JPS61272321A - Manufacture of ultra high-strength cold rolled steel sheet - Google Patents

Manufacture of ultra high-strength cold rolled steel sheet

Info

Publication number
JPS61272321A
JPS61272321A JP11323685A JP11323685A JPS61272321A JP S61272321 A JPS61272321 A JP S61272321A JP 11323685 A JP11323685 A JP 11323685A JP 11323685 A JP11323685 A JP 11323685A JP S61272321 A JPS61272321 A JP S61272321A
Authority
JP
Japan
Prior art keywords
temperature
cooling
less
steel
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11323685A
Other languages
Japanese (ja)
Inventor
Hiroshi Kato
弘 加藤
Kazuo Koyama
一夫 小山
Yukio Kuroda
幸雄 黒田
Tsunehiro Mizuuchi
水内 常博
Takahito Watanabe
渡辺 隆仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11323685A priority Critical patent/JPS61272321A/en
Publication of JPS61272321A publication Critical patent/JPS61272321A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture the titled steel sheet superior in ductility and workability, by applying hot rolling, pickling, cold rolling and continuous annealing to steel slab, then cooling and holding the sheet at a specified temp. range, then cooling it up to room temp. CONSTITUTION:Continuously cast slab of molten steel contg. by weight, 0.1-0.3% C, 0.25-2.0% Si, 1.5-2.5% Mn, <0.010% P, <0.003% S, 0.02-0.10% sol. Al, or further 0.0002-0.0030% Ca is hot rolled conventionally, the scale is removed by pickling, and the plate is cold rolled to steel strip having 1.4mm thickness. This is annealed continuously at >=750 deg.C, then cooled to 350-500 deg.C range by 3-70 deg.C/sec rate. The sheet is held at the temp. range for time range satisfying a formula (1), then cooled to room temp. The titled steel sheet superior in ductility and workability, having >80kgf/mm<2> tensile strength, >16% elongation, min. bending radius r(mm) of >=two times the sheet thickness t(mm) can be manufactured.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は延性、加工性の優れた引張強さsokgf/■
2以上の超高強度冷延鋼板の連続焼鈍による裂造方法に
関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention provides a tensile strength sokgf/■ with excellent ductility and workability.
The present invention relates to a cracking method by continuous annealing of two or more ultra-high strength cold rolled steel sheets.

(従来の技術) 自動車業界における車体の軽量化、衝突強度の向上によ
る乗員の安全性確保などを目的とした高強度鋼板の適用
は着実に進展しつつアシ、車体部品に適する高強度鋼板
の特性が明らかKされてき九。特に、バンパー、サイド
メンバー、あるいはドアが一ドパーのように衝突時に変
形してエネルギーを吸収することが主目的である部品へ
の引張強さ80’qf/vm”以上の超高強度銅板の適
用は、軽量化、安全性の両面から有効であり、米国では
ドアが−ドパーの装着が法制化されていることともあわ
せて、最近精力的に検討されている。
(Conventional technology) The application of high-strength steel plates in the automobile industry for the purpose of reducing the weight of car bodies and ensuring passenger safety by improving collision strength is steadily progressing, and the characteristics of high-strength steel plates suitable for reeds and car body parts are being developed. It has been clearly K. In particular, the application of ultra-high strength copper plates with a tensile strength of 80'qf/vm" or higher to parts whose main purpose is to deform and absorb energy during a collision, such as bumpers, side members, or doors. This is effective in terms of both weight reduction and safety, and has recently been actively studied in conjunction with the fact that in the United States it is now legal to install a doper on the door.

このような超高強度鋼板は従来次のような方法によって
製造されていた。すなわち、 (1)回復焼鈍法:鋼板全焼鈍する際焼鈍温度をその鋼
板の再結晶温度以下とし、圧延ままの強度をほとんど低
下させずに伸びだけを回復させる方法。
Such ultra-high strength steel plates have conventionally been manufactured by the following method. Namely, (1) Recovery annealing method: A method in which the annealing temperature is lower than the recrystallization temperature of the steel sheet when the steel sheet is completely annealed, and only the elongation is recovered with almost no reduction in the as-rolled strength.

(2)  析出強化法: Ti + Nb等の炭窒化物
を形成する傾向の強い元素を添加し微細な炭窒化物の分
散により強度を得る方法。
(2) Precipitation strengthening method: A method of adding elements that have a strong tendency to form carbonitrides, such as Ti + Nb, and obtaining strength by dispersing fine carbonitrides.

(3)  変態強化法:鋼板をα+γ又はγ域で焼鈍後
急冷することにより硬い焼入組織であるマルテンサイ)
1−得、これによって高強度化する方法。
(3) Transformation strengthening method: A steel plate is annealed in the α+γ or γ region and then rapidly cooled to form a hard quenched structure (martensis).
1- A method of obtaining high strength.

などである。etc.

(従来技術の問題点) しかしこれらの方法はそれぞれ次のような欠点を有して
いる。
(Problems with Prior Art) However, each of these methods has the following drawbacks.

(1)の回復焼鈍法では特公昭57−9409号公報に
記載されているように原板の強度を高めることによシ、
引張強度が100 kg7ws”級の超高強度鋼板の製
造も可能であるが、得られる鋼板の延性は高々6〜8チ
と非常に低く、ために加工性は非常に悪い。これに加え
て回復が不十分であれば延性がさらに低下し、逆に過剰
になると急激に軟化するため、目的とする特性のものを
ばらつき少なく得るには焼鈍温度を極めて狭い範囲に管
理する必要があシ、安定した品質の製品の製造は実質上
困難である。
In the recovery annealing method (1), as described in Japanese Patent Publication No. 57-9409, by increasing the strength of the original plate,
Although it is possible to manufacture ultra-high strength steel plates with a tensile strength of 100 kg7ws", the ductility of the resulting steel plates is very low, at most 6 to 8 inches, and therefore the workability is very poor. In addition to this, recovery If the ductility is insufficient, the ductility will further decrease, and if it is excessive, the material will soften rapidly. Therefore, in order to obtain the desired properties with less variation, it is necessary to control the annealing temperature within a very narrow range, making it stable. It is virtually difficult to manufacture products of such quality.

