JPH0312131B2 - - Google Patents

Info

Publication number
JPH0312131B2
JPH0312131B2 JP58018310A JP1831083A JPH0312131B2 JP H0312131 B2 JPH0312131 B2 JP H0312131B2 JP 58018310 A JP58018310 A JP 58018310A JP 1831083 A JP1831083 A JP 1831083A JP H0312131 B2 JPH0312131 B2 JP H0312131B2
Authority
JP
Japan
Prior art keywords
sec
temperature
soaking
transformation point
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58018310A
Other languages
Japanese (ja)
Other versions
JPS59143027A (en
Inventor
Akio Tosaka
Toshuki Kato
Minoru Nishida
Nobuo Matsuno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP58018310A priority Critical patent/JPS59143027A/en
Publication of JPS59143027A publication Critical patent/JPS59143027A/en
Publication of JPH0312131B2 publication Critical patent/JPH0312131B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は延性および加工性の良好な高強度鋼板
の製造方法に係り、特に引張強さが60Kgf/mm2
上の高張力鋼板の低コストの製造方法に関する。 近年、自動車の安全性や軽量化の観点からバン
バーやドアーガードバーなどの強度部材に引張強
さ60Kgf/mm2以上の高張力薄鋼板などが多用され
つつある。このような用途に適用される材料の特
性として引張強さが高いと同時に延性および加工
性が良好で更に車体の組立時にはスポツト溶接性
が良好であることが要求される。最近フエライト
とマルテンサイトまたはベイナイトを主とする低
温変態生成物から成る混合組織鋼板がこのような
要求を満足する鋼板として多用されている。しか
し従来の混合組織鋼板で強度を高めるにはMn、
Si、Nb、Tiなどの元素を多量に添加する必要が
あり、その結果コストの上昇をもたらし、また
MnやSiなどの多量添加は、製造コストの上昇を
伴うばかりでなく、連続焼鈍中に表面酸化を起こ
しやすくスポツト溶接性を劣化させる問題があつ
た。 またMnなどを多量に含む場合にはその偏析に
起因すると考えられるバンド状組織が発達し特に
曲げなどの加工性、局部延性が劣化するという問
題があつた。 本発明の目的は、上記従来技術の問題を解消
し、延性と同時に良好な加工性を有し、かつ製造
コストが低廉な高強度鋼板の製造方法を提供する
にある。 本発明のこの目的は次の2発明によつて達成さ
れる。 第1発明の要旨とするところは次の如くであ
る。すなわち重量比にてC:0.15%以下、Mn:
0.2〜3.5%、P:0.01〜0.15%、Al:0.10%以下を
含み残部がFeおよび不可避的不純物より成る高
強度鋼板の製造方法において、前記鋼板をAc3
態点以下の均熱温度まで加熱するに際し少くとも
600℃からAc3変態点までの区間の加熱速度を5
℃/sec以上で加熱する工程と、前記均熱温度に
おいて10秒〜10分間保持する均熱工程と、前記均
熱工程終了後の冷却に際し600℃〜300℃の温度範
囲における平均冷却速度を下記(1)式で算出された
臨界冷却速度CR(℃/sec)以上にて冷却する工
程と、を有して成ることを特徴とする延性および
加工性の良好な高強度鋼板の製造方法である。 logCR(℃/sec) =−1.73〔Mn(%)+3.5P(%)〕+3.95 ……(1) 次に第2発明の要旨とするところは、第1発明
と同一のC、Mn、P、Alの基本組成を有するほ
か、更にSi:0.1〜1.5%Cr:0.1〜1.0%、Mo:0.1
〜1.0%、B:5〜100ppmより成るA群および
Nb:0.01〜0.1%、Ti:0.01〜0.2%、V:0.01〜
0.2%より成るB群のうちより選ばれた1種また
は2種以上を含有し残部はFeおよび不可避的不
純物より成る高強度鋼板の製造方法において、前
記鋼板をAc3変態点以上の均熱温度まで加熱する
に際し少くとも600℃からAc3変態点までの区間
の加熱速度を5℃/sec以上で加熱する工程と、
前記均熱温度において10秒〜10分間保持する均熱
工程と、前記均熱工程終了後の冷却に際し600〜
300℃の温度範囲における平均冷却速度を下記(2)
式で算出された臨界冷却速度CR(℃/sec)以上
にて冷却する工程と、を有して成ることを特徴と
する延性および加工性の良好な高強度鋼板の製造
方法である。 logCR(℃/sec)=−1.73〔Mn(%) +0.26Si(%)+3.5P(%) +1.3Cr(%)+2.67Mo(%)〕+3.95 (2) ただしB添加の場合は(2)式の3.95を3.40に変更
する。 上記の要旨の如く、本発明はその焼鈍に当つて
Ac3変態点以上の温度範囲で10秒から10分間均熱
するに際し、その加熱において600℃からAc3
態点までの区間を従来開示されている加熱速度よ
り急速加熱し、更に均熱後の冷却条件を制御する
ことによつて延性および加工性の良好な高強度鋼
板を製造する方法である。 まず本発明の高強度鋼板の成分限定理由につい
て説明する。 C: Cは鋼の基本成分の一つとして重要な元素であ
り、Cの増加により強度を低コストで増加させる
ことができるが、0.15%を越えるとスポツト溶接
性が急激に劣化するため上限を0.15%に限定し
た。 Mn: Mnは固溶体強化元素であり同時に低温変態生
成物形成のためにも特に重要な元素である。Mn
は熱間脆性を防ぐ目的で0.1%以上必要であるが
溶製上の観点から0.2%を下限とした。またMnは
3.5%を越えるとCと同様にスポツト溶接性を劣
化させるので上限を3.5%とした。 P: Pは安価で、固溶強化能の大きいフエライト生
成元素で強化元素として有利であり、0.01%未満
とすると製造コストが上昇し特に利点もないので
下限を0.01%とした。 次に0.05%C−1.5%Mn−(0〜0.2)%Pの鋼
板をスポツト溶接し、溶接部の延性比、せん断引
張強度および十字引張強度を調査し、P含有量と
の関係を第1図に示した。第1図からPが0.15%
を越すと溶接部の強度、延性比が急激に劣化する
のでPの上限を0.15%に限定した。 Al: Alは脱酸元素として必要であるが、0.10%を越
して過剰となるとアルミナクラスターを形成し表
面性状を劣化させ、また熱間割れの危険が高くな
るので上限を0.10%に限定した。 上記C、Mn、P、Alの各限定量をもつて本発
明の高強度鋼板の基本成分とするが、更にSi、
Cr、Mo、Bの各元素より成るA群およびNb、
Ti、Vの各元素より成るB群のうちより選ばれ
た1種または2種以上を下記限定量の範囲で含有
する高強度鋼板においても、本発明の目的を有効
に達成することができる。これらの選定元素の限
定理由は次の如くである。 A群(Si、Cr、Mo、B): A群の元素は上記(2)式から明らかな如く、いず
れも混合組織形成に必要な焼鈍時の冷却工程にお
ける臨界冷却速度を下げると同時に、低温変態生
成物の量を増し、その結果強度増加の効果があ
る。この効果を有効に発揮させるためには、Si、
Cr、Moの各元素は少くとも0.1%以上、Bは
5ppm以上が必要である。しかし過剰の添加は効
果が飽和しコストも上昇するので上限をSiは1.5
%、Cr、Moは1.0%、Bは100ppmに限定し、そ
れぞれSi:0.1〜1.5%、Cr:0.1〜1.0%、Mo:0.1
〜1.0%、B:5〜100ppmの範囲に限定した。 B群(Nb、Ti、V): Nb、Ti、Vの各元素はいずれも炭窒化物形成
元素であり、結晶の細粒化、析出物による強度増
加、あるいはフエライト相の再結晶抑制等による
材質強化の効果がある。しかしこれらの効果は各
元素とも0.01%未満では十分発揮されないので下
限をいずれも0.01%に限定した。また過剰の添加
は効果が飽和しコストも上昇するので上限をNb
は0.1%、Ti、Vは0.2%とし、それぞれNb:0.01
〜0.1%、Ti:0.01〜0.2%、V:0.01〜0.2%の範
囲に限定した。 なお、上記A群、B群の各元素は単独に使用し
てそれぞれ効果を発揮するが、複合添加してもそ
れぞれの効果が減殺されることがない。 上記限定組成を有する本発明鋼は溶製後熱延、
酸洗、冷延後連続焼鈍される。熱延は通常の条件
下で行つて差支えないが、高強度を得るためには
600℃以下の低温巻取が好ましい。更に下記の如
く熱処理条件を限定管理することによつて延性お
よび加工性の良好な高強度鋼板を低廉なコストで
製造できる。 次に本発明における焼鈍条件の限定理由につい
て説明する。焼鈍条件は本発明の最も重要な要件
である。高強度かつ延性にすぐれた鋼板を得るに
はAc1変態点以上でAc3変態点以下に加熱、均熱
して急冷し、フエライトとマルテンサイトの混合
組織とするのが有利である。しかしながら、Mn
量が多くなるとその偏析によりAc1変態点以上、
Ac3変態点以下の均熱では最終的に得られる組織
がバンド状となり曲げなどの加工性、局部延性は
低い。一方Ac3変態点以上のオーステナイト単相
域で加熱、均熱して急冷すると、得られる組織は
主としてフエライトとベイナイトのバンド状でな
い混合組織となり、延性は若干低下するものの、
依然として回復焼鈍鋼などよりは良好であり、曲
げなどの加工性、局部延性は高い。すなわち、第
