. in Table 12 No. 12 is an example in which, after being held in the T1 temperature range, cooled to a temperature lower than the T2 temperature range, it was not maintained in the T2 temperature range, and low temperature range bainite was hardly generated, and coarse MA mixing was observed by SEM observation. It was confirmed that a large amount of phase was present, and a lot of quenched martensite was present. Accordingly, all of the elongation, the hole expansion ratio, the critical bending radius, and the Erichsen value do not satisfy the acceptance criteria defined in the present invention, and the workability cannot be improved. No. in Table 12 15 is an example in which the holding time in the T1 temperature range is long and not held in the T2 temperature range, and the generation of low temperature range bainite or the like is suppressed. Moreover, many coarse MA mixed phases are producing | generating. Accordingly, the hole expansion rate and the critical bending radius are small, the Erichsen value is also small, the local deformability is lowered, and the workability of the steel sheet cannot be improved.
 表12のNo.18は、加熱温度が高過ぎるため、ポリゴナルフェライトが殆ど生成せず、また高温域生成ベイナイトおよび低温域生成ベイナイト等の生成量が過剰になっている。従って伸びが低下し、鋼板の加工性を改善できていない。表12のNo.19は、T1温度域での保持時間が長過ぎ、しかもT2温度域で保持せずに冷却した例であり、低温域生成ベイナイト等の生成が抑制されている。また、粗大なMA混合相が多く生成した。従って穴拡げ率が小さく、またエリクセン値が小さくなって局所変形能が低下して加工性が劣化している。表12のNo.20は、均熱処理した後、T1温度域で保持せず、T2温度域まで一気に冷却し、この温度域で2種の温度で保持した例である。T2温度域のみで保持しているため、高温域生成ベイナイトが殆ど生成しておらず、また残留γも殆ど生成していない。従って伸びおよびエリクセン値が低下し、加工性が劣化している。表13のNo.31は、加熱温度が低過ぎる例であり、ポリゴナルフェライトの生成量が多くなり、高温域生成ベイナイト、低温域生成ベイナイト等、および残留γが全く生成しなかった。従って伸びが低下し、加工性を改善できていない。 No. in Table 12 In No. 18, since the heating temperature is too high, polygonal ferrite is hardly produced, and the production amount of high temperature region bainite, low temperature region bainite and the like is excessive. Accordingly, the elongation is lowered and the workability of the steel sheet cannot be improved. No. in Table 12 No. 19 is an example in which the holding time in the T1 temperature range is too long and the cooling is performed without holding in the T2 temperature range, and the generation of low temperature range bainite or the like is suppressed. In addition, a large amount of coarse MA mixed phase was produced. Accordingly, the hole expansion rate is small, the Erichsen value is small, the local deformability is lowered, and the workability is deteriorated. No. in Table 12 No. 20 is an example in which after the soaking process, the temperature is not maintained in the T1 temperature range but is cooled to the T2 temperature range at a stretch, and is maintained at two temperatures in this temperature range. Since the temperature is maintained only in the T2 temperature range, almost no high-temperature range bainite is generated and almost no residual γ is generated. Accordingly, the elongation and the Erichsen value are lowered, and the workability is deteriorated. No. in Table 13 No. 31 was an example in which the heating temperature was too low, and the amount of polygonal ferrite produced increased, and high temperature region bainite, low temperature region bainite, etc., and residual γ were not produced at all. Accordingly, the elongation is lowered and the workability cannot be improved.
 表13のNo.34は、C量が少な過ぎる例であり、残留γの生成量が少な過ぎるため、伸びおよびエリクセン値が小さくなり、加工性が劣化している。表13のNo.35は、Si量が少な過ぎる例であり、残留γの生成量が少な過ぎるため、伸びが低下し、加工性が劣化している。表13のNo.36は、Mn量が少な過ぎる例であり、焼入れが充分に行われていないため、冷却中にポリゴナルフェライトの生成が促進される反面、低温域生成ベイナイト等の生成が抑制された。従って伸び、穴拡げ率、限界曲げ半径が小さくなり、加工性が劣化している。 No. in Table 13 No. 34 is an example in which the amount of C is too small. Since the amount of residual γ produced is too small, the elongation and Erichsen values are small, and the workability is deteriorated. No. in Table 13 No. 35 is an example in which the amount of Si is too small. Since the amount of residual γ produced is too small, elongation is lowered and workability is deteriorated. No. in Table 13 36 is an example in which the amount of Mn is too small, and quenching has not been sufficiently performed. Thus, formation of polygonal ferrite is promoted during cooling, but generation of low-temperature region bainite and the like is suppressed. Accordingly, the elongation, the hole expansion rate, and the limit bending radius are reduced, and the workability is deteriorated.
 以上の結果より、本発明によれば、加工性を改善した高強度鋼板を提供できることが分かる。 From the above results, it can be seen that according to the present invention, a high-strength steel sheet with improved workability can be provided.
 次に、上記表12、表13に示した780MPa級の鋼板のうち、本発明で規定している要件を満足する例(No.3、5~7、11、14、16、17、23~26、30、32、37~43)について、引張強度(TS)と伸び(EL)の関係を図5に示す。図5において、●はポリゴナルフェライト粒の平均円相当直径Dが10μm以下の結果、■はポリゴナルフェライト粒の平均円相当直径Dが10μm超の結果を示している。 Next, among the 780 MPa class steel plates shown in Tables 12 and 13, examples satisfying the requirements defined in the present invention (Nos. 3, 5 to 7, 11, 14, 16, 17, 23 to 26, 30, 32, 37 to 43), the relationship between tensile strength (TS) and elongation (EL) is shown in FIG. In FIG. 5, ● represents the result of the average equivalent circle diameter D of the polygonal ferrite grains being 10 μm or less, and ▪ represents the result of the average equivalent circle diameter D of the polygonal ferrite grains exceeding 10 μm.
 図5から明らかなように、引張強度(TS)が同じであっても、ポリゴナルフェライト粒の平均円相当直径Dを10μm以下に抑えることによって伸び(EL)を大きくでき、加工性を一段と改善できることが分かる。 As is clear from FIG. 5, even when the tensile strength (TS) is the same, the elongation (EL) can be increased by suppressing the average equivalent circle diameter D of the polygonal ferrite grains to 10 μm or less, and the workability is further improved. I understand that I can do it.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013

