JP5228062B2 - High strength thin steel sheet with excellent weldability and method for producing the same - Google Patents

High strength thin steel sheet with excellent weldability and method for producing the same Download PDF

Info

Publication number
JP5228062B2
JP5228062B2 JP2010540545A JP2010540545A JP5228062B2 JP 5228062 B2 JP5228062 B2 JP 5228062B2 JP 2010540545 A JP2010540545 A JP 2010540545A JP 2010540545 A JP2010540545 A JP 2010540545A JP 5228062 B2 JP5228062 B2 JP 5228062B2
Authority
JP
Japan
Prior art keywords
steel sheet
less
steel
weldability
thin steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010540545A
Other languages
Japanese (ja)
Other versions
JP2011508085A (en
Inventor
ヒ ジェ カン、
ジン クン オー、
クワン グン チン、
ジョン サン キム、
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Holdings Inc
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of JP2011508085A publication Critical patent/JP2011508085A/en
Application granted granted Critical
Publication of JP5228062B2 publication Critical patent/JP5228062B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Coating With Molten Metal (AREA)

Description

本発明は、主に建築資材、家電製品及び自動車用に用いられる引張強度約800MPa以上の高強度薄鋼板及びその製造方法に関し、より詳細には、高い引張強度と共に優れたメッキ性、溶接性、曲げ加工性及び穴拡げ率(HER)を有する高強度薄鋼板及びその製造方法に関する。   The present invention relates to a high-strength thin steel sheet having a tensile strength of about 800 MPa or more, which is mainly used for building materials, home appliances and automobiles, and a method for producing the same. The present invention relates to a high-strength thin steel sheet having bending workability and a hole expansion ratio (HER) and a method for producing the same.

最近、自動車用鋼板は燃費向上や耐久性向上のためにより高い強度が求められていて、衝突安全性及び乗客保護の側面から、約800MPa以上の高強度鋼板が車体構造用や補強材として使用量が増大している。しかし、鋼板の高強度化は成形加工性及び溶接性の低下を引き起こすため、これを補完した材料の開発が求められる。このような要求に応じて、フェライト―マルテンサイト2相鋼板や、残留オーステナイトの変態誘起塑性を用いたTRIP鋼板など、様々な複合組織鋼板がこれまで開発されてきた。   Recently, steel sheets for automobiles have been required to have higher strength to improve fuel economy and durability. From the viewpoint of collision safety and passenger protection, high-strength steel sheets of about 800 MPa or more are used for vehicle structure and reinforcement. Has increased. However, increasing the strength of the steel sheet causes a decrease in forming processability and weldability, and therefore development of a material that complements this is required. In response to such demands, various composite structure steel plates such as ferrite-martensite duplex steel plates and TRIP steel plates using transformation-induced plasticity of retained austenite have been developed so far.

例えば、日本国特開平6−145892号公報(特許文献1)では、化学成分及び鋼板の残留オーステナイト量を制御し、成形性に優れた鋼板の製法方法を提案している。日本国特許第2660644号公報(特許文献2)及び日本国特許第2704350号公報(特許文献3)では、化学成分及び鋼板の微細組織を制御することによって、プレス成形性が良好な高強度鋼板の製造法を提案している。また、日本国特許第3317303号公報(特許文献4)では、5%以上の残留オーステナイトを含み、加工性、特に局部伸びに優れた鋼板が提案されている。しかし、このような技術はその殆どが延性の向上を図るために開発されたものであり、実際に部品を加工する時において重要な尺度である曲げ加工性、穴拡げ率または溶接性などに対しては十分な考慮がなされていない。   For example, Japanese Patent Application Laid-Open No. 6-145892 (Patent Document 1) proposes a method of manufacturing a steel sheet that is excellent in formability by controlling the chemical components and the amount of retained austenite of the steel sheet. In Japanese Patent No. 2660644 (Patent Document 2) and Japanese Patent No. 2704350 (Patent Document 3), by controlling the chemical components and the microstructure of the steel sheet, a high strength steel sheet with good press formability is obtained. A manufacturing method is proposed. Japanese Patent No. 3317303 (Patent Document 4) proposes a steel sheet containing 5% or more of retained austenite and excellent in workability, particularly local elongation. However, most of these technologies have been developed to improve ductility, and they are important measures for bending workability, hole expansion rate or weldability, which are important when actually processing parts. Have not been fully considered.

鋼板に求められる特性のうち、800MPa以上の高強度鋼板が主に用いられる車体構造用や補強材として一番重要な特性はスポット溶接性である。構造用または補強材として使用される鋼板は、衝突時に衝突エネルギーを吸収することによって乗客を保護する役割をしていて、スポット溶接部の強度が十分でなければ衝突時に破断されて十分な衝突吸収エネルギーを得ることができない。溶接性を考慮した高強度鋼板に関する技術としては、日本国特開2003−193194号公報(特許文献5)があるが、実際に市場で求める溶接性を満足させることができない問題点がある。   Among the characteristics required for steel sheets, spot weldability is the most important characteristic for vehicle body structures and reinforcing materials in which high strength steel sheets of 800 MPa or more are mainly used. Steel plates used as structural or reinforcing materials serve to protect passengers by absorbing collision energy at the time of collision, and if the strength of the spot weld is not sufficient, it is broken at the time of collision and sufficient collision absorption I can't get energy. As a technique related to high strength steel sheets in consideration of weldability, there is Japanese Patent Laid-Open No. 2003-193194 (Patent Document 5), but there is a problem that the weldability actually required in the market cannot be satisfied.

また、日本国特開2005−105367号公報(特許文献6)では、780MPa以上の鋼で溶接性と延性を確保した技術を提案している。このように、800MPa以上の高強度鋼板を実工程で製造する場合、中間素材である熱延板の高い強度によって冷間圧延性が大きく低下し、また焼鈍熱処理時に急冷熱処理条件を適用しなければならないため、操業性が大きく低下する問題点がある。上記日本国特開2005−105367号公報ではこれに対する検討が十分になされていない。   Japanese Patent Application Laid-Open No. 2005-105367 (Patent Document 6) proposes a technique that ensures weldability and ductility with a steel of 780 MPa or more. Thus, when manufacturing a high-strength steel sheet of 800 MPa or more in the actual process, the cold rolling property is greatly reduced due to the high strength of the hot-rolled sheet that is an intermediate material, and the rapid heat treatment conditions must be applied during the annealing heat treatment. Therefore, there is a problem that operability is greatly reduced. The above-mentioned Japanese Patent Application Laid-Open No. 2005-105367 does not sufficiently study this.

日本国特開平6−145892号公報Japanese Unexamined Patent Publication No. 6-145892 日本国特許第2660644号公報Japanese Patent No. 2660644 日本国特許第2704350号公報Japanese Patent No. 2704350 日本国特許第3317303号公報Japanese Patent No. 3317303 日本国特開2003−193194号公報Japanese Unexamined Patent Publication No. 2003-193194 日本国特開2005−105367号公報Japanese Unexamined Patent Publication No. 2005-105367

本発明は、上記従来技術の問題点を解決するためになされたものであり、引張強度800MPa以上の高強度薄鋼板を製造することにおいて、メッキ性、溶接性、曲げ加工性及び穴拡げ率に優れた鋼板を提供することを目的とする。また、このような鋼板の操業性を確保することができる製造方法を提供することを目的とする。   The present invention has been made to solve the above-mentioned problems of the prior art, and in producing a high-strength thin steel sheet having a tensile strength of 800 MPa or more, the plating property, weldability, bending workability, and hole expansion rate are improved. An object is to provide an excellent steel sheet. Moreover, it aims at providing the manufacturing method which can ensure the operativity of such a steel plate.