析出強化法を用いた超高強度鋼板としては特公昭54−
22407号公報に記載されたものがある。
As an ultra-high strength steel plate using the precipitation strengthening method, the
There is one described in No. 22407.

この公報の記載から明らかなように、析出強化によって
超高強度を得るにはTI 、 Nb等の高価な合金元素
を多量に必要とするため極めて高価になること、引張強
度が80kg/■2を超えると伸びが急激に劣化し、加
工性が低くなること、および熱延段階で強度が高くなり
冷間加工性が低下することなどの欠点を有する。
As is clear from the description in this publication, obtaining ultra-high strength through precipitation strengthening requires large amounts of expensive alloying elements such as TI and Nb, making it extremely expensive. If it exceeds this range, there are disadvantages such as rapid deterioration in elongation, resulting in lower workability, and increased strength in the hot rolling stage, resulting in lower cold workability.

焼入組織を利用した例としては、特公昭59−4205
2号公報に示されるような水焼入れによる方法がある。
As an example of using a quenched structure, there is
There is a method using water quenching as shown in Publication No. 2.

このような急冷によれば、合金量が少なくても容易にマ
ルテンサイトが得られるが、100 ′Kg/lax”
程度の引張強度を得ようとする場合。
With such rapid cooling, martensite can be easily obtained even with a small amount of alloy, but at 100'Kg/lax''
When trying to obtain a certain tensile strength.

多量のマルテンサイトが必要となシ、マルテンサイトの
粗大化、バンド組織の形成が避けられず。
Since a large amount of martensite is required, the coarsening of martensite and the formation of a band structure are unavoidable.

延性が、低下する。特公昭59−42052号公報に記
載の鋼も引張強度100kg/a”で伸び12チと、析
出強化型の特公昭54−22407号公報記載の銅の延
性がわずかに改嵜されたに過ぎない。また徐冷による方
法では、極めて多量の合金元素が必要でありコストがか
さむと同時に、上記水焼入れ法と同様の組織上の欠点を
有することになる。このようなマルテンサイト強化によ
る害を避けるため、析出強化と回復強化との3者併用に
よる超高強度鋼板の製造を意図したものに、特開昭53
−5018号公報に記載された技術がある。しかしこの
方法も結果的には上述の3者の欠点のため、引張強度1
001w/w”で伸びは高々12〜13チの鋼しか得ら
れていない。
Ductility decreases. The steel described in Japanese Patent Publication No. 59-42052 also has a tensile strength of 100 kg/a" and an elongation of 12 inches, which is only a slight improvement in the ductility of the precipitation-strengthened copper described in Japanese Patent Publication No. 54-22407. In addition, the slow cooling method requires an extremely large amount of alloying elements, which increases the cost, and at the same time has the same structural defects as the water quenching method described above.It is necessary to avoid such harm due to martensite reinforcement. Therefore, Japanese Patent Application Laid-Open No. 53 (1983) aimed at producing ultra-high strength steel sheets by combining precipitation strengthening and recovery strengthening.
There is a technique described in Publication No.-5018. However, this method also results in a tensile strength of 1 due to the above-mentioned three drawbacks.
001 w/w'' and an elongation of only 12 to 13 inches at most has been obtained.

このように現状の超高強度冷延鋼板は加工性が低く、た
めに形状が簡単で大きな曲げ半径でのロール成形のよう
に曲げを主体とする部品にしか適用できない。
As described above, the current ultra-high-strength cold-rolled steel sheets have low workability, and therefore can only be applied to parts that are mainly bent, such as roll forming with a simple shape and a large bending radius.

(発明が解決しようとする問題点) 本発明は出発鋼材の成分および連続焼鈍条件に特別な考
慮を払うことによシ、従来法の欠点を克服し、プレス成
形も可能な優れた加工性を有する引張強度80kl?f
/−以上の超高強度冷延鋼板を提供することを目的とす
るものである。
(Problems to be Solved by the Invention) The present invention overcomes the drawbacks of the conventional method by paying special consideration to the composition of the starting steel material and the continuous annealing conditions, and achieves excellent workability that allows press forming. Has a tensile strength of 80kl? f
The object of the present invention is to provide an ultra-high strength cold-rolled steel sheet with a strength of /- or more.

(問題点を解決するための手段) 本発明者らは上記従来法の欠点を克服すべく鋭意研究を
重ねた結果、出発鋼材の化学成分を調整することによっ
てマルテンサイト変態の開始を低温側に移行させるとと
もに、焼鈍後の冷却速度と冷却終了温度およびその温度
での保定時間とを過通に組合わせることによって、多重
のマルテンサイトが生成せずかつ他の低温変態生成相に
よって強度−延性バランスを著しく向上させることがで
きることを見出した。本発明はかかる知見に基いてなさ
れたものでsb、その要旨とするところは下記のとおり
である。
(Means for Solving the Problems) The present inventors have conducted extensive research to overcome the drawbacks of the conventional methods described above, and have found that by adjusting the chemical composition of the starting steel material, the initiation of martensitic transformation is brought to the lower temperature side. By combining the cooling rate after annealing, the cooling end temperature, and the retention time at that temperature, multiple martensite is not generated and the strength-ductility balance is maintained by other low-temperature transformation formation phases. We have found that it is possible to significantly improve The present invention has been made based on this knowledge, and its gist is as follows.

(1)重!i%でC:0.1〜0.3%、 Si : 
0.25〜2.0%、 Mn : 1.5〜2.5%、
P : 0.010%以下。
(1) Heavy! i% C: 0.1-0.3%, Si:
0.25-2.0%, Mn: 1.5-2.5%,
P: 0.010% or less.