Claims (20)

  1. 質量%で、
    C :0.10~0.3%、
    Si:1.0~3.0%、
    Mn:1.5~3%、
    Al:0.005~3%を含有し、且つ
    P :0.1%以下、
    S :0.05%以下を満足し、
    残部が鉄および不可避不純物からなる鋼板であり、
    該鋼板の金属組織は、ベイナイト、ポリゴナルフェライト、残留オーステナイト、および焼戻しマルテンサイトを含み、
    (1)金属組織を走査型電子顕微鏡で観察したときに、
    (1a)前記ベイナイトは、
     隣接する残留オーステナイトおよび/または炭化物の平均間隔が1μm以上である高温域生成ベイナイトと、
     隣接する残留オーステナイトおよび/または炭化物の平均間隔が1μm未満である低温域生成ベイナイトとの複合組織で構成されており、
     前記高温域生成ベイナイトの面積率aが金属組織全体に対して10~80%、
     前記低温域生成ベイナイトと前記焼戻しマルテンサイトとの合計面積率bが金属組織全体に対して10~80%を満足し、
    (1b)前記ポリゴナルフェライトの面積率cが金属組織全体に対して10~50%を満足すると共に、
    (2)飽和磁化法で測定した前記残留オーステナイトの体積率が金属組織全体に対して5%以上
    であることを特徴とする加工性に優れた高強度鋼板。
    % By mass
    C: 0.10 to 0.3%,
    Si: 1.0 to 3.0%,
    Mn: 1.5 to 3%,
    Al: 0.005 to 3%, and P: 0.1% or less,
    S: satisfying 0.05% or less,
    The balance is a steel plate made of iron and inevitable impurities,
    The metal structure of the steel sheet includes bainite, polygonal ferrite, retained austenite, and tempered martensite,
    (1) When the metal structure is observed with a scanning electron microscope,
    (1a) The bainite is
    High temperature zone bainite having an average interval between adjacent retained austenite and / or carbide of 1 μm or more;
    It is composed of a composite structure with low-temperature region-generated bainite in which the average interval between adjacent retained austenite and / or carbide is less than 1 μm,
    The area ratio a of the high temperature region bainite is 10 to 80% with respect to the entire metal structure,
    The total area ratio b of the low temperature region bainite and the tempered martensite satisfies 10 to 80% with respect to the entire metal structure,
    (1b) The area ratio c of the polygonal ferrite satisfies 10 to 50% with respect to the entire metal structure,
    (2) A high-strength steel sheet excellent in workability, wherein the volume ratio of the retained austenite measured by a saturation magnetization method is 5% or more with respect to the entire metal structure.
  2. 前記金属組織を光学顕微鏡で観察したときに、焼入れマルテンサイトおよび残留オーステナイトが複合したMA混合相が存在している場合には、MA混合相の全個数に対して、観察断面での円相当直径dが7μm超を満足するMA混合相の個数割合が15%未満(0%を含む)である請求項1に記載の高強度鋼板。 When an MA mixed phase in which quenched martensite and retained austenite are present when the metallographic structure is observed with an optical microscope, the equivalent circle diameter in the observation cross section with respect to the total number of MA mixed phases. 2. The high-strength steel sheet according to claim 1, wherein the number ratio of MA mixed phases satisfying d of greater than 7 μm is less than 15% (including 0%).
  3. 前記ポリゴナルフェライト粒の平均円相当直径Dが、10μm以下(0μmを含まない)である請求項1または2に記載の高強度鋼板。 3. The high-strength steel sheet according to claim 1, wherein an average equivalent circle diameter D of the polygonal ferrite grains is 10 μm or less (not including 0 μm).
  4. 前記鋼板は、更に他の元素として、
    Cr:1%以下(0%を含まない)および/または
    Mo:1%以下(0%を含まない)を含有する請求項1に記載の高強度鋼板。
    The steel sheet, as another element,
    The high-strength steel sheet according to claim 1, containing Cr: 1% or less (not including 0%) and / or Mo: 1% or less (not including 0%).
  5. 前記鋼板は、更に他の元素として、
    Ti:0.15%以下(0%を含まない)、
    Nb:0.15%以下(0%を含まない)および
    V :0.15%以下(0%を含まない)よりなる群から選択される1種以上の元素を含有する請求項1に記載の高強度鋼板。
    The steel sheet, as another element,
    Ti: 0.15% or less (excluding 0%),
    2. The composition according to claim 1, comprising one or more elements selected from the group consisting of Nb: 0.15% or less (excluding 0%) and V: 0.15% or less (not including 0%). High strength steel plate.
  6. 前記鋼板は、更に他の元素として、
    Cu:1%以下(0%を含まない)および/または
    Ni:1%以下(0%を含まない)を含有する請求項1に記載の高強度鋼板。
    The steel sheet, as another element,
    The high-strength steel sheet according to claim 1, containing Cu: 1% or less (not including 0%) and / or Ni: 1% or less (not including 0%).
  7. 前記鋼板は、更に他の元素として、
    B:0.005%以下(0%を含まない)を含有する請求項1に記載の高強度鋼板。
    The steel sheet, as another element,
    B: The high-strength steel plate according to claim 1, containing 0.005% or less (excluding 0%).
  8. 前記鋼板は、更に他の元素として、
    Ca:0.01%以下(0%を含まない)、
    Mg:0.01%以下(0%を含まない)および
    希土類元素:0.01%以下(0%を含まない)よりなる群から選択される1種以上の元素を含有する請求項1に記載の高強度鋼板。
    The steel sheet, as another element,