本発明の一構成によれば、重量%で、C:0.02〜0.20%、Si:1.5%以下、Mn:1.5〜3.0%、P:0.001〜0.10%、S:0.010%以下、Sol.Al:0.01〜0.40%、N:0.020%以下、Cr:0.3〜1.5%、B:0.0010〜0.0060%、及びSb:0.001〜0.10%を含み、Ti:0.003〜0.08%、Nb:0.003〜0.08%、及びMo:0.003〜0.08%からなるグループから選択される少なくとも1種以上を含み、及び残部Fe及びその他不可避的不純物を含み、前記Si、Mn、B、Sb、P、及びSが、5<(Si/Mn+150B)/Sb<20及びC+Mn/20+Si/30+2P+4S<0.27を満たす鋼板を提供する。   According to one configuration of the present invention, by weight, C: 0.02 to 0.20%, Si: 1.5% or less, Mn: 1.5 to 3.0%, P: 0.001 to 0 10%, S: 0.010% or less, Sol. Al: 0.01-0.40%, N: 0.020% or less, Cr: 0.3-1.5%, B: 0.0010-0.0060%, and Sb: 0.001-0. 10%, at least one selected from the group consisting of Ti: 0.003 to 0.08%, Nb: 0.003 to 0.08%, and Mo: 0.003 to 0.08% And Si, Mn, B, Sb, P, and S contain 5 <(Si / Mn + 150B) / Sb <20 and C + Mn / 20 + Si / 30 + 2P + 4S <0.27. Provide a steel sheet to fill.

また、本発明の他の構成によれば、重量%で、C:0.02〜0.20%、Si:1.5%以下、Mn:1.5〜3.0%、P:0.001〜0.10%、S:0.010%以下、Sol.Al:0.01〜0.40%、N:0.020%以下、Cr:0.3〜1.5%、B:0.0010〜0.0060%、及びSb:0.001〜0.10%を含み、Ti:0.003〜0.08%、Nb:0.003〜0.08%、及びMo:0.003〜0.08%からなるグループから選択される少なくとも1種以上を含み、及び残部Fe及びその他不可避的不純物を含み、前記Si、Mn、B、Sb、P、及びSが、5<(Si/Mn+150B)/Sb<20及びC+Mn/20+Si/30+2P+4S<0.27を満たす鋼板のスラブを再加熱した後、仕上げ圧延の出口側の温度がAr変態点〜950℃の間になるように圧延して巻取する段階、巻取した熱延板を酸洗した後、40〜80%の圧下率で冷間圧延する段階、及び前記得られた冷延板を740℃〜860℃の温度範囲で連続焼鈍を行い、3〜150℃/sの冷却速度(CR、Cooling Rate)の範囲で−5LogCR+25C−17Si+40Cr+13,000B>30の条件を満たす冷却速度で250〜600℃の温度まで冷却した後、5℃/min以上の冷却速度で冷却する段階を含む鋼板の製造方法を提供する。 According to another configuration of the present invention, C: 0.02 to 0.20%, Si: 1.5% or less, Mn: 1.5 to 3.0%, P: 0.0. 001-0.10%, S: 0.010% or less, Sol. Al: 0.01-0.40%, N: 0.020% or less, Cr: 0.3-1.5%, B: 0.0010-0.0060%, and Sb: 0.001-0. 10%, at least one selected from the group consisting of Ti: 0.003 to 0.08%, Nb: 0.003 to 0.08%, and Mo: 0.003 to 0.08% And Si, Mn, B, Sb, P, and S contain 5 <(Si / Mn + 150B) / Sb <20 and C + Mn / 20 + Si / 30 + 2P + 4S <0.27. After reheating the slab of the steel sheet to be filled, rolling and winding so that the temperature on the exit side of finish rolling is between Ar 3 transformation point and 950 ° C., after pickling the wound hot-rolled sheet Cold rolling at a rolling reduction of 40-80%, and The obtained cold-rolled sheet is subjected to continuous annealing in a temperature range of 740 ° C. to 860 ° C., and a condition of −5 LogCR + 25C-17Si + 40Cr + 13,000B> 30 in a range of a cooling rate (CR, Cooling Rate) of 3 to 150 ° C./s. Provided is a method for producing a steel sheet including a step of cooling at a cooling rate satisfying the above condition to a temperature of 250 to 600 ° C. and then cooling at a cooling rate of 5 ° C./min or more.

本発明によって製造される鋼板は、その組織がベイナイト(Bainite)及びベイニティックフェライト(Bainitic Ferrite)からなるグループから選択される1種以上を40%以上含み、残りはフェライト及びマルテンサイト相である。   The steel sheet produced according to the present invention contains 40% or more of one or more selected from the group consisting of bainite and bainitic ferrite, and the rest is ferrite and martensite phase. .

本発明によれば、引張強度約800MPa以上の高強度を有しながら、メッキ性、溶接性、曲げ加工性及び穴拡げ率に優れた鋼板、及びこのような鋼板の操業性を確保することができる製造方法を提供することができる。   According to the present invention, while having a high strength of about 800 MPa or more, a steel plate excellent in plating property, weldability, bending workability and hole expansion rate, and ensuring the operability of such a steel plate. The manufacturing method which can be provided can be provided.

本発明の鋼板は、重量%で、C:0.02〜0.20%、Si:1.5%以下、Mn:1.5〜3.0%、P:0.001〜0.10%、S:0.010%以下、Sol.Al:0.01〜0.40%、N:0.020%以下、Cr:0.3〜1.5%、B:0.0010〜0.0060%、及びSb:0.001〜0.10%を含み、Ti:0.003〜0.08%、Nb:0.003〜0.08%、及びMo:0.003〜0.08%からなるグループから選択される少なくとも1種以上を含み、及び残部Fe及びその他不可避的不純物を含み、上記Si、Mn、B、Sb、P、及びSが、5<(Si/Mn+150B)/Sb<20及びC+Mn/20+Si/30+2P+4S<0.27を満たす。   The steel sheet of the present invention is in weight percent, C: 0.02 to 0.20%, Si: 1.5% or less, Mn: 1.5 to 3.0%, P: 0.001 to 0.10% , S: 0.010% or less, Sol. Al: 0.01-0.40%, N: 0.020% or less, Cr: 0.3-1.5%, B: 0.0010-0.0060%, and Sb: 0.001-0. 10%, at least one selected from the group consisting of Ti: 0.003 to 0.08%, Nb: 0.003 to 0.08%, and Mo: 0.003 to 0.08% And Si, Mn, B, Sb, P, and S contain 5 <(Si / Mn + 150B) / Sb <20 and C + Mn / 20 + Si / 30 + 2P + 4S <0.27. Fulfill.