The present invention relates to a method for manufacturing high-strength steel sheets with good ductility and workability, and particularly to a low-cost method for manufacturing high-strength steel sheets having a tensile strength of 60 Kgf/mm 2 or more. In recent years, high-strength thin steel sheets with a tensile strength of 60 kgf/mm 2 or more have been increasingly used for strength members such as bumpers and door guard bars from the viewpoint of vehicle safety and weight reduction. Materials used in such applications are required to have high tensile strength, good ductility and workability, and good spot weldability when assembling a vehicle body. Recently, mixed-structure steel sheets consisting of ferrite and low-temperature transformation products mainly consisting of martensite or bainite have been widely used as steel sheets that satisfy these requirements. However, in order to increase the strength of conventional mixed structure steel sheets, Mn,
It is necessary to add large amounts of elements such as Si, Nb, and Ti, resulting in increased costs and
Addition of large amounts of Mn, Si, etc. not only increases manufacturing costs, but also tends to cause surface oxidation during continuous annealing, resulting in poor spot weldability. In addition, when a large amount of Mn or the like is contained, a band-like structure develops, which is thought to be caused by its segregation, and there is a problem in that workability such as bending, in particular, and local ductility deteriorate. An object of the present invention is to provide a method for manufacturing a high-strength steel plate that has both ductility and good workability, and is inexpensive to manufacture, solving the problems of the prior art described above. This object of the present invention is achieved by the following two inventions. The gist of the first invention is as follows. That is, C: 0.15% or less, Mn:
0.2 to 3.5%, P: 0.01 to 0.15%, Al: 0.10% or less, and the remainder consists of Fe and inevitable impurities, in a method for producing a high-strength steel plate, the steel plate being heated to a soaking temperature below the Ac 3 transformation point. At least
The heating rate in the section from 600℃ to the Ac 3 transformation point is 5
The average cooling rate in the temperature range of 600 ° C to 300 ° C for the step of heating at ℃ / sec or more, the soaking step of holding at the soaking temperature for 10 seconds to 10 minutes, and the cooling after the soaking step is as follows. A method for producing a high-strength steel sheet with good ductility and workability, the method comprising: cooling at a critical cooling rate CR (°C/sec) or higher calculated by equation (1). . logCR (℃/sec) = -1.73 [Mn (%) + 3.5P (%)] + 3.95 ... (1) Next, the gist of the second invention is that C, Mn, which is the same as the first invention, In addition to having the basic composition of , P, and Al, Si: 0.1-1.5% Cr: 0.1-1.0%, Mo: 0.1
Group A consisting of ~1.0%, B: 5 to 100 ppm and
Nb: 0.01~0.1%, Ti: 0.01~0.2%, V: 0.01~
In a method for manufacturing a high strength steel plate containing one or more selected from Group B consisting of 0.2% and the remainder consisting of Fe and unavoidable impurities, the steel plate is soaked at an Ac 3 transformation point or higher. heating at a heating rate of at least 5°C/sec or more in the section from at least 600°C to the Ac 3 transformation point;
The soaking process is held at the soaking temperature for 10 seconds to 10 minutes, and the cooling after the soaking temperature is 600~
The average cooling rate in the temperature range of 300℃ is shown below (2)
A method for producing a high-strength steel sheet with good ductility and workability, comprising the step of cooling at a critical cooling rate CR (° C./sec) or higher calculated by the formula. logCR (℃/sec) = -1.73 [Mn (%) +0.26Si (%) +3.5P (%) +1.3Cr (%) +2.67Mo (%)] +3.95 (2) However, in the case of B addition Change 3.95 in equation (2) to 3.40. As summarized above, the present invention relates to the annealing process.
When soaking for 10 seconds to 10 minutes in the temperature range above the Ac 3 transformation point, the section from 600℃ to the Ac 3 transformation point is heated more rapidly than the conventionally disclosed heating rate, and This is a method for manufacturing high-strength steel sheets with good ductility and workability by controlling cooling conditions. First, the reason for limiting the components of the high-strength steel sheet of the present invention will be explained. C: C is an important element as one of the basic components of steel, and strength can be increased at low cost by increasing C, but if it exceeds 0.15%, spot weldability will deteriorate rapidly, so the upper limit should not be exceeded. Limited to 0.15%. Mn: Mn is a solid solution strengthening element and at the same time is a particularly important element for the formation of low temperature transformation products. Mn
Although 0.1% or more is required for the purpose of preventing hot embrittlement, the lower limit was set at 0.2% from the viewpoint of melting. Also, Mn