    Ca: 0.01% or less (excluding 0%),
    2. The composition according to claim 1, comprising at least one element selected from the group consisting of Mg: 0.01% or less (excluding 0%) and rare earth elements: 0.01% or less (not including 0%). High strength steel plate.
  9. 前記鋼板の表面に、溶融亜鉛めっき層または合金化溶融亜鉛めっき層を有している請求項1に記載の高強度鋼板。 The high-strength steel sheet according to claim 1, wherein the steel sheet has a hot-dip galvanized layer or an alloyed hot-dip galvanized layer on the surface.
  10. 請求項1に記載の高強度鋼板を製造する方法であって、
    {(Ac1点+Ac3点)/2}+20℃以上、Ac3点+20℃以下の温度域に加熱する工程と、
    該温度域で50秒間以上保持する工程と、
    下記式(1)を満たす任意の温度Tまで平均冷却速度2℃/秒以上で冷却する工程と、
    下記式(1)を満たす温度域で10~100秒間保持する工程と、
    下記式(2)を満たす温度域で200秒間以上保持する工程と、
    をこの順で含むことを特徴とする加工性に優れた高強度鋼板の製造方法。
    400℃≦T1(℃)≦540℃  ・・・(1)
    200℃≦T2(℃)<400℃  ・・・(2)
    A method for producing the high-strength steel sheet according to claim 1,
    {(Ac 1 point + Ac 3 point) / 2} + 20 ° C. or higher, Ac 3 point + 20 ° C. or lower
    Holding for 50 seconds or more in the temperature range;
    A step of cooling to an arbitrary temperature T satisfying the following formula (1) at an average cooling rate of 2 ° C./second or more;
    Holding for 10 to 100 seconds in a temperature range satisfying the following formula (1);
    Holding for 200 seconds or more in a temperature range satisfying the following formula (2);
    In this order, a method for producing a high-strength steel sheet excellent in workability.
    400 ° C. ≦ T1 (° C.) ≦ 540 ° C. (1)
    200 ° C. ≦ T2 (° C.) <400 ° C. (2)
  11. 質量%で、
    C :0.10~0.3%、
    Si:1.0~3%、
    Mn:1.0~2.5%、
    Al:0.005~3%を含有し、且つ
    P :0.1%以下、
    S :0.05%以下を満足し、
    残部が鉄および不可避不純物からなる鋼板であり、
    該鋼板の金属組織は、ポリゴナルフェライト、ベイナイト、焼戻しマルテンサイト、および残留オーステナイトを含み、
    (1)金属組織を走査型電子顕微鏡で観察したときに、
    (1a)前記ポリゴナルフェライトの面積率aが金属組織全体に対して50%超であり、
    (1b)前記ベイナイトは、
     隣接する残留オーステナイトおよび/または炭化物の平均間隔が1μm以上である高温域生成ベイナイトと、
     隣接する残留オーステナイトおよび/または炭化物の平均間隔が1μm未満である低温域生成ベイナイトとの複合組織で構成されており、
     前記高温域生成ベイナイトの面積率bが金属組織全体に対して5~40%、
     前記低温域生成ベイナイトと前記焼戻しマルテンサイトとの合計面積率cが金属組織全体に対して5~40%を満足し、
    (2)飽和磁化法で測定した前記残留オーステナイトの体積率が金属組織全体に対して5%以上
    であることを特徴とする加工性に優れた高強度鋼板。
    % By mass
    C: 0.10 to 0.3%,
    Si: 1.0-3%,
    Mn: 1.0 to 2.5%
    Al: 0.005 to 3%, and P: 0.1% or less,
    S: satisfying 0.05% or less,
    The balance is a steel plate made of iron and inevitable impurities,
    The metallographic structure of the steel sheet includes polygonal ferrite, bainite, tempered martensite, and retained austenite,
    (1) When the metal structure is observed with a scanning electron microscope,
    (1a) The area ratio a of the polygonal ferrite is more than 50% with respect to the entire metal structure,
    (1b) The bainite is
    High temperature zone bainite having an average interval between adjacent retained austenite and / or carbide of 1 μm or more;
    It is composed of a composite structure with low-temperature region-generated bainite in which the average interval between adjacent retained austenite and / or carbide is less than 1 μm,
    The area ratio b of the high temperature region bainite is 5 to 40% with respect to the entire metal structure,
    The total area ratio c of the low temperature region bainite and the tempered martensite satisfies 5 to 40% with respect to the entire metal structure,
    (2) A high-strength steel sheet excellent in workability, wherein the volume ratio of the retained austenite measured by a saturation magnetization method is 5% or more with respect to the entire metal structure.
  12. 前記金属組織を光学顕微鏡で観察したときに、焼入れマルテンサイトおよび残留オーステナイトが複合したMA混合相が存在している場合には、MA混合相の全個数に対して、観察断面での円相当直径dが7μm超を満足するMA混合相の個数割合が15%未満(0%を含む)である請求項11に記載の高強度鋼板。 When an MA mixed phase in which quenched martensite and retained austenite are present when the metallographic structure is observed with an optical microscope, the equivalent circle diameter in the observation cross section with respect to the total number of MA mixed phases. The high-strength steel sheet according to claim 11, wherein the number ratio of MA mixed phases satisfying d exceeding 7 μm is less than 15% (including 0%).