S : 0.00396以下、 5oをAt: 0.0
2S0.10 % t’金含有、残部Feからなる鋼を
溶製し1通常の方法で熱間圧延、酸洗、冷間圧延した後
、連続焼鈍で750℃以上の温度で焼鈍し、350℃以
上500℃未満の温度に3℃/s以上70℃78以下の
冷却速度で冷却し、その温度範囲で下記の式(1)を満
足する時間範囲内で保定した後、室温まで冷却すること
を特徴とする超高強度冷延鋼板の製造方法。
S: 0.00396 or less, 5o At: 0.0
2S Steel containing 0.10% T' gold and the balance Fe is melted and 1 is hot rolled, pickled, and cold rolled in the usual manner, then continuously annealed at a temperature of 750°C or higher, and then heated to 350°C. Cool to a temperature above 500°C at a cooling rate of 3°C/s to 70°C 78°C, maintain the temperature within a time range that satisfies the following formula (1), and then cool to room temperature. A manufacturing method for ultra-high strength cold-rolled steel sheets.

6000≧Tθ(6)×tθ(分)≧2000   ・
・・ (1)但し%(℃):冷却終点温度 tθ(分):冷却終点温度での保持時間(2)重[%で
C; 0.1〜0.3% 、 Si : 0.25〜2
.0%、 Mn : 1.5〜2.5%、P : 0.
010%以下。
6000≧Tθ(6)×tθ(min)≧2000 ・
... (1) However, % (℃): Cooling end point temperature tθ (minutes): Holding time at cooling end point temperature (2) Weight [C in %; 0.1 to 0.3%, Si: 0.25 to 2
.. 0%, Mn: 1.5-2.5%, P: 0.
010% or less.

S : 0.003%以下、 troL、)d、 : 
0.02〜0.10 % +Ca : 0.0002−
0.0030%を含有し、残部Feからなる銅を溶製し
、通常の方法で熱間圧延、酸洗。
S: 0.003% or less, troL,)d, :
0.02~0.10% +Ca: 0.0002-
Copper containing 0.0030% and the balance consisting of Fe is melted, hot rolled and pickled using the usual method.

冷間圧延した後、連続焼鈍で750℃以上の温度で焼鈍
し、350℃以上500℃未満の温度に3℃/s以上7
0℃/s以下の冷却速度で冷却し、その温度範囲で下記
の式(1)を満足する時間範囲内で保定した後、室温ま
で冷却することを特徴とする超高強度冷延鋼板の製造方
法。
After cold rolling, it is continuously annealed at a temperature of 750°C or higher, and then heated at a temperature of 350°C or higher and lower than 500°C for 3°C/s or more7.
Production of an ultra-high strength cold-rolled steel sheet characterized by cooling at a cooling rate of 0°C/s or less, holding the temperature within a time range that satisfies the following formula (1), and then cooling to room temperature. Method.

6000≧Tθ(6)×tθ(分)≧2000  ・・
・ (1)但し%(℃):冷却終点温度 tBC分):冷却終点温度での保持時間以下本発明の成
分、&!造条件の限定理由について詳述する。
6000≧Tθ(6)×tθ(min)≧2000...
・ (1) However, % (°C): Cooling end point temperature tBC minutes): Retention time at cooling end point temperature or less Ingredients of the present invention, &! The reasons for limiting the construction conditions will be explained in detail.

まず成分の限定理由について述べる。Cは鋼の強化には
不可欠な元素であるが、その量が0.1チ未満では所望
の強度が得られず、かつマルテンサイト変態の開始温度
も高くなる。また0、391を超えると熱間圧延終了後
の強度が高くなり冷間加工性が低下するとともに、粗大
マルテンサイトのバンド組織の出現が避けられず、強度
は得られるが延性は著しく劣化する。なお、安定して強
度−延性バランスが良好な製品を得るには、CIを0.
16チ以上0.25%以下の範囲とすることが好ましい
First, we will discuss the reasons for limiting the ingredients. C is an essential element for strengthening steel, but if the amount is less than 0.1 inch, the desired strength cannot be obtained and the temperature at which martensitic transformation begins becomes high. If it exceeds 0.391, the strength after hot rolling increases and cold workability decreases, and the appearance of a band structure of coarse martensite is unavoidable, and although strength is obtained, ductility deteriorates significantly. In addition, in order to obtain a product with a stable strength-ductility balance, the CI should be set to 0.
The range is preferably 16% or more and 0.25% or less.

Stは鋼を強化すると同時に延性を大きく改善する効果
がある。このような効果を発揮するには0、251以上
の添加が必要であるが、添加量が2.0%を超えると熱
延段階でStスケールの発生が著しくなシ、続く冷間圧
延時の作業性を低下させるだけでなく、加工性、溶接性
、耐食性が大幅に劣化する。St添加によってスケール
の害を抑制しつつ強度−延性バランス改善の効果を最大
限に発揮するKは、添加i−を0,8%以上1.7チ以
下とすることか望ましい。
St has the effect of strengthening steel and at the same time greatly improving ductility. In order to exhibit such an effect, it is necessary to add 0.251 or more, but if the addition amount exceeds 2.0%, the occurrence of St scale will be significant during the hot rolling stage, and the This not only reduces workability, but also significantly deteriorates workability, weldability, and corrosion resistance. In order to maximize the effect of improving the strength-ductility balance while suppressing the damage caused by scale by adding St, it is preferable that the addition i- is 0.8% or more and 1.7% or less.

Mnは鋼を強化すると同時に鋼の焼入性を向上し、低温
変態の冷却速度感受性を低下させる働きがある。すなわ
ち低冷却速度でも低温変態が得られる。
Mn has the function of strengthening the steel, improving the hardenability of the steel, and reducing the cooling rate sensitivity of low-temperature transformation. That is, low-temperature transformation can be obtained even at low cooling rates.