If it exceeds 3.5%, spot weldability deteriorates like C, so the upper limit was set at 3.5%. P: P is a ferrite-forming element that is inexpensive and has a large solid solution strengthening ability, and is advantageous as a reinforcing element.If it is less than 0.01%, the manufacturing cost increases and there is no particular advantage, so the lower limit was set at 0.01%. Next, 0.05%C-1.5%Mn-(0~0.2)%P steel plates were spot welded, and the ductility ratio, shear tensile strength, and cross tensile strength of the welded part were investigated, and the relationship with the P content was determined as follows. Shown in the figure. From Figure 1, P is 0.15%
The upper limit of P was limited to 0.15% because the strength and ductility ratio of the welded part will deteriorate rapidly if the P content exceeds 0.15%. Al: Al is necessary as a deoxidizing element, but if it exceeds 0.10%, it will form alumina clusters and deteriorate the surface quality, and the risk of hot cracking will increase, so the upper limit was limited to 0.10%. The above-mentioned limited amounts of C, Mn, P, and Al are the basic components of the high-strength steel sheet of the present invention, and in addition, Si,
Group A consisting of the elements Cr, Mo, and B, and Nb;
The object of the present invention can also be effectively achieved in a high-strength steel plate containing one or more selected from group B consisting of the elements Ti and V in the following limited amounts. The reasons for limiting these selected elements are as follows. Group A (Si, Cr, Mo, B): As is clear from the above equation (2), the elements of Group A lower the critical cooling rate in the cooling process during annealing necessary for forming a mixed structure, and at the same time This has the effect of increasing the amount of transformation products, resulting in increased strength. In order to effectively demonstrate this effect, Si,
Each element of Cr and Mo is at least 0.1% or more, and B is
5ppm or more is required. However, adding too much will saturate the effect and increase the cost, so the upper limit for Si is 1.5.
%, Cr, Mo are limited to 1.0%, B is limited to 100ppm, Si: 0.1 to 1.5%, Cr: 0.1 to 1.0%, Mo: 0.1, respectively.
~1.0%, B: limited to a range of 5 to 100 ppm. Group B (Nb, Ti, V): The elements Nb, Ti, and V are all carbonitride-forming elements, and are caused by grain refinement, increased strength due to precipitates, or suppression of recrystallization of the ferrite phase. It has the effect of strengthening the material. However, these effects are not fully exhibited when each element is less than 0.01%, so the lower limit was set to 0.01% for each element. Also, if excessive addition occurs, the effect will become saturated and the cost will increase, so the upper limit should be set as Nb.
is 0.1%, Ti and V are 0.2%, and each Nb: 0.01
-0.1%, Ti: 0.01-0.2%, and V: 0.01-0.2%. It should be noted that each element of Group A and Group B has its own effect when used alone, but the effects of each element are not diminished even if they are added in combination. The steel of the present invention having the above-mentioned limited composition is hot-rolled after melting.
Continuously annealed after pickling and cold rolling. Hot rolling can be carried out under normal conditions, but in order to obtain high strength,
Low-temperature winding of 600°C or less is preferred. Furthermore, by controlling heat treatment conditions in a limited manner as described below, high-strength steel plates with good ductility and workability can be manufactured at low cost. Next, the reason for limiting the annealing conditions in the present invention will be explained. The annealing conditions are the most important requirement of the present invention. In order to obtain a steel plate with high strength and excellent ductility, it is advantageous to heat the steel sheet to a temperature above the Ac 1 transformation point and below the Ac 3 transformation point, soak it, and rapidly cool it to form a mixed structure of ferrite and martensite. However, Mn
When the amount increases, its segregation causes Ac 1 transformation point or higher,
Soaking below the Ac 3 transformation point results in a band-like structure with low workability such as bending and local ductility. On the other hand, when heated in the austenite single phase region above the Ac 3 transformation point, soaked, and rapidly cooled, the resulting structure becomes a non-band-like mixed structure mainly of ferrite and bainite, and although the ductility decreases slightly,
It is still better than recovery annealed steel, etc., and has high workability such as bending and local ductility. That is, the first