  13. 前記ポリゴナルフェライト粒の平均円相当直径Dが、10μm以下(0μmを含まない)である請求項11または12に記載の高強度鋼板。 The high-strength steel sheet according to claim 11 or 12, wherein an average equivalent circle diameter D of the polygonal ferrite grains is 10 µm or less (not including 0 µm).
  14. 前記鋼板は、更に他の元素として、
    Cr:1%以下(0%を含まない)および/または
    Mo:1%以下(0%を含まない)を含有する請求項11に記載の高強度鋼板。
    The steel sheet, as another element,
    The high-strength steel sheet according to claim 11, containing Cr: 1% or less (not including 0%) and / or Mo: 1% or less (not including 0%).
  15. 前記鋼板は、更に他の元素として、
    Ti:0.15%以下(0%を含まない)、
    Nb:0.15%以下(0%を含まない)および
    V :0.15%以下(0%を含まない)よりなる群から選択される1種以上の元素を含有する請求項11に記載の高強度鋼板。
    The steel sheet, as another element,
    Ti: 0.15% or less (excluding 0%),
    12. The element according to claim 11, comprising at least one element selected from the group consisting of Nb: not more than 0.15% (not including 0%) and V: not more than 0.15% (not including 0%). High strength steel plate.
  16. 前記鋼板は、更に他の元素として、
    Cu:1%以下(0%を含まない)および/または
    Ni:1%以下(0%を含まない)を含有する請求項11に記載の高強度鋼板。
    The steel sheet, as another element,
    The high-strength steel sheet according to claim 11, containing Cu: 1% or less (not including 0%) and / or Ni: 1% or less (not including 0%).
  17. 前記鋼板は、更に他の元素として、
    B:0.005%以下(0%を含まない)を含有する請求項11に記載の高強度鋼板。
    The steel sheet, as another element,
    The high-strength steel plate according to claim 11, containing B: 0.005% or less (excluding 0%).
  18. 前記鋼板は、更に他の元素として、
    Ca:0.01%以下(0%を含まない)、
    Mg:0.01%以下(0%を含まない)および
    希土類元素:0.01%以下(0%を含まない)よりなる群から選択される1種以上の元素を含有する請求項11に記載の高強度鋼板。
    The steel sheet, as another element,
    Ca: 0.01% or less (excluding 0%),
    The element according to claim 11, containing one or more elements selected from the group consisting of Mg: 0.01% or less (excluding 0%) and rare earth elements: 0.01% or less (not including 0%). High strength steel plate.
  19. 前記鋼板の表面に、溶融亜鉛めっき層または合金化溶融亜鉛めっき層を有している請求項11に記載の高強度鋼板。 The high-strength steel sheet according to claim 11, which has a hot-dip galvanized layer or an alloyed hot-dip galvanized layer on the surface of the steel sheet.
  20. 請求項11に記載の高強度鋼板を製造する方法であって、
    Ac1点+20℃以上、Ac3点+20℃以下の温度域に加熱する工程と、
    該温度域で50秒間以上保持する工程と、
    下記式(1)を満たす任意の温度Tまで平均冷却速度2~50℃/秒で冷却する工程と、下記式(1)を満たす温度域で10~100秒間保持する工程と、
    下記式(2)を満たす温度域で200秒間以上保持する工程と、
    をこの順で含むことを特徴とする加工性に優れた高強度鋼板の製造方法。
    400℃≦T1(℃)≦540℃  ・・・(1)
    200℃≦T2(℃)<400℃  ・・・(2)
    A method for producing the high-strength steel sheet according to claim 11,
    A step of heating to a temperature range of Ac 1 point + 20 ° C. or higher and Ac 3 point + 20 ° C. or lower;
    Holding for 50 seconds or more in the temperature range;
    A step of cooling to an arbitrary temperature T satisfying the following formula (1) at an average cooling rate of 2 to 50 ° C./second, a step of maintaining in a temperature range satisfying the following formula (1) for 10 to 100 seconds,
    Holding for 200 seconds or more in a temperature range satisfying the following formula (2);
    In this order, a method for producing a high-strength steel sheet excellent in workability.
    400 ° C. ≦ T1 (° C.) ≦ 540 ° C. (1)
    200 ° C. ≦ T2 (° C.) <400 ° C. (2)
PCT/JP2012/057210 2011-03-31 2012-03-21 High-strength steel sheet with excellent workability and manufacturing process therefor WO2012133057A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020157009749A KR101604963B1 (en) 2011-03-31 2012-03-21 High-strength steel sheet with excellent workability and manufacturing method therefor
EP12765664.3A EP2695961B1 (en) 2011-03-31 2012-03-21 High-strength steel sheet excellent in workability and manufacturing method thereof
US14/008,875 US20140044988A1 (en) 2011-03-31 2012-03-21 High-strength steel sheet excellent in workability and manufacturing method thereof
KR1020137025521A KR101574400B1 (en) 2011-03-31 2012-03-21 High-strength steel sheet with excellent workability and manufacturing method therefor
CN201280015849.5A CN103459638B (en) 2011-03-31 2012-03-21 High-strength steel sheet with excellent workability and manufacturing process therefor
US15/239,858 US20160355920A1 (en) 2011-03-31 2016-08-18 High-strength steel sheet excellent in workability and manufacturing method thereof