また、上記鋼板を製造する方法は、重量%で、C:0.02〜0.20%、Si:1.5%以下、Mn:1.5〜3.0%、P:0.001〜0.10%、S:0.010%以下、Sol.Al:0.01〜0.40%、N:0.020%以下、Cr:0.3〜1.5%、B:0.0010〜0.0060%、及びSb:0.001〜0.10%を含み、Ti:0.003〜0.08%、Nb:0.003〜0.08%、及びMo:0.003〜0.08%からなるグループから選択される少なくとも1種以上を含み、及び残部Fe及びその他不可避的不純物を含み、上記Si、Mn、B、Sb、P、及びSが、5<(Si/Mn+150B)/Sb<20及びC+Mn/20+Si/30+2P+4S<0.27を満たす鋼板のスラブを再加熱した後、仕上げ圧延の出口側の温度がAr変態点〜950℃の間になるように圧延して巻取する段階、巻取した熱延板を酸洗した後、40〜80%の圧下率で冷間圧延する段階、及び上記得られた冷延板を740℃〜860℃の温度範囲で連続焼鈍を行い、3〜150℃/sの冷却速度(CR)の範囲で−5LogCR+25C−17Si+40Cr+13,000B>30の条件を満たす冷却速度で250〜600℃の温度まで冷却した後、5℃/min以上の冷却速度で冷却する段階を含む。 Moreover, the method of manufacturing the said steel plate is weight%, C: 0.02-0.20%, Si: 1.5% or less, Mn: 1.5-3.0%, P: 0.001- 0.10%, S: 0.010% or less, Sol. Al: 0.01-0.40%, N: 0.020% or less, Cr: 0.3-1.5%, B: 0.0010-0.0060%, and Sb: 0.001-0. 10%, at least one selected from the group consisting of Ti: 0.003 to 0.08%, Nb: 0.003 to 0.08%, and Mo: 0.003 to 0.08% And Si, Mn, B, Sb, P, and S contain 5 <(Si / Mn + 150B) / Sb <20 and C + Mn / 20 + Si / 30 + 2P + 4S <0.27. After reheating the slab of the steel sheet to be filled, rolling and winding so that the temperature on the exit side of finish rolling is between Ar 3 transformation point and 950 ° C., after pickling the wound hot-rolled sheet Cold rolling at a rolling reduction of 40-80%, and The obtained cold-rolled sheet is subjected to continuous annealing in the temperature range of 740 ° C. to 860 ° C., and cooling satisfying the condition of −5 Log CR + 25C-17Si + 40Cr + 13,000B> 30 in the range of the cooling rate (CR) of 3 to 150 ° C./s. And cooling at a cooling rate of 5 ° C./min or more after cooling to a temperature of 250 to 600 ° C. at a rate.

上記鋼板は、その組織がベイナイト及びベイニティックフェライトからなるグループから選択される1種以上を40%以上含み、残りはフェライト及びマルテンサイト相であることができる。   The steel sheet may contain 40% or more of one or more selected from the group consisting of bainite and bainitic ferrite, and the rest may be ferrite and martensite phase.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

炭素(C)は、0.02〜0.20重量%(以下、単に%と表記する)が好ましい。   Carbon (C) is preferably 0.02 to 0.20% by weight (hereinafter simply referred to as%).

鋼中炭素は変態組織の強化のために添加される元素である。しかし、その量が0.20%を超えると穴拡げ率及び溶接性が低下し、またその量が0.02%未満と少ないと強度を確保しにくくなる。   Carbon in steel is an element added to strengthen the transformation structure. However, if the amount exceeds 0.20%, the hole expansion rate and weldability are lowered, and if the amount is less than 0.02%, it is difficult to ensure the strength.

シリコン(Si)は1.5%以下が好ましい。   Silicon (Si) is preferably 1.5% or less.

鋼中Siは強度向上のために有効に用いることができる元素であるが、表面特性に関して表面スケール欠陥を誘発するだけではなく、メッキ鋼板の表面特性を低下させ、また化成処理性を低下させるため、通常1.0%以下に含量を制限する場合が多いが、最近メッキ技術の進歩によって鋼中含量が1.5%程度まででも問題なく製造することができるようになったため、その含量を1.5%以下に制限する。   Si in steel is an element that can be used effectively to improve strength, but it not only induces surface scale defects in terms of surface properties, but also reduces the surface properties of plated steel sheets and also reduces the chemical conversion processability. In many cases, however, the content is usually limited to 1.0% or less. However, due to the recent progress in plating technology, it has become possible to produce the steel without any problem even when the content in steel is about 1.5%. Limited to 5% or less.

マンガン(Mn)は1.5〜3.0%が好ましい。   Manganese (Mn) is preferably 1.5 to 3.0%.

鋼中Mnは固溶強化の効果が非常に大きい元素であると同時に、フェライトとマルテンサイトを含む複合組織の形成を促進する。その含量が1.5%未満の場合は本発明で目標とする強度確保が困難であり、3.0%を超えると溶接性、熱間圧延性などの問題が発生する可能性が高い。   Mn in steel is an element having a very large effect of solid solution strengthening, and at the same time promotes formation of a composite structure containing ferrite and martensite. When the content is less than 1.5%, it is difficult to ensure the target strength in the present invention, and when it exceeds 3.0%, problems such as weldability and hot rollability are likely to occur.

燐(P)は0.001〜0.10%が好ましい。   The phosphorus (P) is preferably 0.001 to 0.10%.

鋼中Pは鋼板を強化させる効果を有する元素である。その含量が0.001%未満の場合はその効果を確保することができないだけではなく、製造コストの問題を引き起こす一方、過多に添加するとプレス成形性が劣化して鋼の脆性が発生される可能性がある。   P in the steel is an element having an effect of strengthening the steel plate. If the content is less than 0.001%, not only the effect cannot be secured, but also causes a problem of manufacturing cost, while if added excessively, press formability may deteriorate and steel brittleness may occur. There is sex.

硫黄(S)は0.010%以下が好ましい。   Sulfur (S) is preferably 0.010% or less.

鋼中Sは鋼中不純物元素であり、鋼板の延性及び溶接性を阻害する元素である。その含量が0.01%を超えると鋼板の延性及び溶接性を阻害する可能性が高い。   S in steel is an impurity element in steel and is an element that inhibits the ductility and weldability of the steel sheet. When the content exceeds 0.01%, there is a high possibility of inhibiting the ductility and weldability of the steel sheet.

可溶性アルミニウム(Sol.Al)は0.01〜0.4%が好ましい。   The soluble aluminum (Sol. Al) is preferably 0.01 to 0.4%.

鋼中可溶性Alは鋼中酸素と結合して脱酸作用を起こし、また、フェライト内の炭素をオーステナイトに分配してマルテンサイトの硬化能を向上させることが有効な成分である。その含量が0.01%未満の場合はこの効果を確保することができない一方、0.4%を超えるとこの効果は飽和されるだけでなく、製造コストが増加する可能性がある。   Soluble Al in steel is an effective component that combines with oxygen in steel to cause deoxidation, and distributes carbon in ferrite to austenite to improve martensite hardening ability. When the content is less than 0.01%, this effect cannot be ensured. On the other hand, when the content exceeds 0.4%, this effect is not only saturated but also the production cost may increase.

窒素(N)は0.020%以下が好ましい。   Nitrogen (N) is preferably 0.020% or less.