Mnが1.596未満ではこの効果が十分ではなく、ま
た2、5%超では偏析によるバンド組織の形成が顕著と
なシ加工性が著しく劣化する。
If Mn is less than 1.596, this effect is not sufficient, and if it exceeds 2.5%, the formation of a band structure due to segregation becomes significant, resulting in a marked deterioration in workability.

op 、 sは鋼の加工性、溶接性を劣化させるため、
本発明鋼のような超高強度鋼板では特に厳しく管理する
必要があシ、Pの上限は0.010%、Sの上限は0.
003%とした。なお、一層の加工性、溶接性の向上を
望む場合には、P’に0.0070%以下。
Since op and s deteriorate the workability and weldability of steel,
Ultra-high strength steel plates such as the steel of the present invention require particularly strict control, with the upper limit of P being 0.010% and the upper limit of S being 0.01%.
003%. In addition, if further improvement in workability and weldability is desired, P' should be 0.0070% or less.

8を0,0O10チ以下とすることが好ましい。It is preferable that 8 is 0.0O10 or less.

また、CaはSと結合し硫化物形態を加工性に無害な形
に変えることが知られており、本発明の場合も硫化物の
形態制御が必要な場合はCaを添加す  ゛る。その際
の添加1はO,0O02%未満では形態制御の効果がな
く、0.003096を超えると効果が飽和するばかシ
か加工性に有害な酸化物の生成も生ずるため、0.00
02%以上0.0030%以下とする。
Further, it is known that Ca combines with S and changes the form of sulfide into a form that is harmless to workability, and in the case of the present invention, Ca is added when control of the form of sulfide is necessary. In this case, if the addition 1 is less than 2% O,0O0, there is no effect on morphology control, and if it exceeds 0.003096, the effect will be saturated, and oxides harmful to processability will be generated, so 0.00
0.02% or more and 0.0030% or less.

Atは強力な脱酸作用を有し、鋼の清浄度向上に有効な
元素であるが、その含有歓がsot、Atで0.02′
s未満では所望の効果が得られず、また0、1096i
超えると冷間加工性を低下させるため、その含有1i 
f sot、Atテ0.02〜0.10%とした。
At has a strong deoxidizing effect and is an effective element for improving the cleanliness of steel, but its content is 0.02' for sot and At.
If it is less than s, the desired effect cannot be obtained, and if it is less than 0, 1096i
If the content exceeds 1i, it will reduce cold workability.
f sot and Atte were set at 0.02 to 0.10%.

上記のような成分を有する鋼を転炉もしくは電気炉で溶
製し、連続鋳造または分塊圧延によってスラブ とした
後、通常の条件で熱間圧延、酸洗。
Steel with the above components is melted in a converter or electric furnace, made into a slab by continuous casting or blooming, then hot rolled and pickled under normal conditions.

冷間圧延する。Cold rolled.

熱間圧延の条件は通常の条件でよく特に規制するもので
はないが、81スケールの生成を出来るだけ抑制し、加
工性、耐食性、溶接性などの性能を確保するには、加熱
温度を1ooo℃以上11501?:以下、仕上温度を
830℃以上880’C以下とすることが望ましく、捲
取温度は熱延段階での焼入組織の生成を防ぎかっ・ぐン
ド組織の形成も軽度に抑えるために600℃以上700
”C以下の範囲とすることが望ましい。
The conditions for hot rolling are normal conditions and are not particularly regulated, but in order to suppress the formation of 81 scale as much as possible and ensure performance such as workability, corrosion resistance, and weldability, the heating temperature should be set to 100°C. More than 11501? : Hereinafter, it is desirable that the finishing temperature is 830°C or more and 880'C or less, and the winding temperature is 600°C in order to prevent the formation of a hardened structure during the hot rolling stage and to suppress the formation of a knurled structure. More than 700
``It is desirable that the range be below C.

冷間圧延方法は通常の圧延方法でも、また非対称圧延法
などによっても良い。圧下率は再結晶後のフェライト粒
を細粒とし延性を向上させるという観点から断面減少率
で40%以上とすることが望ましい。
The cold rolling method may be a normal rolling method or an asymmetric rolling method. From the viewpoint of making the ferrite grains fine after recrystallization and improving ductility, it is desirable that the rolling reduction ratio be 40% or more in terms of area reduction ratio.

このようにして冷延鋼帯とした後、連続焼鈍法によって
焼鈍するが、その際の焼鈍温度は750℃以上でなけれ
ばならない。焼鈍温度が750’C未満であると、焼鈍
時にオーステナイト相がほとんど生成せず、その結果低
温変態生成相も少なくなり所望の強度が得られなくなる
。また、上限は現状の薄板用連続焼鈍設備の設備的な面
を考慮すると900℃穆度と考えられる。本発明の成分
を有する鋼が2相域で焼鈍される温度範囲は加熱速度、
成分の瞼によって若干変動するが、大略750〜830
℃の範囲にあシ、この温度域の低温側で焼鈍した場合、
オーステナイト中への合金元素の分配lが高温域でのそ
れよプ多くなるため、焼鈍後の組織がフェライト+粗大
マルテンサイトの2相組織となると同時にバンド組織と
なシ、加工性が低下し易くなり、冷却の終点温度とその
温度での保持時間との設定が狭い範囲に制限される。こ
れに対し、この温度域の高温側あるいはそれ以上の高温
での焼鈍では焼鈍時のオーステナイ)tが増えるため、
逆に合金の分装置は減り、均一な組織が得易くなる。こ
のような温度範囲は820〜880℃で、焼鈍はこの範
囲で行うことが望ましい。焼鈍後の冷却速度は3℃/s
以上70℃/s以下でなければならない。3℃/s未満
の冷却速度では所望の低温変態生成相が得られず、かつ
設備的にもこのような低冷却速度を実現しようとすると
著しく不経済となる。また本発明の成分の範囲の下限を
とった場合でも、低温変態生成相を得るには冷却速度は
70℃/Bで十分であり、70’C/me超えると焼入
歪みによる加工性の低下が著しくなシ。
After forming the cold rolled steel strip in this way, it is annealed by a continuous annealing method, and the annealing temperature at that time must be 750° C. or higher. If the annealing temperature is less than 750'C, hardly any austenite phase will be formed during annealing, and as a result, the number of low-temperature transformation formed phases will decrease, making it impossible to obtain the desired strength. Further, the upper limit is considered to be 900° C., considering the equipment aspect of the current continuous annealing equipment for thin plates. The temperature range in which the steel having the components of the present invention is annealed in the two-phase region is the heating rate,
The ingredients vary slightly depending on the eyelid, but approximately 750-830
℃ range, and annealing at the low temperature side of this temperature range,
As the distribution of alloying elements into austenite increases compared to that at high temperatures, the structure after annealing becomes a two-phase structure of ferrite + coarse martensite, and at the same time becomes a band structure, which tends to reduce workability. Therefore, the setting of the end point temperature of cooling and the holding time at that temperature is limited to a narrow range. On the other hand, annealing at the high temperature side of this temperature range or higher temperatures increases the austenite (t) during annealing, so
On the contrary, the amount of alloy is reduced, making it easier to obtain a uniform structure. Such a temperature range is 820 to 880°C, and it is desirable to perform annealing within this range. Cooling rate after annealing is 3℃/s
It must be above 70°C/s. If the cooling rate is less than 3° C./s, the desired low-temperature transformation product phase cannot be obtained, and it becomes extremely uneconomical to realize such a low cooling rate in terms of equipment. Furthermore, even if the lower limit of the range of components of the present invention is taken, a cooling rate of 70°C/B is sufficient to obtain a low-temperature transformation phase, and if it exceeds 70'C/me, workability decreases due to quenching distortion. It's remarkable.