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2011080953 2011-03-31
JP2011-080954 2011-03-31
JP2011080954 2011-03-31
JP2011-080953 2011-03-31
JP2011197671A JP5685167B2 (en) 2011-03-31 2011-09-09 High-strength steel sheet with excellent workability and method for producing the same
JP2011197670A JP5685166B2 (en) 2011-03-31 2011-09-09 High-strength steel sheet with excellent workability and method for producing the same
JP2011-197671 2011-09-09
JP2011-197670 2011-09-09

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/008,875 A-371-Of-International US20140044988A1 (en) 2011-03-31 2012-03-21 High-strength steel sheet excellent in workability and manufacturing method thereof
US15/239,858 Division US20160355920A1 (en) 2011-03-31 2016-08-18 High-strength steel sheet excellent in workability and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2012133057A1 true WO2012133057A1 (en) 2012-10-04

Family

ID=49740489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057210 WO2012133057A1 (en) 2011-03-31 2012-03-21 High-strength steel sheet with excellent workability and manufacturing process therefor

Country Status (5)

Country Link
US (2) US20140044988A1 (en)
EP (2) EP2942416B1 (en)
KR (2) KR101574400B1 (en)
CN (2) CN103459638B (en)
WO (1) WO2012133057A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170037496A1 (en) * 2014-04-18 2017-02-09 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Hot-rolled steel sheet having good cold workability and excellent hardness after working
CN113122770A (en) * 2019-12-31 2021-07-16 宝山钢铁股份有限公司 Low-carbon low-cost ultrahigh-strength complex-phase steel plate/steel strip and manufacturing method thereof
WO2021125602A3 (en) * 2019-12-18 2021-08-05 주식회사 포스코 High strength steel sheet having excellent workability and method for manufacturing same

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5728115B1 (en) * 2013-09-27 2015-06-03 株式会社神戸製鋼所 High strength steel sheet excellent in ductility and low temperature toughness, and method for producing the same
JP6306481B2 (en) * 2014-03-17 2018-04-04 株式会社神戸製鋼所 High-strength cold-rolled steel sheet and high-strength hot-dip galvanized steel sheet excellent in ductility and bendability, and methods for producing them
WO2015151427A1 (en) 2014-03-31 2015-10-08 Jfeスチール株式会社 High-yield-ratio high-strength cold rolled steel sheet and production method therefor
US10711333B2 (en) * 2014-10-30 2020-07-14 Jfe Steel Corporation High-strength steel sheet and method for manufacturing same
JP6282576B2 (en) * 2014-11-21 2018-02-21 株式会社神戸製鋼所 High strength high ductility steel sheet
US10876181B2 (en) 2015-02-24 2020-12-29 Nippon Steel Corporation Cold-rolled steel sheet and method of manufacturing same
MX2018001280A (en) 2015-07-31 2018-05-17 Nippon Steel & Sumitomo Metal Corp Strain-induced-transformation composite-structure steel plate and method of manufacturing same.
CN107923007B (en) * 2015-08-21 2020-05-05 日本制铁株式会社 Steel plate
US10941476B2 (en) 2016-01-22 2021-03-09 Jfe Steel Corporation High strength steel sheet and method for producing the same
JP6762868B2 (en) * 2016-03-31 2020-09-30 株式会社神戸製鋼所 High-strength steel sheet and its manufacturing method
CN108652380B (en) * 2018-08-16 2023-09-19 尚赫(天津)科技开发有限公司 Vacuum cup with far infrared function, far infrared steel and preparation method thereof
CN114959422A (en) * 2022-06-06 2022-08-30 山东冀凯装备制造有限公司 Preparation method of high-strength low-alloy bainite cast steel