鋼中Nはオーステナイトを安定化させる元素であり、0.020%を超過する場合オーステナイトの安全性が大きく増加し、本発明鋼で形成しようとする微細組織であるベイナイトの形成を妨害する可能性がある。   N in steel is an element that stabilizes austenite, and when it exceeds 0.020%, the safety of austenite is greatly increased, which may hinder the formation of bainite, which is a microstructure to be formed by the steel of the present invention. There is.

クロム(Cr)は0.3〜1.5%が好ましい。   Chromium (Cr) is preferably 0.3 to 1.5%.

鋼中Crは鋼の硬化能を向上させて高強度を確保するために添加する元素であり、本発明ではベイナイト形成を促進する重要な役割をする元素である。Crの含量が0.3%未満の場合は上記の効果を確保することが困難であり、1.50%を超えるとその効果が飽和されるだけでなく経済的に不利である。   Cr in the steel is an element added to improve the hardenability of the steel and ensure high strength, and is an element that plays an important role in promoting bainite formation in the present invention. When the Cr content is less than 0.3%, it is difficult to ensure the above effect, and when it exceeds 1.50%, the effect is not only saturated but also economically disadvantageous.

ボロン(B)は0.0010〜0.0060%が好ましい。   Boron (B) is preferably 0.0010 to 0.0060%.

鋼中Bは焼鈍中に冷却する過程でオーステナイトがパーライトに変態されることを遅延させる元素であり、フェライト形成を抑制し、ベイナイトの形成を促進する元素として添加される。しかし、Bの含量が0.0010%未満の場合は上記の効果を得ることが困難であり、0.0060%を超えると表面に過多なBが濃化されてメッキ密着性の劣化をもたらす可能性がある。   B in the steel is an element that delays the transformation of austenite to pearlite during the cooling process during annealing, and is added as an element that suppresses ferrite formation and promotes bainite formation. However, if the content of B is less than 0.0010%, it is difficult to obtain the above effect, and if it exceeds 0.0060%, excessive B may be concentrated on the surface, resulting in deterioration of plating adhesion. There is sex.

アンチモン(Sb)は0.001〜0.1%が好ましい。   Antimony (Sb) is preferably 0.001 to 0.1%.

鋼中Sbは本発明で優れたメッキ特性を確保するために添加する必須的な元素である。Sbは、MnO、SiO、Alなどの酸化物に対する表面濃化を抑制して表面欠陥を低下させ、温度上昇及び熱延工程変化による表面濃化物の粗大化を抑制するのに優れた効果がある。Sbの含量が0.001%未満の場合は上記の効果を確保することが困難であり、その添加量が増加し続けてもこのような効果は大きく増加しないだけでなく、製造コスト及び加工性の劣化などの問題をもたらす可能性があるため、Sbの含量は0.001〜0.1%に制限することが好ましい。 Sb in steel is an essential element to be added in order to ensure excellent plating characteristics in the present invention. Sb is excellent in suppressing surface thickening of oxides such as MnO, SiO 2 , Al 2 O 3 and reducing surface defects, and suppressing the increase in temperature and coarsening of the surface concentrate due to hot rolling process changes. There is an effect. When the Sb content is less than 0.001%, it is difficult to ensure the above effect, and even if the addition amount continues to increase, such an effect does not increase greatly, but the manufacturing cost and processability Therefore, it is preferable to limit the Sb content to 0.001 to 0.1%.

本発明では、上記のように組成される鋼に、Ti:0.003〜0.08%、Nb:0.003〜0.08%、及びMo:0.003〜0.08%から選択される1種または2種以上を添加して、強度上昇及び粒径微細化を図ることができる。   In the present invention, the steel having the above composition is selected from Ti: 0.003-0.08%, Nb: 0.003-0.08%, and Mo: 0.003-0.08%. One type or two or more types can be added to increase the strength and reduce the particle size.

上記Ti、Nb及びMoの添加量はその下限が0.003%未満の場合には強度上昇及び粒径微細化を図るための効果を確保することが困難であり、その上限が0.08%を超えると製造コストの上昇及び過多な析出物によって延性を大きく低下させる可能性がある。   When the lower limit is less than 0.003%, the addition amount of Ti, Nb and Mo is difficult to ensure the effect of increasing the strength and reducing the grain size, and the upper limit is 0.08%. If it exceeds 1, ductility may be greatly reduced due to an increase in production cost and excessive precipitates.

本発明は上述の元素の他に残部はFe及びその他不可避的不純物で組成される。   In the present invention, in addition to the above elements, the balance is composed of Fe and other inevitable impurities.

本発明によって、上記成分範囲を有する鋼板の合金設計時、Si、Mn、B、Sb、P、及びSの数式1及び2を満足することが好ましい。   According to the present invention, it is preferable to satisfy Formulas 1 and 2 of Si, Mn, B, Sb, P, and S when designing an alloy of a steel sheet having the above component range.

(数式1)
5<(Si/Mn+150B)/Sb<20
(Formula 1)
5 <(Si / Mn + 150B) / Sb <20

(数式2)
C+Mn/20+Si/30+2P+4S<0.27
(Formula 2)
C + Mn / 20 + Si / 30 + 2P + 4S <0.27

数式1は、表面品質の確保が可能な成分関係を経験的な数値で得たものである。即ち、鋼中Mn、Si、及びBは焼鈍操業時に表面に濃化物を形成する特性を有した元素であり、これら元素の濃化物が多いほどメッキ特性は低下するようになる。一方、Sbは上記の表面濃化元素の粒界拡散を妨害する役割をするため、表面品質の側面から非常に有利である。例えば、数式1によって計算された値が5〜20の間の値を有する場合、良好な表面品質の確保が可能であるということを意味する。   Formula 1 is an empirical numerical value of the component relationship that can ensure the surface quality. That is, Mn, Si, and B in the steel are elements having a characteristic of forming a concentrate on the surface during the annealing operation, and the plating characteristics decrease as the concentration of these elements increases. On the other hand, Sb plays a role in hindering the grain boundary diffusion of the above-described surface-enriched elements, and thus is very advantageous from the aspect of surface quality. For example, when the value calculated by Equation 1 has a value between 5 and 20, it means that good surface quality can be ensured.

一方、数式2は溶接性の確保が可能な成分関係を経験的な数値で得たものである。即ち、鋼中C、Mn、Si、P、及びSの元素は炭素当量を高める役割をし、よく知られているように炭素当量が高いほど溶接性は劣化される。本発明の鋼が用いられる場合に主に施工される溶接方法であるスポット溶接時、溶接不良が発生しない条件を実験を繰り返して設定すると数式2のように構成される。数式2によって計算された値が0.27を超えると溶接不良が発生する可能性が高くなることを意味する。   On the other hand, Formula 2 is an empirical value obtained for the component relationship that can ensure weldability. That is, the elements C, Mn, Si, P, and S in the steel serve to increase the carbon equivalent, and as is well known, the higher the carbon equivalent, the worse the weldability. When spot welding, which is a welding method that is mainly performed when the steel of the present invention is used, conditions are set such that no welding failure occurs by repeating the experiment, a formula 2 is established. If the value calculated by Equation 2 exceeds 0.27, it means that the possibility of poor welding is increased.