加えて鋼板の形状も劣化する。さらに好ましい成分、熱
間圧延、冷間圧延および焼鈍温度の範囲をとりた場合、
冷却速度は5℃/m以上30℃/s以下とすることが望
ましい。冷却の終了温度とその温度での保持時間は低温
変態生成相の性質、t’を決定する極めて重要な因子で
あシ、冷却終点温度Tθ(6)は350℃以上500℃
未満の温度範囲でなければならず、かつこの終点温度で
の保持時間tθ(分)は次式によって決まる範囲になけ
ればならない(第1図)。
In addition, the shape of the steel plate also deteriorates. When more preferable components, hot rolling, cold rolling and annealing temperature ranges are taken,
The cooling rate is desirably 5° C./m or more and 30° C./s or less. The end temperature of cooling and the holding time at that temperature are extremely important factors that determine the properties of the low-temperature transformation phase, t', and the cooling end temperature Tθ (6) is 350°C or more and 500°C.
The holding time tθ (minutes) at this end point temperature must be in the range determined by the following equation (FIG. 1).

6000≧TB X tθ≧2000  −(1)冷却
終点温度が350℃未満になると、硬いマルテンサイト
相の体積率が高まる。7工ライト+マルテンサイト組織
はDual Phase鋼と呼ばへ高加工性を有するこ
とが知られている。しがし本発明者らは本発明の場合強
度を上げるためにマルテンサイト体積率を上げると成形
性は却って劣化することを見出した。従って、多量のマ
ルテンサイトの生成、混入を避けるという知見より冷却
終点温度を350℃以上とした。また500℃以上とな
ると、低温変態生成相ゝそのものが生じなくなる。
6000≧TB It is known that the 7-phase light + martensitic structure has high workability and is called dual phase steel. However, the present inventors have found that in the case of the present invention, when increasing the martensite volume fraction in order to increase the strength, the formability deteriorates on the contrary. Therefore, the cooling end point temperature was set at 350° C. or higher based on the knowledge that generation and contamination of a large amount of martensite should be avoided. Moreover, when the temperature exceeds 500° C., the low-temperature transformation phase itself does not occur.

終点温度での保持時間はi点源度によって決まシ、終点
温度が高い場合、変態速度が遅いため保持時間は短くて
良く変態温度が低い場合は長時間必要    ゛となる
The holding time at the end point temperature is determined by the i point source temperature; if the end point temperature is high, the transformation rate is slow, so the holding time may be short, but if the transformation temperature is low, a long time is required.

本発明者らはTθとtθとの範囲を決めるため本発明範
囲の成分を有する冷延鋼板を用い1本発明の連続焼鈍条
件の焼鈍温度、冷却速度の範囲内でTθとtθを種々変
えて得られる機械的性質を調査した。その結果をTθ、
tθの値ki’?ラメータとして表わしたものが第2図
である。この図から引張強度に比して伸びが良好である
。すなわち、引張強度×伸びの値が大きく、かつ曲げ性
の優れた材料を得るにはTθ×tθが2000以上かつ
6000以下の範囲にあることが必要でさらに強度、蔦
性バランス、曲げ性を向上させるにはTθ×tθを32
00以上かつ5200以下とすることが好ましい。
In order to determine the range of Tθ and tθ, the present inventors used a cold-rolled steel sheet having components within the range of the present invention and varied Tθ and tθ within the range of the annealing temperature and cooling rate of the continuous annealing conditions of the present invention. The resulting mechanical properties were investigated. The result is Tθ,
Value of tθ ki'? FIG. 2 shows the parameters expressed as parameters. This figure shows that the elongation is better than the tensile strength. In other words, in order to obtain a material with a large tensile strength x elongation value and excellent bendability, Tθ x tθ must be in the range of 2000 or more and 6000 or less, further improving strength, elasticity balance, and bendability. To do this, Tθ×tθ is 32
It is preferable to set it to 00 or more and 5200 or less.

この保定後、常温まで冷却するが、その際の冷却速度は
特に規制するものではない。また常温まで冷却後1通常
であれば調質圧延を施した上で製品となるが、本発明法
によれば鋼板の形状も優れ、特に調質圧延は不要である
が、形状精度が極めて厳格である場合、伸び率で0,5
チ以下の調質圧延を施しても本発明の効果は害われない
After this holding, it is cooled to room temperature, but the cooling rate at that time is not particularly restricted. In addition, after cooling to room temperature, the product is normally subjected to skin-pass rolling, but according to the method of the present invention, the shape of the steel sheet is excellent and no skin-pass rolling is required, but the shape accuracy is extremely strict. , the elongation rate is 0.5
The effects of the present invention are not impaired even if temper rolling is performed below H.