【表】【table】

【表】 1表に示した化学組成の鋼を第2表に示す如く2
種の温度で焼鈍し、ナイタールで腐食し、その顕
微鏡写真を第2図A,Bに示した。 第2図A,Bにおいて、第2図AはAc1変態点
以上、Ac3変態点以下の725℃で焼鈍したもので
バンド状組織が強く残つているが、一方第2図B
はAc3変態点以上の870℃で焼鈍したものであり、
バンド状組織は消失している。曲げ性も第2表に
示す如く、725℃焼鈍では臨界の曲げ半径が6mm、
870℃焼鈍では0mmであり、Ac3変態点以上で焼
鈍した方がすぐれている。これらの結果から本発
明においては焼鈍温度をAc3変態点以上に限定
し、延性は若干犠牲にして加工性の向上を図つ
た。 次に加熱速度は、実機の焼鈍炉においては室温
から均熱温度までの平均加熱速度を5℃/sec以
上に達成するのは困難ではない。しかし鋼板の加
熱速度は高温になるほど小さくなるのは第3図に
示す如くよく知られた事実である。第3図におい
て、実線は鋼板温度、点線は平均加熱速度を示し
ている。従つて鋼板を室温近傍の低温からAc3
態点以上の均熱温度まで加熱する際の平均加熱速
度は5℃/sec以上が達成されたとしても、例え
ば500〜600℃から目的とするAc3変態点以上の均
熱温度までの高温域における加熱速度5℃/sec
よりかなり小さくなり、この傾向はより高温にな
るほど著しい。 本発明者らはこのような高温部における加熱速
度が焼鈍後の引張特性に及ぼす影響に着目し次の
基礎実験を行つた。第1表に示す化学組成の1.2
mm厚の冷延鋼板をまず通常の連続焼鈍法で充分に
可能と思われる加熱速度として600℃までは約10
℃/secで加熱し、その後、Ac3変態点以上のオ
ーステナイト単相となる均熱温度850℃までの加
熱度を大幅に変えて加熱し、850℃で1分間均熱
後30℃/secの冷却速度で冷却する短時間焼鈍を
行いその引張特性を調査しその結果を第4図に示
した。 第4図において、引張強さ、降伏応力のいずれ
も加熱速度を大きくすることにより大きくなる
が、伸びの低下はほとんどない。かつ、この効果
は5℃/sec以上の加熱速度の場合に特に顕著で
あるので、600℃からAc3変態点までの区間の加
熱温度を5℃/sec以上に限定した。 次に高温域において急速加熱を必要とする開始
温度THについて検討した。すなわち、同じく第
1表に示す化学組成の冷延鋼板を第5図に示す如
く室温から急速加熱開始温度THまでは10/secで
加熱し、急速加熱開始温度THを変えこの温度か
ら850℃までを5℃/secの急速加熱を行い、850
℃で一分間の均熱後、30℃/secで冷却する短時
間焼鈍を行い引張強さを調査し、第6図に引張強
さに及ぼす急速加熱開始温度THの影響を示した。 第6図から600℃以上の温度領域において5
℃/sec以上の急速加熱速度で加熱して熱処理す
ることにより、延性を劣化させずに高強度が得ら
れることが明らかなので急速加熱開始温度TH
600℃以上に限定した。なお、自明のことである
が加熱速度は低温域においても高温域においても
速い方がすぐれた材質が得られる。 上記の如く600℃以上の高温域においてAc3
態点以上の均熱温度まで5℃/sec以上の加熱速
度で熱処理することで強度と延性のバランスが改
善される理由は次のように推定できる。すなわ
ち、本発明の限定成分の鋼の焼鈍について考える
と600℃という温度はフエライト粒の再結晶開始
温度にほぼ対応する。その温度から上の領域にお
ける加熱速度を大きくし、再結晶開始温度と冷延
後Ac1変態点の間における滞留時間を短くするこ
とで、非常に微細な再結晶粒の状態あるいは再結
晶が完全に終了しないままAc1変態点に達してオ
ーステナイト変態が始まり、更に短時間でAc3
態点以上の温度に加熱することで均熱時に存在す
るオーステナイト粒径は小さくなり、冷却後はこ
の微細なオーステナイトが変態するので最終的に
はフエライトとベイナイト(一部はマルテンサイ
トを含む)の微細組織が得られる。この組織の微
細化が強度と延性のバランスの改善に効果がある
と考えられる。 上記の如く再結晶開始温度である約600℃から
少くともAc3変態点まで望ましくは均熱温度まで
の加熱速度を5℃/sec以上の速度で加熱するこ
とが延性の良好な高強度鋼を得るための重要な要
件の一つである。 また均熱時間はオーステナイト変態を完了させ
るため10秒以上の保持が必要であり、また10分を
越えて保持するとオーステナイト粒の粗大化を招
来するので、均熱時間を10秒〜10分間に限定し
た。 均熱後の冷却は高強度と良好な延性を得るため
冷却速度が規定される。すなわち、冷却速度は下
記(1)式もしくは(2)式で求まる臨界冷却速度CR
(℃/sec)以上で冷却する必要がある。 (イ) C、Mn、P、Alの基本成分のみを限定量含
有した場合(第1発明) logCR(℃/sec) =−1.73〔Mn(%)+3.5P(%)〕+3.95 ……(1) (ロ) C、Mn、P、Alの基本成分の他にSi、Cr、
Mo、Bより成るA群およびNb、Ti、Vより
成るB群のうちより選ばれた1種または2種以
上の各限定量を含有した場合(第2発明) logCR(℃/sec)=−1.73〔Mn% +0.26Si(%)+3.5P(%) +1.3Cr(%)+2.67Mo(%)〕+3.95……(2) ただしB添加の場合は(2)式の3.95を3.40に変更
する。 冷却速度を上記の如く限定したのは、冷却速度
(1)式もしくは(2)式で求まる臨界冷速度CR(℃/
sec)未満ではフエライトーパーライト組織とな
り高強度がえられないが、臨界冷却速度CR(℃/
sec)以上であれば通常、フエライトとベイナイ
ト(一部マルテンサイトを含む)の組織となり高
強度と良好な延性、加工性が得られるので、冷却
速度を(1)式もしくは(2)式で求められる臨界冷却速
度以上に限定した。 次に600〜300℃間の範囲における冷却速度を規
定したのは、均熱温度から冷却してくる場合に、
600℃とMS点より十分に低い300℃との間の冷却
速度が小さいと拡散型変態が起り強度と延性のバ
ランスに対して悪影響があるので、600〜300℃間
の冷却速度を(1)、(2)式で求まる臨界冷却速度CR
(℃/sec)以上に限定した。 かくの如く、本発明は基本組成および選択添加
元素の組成を限定し、焼鈍において600℃から
Ac3変態点までの加熱速度を5℃/sec以上で加
熱し、Ac3変態点以上の均熱温度において10秒〜
10分間均熱し、均熱後600〜300℃間の冷却を(1)式
もしくは(2)式にて求まる臨界冷却速度以上にて急
冷することによりフエライトと一部マルテンサイ
トを含むベイナイトから成る微細組織が得られ、
これによつて高強度で延性および加工性の良好な
高張力鋼板を得ることができた。 実施例 第3表に示す4種類の成分を有する鋼につい
て、仕上圧延温度830〜870℃、巻取温度500〜550
℃にて熱延し、つづいて、同じく第3表に示す
600℃からAc3変態までの加熱速度、均熱温度、
600℃から300℃までの冷却速度等の熱処理条件で
焼鈍を行つた。これらの焼鈍鋼板について降伏応
力(YS)、引張強さ(TS)、伸びおよび曲げ性を
調査し、結果を同じく第3表
[Table] The steels with the chemical compositions shown in Table 1 are as shown in Table 2.
The specimen was annealed at a seed temperature and corroded with nital, the micrographs of which are shown in Figures 2A and B. In Fig. 2 A and B, Fig. 2 A was annealed at 725°C, which is above the Ac 1 transformation point and below the Ac 3 transformation point, and a strong band-like structure remains, whereas Fig. 2 B
is annealed at 870℃ above the Ac 3 transformation point,
The band-like tissue has disappeared. As for bendability, as shown in Table 2, the critical bending radius is 6 mm when annealed at 725°C.
It is 0 mm when annealed at 870°C, and annealing at the Ac 3 transformation point or higher is better. Based on these results, in the present invention, the annealing temperature was limited to the Ac 3 transformation point or higher to improve workability at the expense of some ductility. Next, regarding the heating rate, it is not difficult to achieve an average heating rate of 5°C/sec or more from room temperature to the soaking temperature in an actual annealing furnace. However, it is a well-known fact, as shown in FIG. 3, that the heating rate of a steel plate decreases as the temperature increases. In FIG. 3, the solid line indicates the steel plate temperature, and the dotted line indicates the average heating rate. Therefore, even if an average heating rate of 5°C/sec or more is achieved when heating a steel plate from a low temperature near room temperature to a soaking temperature above the Ac 3 transformation point, for example, from 500 to 600°C to the target Ac 3 Heating rate 5℃/sec in the high temperature range up to the soaking temperature above the transformation point
This tendency becomes more pronounced as the temperature increases. The present inventors focused on the influence of the heating rate in such a high temperature section on the tensile properties after annealing and conducted the following basic experiment. 1.2 of the chemical composition shown in Table 1
The heating rate that seems to be sufficient for a cold-rolled steel plate with a thickness of 600°C using the normal continuous annealing method is about 10°C.