本発明の鋼板は、組織がベイナイト及びベイニティックフェライトからなるグループから選択される1種以上を40%以上含み、残りはフェライト及びマルテンサイト相であることが好ましい。フェライト及びマルテンサイトは、フェライトが25%以下、マルテンサイトが35%以下が好ましい。   The steel sheet of the present invention preferably contains 40% or more of at least one selected from the group consisting of bainite and bainitic ferrite, and the remainder is preferably a ferrite and martensite phase. Ferrite and martensite are preferably 25% or less of ferrite and 35% or less of martensite.

以下、上述のように組成される鋼板を冷延鋼板で製造する方法について詳しく説明する。   Hereinafter, a method for producing a steel plate composed as described above with a cold-rolled steel plate will be described in detail.

上記した合金設計方式によって成分が組成されたスラブを再加熱した後には熱間圧延を行う。熱間圧延での仕上げ圧延は出口側の温度がAr変態点〜950℃の間になるように圧延することが好ましい。即ち、熱間仕上げ圧延温度がAr変態点未満では、熱間変形抵抗が急激に増加される可能性が高く製造上の問題が発生する可能性があり、950℃を超えると厚すぎる酸化スケールが発生するだけではなく、鋼板が粗大化される可能性が高い。 Hot rolling is performed after reheating the slab containing the components by the alloy design method described above. In the finish rolling by hot rolling, it is preferable to perform rolling so that the temperature on the outlet side is between Ar 3 transformation point and 950 ° C. That is, when the hot finish rolling temperature is lower than the Ar 3 transformation point, the hot deformation resistance is likely to be increased rapidly, which may cause manufacturing problems. If it exceeds 950 ° C., the oxide scale is too thick. Not only does this occur, the steel sheet is likely to be coarsened.

上記の方式で製造した熱延板を酸洗後に冷間圧延する。   The hot-rolled sheet manufactured by the above method is cold-rolled after pickling.

冷間圧延での圧下率は40〜80%が好ましい。圧下率が40%未満の場合は再結晶の駆動力が弱化されて良好な再結晶粒を得ることに問題が発生する可能性があり、また圧下率が80%を超えると圧延荷重が急激に増加する。   The rolling reduction in cold rolling is preferably 40 to 80%. When the rolling reduction is less than 40%, the driving force of recrystallization is weakened, which may cause a problem in obtaining good recrystallized grains, and when the rolling reduction exceeds 80%, the rolling load suddenly increases. To increase.

上記で得られた冷延板を連続焼鈍し、焼鈍温度は740℃〜860℃が好ましい。連続焼鈍時の温度が740℃未満であると未再結晶粒が生ずる危険性が増大し、860℃を超えると巨大粒の形成とともに高温焼鈍操業によって通板性が不良になる可能性がある。   The cold-rolled sheet obtained above is continuously annealed, and the annealing temperature is preferably 740 ° C to 860 ° C. If the temperature during continuous annealing is less than 740 ° C., the risk of non-recrystallized grains increases, and if it exceeds 860 ° C., there is a possibility that the plateability becomes poor due to the formation of large grains and high-temperature annealing operation.

連続焼鈍後に冷却は、3〜150℃/sの冷却速度(CR)の範囲で以下の数式3によって計算された値が30を超過する冷却速度で250〜600℃の温度まで連続的に冷却させた後、5℃/min以上の冷却速度で緩やかに冷却する。上記の条件で連続焼鈍することによって、引張強度800MPa以上の良好なメッキ性、溶接性及び穴拡げ率を有する高強度薄鋼板を容易に製造することができる。   After the continuous annealing, the cooling is continuously performed to a temperature of 250 to 600 ° C. at a cooling rate in which the value calculated by the following Equation 3 exceeds 30 within a cooling rate (CR) of 3 to 150 ° C./s. After that, it is gradually cooled at a cooling rate of 5 ° C./min or more. By continuous annealing under the above conditions, a high-strength thin steel sheet having good plating properties with a tensile strength of 800 MPa or more, weldability, and hole expansion rate can be easily produced.

(数式3)
−5LogCR+25C−17Si+40Cr+13,000B>30
ここで、CRは冷却速度
(Formula 3)
-5 LogCR + 25C-17Si + 40Cr + 13,000B> 30
Where CR is the cooling rate

連続焼鈍後に冷却速度が3℃/s未満に低くなると、フェライトまたはパーライトが形成され、本発明で目標とする強度の確保が困難である。また、150℃/s以上と高すぎるとマルテンサイトなどの硬質相が過多に形成され、曲げ加工性及び穴拡げ率が大きく劣化されるだけではなく、操業時の形状不良による通板性の低下が非常に憂慮されるため、上記の3〜150℃/sの冷却速度(CR)の範囲で冷却することが好ましい。   When the cooling rate is lowered to less than 3 ° C./s after continuous annealing, ferrite or pearlite is formed, and it is difficult to ensure the target strength in the present invention. On the other hand, if it is too high at 150 ° C./s or more, a hard phase such as martensite is excessively formed, and not only the bending workability and the hole expansion rate are greatly deteriorated, but also the plateability is deteriorated due to the shape defect during operation. Therefore, it is preferable to cool in the above-mentioned cooling rate (CR) range of 3 to 150 ° C./s.

また、本発明の鋼の特徴である優れた曲げ加工性及び穴拡げ率を達成するためには、数式3によって計算された値が30を超える冷却速度で適用しなければならない。即ち、数式3によって計算された値が30未満の場合は本発明の鋼において好ましい微細組織として得ようとするベイナイトまたはベイニティックフェライト相を40%以上得ることが困難である。上記ベイナイト系列の組織が40%以上になる場合、本発明の鋼の特徴である約800MPa以上の高強度で、曲げ加工性及び穴拡げ率に優れた製品の製造が可能である。   Further, in order to achieve the excellent bending workability and hole expansion rate that are the characteristics of the steel of the present invention, the value calculated by Equation 3 must be applied at a cooling rate exceeding 30. That is, when the value calculated by Equation 3 is less than 30, it is difficult to obtain 40% or more of the bainite or bainitic ferrite phase to be obtained as a preferable microstructure in the steel of the present invention. When the bainite series structure is 40% or more, it is possible to produce a product having a high strength of about 800 MPa or more, which is a feature of the steel of the present invention, and excellent bending workability and hole expansion rate.

一方、冷却時の冷却終点温度が250〜600℃の間の温度になるようにすることが好ましい。冷却終点温度が250℃未満の場合はマルテンサイトが多量に生ずる危険性が増大し、600℃を超過する場合はフェライトまたはパーライトなどの軟質相が多量形成されて、目標材質を達成することが困難であるためである。   On the other hand, it is preferable that the cooling end point temperature at the time of cooling is between 250 and 600 ° C. When the cooling end point temperature is less than 250 ° C, the risk of a large amount of martensite increases, and when it exceeds 600 ° C, a soft phase such as ferrite or pearlite is formed in large quantities, making it difficult to achieve the target material. This is because.

上記の製造方法は冷延鋼板だけではなく溶融亜鉛メッキ(GI)材、合金化溶融亜鉛メッキ(GA)材のようなメッキ製品にも同様に適用が可能である。   The above manufacturing method can be applied not only to cold-rolled steel sheets but also to plated products such as hot-dip galvanized (GI) materials and alloyed hot-dip galvanized (GA) materials.

以下、本発明の実施例を通じてより詳細に説明する。   Hereinafter, the present invention will be described in more detail through examples.