(実施例1) 第1表に示す化学成分を有する鋼A−L?転炉にて溶製
し、連続鋳造によってスラブとした。このスラブを加熱
温度1080℃、仕上温度850℃。
(Example 1) Steel A-L having the chemical composition shown in Table 1? It was melted in a converter and made into a slab by continuous casting. This slab was heated to a temperature of 1080°C and a finishing temperature of 850°C.

捲取温度650℃の条件で熱間圧延し、板厚3.5−〇
熱延鋼帯とし、通常の酸洗を行った後、冷間圧延によっ
て板厚1.4 ttmの冷延鋼帯とした。次いで、第2
表A7の連続焼鈍サイクルで焼鈍したが、その際の焼鈍
時間は3分とし、また冷却終了温度での保持後常温まで
の冷却は空冷とした。この焼鈍コイルの全長の中央部か
ら試験片を採取し、機械的性質2曲げ性を調査した。機
械的性質はJISs号試験片を用いた引張試験で測定し
、また曲げ性は@ 50 ram 、長さ150mの剪
断ままの試験片を用い45°V曲げによって割れが全く
発生しない最小曲げ半径(、、)で評価した。
Hot-rolled at a winding temperature of 650°C to obtain a 3.5-〇 hot-rolled steel strip with a thickness of 3.5-〇, followed by ordinary pickling, and then cold-rolled into a cold-rolled steel strip with a thickness of 1.4 ttm. And so. Then the second
Annealing was carried out using the continuous annealing cycle shown in Table A7, but the annealing time was 3 minutes, and the cooling to room temperature after being held at the cooling end temperature was air-cooled. A test piece was taken from the center of the entire length of this annealed coil, and its mechanical properties (2) bendability were investigated. The mechanical properties were measured by a tensile test using a JIS No. s test piece, and the bending property was measured using a 45°V bending test using an as-sheared test piece @ 50 ram and a length of 150 m. ,,) was evaluated.

結果を第3表に示した。Cが本発明の範囲を低目にはず
れたAでは強度がです、また高目にはずれたBでは延性
が劣化し1曲げ性も悪い。siが本発明の範囲を低目に
はずれたCでは延性が不足している。またMnが本発明
の範囲を高目にはずれたDでは伸び1曲げ性が劣化し、
また低目にはずれたEでは強度が出ない。またP、Sが
本発明  ゛の範囲をはずれたF、Gでは本発明鋼と比
べ曲げ性が劣る。これに対し、本発明鋼H−Lでは強度
に比して伸びが良く、かつ曲げ性も非常に優れている。
The results are shown in Table 3. In A, where C is low outside the range of the present invention, the strength is poor, and in B, where C is high, the ductility deteriorates and the bendability is poor. C whose si is low and outside the range of the present invention lacks ductility. In addition, in D where Mn is higher than the range of the present invention, elongation 1 bendability deteriorates,
Also, if the E is set to a low value, the strength will not be achieved. Furthermore, F and G, in which P and S are outside the range of the present invention, have inferior bendability compared to the present invention steel. On the other hand, the steel of the present invention H-L has good elongation compared to its strength and is also very good in bendability.

第   3   表 (実施例2) 実施例1で装造した第1表の化学成分を有する冷延鋼帯
のうち本発明鋼である鋼符号工の成分を有する冷延鋼帯
を用い、第2表の連続焼鈍条件で焼鈍した。その際の焼
鈍時間は3分とし、また冷却終了温度での保持後の常温
までの冷却は空冷と1   した。機械試験用のサンプ
ルを実施例1と同様に採取し、同様な方法で調量した。
Table 3 (Example 2) Among the cold rolled steel strips prepared in Example 1 and having the chemical compositions shown in Table 1, the cold rolled steel strips having the composition of the steel code, which is the steel of the present invention, were used to prepare the second Annealing was performed under the continuous annealing conditions shown in the table. The annealing time at that time was 3 minutes, and air cooling was used for cooling to room temperature after holding at the cooling end temperature. Samples for mechanical testing were taken as in Example 1 and weighed in the same manner.

結果を第4表に示す。焼鈍温度が本発明の範囲全低目に
はずれたJ161および、冷却終了後の保持温度が本発
明の範囲を高目にはずれた煮2では強度が出ない。また
冷却終了後の保持温度が本発明の範囲を低目にはずれた
A3では1強度−延性バランスも悪くまた曲げ性も劣化
している。冷却終点温度での保持時間が本発明の範囲を
はずれたム4,5では本発明鋼に比べ、延性1曲げ性と
もに劣化している。これに対し、本発、明鋼であるA6
〜&9は強度−延性バランス、曲げ性ともに非常に優れ
ている。
The results are shown in Table 4. J161, in which the annealing temperature was completely outside the range of the present invention, and J161, in which the holding temperature after cooling was completely outside the range of the present invention, did not exhibit strength. Further, in A3, in which the holding temperature after cooling was outside the range of the present invention, the strength-ductility balance was poor and the bendability was also deteriorated. In Mums 4 and 5, in which the holding time at the cooling end point temperature was outside the range of the present invention, both ductility and bendability were deteriorated compared to the steel of the present invention. On the other hand, according to the present invention, A6 which is made of Ming steel
- &9 are excellent in both strength-ductility balance and bendability.