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61272321A (en) * 1985-05-28 1986-12-02 Nippon Steel Corp Manufacture of ultra high-strength cold rolled steel sheet
JPH01230715A (en) * 1987-06-26 1989-09-14 Nippon Steel Corp Manufacture of high strength cold rolled steel sheet having superior press formability
JPH11279691A (en) 1998-03-27 1999-10-12 Nippon Steel Corp High strength hot dip galvannealed steel sheet good in workability and its production
JP2001329340A (en) * 2000-05-17 2001-11-27 Nippon Steel Corp High strength steel sheet excellent in formability and its production method
JP2004300452A (en) * 2003-03-28 2004-10-28 Nisshin Steel Co Ltd Method for producing high strength cold-rolled steel sheet having excellent impact property and shape-fixability
JP2005240178A (en) 2004-01-28 2005-09-08 Kobe Steel Ltd Low-yield-ratio, high-strength cold-rolled steel sheet excellent in elongation and stretch-flanging property, plated steel sheet and their production methods
JP2006089804A (en) * 2004-09-24 2006-04-06 Nisshin Steel Co Ltd Method for producing high strength electric resistance welded tube for instrument panel reinforcement having excellent tube shrinking property
JP2006274417A (en) 2005-03-30 2006-10-12 Kobe Steel Ltd High strength cold rolled sheet steel having excellent balance of strength and tworkability, and metal plated steel strip
JP2007126747A (en) 2005-10-06 2007-05-24 Jfe Steel Kk High-strength cold rolled steel sheet having excellent formability and corrosion resistance after coating and its production method
JP2007321236A (en) 2006-06-05 2007-12-13 Kobe Steel Ltd High-strength steel sheet having excellent elongation, stretch flange formability and weldability
JP2007321237A (en) 2006-06-05 2007-12-13 Kobe Steel Ltd High-strength steel sheet with composite structure having excellent formability and delayed fracture resistance
JP2008308717A (en) * 2007-06-13 2008-12-25 Sumitomo Metal Ind Ltd High-strength steel sheet, and method for producing the same
JP2010065272A (en) 2008-09-10 2010-03-25 Jfe Steel Corp High-strength steel sheet and method for manufacturing the same
JP2010065273A (en) 2008-09-10 2010-03-25 Jfe Steel Corp High-strength steel sheet and method for manufacturing the same
JP2010090475A (en) * 2008-09-10 2010-04-22 Jfe Steel Corp High-strength steel plate and manufacturing method thereof
JP2011157583A (en) * 2010-01-29 2011-08-18 Kobe Steel Ltd High-strength cold-rolled steel sheet excellent in workability and method for manufacturing the same
JP2011214081A (en) * 2010-03-31 2011-10-27 Sumitomo Metal Ind Ltd Cold-rolled steel sheet and method for producing the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61217529A (en) * 1985-03-22 1986-09-27 Nippon Steel Corp Manufacture of high strength steel sheet superior in ductility
JP4524850B2 (en) * 2000-04-27 2010-08-18 Jfeスチール株式会社 High-tensile cold-rolled steel sheet with excellent ductility and strain age hardening characteristics and method for producing high-tensile cold-rolled steel sheet
US7314532B2 (en) * 2003-03-26 2008-01-01 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High-strength forged parts having high reduction of area and method for producing same
JP4445365B2 (en) * 2004-10-06 2010-04-07 新日本製鐵株式会社 Manufacturing method of high-strength thin steel sheet with excellent elongation and hole expandability
EP1975266B1 (en) * 2005-12-28 2012-07-11 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Ultrahigh-strength steel sheet