下記表1に示したように、本発明の成分組成を有するスラブを1200℃の温度まで加熱して抽出した後、仕上げ圧延温度900℃の条件で熱延して製造した熱延板を素材として使用し55%の冷間圧下率で圧延を行った。表2の焼鈍温度及び冷却条件で連続焼鈍熱処理を行い(CR)、メッキ製品の場合は溶融亜鉛メッキ(GI)及び合金化溶融亜鉛メッキ(GA)処理をして製品を製造した。連続焼鈍時に適用された条件と合金化処理時間は以下の通りである。   As shown in Table 1 below, a slab having the component composition of the present invention is extracted by heating to a temperature of 1200 ° C, and then hot-rolled and manufactured under conditions of a finish rolling temperature of 900 ° C. It was used and rolled at a cold reduction of 55%. A continuous annealing heat treatment was performed at the annealing temperature and cooling conditions shown in Table 2 (CR), and in the case of a plated product, the product was manufactured by hot dip galvanizing (GI) and alloying hot dip galvanizing (GA). The conditions and alloying treatment time applied during continuous annealing are as follows.

-焼鈍炉雰囲気:N−10%HO(露点−32℃)
-焼鈍炉加熱速度:3℃/sec
-焼鈍時間:90sec
-メッキ温度:460℃
-合金化時間:24sec(GA製品の場合)
- annealing furnace Atmosphere: N 2 -10% H 2 O ( dew point -32 ° C.)
-Annealing furnace heating rate: 3 ° C / sec
-Annealing time: 90 sec
-Plating temperature: 460 ° C
-Alloying time: 24 sec (for GA products)

表2に示したようにメッキ特性(外観、及び密着性)及び材質(引張強度、穴拡げ率、及び曲げ加工性)を測定し、その結果を比較鋼とともに示した。   As shown in Table 2, the plating characteristics (appearance and adhesion) and material (tensile strength, hole expansion rate, and bending workability) were measured, and the results were shown together with comparative steel.

表2でメッキ外観は、未メッキ、または他のメッキ欠陥を含まない場合を○で表し、メッキ欠陥が発生する場合は欠陥名を明記した。   In Table 2, the appearance of plating is indicated by ◯ when unplated or does not contain other plating defects, and the name of the defect is specified when a plating defect occurs.

表2でメッキ密着性の評価は、メッキ板を20mmx50mmで切断して、メッキ板で曲げ試験を行った後、再び伸ばして、曲げられた位置にテープを付けて、メッキ板から取れるメッキ層の幅を次基準で評価した。   The evaluation of plating adhesion in Table 2 is as follows. The plated plate was cut at 20 mm x 50 mm, subjected to a bending test with the plated plate, then stretched again, attached with a tape at the bent position, and the plating layer removed from the plated plate. The width was evaluated according to the following criteria.

◎:取れたメッキなし、または取れたメッキ幅が1mm以内
○:取れたメッキ幅が1〜3mm以内
△:取れたメッキ幅が3〜5mm以内
X:取れたメッキ幅が5mm以上
◎: No removed plating or removed plating width within 1 mm ○: Removed plating width within 1 to 3 mm △: Removed plating width within 3 to 5 mm X: Removed plating width 5 mm or more

表2で、穴拡げ率(HER)は、120×120mmの大きさの試片に直径10mmの穴を開けた後、60度の成形部角度を有したパンチを用いてクラックが発生するまで穴を拡げ、初期の直径10mmの穴に比べて拡げられた穴の割合を計算して求める。また、表2で、曲げ加工性の評価は、90度のV型パンチを用いて試片で曲げ試験を行って、割れない最も小さいパンチの半径(mm)を測定して評価した。   In Table 2, the hole expansion rate (HER) is determined by drilling a hole having a diameter of 10 mm in a specimen having a size of 120 × 120 mm and then using a punch having a forming portion angle of 60 degrees until a crack is generated. And the ratio of the expanded holes is calculated as compared with the initial hole having a diameter of 10 mm. In Table 2, the bending workability was evaluated by measuring the radius (mm) of the smallest punch that does not break by performing a bending test with a test piece using a 90-degree V-shaped punch.

Figure 0005228062
Figure 0005228062

Figure 0005228062
Figure 0005228062

上記表2に表すように、本発明の方法によって鋼板を製造する場合、既存の比較鋼に比べて良好な表面特性及び機械的特性を有し、引張強度約800MPa以上で、良好なメッキ性、溶接性、曲げ加工性及び穴拡げ率を有する高強度薄鋼板の製造が可能である。   As shown in Table 2 above, when producing a steel sheet by the method of the present invention, it has better surface properties and mechanical properties than existing comparative steels, and has a tensile strength of about 800 MPa or more, good plating properties, It is possible to manufacture a high-strength thin steel sheet having weldability, bending workability, and hole expansion rate.

発明鋼は、鋼板の組織がベイナイト及びベイニティックフェライトからなるグループから選択される1種以上を40%以上含み、フェライトが25%以下、マルテンサイトが35%以下で構成される。   Invention steel contains 40% or more of one or more selected from the group consisting of bainite and bainitic ferrite, and the structure of the steel sheet is composed of 25% or less of ferrite and 35% or less of martensite.

Claims (6)