第   4   表 (発明の効果) 本発明によって製造された鋼板は、従来ロール7オーム
のような曲げ主体の加工てしか成形出来ナカっ九ドアガ
ードバ−などの凹凸断面を有するものもプレスで容易に
成形できる。また曲げ加工に際しては、本実施例から明
らかなように曲げ半径を極めて小さく出来るため、スプ
リングバック等も軽減される。
Table 4 (Effects of the Invention) The steel sheet manufactured by the present invention can be formed by conventional bending-based processes such as rolls of 7 ohm, and can be easily formed by pressing into items with uneven cross sections such as door guard bars. can. Furthermore, during bending, as is clear from this embodiment, the bending radius can be made extremely small, thereby reducing springback and the like.

このように本発明によれば、強度が高くかつ優れた加工
性含有する鋼板が得られるので自動車部品の軽量化のみ
ならず広〈産業界に貢献するところが大である。
As described above, according to the present invention, a steel plate having high strength and excellent workability can be obtained, so that it contributes not only to the weight reduction of automobile parts but also to a wide range of industries.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は冷却終点温度Tθ(6)と冷却終点温度での保
持時間tθ(分)との関係を示したもので1図中破線と
実線とで囲まれた領域が本発明の範囲である。 第2図は第1表工の成分を有する本発明鋼を用い1本発
明の連続焼鈍条件の焼鈍温度、冷却速度の範囲内でTθ
とtaを糧々変えて得られた機械的性質?Tθ×tθの
値をパラメータとして示した図である。 第2図 /It)t) 261)l) J6t)θatm sa
aθ67)121 ml)70xtθ
Figure 1 shows the relationship between the cooling end point temperature Tθ (6) and the holding time tθ (minutes) at the cooling end point temperature, and the area surrounded by the broken line and solid line in Figure 1 is the scope of the present invention. . Figure 2 shows that the steel of the present invention having the components of the first surface treatment is used, and Tθ is within the range of the annealing temperature and cooling rate of the continuous annealing conditions of the present invention.
Mechanical properties obtained by changing and ta? FIG. 3 is a diagram showing the value of Tθ×tθ as a parameter. Figure 2/It) t) 261) l) J6t) θatm sa
aθ67) 121 ml) 70xtθ

Claims (3)

【特許請求の範囲】[Claims] (1)重量%でC:0.1〜0.3%、Si:0.25
〜2.0%、Mn:1.5〜2.5%、P:0.010
%以下、S:0.003%以下、sol.Al:0.0
2〜0.10%を含有し、残部Feからなる鋼を溶製し
、通常の方法で熱間圧延、酸洗、冷間圧延した後、連続
焼鈍で750℃以上の温度で焼鈍し、350℃以上50
0℃未満の温度に3℃/s以上70℃/s以下の冷却速
度で冷却し、その温度範囲で下記の式(1)を満足する
時間範囲内で保定した後、室温まで冷却することを特徴
とする超高強度冷延鋼板の製造方法。 6000≧T_θ(℃)×t_θ(分)≧2000・・
・(1)但しT_θ(℃):冷却終点温度 t_θ(分):冷却終点温度での保持時間
(1) C: 0.1-0.3%, Si: 0.25 in weight%
~2.0%, Mn: 1.5-2.5%, P: 0.010
% or less, S: 0.003% or less, sol. Al: 0.0
A steel containing 2 to 0.10% Fe with the remainder being Fe is melted, hot rolled, pickled, and cold rolled in the usual manner, and then continuously annealed at a temperature of 750°C or higher. ℃ or more 50
Cool to a temperature below 0°C at a cooling rate of 3°C/s or more and 70°C/s or less, maintain the temperature within a time range that satisfies the following formula (1), and then cool to room temperature. A manufacturing method for ultra-high strength cold-rolled steel sheets. 6000≧T_θ (°C)×t_θ (minutes)≧2000...
・(1) However, T_θ (℃): Cooling end point temperature t_θ (minutes): Holding time at cooling end point temperature
(2)重量%でC:0.1〜0.3%、Si:0.25
〜2.0%、Mn:1.5〜2.5%、P:0.010
%以下、S:0.003%以下、sol.Al:0.0
2〜0.10%、Ca:0.0002〜0.0030%
を含有し、残部Feからなる鋼を溶製し、通常の方法で
熱間圧延、酸洗、冷間圧延した後、連続焼鈍で750℃
以上の温度で焼鈍し、350℃以上500℃未満の温度
に3℃/s以上70℃/s以下の冷却速度で冷却し、そ
の温度範囲で下記の式(1)を満足する時間範囲内で検
定した後、室温まで冷却することを特徴とする超高強度
冷延鋼板の製造方法。 6000≧T_θ(℃)×t_θ(分)≧2000・・
・(1)但しT_θ(℃):冷却終点温度 t_θ(分):冷却終点温度での保持時間
(2) C: 0.1-0.3%, Si: 0.25 in weight%
~2.0%, Mn: 1.5-2.5%, P: 0.010
% or less, S: 0.003% or less, sol. Al: 0.0
2-0.10%, Ca: 0.0002-0.0030%
A steel containing Fe with the balance being Fe is melted, hot rolled, pickled, and cold rolled in the usual manner, and then continuously annealed at 750°C.
Annealed at a temperature above, cooled to a temperature of 350°C or more and less than 500°C at a cooling rate of 3°C/s or more and 70°C/s or less, within a time range that satisfies the following formula (1) within that temperature range. A method for producing ultra-high strength cold-rolled steel sheets, which is characterized by cooling to room temperature after inspection. 6000≧T_θ (°C)×t_θ (minutes)≧2000...
・(1) However, T_θ (℃): Cooling end point temperature t_θ (minutes): Holding time at cooling end point temperature
(3)引張強度80kgf/mm^2以上、伸び16%
以上、最小曲げ半径r(mm)が板厚t(mm)の2倍
以下(すなわちr≦2t)であることを特徴とする特許
請求の範囲第1項又は第2項記載の超高強度冷延鋼板の
製造方法。
(3) Tensile strength 80kgf/mm^2 or more, elongation 16%
As described above, the ultra-high strength cooling according to claim 1 or 2, characterized in that the minimum bending radius r (mm) is not more than twice the plate thickness t (mm) (that is, r≦2t). Method of manufacturing rolled steel plate.
JP11323685A 1985-05-28 1985-05-28 Manufacture of ultra high-strength cold rolled steel sheet Pending JPS61272321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11323685A JPS61272321A (en) 1985-05-28 1985-05-28 Manufacture of ultra high-strength cold rolled steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11323685A JPS61272321A (en) 1985-05-28 1985-05-28 Manufacture of ultra high-strength cold rolled steel sheet