CN100510143C (en) * 2006-05-29 2009-07-08 株式会社神户制钢所 High strength steel sheet with excellent extending flange property
CN101460647B (en) * 2006-07-14 2015-05-20 株式会社神户制钢所 High-strength steel sheets and processes for production of the same
JP5223360B2 (en) * 2007-03-22 2013-06-26 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet with excellent formability and method for producing the same

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61272321A (en) * 1985-05-28 1986-12-02 Nippon Steel Corp Manufacture of ultra high-strength cold rolled steel sheet
JPH01230715A (en) * 1987-06-26 1989-09-14 Nippon Steel Corp Manufacture of high strength cold rolled steel sheet having superior press formability
JPH11279691A (en) 1998-03-27 1999-10-12 Nippon Steel Corp High strength hot dip galvannealed steel sheet good in workability and its production
JP2001329340A (en) * 2000-05-17 2001-11-27 Nippon Steel Corp High strength steel sheet excellent in formability and its production method
JP2004300452A (en) * 2003-03-28 2004-10-28 Nisshin Steel Co Ltd Method for producing high strength cold-rolled steel sheet having excellent impact property and shape-fixability
JP2005240178A (en) 2004-01-28 2005-09-08 Kobe Steel Ltd Low-yield-ratio, high-strength cold-rolled steel sheet excellent in elongation and stretch-flanging property, plated steel sheet and their production methods
JP2006089804A (en) * 2004-09-24 2006-04-06 Nisshin Steel Co Ltd Method for producing high strength electric resistance welded tube for instrument panel reinforcement having excellent tube shrinking property
JP2006274417A (en) 2005-03-30 2006-10-12 Kobe Steel Ltd High strength cold rolled sheet steel having excellent balance of strength and tworkability, and metal plated steel strip
JP2007126747A (en) 2005-10-06 2007-05-24 Jfe Steel Kk High-strength cold rolled steel sheet having excellent formability and corrosion resistance after coating and its production method
JP2007321236A (en) 2006-06-05 2007-12-13 Kobe Steel Ltd High-strength steel sheet having excellent elongation, stretch flange formability and weldability
JP2007321237A (en) 2006-06-05 2007-12-13 Kobe Steel Ltd High-strength steel sheet with composite structure having excellent formability and delayed fracture resistance
JP2008308717A (en) * 2007-06-13 2008-12-25 Sumitomo Metal Ind Ltd High-strength steel sheet, and method for producing the same
JP2010065272A (en) 2008-09-10 2010-03-25 Jfe Steel Corp High-strength steel sheet and method for manufacturing the same
JP2010065273A (en) 2008-09-10 2010-03-25 Jfe Steel Corp High-strength steel sheet and method for manufacturing the same
JP2010090475A (en) * 2008-09-10 2010-04-22 Jfe Steel Corp High-strength steel plate and manufacturing method thereof
JP2011157583A (en) * 2010-01-29 2011-08-18 Kobe Steel Ltd High-strength cold-rolled steel sheet excellent in workability and method for manufacturing the same
JP2011214081A (en) * 2010-03-31 2011-10-27 Sumitomo Metal Ind Ltd Cold-rolled steel sheet and method for producing the same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LESLIE TEKKO ZAIRYO KAGAKU: "The Physical Metallurgy of steels", 31 May 1985, MARUZEN CO., LTD., pages: 273
LESLIE TEKKO ZAIRYO KAGAKU: "translation of The Physical Metallurgy of Steels", 31 May 1985, MARUZEN CO., LTD., pages: 273
R&D KOBE STEEL ENGINEERING REPORTS, vol. 52, no. 3, 2002, pages 43 - 46