℃/sec, then heated at a temperature of 30℃/sec after soaking at 850℃ for 1 minute until the soaking temperature reaches 850℃, which is a single-phase austenite with an Ac 3 transformation point or higher. The tensile properties were investigated by short-time annealing by cooling at a cooling rate, and the results are shown in FIG. In FIG. 4, both tensile strength and yield stress increase as the heating rate increases, but elongation hardly decreases. Moreover, since this effect is particularly remarkable when the heating rate is 5° C./sec or higher, the heating temperature in the section from 600° C. to the Ac 3 transformation point was limited to 5° C./sec or higher. Next, we investigated the starting temperature T H that requires rapid heating in the high temperature range. That is, a cold-rolled steel sheet having the chemical composition shown in Table 1 is heated at a rate of 10/sec from room temperature to the rapid heating start temperature T H as shown in Figure 5, and the rapid heating start temperature T H is changed from this temperature to 850 sec. ℃, rapidly heated at 5℃/sec to 850℃.
After soaking at ℃ for 1 minute, short-time annealing was performed by cooling at 30℃/sec to investigate the tensile strength, and FIG. 6 shows the influence of the rapid heating start temperature T H on the tensile strength. From Figure 6, 5 in the temperature range of 600℃ or higher.
It is clear that high strength can be obtained without deteriorating ductility by heating at a rapid heating rate of ℃/sec or higher, so the rapid heating start temperature T H
The temperature was limited to 600℃ or higher. It is obvious that the faster the heating rate is in both the low temperature range and the high temperature range, the better the quality of the material will be obtained. As mentioned above, the reason why the balance between strength and ductility is improved by heat treatment at a heating rate of 5°C/sec or higher in a high temperature range of 600°C or higher to a soaking temperature of Ac 3 transformation point or higher can be estimated as follows. . That is, when considering the annealing of the steel with limited components of the present invention, the temperature of 600°C approximately corresponds to the recrystallization start temperature of ferrite grains. By increasing the heating rate in the region above that temperature and shortening the residence time between the recrystallization start temperature and the Ac 1 transformation point after cold rolling, very fine recrystallized grains or complete recrystallization can be achieved. The Ac 1 transformation point is reached and austenite transformation begins without completing the process. By further heating to a temperature above the Ac 3 transformation point in a short time, the austenite grain size that exists during soaking becomes smaller, and after cooling, this fine grain size is reduced. As austenite transforms, a microstructure of ferrite and bainite (some of which includes martensite) is finally obtained. It is thought that this microstructural refinement is effective in improving the balance between strength and ductility. As mentioned above, high-strength steel with good ductility is heated at a heating rate of 5°C/sec or more from the recrystallization start temperature of about 600°C to at least the Ac 3 transformation point, preferably to the soaking temperature. This is one of the important requirements for obtaining In addition, the soaking time must be held for 10 seconds or more to complete the austenite transformation, and holding it for more than 10 minutes will cause the austenite grains to coarsen, so the soaking time should be limited to 10 seconds to 10 minutes. did. The cooling rate after soaking is determined in order to obtain high strength and good ductility. In other words, the cooling rate is the critical cooling rate CR determined by equation (1) or (2) below.
(°C/sec) or higher. (a) When only basic components of C, Mn, P, and Al are contained in limited amounts (first invention) logCR (℃/sec) = -1.73 [Mn (%) + 3.5P (%)] + 3.95... …(1) (b) In addition to the basic components of C, Mn, P, and Al, Si, Cr,
When containing each limited amount of one or more selected from group A consisting of Mo and B and group B consisting of Nb, Ti, and V (second invention) logCR (℃/sec) = - 1.73 [Mn% +0.26Si (%) +3.5P (%) +1.3Cr (%) +2.67Mo (%)] +3.95...(2) However, in the case of B addition, 3.95 of equation (2) is Change to 3.40. The reason for limiting the cooling rate as above is the cooling rate.
Critical cooling rate CR (℃/
If the cooling rate is below CR (℃/
sec) or higher, the structure usually consists of ferrite and bainite (including some martensite), which provides high strength, good ductility, and workability, so the cooling rate can be calculated using equation (1) or (2). The cooling rate was limited to above the critical cooling rate. Next, we specified the cooling rate in the range of 600 to 300℃, when cooling from the soaking temperature,
If the cooling rate between 600℃ and 300℃, which is sufficiently lower than the M ), critical cooling rate CR determined by equation (2)
(℃/sec) or more. As described above, the present invention limits the basic composition and the composition of selectively added elements, and annealing from 600℃
Heating at a heating rate of 5℃/sec or higher to the Ac 3 transformation point, and at a soaking temperature of Ac 3 transformation point or higher for 10 seconds to
By soaking for 10 minutes and then rapidly cooling between 600 and 300℃ at a rate higher than the critical cooling rate determined by equation (1) or (2), fine particles consisting of ferrite and bainite containing some martensite are produced. tissue is obtained,
As a result, it was possible to obtain a high-tensile steel plate with high strength, good ductility, and workability. Example For steel having the four types of components shown in Table 3, the finish rolling temperature was 830 to 870°C, and the coiling temperature was 500 to 550°C.
Hot rolled at ℃, followed by the same as shown in Table 3.
Heating rate from 600℃ to Ac 3 transformation, soaking temperature,
Annealing was performed under heat treatment conditions such as a cooling rate of 600°C to 300°C. The yield stress (YS), tensile strength (TS), elongation and bendability of these annealed steel plates were investigated, and the results are also shown in Table 3.