質量%で、C:0.02〜0.20%、Si:1.5%以下、Mn:1.5〜3.0%、P:0.001〜0.10%、S:0.010%以下、Sol.Al:0.01〜0.40%、N:0.020%以下、Cr:0.3〜1.5%、B:0.0010〜0.0060%、及びSb:0.001〜0.10%を含み、Ti:0.003〜0.08%、Nb:0.003〜0.08%、及びMo:0.003〜0.08%からなるグループから選択される少なくとも1種以上を含み、及び残部Fe及びその他不可避的不純物よりなり
前記Si、Mn、B、Sb、P、及びSが、5<(Si/Mn+150B)/Sb<20及びC+Mn/20+Si/30+2P+4S<0.27を満たす、溶接性に優れた高強度薄鋼板。
In mass %, C: 0.02 to 0.20%, Si: 1.5% or less, Mn: 1.5 to 3.0%, P: 0.001 to 0.10%, S: 0.010 % Or less, Sol. Al: 0.01-0.40%, N: 0.020% or less, Cr: 0.3-1.5%, B: 0.0010-0.0060%, and Sb: 0.001-0. 10%, at least one selected from the group consisting of Ti: 0.003 to 0.08%, Nb: 0.003 to 0.08%, and Mo: 0.003 to 0.08% wherein, and consist of balance of Fe and other unavoidable impurities,
A high strength thin steel sheet excellent in weldability, wherein the Si, Mn, B, Sb, P and S satisfy 5 <(Si / Mn + 150B) / Sb <20 and C + Mn / 20 + Si / 30 + 2P + 4S <0.27.
前記鋼板の組織がベイナイト及びベイニティックフェライトからなるグループから選択される1種以上を40%以上含み、残りはフェライト及びマルテンサイト相である、請求項1に記載の溶接性に優れた高強度薄鋼板。   2. The high strength excellent in weldability according to claim 1, wherein the structure of the steel sheet contains 40% or more of one or more selected from the group consisting of bainite and bainitic ferrite, and the remainder is a ferrite and martensite phase. Thin steel plate. 前記鋼板の表面に溶融亜鉛メッキ(GI)層または合金化溶融亜鉛メッキ(GA)層を含む、請求項1または2に記載の溶接性に優れた高強度薄鋼板。 The high-strength thin steel sheet excellent in weldability according to claim 1 or 2 , comprising a hot-dip galvanized (GI) layer or an alloyed hot-dip galvanized (GA) layer on the surface of the steel sheet. 質量%で、C:0.02〜0.20%、Si:1.5%以下、Mn:1.5〜3.0%、P:0.001〜0.10%、S:0.010%以下、Sol.Al:0.01〜0.40%、N:0.020%以下、Cr:0.3〜1.5%、B:0.0010〜0.0060%、及びSb:0.001〜0.10%を含み、Ti:0.003〜0.08%、Nb:0.003〜0.08%、及びMo:0.003〜0.08%からなるグループから選択される少なくとも1種以上を含み、及び残部Fe及びその他不可避的不純物よりなり
前記Si、Mn、B、Sb、P、及びSが、5<(Si/Mn+150B)/Sb<20及びC+Mn/20+Si/30+2P+4S<0.27を満たす鋼板のスラブを再加熱した後、仕上げ圧延の出口側の温度がAr変態点〜950℃の間になるように圧延して巻取する段階、
巻取した熱延板を酸洗した後、40〜80%の圧下率で冷間圧延する段階、及び
前記得られた冷延板を740℃〜860℃の温度範囲で連続焼鈍を行い、3〜150℃/sの冷却速度(CR)の範囲で−5LogCR+25C−17Si+40Cr+13,000B>30の条件を満たす冷却速度で250〜600℃の温度まで冷却した後、5℃/min以上の冷却速度で冷却する段階を含む、溶接性に優れた高強度薄鋼板の製造方法。
In mass %, C: 0.02 to 0.20%, Si: 1.5% or less, Mn: 1.5 to 3.0%, P: 0.001 to 0.10%, S: 0.010 % Or less, Sol. Al: 0.01-0.40%, N: 0.020% or less, Cr: 0.3-1.5%, B: 0.0010-0.0060%, and Sb: 0.001-0. 10%, at least one selected from the group consisting of Ti: 0.003 to 0.08%, Nb: 0.003 to 0.08%, and Mo: 0.003 to 0.08% wherein, and consist of balance of Fe and other unavoidable impurities,
After reheating the slab of the steel plate in which Si, Mn, B, Sb, P, and S satisfy 5 <(Si / Mn + 150B) / Sb <20 and C + Mn / 20 + Si / 30 + 2P + 4S <0.27, Rolling and winding so that the temperature on the outlet side is between Ar 3 transformation point and 950 ° C.,
The picked hot-rolled sheet is pickled and then cold-rolled at a rolling reduction of 40 to 80%, and the obtained cold-rolled sheet is continuously annealed in a temperature range of 740 ° C to 860 ° C. After cooling to a temperature of 250 to 600 ° C. at a cooling rate satisfying the condition of −5 Log CR + 25C-17Si + 40Cr + 13,000B> 30 in a cooling rate (CR) range of −150 ° C./s, cooling at a cooling rate of 5 ° C./min or more. The manufacturing method of the high strength thin steel plate excellent in weldability including the step to do.
前記鋼板の組織がベイナイト及びベイニティックフェライトからなるグループから選択される1種以上を40%以上含み、残りはフェライト及びマルテンサイト相である、請求項4に記載の溶接性に優れた高強度薄鋼板の製造方法。   5. The high strength excellent in weldability according to claim 4, wherein the structure of the steel sheet contains 40% or more of at least one selected from the group consisting of bainite and bainitic ferrite, and the remainder is a ferrite and martensite phase. Manufacturing method of thin steel sheet. 溶融亜鉛メッキ(GI)または合金化溶融亜鉛メッキ(GA)をする段階をさらに含む、請求項4または5に記載の溶接性に優れた高強度薄鋼板の製造方法。 The method for producing a high-strength thin steel sheet excellent in weldability according to claim 4 or 5 , further comprising a step of hot dip galvanizing (GI) or alloying hot dip galvanizing (GA).
JP2010540545A 2007-12-28 2008-08-08 High strength thin steel sheet with excellent weldability and method for producing the same Active JP5228062B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2007-0140446 2007-12-28
KR1020070140446A KR100928788B1 (en) 2007-12-28 2007-12-28 High strength steel sheet with excellent weldability and manufacturing method
PCT/KR2008/004627 WO2009084795A1 (en) 2007-12-28 2008-08-08 High strength thin steel sheet excelling in weldability and process for producing the same

Publications (2)

Publication Number Publication Date
JP2011508085A JP2011508085A (en) 2011-03-10
JP5228062B2 true JP5228062B2 (en) 2013-07-03

Family

ID=40824486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010540545A Active JP5228062B2 (en) 2007-12-28 2008-08-08 High strength thin steel sheet with excellent weldability and method for producing the same

Country Status (5)

Country Link
US (1) US20110017363A1 (en)
JP (1) JP5228062B2 (en)
KR (1) KR100928788B1 (en)
CN (2) CN104726797A (en)
WO (1) WO2009084795A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5862002B2 (en) 2010-09-30 2016-02-16 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet with excellent fatigue characteristics and method for producing the same
DE102011117572A1 (en) * 2011-01-26 2012-08-16 Salzgitter Flachstahl Gmbh High-strength multiphase steel with excellent forming properties
KR101353787B1 (en) * 2011-12-26 2014-01-22 주식회사 포스코 Ultra high strength colde rolled steel sheet having excellent weldability and bendability and method for manufacturing the same
CN104508164B (en) * 2012-07-26 2017-08-04 杰富意钢铁株式会社 Tufftride steel and tufftride part and their manufacture method
CA2880617C (en) * 2012-08-21 2017-04-04 Nippon Steel & Sumitomo Metal Corporation Steel material
KR101449119B1 (en) * 2012-09-04 2014-10-08 주식회사 포스코 Ferritic lightweight high strength steel sheet having excellent rigidity and ductility and method for manufacturing the same
JP5812048B2 (en) 2013-07-09 2015-11-11 Jfeスチール株式会社 High carbon hot rolled steel sheet excellent in hardenability and workability and method for producing the same
CN105378133B (en) * 2013-07-09 2018-03-06 杰富意钢铁株式会社 High-carbon hot-rolled steel sheet and its manufacture method
KR101536409B1 (en) * 2013-08-30 2015-07-13 주식회사 포스코 Ultra high strength cold rolled steel sheet having exellent ductility and exelent bendability and method for manufacturing the same
WO2015120205A1 (en) * 2014-02-05 2015-08-13 Arcelormittal S.A. Hot formable, air hardenable, weldable, steel sheet
KR101647224B1 (en) 2014-12-23 2016-08-10 주식회사 포스코 High strength galvanized steel sheet having excellent surface qualities, plating adhesion and formability and method for manufacturing the same
KR101975136B1 (en) * 2015-03-13 2019-05-03 제이에프이 스틸 가부시키가이샤 High-strength cold-rolled steel sheet and method for manufacturing same
US10498807B2 (en) * 2015-10-19 2019-12-03 Citrix Systems, Inc. Multi-tenant multi-session catalogs with machine-level isolation
KR101726094B1 (en) * 2015-12-24 2017-04-12 주식회사 포스코 Hot pressed part with reduced microcrack and method for manufacturing same
KR101858852B1 (en) * 2016-12-16 2018-06-28 주식회사 포스코 Cold-rolled steel sheet and galvanized steel sheet having excelent elonggation, hole expansion ration and yield strength and method for manufacturing thereof
KR102020411B1 (en) * 2017-12-22 2019-09-10 주식회사 포스코 High-strength steel sheet having excellent workablity and method for manufacturing thereof
KR102020412B1 (en) * 2017-12-22 2019-09-10 주식회사 포스코 High-strength steel sheet having excellent crash worthiness and formability, and method for manufacturing thereof
KR102031452B1 (en) * 2017-12-24 2019-10-11 주식회사 포스코 Cold rolled steel sheet and hot dip zinc-based plated steel sheet having excellent bake hardenability and plating adhesion, and method for manufaturing the same