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170037496A1 (en) * 2014-04-18 2017-02-09 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Hot-rolled steel sheet having good cold workability and excellent hardness after working
WO2021125602A3 (en) * 2019-12-18 2021-08-05 주식회사 포스코 High strength steel sheet having excellent workability and method for manufacturing same
CN113122770A (en) * 2019-12-31 2021-07-16 宝山钢铁股份有限公司 Low-carbon low-cost ultrahigh-strength complex-phase steel plate/steel strip and manufacturing method thereof

Also Published As

Publication number Publication date
KR101574400B1 (en) 2015-12-03
KR20150050592A (en) 2015-05-08
CN103459638A (en) 2013-12-18
EP2695961A1 (en) 2014-02-12
EP2942416B1 (en) 2017-06-07
US20160355920A1 (en) 2016-12-08
KR101604963B1 (en) 2016-03-18
CN104762565B (en) 2017-04-12
KR20130125829A (en) 2013-11-19
EP2695961A4 (en) 2014-12-17
CN103459638B (en) 2015-07-15
EP2942416A1 (en) 2015-11-11
EP2695961B1 (en) 2019-06-19
US20140044988A1 (en) 2014-02-13
CN104762565A (en) 2015-07-08

Similar Documents

Publication Publication Date Title
JP5883211B2 (en) High-strength cold-rolled steel sheet with excellent workability and method for producing the same
WO2012133057A1 (en) High-strength steel sheet with excellent workability and manufacturing process therefor
JP5632904B2 (en) Manufacturing method of high-strength cold-rolled steel sheet with excellent workability
JP5728108B2 (en) High-strength steel sheet with excellent workability and low-temperature toughness, and method for producing the same
JP5685167B2 (en) High-strength steel sheet with excellent workability and method for producing the same
JP7087078B2 (en) High-strength steel sheet with excellent collision characteristics and formability and its manufacturing method
KR101225321B1 (en) High-strength steel sheet and process for production therof
JP5141811B2 (en) High-strength hot-dip galvanized steel sheet excellent in uniform elongation and plating property and method for producing the same
JP6085348B2 (en) High-strength plated steel sheet and its manufacturing method
JP6597374B2 (en) High strength steel plate
JP5251208B2 (en) High-strength steel sheet and its manufacturing method
US10889873B2 (en) Complex-phase steel sheet having excellent formability and method of manufacturing the same
CN108699660B (en) High-strength steel sheet and method for producing same
WO2020121418A1 (en) High-strength steel sheet having excellent moldability and impact resistance, and method for manufacturing high-strength steel sheet having excellent moldability and impact resistance
WO2016111273A1 (en) High-strength plated steel sheet and method for producing same
JP6601253B2 (en) High strength steel plate
JP5685166B2 (en) High-strength steel sheet with excellent workability and method for producing the same
JPWO2019151017A1 (en) High-strength cold-rolled steel sheet, high-strength plated steel sheet, and methods for producing them
WO2017154401A1 (en) High-strength steel plate and method for manufacturing same
WO2022075072A1 (en) High-strength cold-rolled steel sheet, hot-dipped galvanized steel sheet, alloyed hot-dipped galvanized steel sheet, and methods for producing of these
JP2007224408A (en) Hot-rolled steel sheet having excellent strain aging property and method for producing the same
KR20230091218A (en) High strength steel sheet having excellent formability and high yield ratio and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12765664

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137025521

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14008875

Country of ref document: US

Ref document number: 2012765664

Country of ref document: EP