【表】【table】

【表】 に示した。なお曲げ性は下記の臨界曲げ半径で表
示した。 臨界曲げ半径=割れの発生しない曲げ半径/板厚 第3表において、本発明例の供試材No.1と比較
例の供試材No.5および本発明例の供試材No.2と比
較例の供試材No.7はそれぞれ同一成分で均熱温度
も同一であるが、本発明例は加熱速度が比較例と
異なり5℃/sec以上であるため伸びの劣化を伴
わずに強度を増加できることがわかる。 また本発明例の供試材No.1と比較例の供試材No.
6を比較するとそれぞれ均熱温度は870℃と750℃
であり、均熱温度がAc3変態点以上である本発明
例は臨界曲げ半径が1とすぐれているのに対し、
Ac3変態点未満である比較例は5と曲げ性が著し
く悪い。 上記実施例よりも明らかなとおり、本発明によ
る延性および加工性の良好な高強度鋼板は化学組
成を限定した鋼スラブを通常の方法で熱延、冷延
した鋼板の焼鈍におけるAc3変態点以上の均熱温
度までの加熱に際し、600℃からAc3変態点まで
の区間を5℃/sec以上の加熱速度で急熱し、10
秒〜10分間均熱し、均熱後の冷却に当り、600〜
300℃の区間を本発明者らが鋼成分の関数として
定めた臨界冷却速度CR(℃/sec)以上の冷却速
度で冷却し、鋼組織をフエライトおよび一部マル
テンサイトを含むベイナイトの微細組織とするこ
とにより延性および加工性の良好な強度600Kg
f/mm2以上を確保する高強度鋼板を製造する方法
を確立した。また本発明は製造コストも低廉で鋼
の特性としてスポツト溶接性もすぐれているとい
う効果を有しているので自動車等の強度部材とし
て広く利用できる。
It is shown in [Table]. The bendability was expressed using the critical bending radius shown below. Critical bending radius = bending radius without cracking/plate thickness In Table 3, sample material No. 1 of the invention example, sample material No. 5 of the comparative example, and specimen material No. 2 of the invention example. Sample material No. 7 of the comparative example has the same composition and the same soaking temperature, but the inventive example differs from the comparative example in that the heating rate is 5°C/sec or more, so the strength is improved without deterioration in elongation. It can be seen that the amount can be increased. In addition, sample material No. 1 of the present invention example and sample material No. 1 of the comparative example.
Comparing 6, the soaking temperature is 870℃ and 750℃ respectively.
The example of the present invention, in which the soaking temperature is above the Ac 3 transformation point, has an excellent critical bending radius of 1;
The comparative example whose Ac is less than 3 transformation point has a significantly poor bendability of 5. As is clear from the above examples, the high-strength steel plate with good ductility and workability according to the present invention has an Ac 3 transformation point or higher when annealing a steel plate obtained by hot rolling and cold rolling a steel slab with a limited chemical composition in a conventional manner. When heating to the soaking temperature of
Soak for 10 minutes and then cool down to 600~
The 300℃ section was cooled at a cooling rate higher than the critical cooling rate CR (℃/sec) determined by the inventors as a function of the steel composition, and the steel structure was changed to a microstructure of bainite containing ferrite and some martensite. Good strength of ductility and workability by 600Kg
We have established a method for manufacturing high-strength steel plates that ensure f/mm 2 or higher. Further, the present invention has the advantage that the manufacturing cost is low and the spot weldability is excellent as a characteristic of steel, so that it can be widely used as a strength member for automobiles and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を得る実験におけるP含有量と
スポツト溶接部の引張試験結果との関係を示す線
図、第2図A,Bは本発明を得る実験における焼
鈍均熱温度がそれぞれAc3変態点未満とAc3変態
点以上の場合の金属組織を示す顕微鏡写真、第3
図は通常の焼鈍における鋼板の加熱、冷却のパタ
ーンであつて鋼板温度は高温になるほど加熱速度
が小さくなることを示す線図、第4図は本発明を
得る実験の焼鈍における600〜850℃間の加熱速度
と引張試験結果との関係を示す線図、第5図は本
発明を得る焼鈍実験における焼鈍方法の加熱冷却
パターンを示す線図、第6図は第5図に示す焼純
実験における急速加熱開始温度THと引張試験結
果との関係を示す線図である。
Fig. 1 is a diagram showing the relationship between the P content and the tensile test results of spot welds in the experiment to obtain the present invention, and Fig. 2 A and B are diagrams showing the relationship between the annealing soaking temperature and Ac 3 in the experiment to obtain the present invention, respectively. Micrographs showing metal structures below the transformation point and above the Ac 3 transformation point, 3rd
The figure shows the heating and cooling pattern of a steel plate during normal annealing, and shows that the higher the steel plate temperature, the lower the heating rate. Figure 5 is a diagram showing the heating and cooling pattern of the annealing method in the annealing experiment to obtain the present invention, and Figure 6 is a diagram showing the relationship between the heating rate and the tensile test results. FIG. 2 is a diagram showing the relationship between rapid heating start temperature T H and tensile test results.