Publications (1)

Publication Number Publication Date
JPS61272321A true JPS61272321A (en) 1986-12-02

Family

ID=14607016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11323685A Pending JPS61272321A (en) 1985-05-28 1985-05-28 Manufacture of ultra high-strength cold rolled steel sheet

Country Status (1)

Country Link
JP (1) JPS61272321A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006207018A (en) * 2004-12-28 2006-08-10 Kobe Steel Ltd Ultrahigh-strength steel sheet superior in hydrogen-embrittlement resistance
JP2009263752A (en) * 2008-04-28 2009-11-12 Nippon Steel Corp Manufacturing method of high-strength steel sheet excellent in balance of hole expandability and ductility, and manufacturing method of galvanized steel sheet
JP2010065272A (en) * 2008-09-10 2010-03-25 Jfe Steel Corp High-strength steel sheet and method for manufacturing the same
WO2012133057A1 (en) * 2011-03-31 2012-10-04 株式会社神戸製鋼所 High-strength steel sheet with excellent workability and manufacturing process therefor
JP2012214868A (en) * 2011-03-31 2012-11-08 Kobe Steel Ltd High-rigidity steel plate excellent in processability and its manufacturing method
JP2012214869A (en) * 2011-03-31 2012-11-08 Kobe Steel Ltd High-rigidity steel plate excellent in processability and its manufacturing method
JP2014514459A (en) * 2011-05-10 2014-06-19 アルセロルミタル・インベステイガシオン・イ・デサロジヨ・エセ・エレ Steel plate with high mechanical strength, ductility and formability, characteristics of such plate material, production method and use

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006207018A (en) * 2004-12-28 2006-08-10 Kobe Steel Ltd Ultrahigh-strength steel sheet superior in hydrogen-embrittlement resistance
JP4684002B2 (en) * 2004-12-28 2011-05-18 株式会社神戸製鋼所 Ultra high strength thin steel sheet with excellent hydrogen embrittlement resistance
JP2009263752A (en) * 2008-04-28 2009-11-12 Nippon Steel Corp Manufacturing method of high-strength steel sheet excellent in balance of hole expandability and ductility, and manufacturing method of galvanized steel sheet
JP2010065272A (en) * 2008-09-10 2010-03-25 Jfe Steel Corp High-strength steel sheet and method for manufacturing the same
WO2012133057A1 (en) * 2011-03-31 2012-10-04 株式会社神戸製鋼所 High-strength steel sheet with excellent workability and manufacturing process therefor
JP2012214868A (en) * 2011-03-31 2012-11-08 Kobe Steel Ltd High-rigidity steel plate excellent in processability and its manufacturing method
JP2012214869A (en) * 2011-03-31 2012-11-08 Kobe Steel Ltd High-rigidity steel plate excellent in processability and its manufacturing method
CN103459638A (en) * 2011-03-31 2013-12-18 株式会社神户制钢所 High-strength steel sheet with excellent workability and manufacturing process therefor
JP2014514459A (en) * 2011-05-10 2014-06-19 アルセロルミタル・インベステイガシオン・イ・デサロジヨ・エセ・エレ Steel plate with high mechanical strength, ductility and formability, characteristics of such plate material, production method and use

Similar Documents

Publication Publication Date Title
EP3372703B1 (en) Ultra-high strength steel plate having excellent formability and hole-expandability, and method for manufacturing same
JP4745572B2 (en) High-strength steel strip or steel plate and method for producing the same
JP6700398B2 (en) High yield ratio type high strength cold rolled steel sheet and method for producing the same
JP3858146B2 (en) Manufacturing method of high-strength cold-rolled steel sheet and high-strength hot-dip galvanized steel sheet
KR101798771B1 (en) Ultra high strength and high ductility steel sheet having superior yield strength and method for manufacturing the same
JP3424619B2 (en) High tensile cold rolled steel sheet and method for producing the same
JP2528387B2 (en) Manufacturing method of ultra high strength cold rolled steel sheet with good formability and strip shape
WO2001023625A1 (en) Sheet steel and method for producing sheet steel
JPH0564215B2 (en)
JPS5967322A (en) Manufacture of cold rolled steel plate for deep drawing
KR101830527B1 (en) Cold rolled steel sheet for hot press forming and hot presse forming part having excellent corrosion property and spot weldability, and manufacturing method thereof
JPH05140652A (en) Manufacture of low yield ratio cold rolled high tensile strength steel sheet excellent in corrosion resistance
JP4265153B2 (en) High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same
JP4265152B2 (en) High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same
JPH0312131B2 (en)
JPS61272321A (en) Manufacture of ultra high-strength cold rolled steel sheet
JPH03277741A (en) Dual-phase cold roller steel sheet excellent in workability, cold nonaging properties and baking hardenability and its manufacture
JP6947327B2 (en) High-strength steel sheets, high-strength members and their manufacturing methods
JPS5849628B2 (en) Method for producing composite structure high-strength cold-rolled steel sheet with excellent deep drawability
JPH0790488A (en) Ultrahigh strength cold rolled steel sheet excellent in hydrogen brittlement resistance and its production
JP2621744B2 (en) Ultra-high tensile cold rolled steel sheet and method for producing the same
JPS6237322A (en) Production of low yield ratio cold rolled high tensile steel plate having excellent surface characteristic and bendability
JP3466298B2 (en) Manufacturing method of cold rolled steel sheet with excellent workability
JP3299287B2 (en) High strength steel sheet for forming and its manufacturing method
JPH06179922A (en) Production of high tensile strength steel sheet for deep drawing