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100849974B1 (en) * 2000-12-29 2008-08-01 니폰 스틸 코포레이션 High strength hot-dip galvanized or galvannealed steel sheet having improved plating adhesion and press formability and process for producing the same
CN1169991C (en) * 2001-10-19 2004-10-06 住友金属工业株式会社 Thin steel plate with good machining performance and formed precision and its mfg. method
JP4714404B2 (en) * 2003-01-28 2011-06-29 新日本製鐵株式会社 High strength thin steel sheet with excellent hydrogen embrittlement resistance and method for producing the same
JP4091894B2 (en) * 2003-04-14 2008-05-28 新日本製鐵株式会社 High-strength steel sheet excellent in hydrogen embrittlement resistance, weldability, hole expansibility and ductility, and method for producing the same
JP4102281B2 (en) * 2003-04-17 2008-06-18 新日本製鐵株式会社 High strength thin steel sheet excellent in hydrogen embrittlement resistance, weldability and hole expandability, and method for producing the same
JP4317384B2 (en) * 2003-04-28 2009-08-19 新日本製鐵株式会社 High-strength galvanized steel sheet with excellent hydrogen embrittlement resistance, weldability and hole expansibility, and its manufacturing method
JP4635525B2 (en) * 2003-09-26 2011-02-23 Jfeスチール株式会社 High-strength steel sheet excellent in deep drawability and manufacturing method thereof
JP4486334B2 (en) * 2003-09-30 2010-06-23 新日本製鐵株式会社 High yield ratio high strength hot-rolled steel sheet and high yield ratio high strength hot dip galvanized steel sheet excellent in weldability and ductility, high yield ratio high strength alloyed hot dip galvanized steel sheet and manufacturing method thereof
ES2391164T3 (en) * 2003-09-30 2012-11-22 Nippon Steel Corporation Thin sheet of cold rolled steel, high strength, with high limit of elasticity, and superior ductility and weldability, thin sheet of hot dipped galvanized steel, high strength, with high limit of elasticity, thin sheet of galvanized steel and hot dipped annealing, high strength, with high limit of eleasticity, and methods for their production
JP4718866B2 (en) * 2005-03-04 2011-07-06 新日本製鐵株式会社 High-strength refractory steel excellent in weldability and gas-cutting property and method for producing the same
JP2007056238A (en) 2005-07-29 2007-03-08 Mitsubishi Gas Chem Co Inc Acrylate compound having alicyclic structure and resin composition using the same as raw material
JP5042232B2 (en) * 2005-12-09 2012-10-03 ポスコ High-strength cold-rolled steel sheet excellent in formability and plating characteristics, galvanized steel sheet using the same, and method for producing the same
JP4502947B2 (en) * 2005-12-27 2010-07-14 株式会社神戸製鋼所 Steel plate with excellent weldability

Also Published As

Publication number Publication date
KR100928788B1 (en) 2009-11-25
CN101910439A (en) 2010-12-08
KR20090072357A (en) 2009-07-02
CN104726797A (en) 2015-06-24
WO2009084795A1 (en) 2009-07-09
JP2011508085A (en) 2011-03-10
US20110017363A1 (en) 2011-01-27

Similar Documents

Publication Publication Date Title
JP5228062B2 (en) High strength thin steel sheet with excellent weldability and method for producing the same
US9580785B2 (en) High-strength galvannealed steel sheet having excellent formability and fatigue resistance and method for manufacturing the same
JP6043801B2 (en) Steel plate for warm press forming, warm press forming member, and manufacturing method thereof
JP4235030B2 (en) High-strength cold-rolled steel sheet and high-strength surface-treated steel sheet having excellent local formability and a tensile strength of 780 MPa or more with suppressed increase in hardness of the weld
US8999085B2 (en) High manganese steel strips with excellent coatability and superior surface property, coated steel strips using steel strips and method for manufacturing the steel strips
JP4542515B2 (en) High strength cold-rolled steel sheet excellent in formability and weldability, high-strength hot-dip galvanized steel sheet, high-strength galvannealed steel sheet, manufacturing method of high-strength cold-rolled steel sheet, and manufacturing method of high-strength hot-dip galvanized steel sheet , Manufacturing method of high strength galvannealed steel sheet
KR101445465B1 (en) High-strength hot-dip galvanized steel sheet with excellent processability and spot weldability and process for producing same
KR101626233B1 (en) High strength cold rolled steel sheet with high yield ratio and method for producing the same
JP6475840B2 (en) High-strength hot-dip galvanized steel sheet excellent in surface quality, plating adhesion, and formability, and its manufacturing method
JP4325998B2 (en) High-strength hot-dip galvanized steel sheet with excellent spot weldability and material stability
JP2013044022A (en) Hot-dip galvanized steel sheet and manufacturing method therefor
KR20200106195A (en) High-strength steel sheet and its manufacturing method
KR20100076409A (en) A high strength steel sheet having high yield ratio and a method for producting the same
KR101406444B1 (en) Ultra high strength cold rolled steel sheet having excellent elongation and bendability and method for manufacturing the same
JP4772431B2 (en) Manufacturing method of hot-dip galvanized high-strength steel sheet with excellent elongation and hole expansion
JP4500197B2 (en) Manufacturing method of high-strength cold-rolled steel sheet, high-strength hot-dip galvanized steel sheet, and high-strength galvannealed steel sheet with excellent formability and weldability
KR101778404B1 (en) Clad steel sheet having excellent strength and formability, and method for manufacturing the same
JP4980253B2 (en) High-strength hot-rolled steel sheet with excellent strength-ductility balance and punchability and method for producing the same
JP4436275B2 (en) High yield ratio high strength cold rolled steel sheet, high yield ratio high strength hot dip galvanized steel sheet, high yield ratio high strength alloyed hot dip galvanized steel sheet, and methods for producing them
JP2009068039A (en) High-strength alloyed-galvanized steel sheet excellent in energy-absorbing characteristics, and production method therefor
JP4788291B2 (en) Manufacturing method of high-strength hot-dip galvanized steel sheet with excellent stretch flangeability
US20210071278A1 (en) High yield ratio-type high-strength steel sheet and method for manufacturing same
JP3508668B2 (en) Cold rolled steel sheet and method for producing the same
KR101536409B1 (en) Ultra high strength cold rolled steel sheet having exellent ductility and exelent bendability and method for manufacturing the same
KR101009839B1 (en) Method for producing of steel sheet having high-strength and high-formability

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130318

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5228062

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250