Claims (1)

【特許請求の範囲】 1 重量比にてC:0.15%以下、Mn:0.2〜3.5
%、P:0.01〜0.15%、Al:0.10%以下を含み残
部がFeおよび不可避的不純物より成る高強度鋼
板の製造方法において、前記鋼板をAc3変態点以
上の均熱温度まで加熱するに際し少くとも600℃
からAc3変態点までの区間の加熱速度を5℃/
sec以上で加熱する工程と、前記均熱温度におい
て10秒〜10分間保持する均熱工程と、前記均熱工
程終了後の冷却に際し600〜300℃の温度範囲にお
ける平均冷却速度を下記(1)式で算出された臨界冷
却速度CR(℃/sec)以上にて冷却する工程と、
を有して成ることを特徴とする延性および加工性
の良好な高強度鋼板の製造方法。 logCR(℃/sec) =−1.73〔Mn(%)+3.5P(%)〕+3.95 ……(1) 2 重量比にてC:0.15%以下、Mn:0.2〜3.5
%、P:0.01〜0.15%、Al:0.10%以下を含み、
更にSi:0.1〜1.5%、Cr:0.1〜1.0%、Mo:0.1〜
1.0%、B:5〜100ppmより成るA群および
Nb:0.01〜0.1%、Ti:0.01〜0.2%、V:0.01〜
0.2%より成るB群のうちより選ばれた1種また
は2種以上を含有し残部はFeおよび不可避的不
純物より成る高強度鋼板の製造方法において、前
記鋼板をAc3変態点以上の均熱温度まで加熱する
に際し少くとも600℃からAc3変態点までの区間
の加熱速度を5℃/sec以上で加熱する工程と、
前記均熱温度において10秒〜10分間保持する均熱
工程と、前記均熱工程終了後の冷却に際し600〜
300℃の温度範囲における平均冷却速度を下記(2)
式で算出された臨界冷却速度CR(℃/sec)以上
にて冷却する工程と、を有して成ることを特徴と
する延性および加工性の良好な高強度鋼板の製造
方法。 logCR(℃/sec)=−1.73〔Mn(%) +0.26Si(%)+3.5P(%) +1.3Cr(%)+2.67Mo(%)〕+3.95……(2) ただしB添加の場合は(2)式の3.95を3.40に変更
する。
[Claims] 1. C: 0.15% or less, Mn: 0.2 to 3.5 by weight
%, P: 0.01 to 0.15%, Al: 0.10 % or less, and the balance is Fe and inevitable impurities. Both 600℃
The heating rate in the section from to Ac 3 transformation point was set to 5℃/
The average cooling rate in the temperature range of 600 to 300 ° C for the step of heating at sec or more, the soaking step of holding at the soaking temperature for 10 seconds to 10 minutes, and the cooling after the soaking step is as follows (1) A step of cooling at a critical cooling rate CR (℃/sec) calculated by the formula,
A method for producing a high-strength steel plate with good ductility and workability, the method comprising: logCR (℃/sec) = -1.73 [Mn (%) + 3.5P (%)] + 3.95 ... (1) 2 Weight ratio: C: 0.15% or less, Mn: 0.2 to 3.5
%, P: 0.01 to 0.15%, Al: 0.10% or less,
Furthermore, Si: 0.1~1.5%, Cr: 0.1~1.0%, Mo: 0.1~
Group A consisting of 1.0%, B: 5 to 100 ppm and
Nb: 0.01~0.1%, Ti: 0.01~0.2%, V: 0.01~
In a method for manufacturing a high strength steel plate containing one or more selected from Group B consisting of 0.2% and the remainder consisting of Fe and unavoidable impurities, the steel plate is soaked at an Ac 3 transformation point or higher. heating at a heating rate of at least 5°C/sec or more in the section from at least 600°C to the Ac 3 transformation point;
The soaking process is held at the soaking temperature for 10 seconds to 10 minutes, and the cooling after the soaking temperature is 600~
The average cooling rate in the temperature range of 300℃ is shown below (2)
A method for producing a high-strength steel sheet with good ductility and workability, comprising the step of cooling at a critical cooling rate CR (°C/sec) or higher calculated by the formula. logCR (℃/sec) = -1.73 [Mn (%) +0.26Si (%) +3.5P (%) +1.3Cr (%) +2.67Mo (%)] +3.95...(2) However, B is added In this case, change 3.95 in equation (2) to 3.40.
JP58018310A 1983-02-07 1983-02-07 Production of high-strength steel plate having good ductility and processability Granted JPS59143027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58018310A JPS59143027A (en) 1983-02-07 1983-02-07 Production of high-strength steel plate having good ductility and processability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58018310A JPS59143027A (en) 1983-02-07 1983-02-07 Production of high-strength steel plate having good ductility and processability

Publications (2)

Publication Number Publication Date
JPS59143027A JPS59143027A (en) 1984-08-16
JPH0312131B2 true JPH0312131B2 (en) 1991-02-19

Family

ID=11968036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58018310A Granted JPS59143027A (en) 1983-02-07 1983-02-07 Production of high-strength steel plate having good ductility and processability

Country Status (1)

Country Link
JP (1) JPS59143027A (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60152655A (en) * 1984-01-20 1985-08-10 Kobe Steel Ltd High-strength low-carbon steel material having superior heavy workability
JPS60152654A (en) * 1984-01-20 1985-08-10 Kobe Steel Ltd Steel material having superior resistance to hydrogen induced cracking, high strength, ductility and toughness and its manufacture
JPS6156264A (en) * 1984-08-24 1986-03-20 Kobe Steel Ltd High strength and high ductility ultrathin steel wire
JPS6250436A (en) * 1985-08-29 1987-03-05 Kobe Steel Ltd Low carbon steel wire superior in cold wire drawability
JPS63282240A (en) * 1987-05-12 1988-11-18 Nippon Steel Corp High tensile strength rolled steel plate having excellent fatigue characteristics
EP0608430B1 (en) * 1992-06-22 2000-08-16 Nippon Steel Corporation Cold-rolled steel plate having excellent baking hardenability, non-cold-ageing characteristics and moldability, and molten zinc-plated cold-rolled steel plate and method of manufacturing the same
JP2640065B2 (en) * 1992-08-11 1997-08-13 株式会社神戸製鋼所 High-strength hot-rolled steel sheet having good workability and a strength of 730 N / mm2 or more and method for producing the same
US5690755A (en) * 1992-08-31 1997-11-25 Nippon Steel Corporation Cold-rolled steel sheet and hot-dip galvanized cold-rolled steel sheet having excellent bake hardenability, non-aging properties at room temperature and good formability and process for producing the same
EP0620288B1 (en) * 1992-08-31 2000-11-22 Nippon Steel Corporation Cold-rolled sheet and hot-galvanized cold-rolled sheet, both excellent in bake hardening, cold nonaging and forming properties, and process for producing the same
JP4506438B2 (en) * 2004-03-31 2010-07-21 Jfeスチール株式会社 High-rigidity and high-strength steel sheet and manufacturing method thereof
JP4506439B2 (en) * 2004-03-31 2010-07-21 Jfeスチール株式会社 High-rigidity and high-strength steel sheet and manufacturing method thereof
JP4735552B2 (en) * 2007-01-22 2011-07-27 Jfeスチール株式会社 Manufacturing method of high strength steel plate and high strength plated steel plate
KR101353838B1 (en) * 2011-12-28 2014-01-20 주식회사 포스코 Wear resistant steel having excellent toughness and weldability

Also Published As

Publication number Publication date
JPS59143027A (en) 1984-08-16

Similar Documents

Publication Publication Date Title
JP5228062B2 (en) High strength thin steel sheet with excellent weldability and method for producing the same
JP3424619B2 (en) High tensile cold rolled steel sheet and method for producing the same
US7507307B2 (en) Method for producing cold rolled steel plate of super high strength
KR20110127283A (en) A steel composition for the production of cold rolled multiphase steel products
JPH0564215B2 (en)
JP4325998B2 (en) High-strength hot-dip galvanized steel sheet with excellent spot weldability and material stability
JPH04289120A (en) Production of ultrahigh strength cold rolled steel sheet excellent in formability and strip shape
US4830686A (en) Low yield ratio high-strength annealed steel sheet having good ductility and resistance to secondary cold-work embrittlement
JPS5927370B2 (en) High strength cold rolled steel plate for press working
JPH0312131B2 (en)
JPS61276927A (en) Production of cold rolled steel sheet having good deep drawability
JP2876968B2 (en) High-strength steel sheet having high ductility and method for producing the same
US4770719A (en) Method of manufacturing a low yield ratio high-strength steel sheet having good ductility and resistance to secondary cold-work embrittlement
JP4265152B2 (en) High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same
JP4265153B2 (en) High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same
JP3514158B2 (en) Manufacturing method of high tensile strength hot rolled steel sheet with excellent stretch flangeability and material stability
JPH04268016A (en) Production of high tensile strength steel sheet for door guide bar having excellent crushing characteristic
US20220205059A1 (en) Cold rolled steel sheet with ultra-high strength, and manufacturing method therefor
JPH06145894A (en) High strength hot rolled steel sheet excellent in ductility and delayed fracture resistance and its production
JP3037767B2 (en) Low yield ratio high strength hot-dip galvanized steel sheet and method for producing the same
JP4492105B2 (en) Manufacturing method of high-strength cold-rolled steel sheet with excellent stretch flangeability
JPH0567684B2 (en)
JPS61272321A (en) Manufacture of ultra high-strength cold rolled steel sheet
JPS6145687B2 (en)
JPH0557332B2 (en)