JP4500197B2 - Manufacturing method of high-strength cold-rolled steel sheet, high-strength hot-dip galvanized steel sheet, and high-strength galvannealed steel sheet with excellent formability and weldability - Google Patents

Manufacturing method of high-strength cold-rolled steel sheet, high-strength hot-dip galvanized steel sheet, and high-strength galvannealed steel sheet with excellent formability and weldability Download PDF

Info

Publication number
JP4500197B2
JP4500197B2 JP2005106506A JP2005106506A JP4500197B2 JP 4500197 B2 JP4500197 B2 JP 4500197B2 JP 2005106506 A JP2005106506 A JP 2005106506A JP 2005106506 A JP2005106506 A JP 2005106506A JP 4500197 B2 JP4500197 B2 JP 4500197B2
Authority
JP
Japan
Prior art keywords
steel sheet
strength
temperature
weldability
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005106506A
Other languages
Japanese (ja)
Other versions
JP2006283156A (en
Inventor
昌史 東
直紀 丸山
直樹 吉永
康治 佐久間
淳 伊丹
俊二 樋渡
繁 米村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005106506A priority Critical patent/JP4500197B2/en
Publication of JP2006283156A publication Critical patent/JP2006283156A/en
Application granted granted Critical
Publication of JP4500197B2 publication Critical patent/JP4500197B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、最大引張強度(TS)が780MPa以上で、引張試験の際の降伏応力(YS)とTSの比である降伏比(YR=YS/TS)が0.5〜0.7で、延性、曲げ性等の成形性に優れ、かつ、スポット溶接性にも優れた自動車用の構造用部材、補強用部材、足廻り用部材に特に適した高張力冷延鋼板と高強度溶融亜鉛めっき鋼板及び高強度合金化溶融亜鉛めっき鋼板に関するものである。本発明における高強度鋼板とは通常の冷延鋼板のほか、亜鉛めっき鋼板やAlめっき鋼板、電気めっき鋼板に代表される各種めっき鋼板を含む。また、めっき層中には、純亜鉛に加え、Fe、Al、Mg、Mn、Si、Crなどを含有しても構わない。   In the present invention, the maximum tensile strength (TS) is 780 MPa or more, and the yield ratio (YR = YS / TS) which is the ratio of the yield stress (YS) and TS in the tensile test is 0.5 to 0.7, High-tensile cold-rolled steel sheet and high-strength hot-dip galvanized steel that are particularly suitable for automotive structural members, reinforcing members, and suspension members that have excellent formability such as ductility and bendability and spot weldability The present invention relates to a steel plate and a high-strength galvannealed steel plate. The high-strength steel sheet in the present invention includes various plated steel sheets represented by galvanized steel sheets, Al-plated steel sheets, and electroplated steel sheets, in addition to ordinary cold-rolled steel sheets. In addition to pure zinc, the plating layer may contain Fe, Al, Mg, Mn, Si, Cr, and the like.

自動車のクロスメンバーやサイドメンバー等の部材は、近年の燃費軽量化の動向に対応すべく軽量化が検討されており、材料面では、薄肉化しても強度および衝突安全性が確保されるという観点から鋼板の高強度化が進められている。しかしながら、材料の成形性は強度が上昇するのに伴って劣化するので、上記部材の軽量化を実現するには、プレス成形性と高強度の両方を満足する鋼板を製造する必要がある。主に自動車の構造用部材や補強用部材に使用される最大引張強度780MPa以上の鋼板は、曲げ性、穴拡げ性、延性に優れることが要求される。一般的に、引張試験の全伸び(El)や張出し成形性は鋼板のn値と相関があることから、成形性向上のために低い降伏比を有する鋼板が指向されていた。このような低降伏比は、軟質組織(フェライト)と硬質組織(マルテンサイトや残留オーステナイト)よりなる複合組織とすることで成し遂げられる。しかしながら、第2相にマルテンサイトや残留オーステナイトを活用した場合、穴拡げ性が著しく低下してしまうという問題がある(例えば、非特許文献1)。このように優れた延性を確保可能な組織と、優れた曲げ性および穴拡げ性確保可能な組織が相反することから、これら特性の両立が求められていた。   Lightweight automotive cross members and side members are being studied to meet the recent trend of lighter fuel consumption, and in terms of materials, the strength and collision safety can be ensured even if they are made thinner. Since then, the strength of steel sheets has been increasing. However, since the formability of the material deteriorates as the strength increases, it is necessary to manufacture a steel sheet that satisfies both the press formability and high strength in order to realize the weight reduction of the member. Steel plates having a maximum tensile strength of 780 MPa or more, which are mainly used for structural members and reinforcing members of automobiles, are required to be excellent in bendability, hole expansibility, and ductility. In general, since the total elongation (El) and the stretch formability of a tensile test are correlated with the n value of the steel sheet, steel sheets having a low yield ratio have been aimed at for improving the formability. Such a low yield ratio can be achieved by forming a composite structure composed of a soft structure (ferrite) and a hard structure (martensite and retained austenite). However, when martensite or retained austenite is used for the second phase, there is a problem that hole expansibility is significantly lowered (for example, Non-Patent Document 1). Since the structure capable of ensuring excellent ductility and the structure capable of ensuring excellent bendability and hole expansibility conflict with each other, it has been required to satisfy both of these characteristics.

一方、鋼板の強度が十分であっても衝突時に溶接部で破断すると、衝突エネルギーを十分に吸収することが出来ず、所定の衝突エネルギー吸収性能を得ることが出来ない。そこで、自動車部品は、スポット溶接、アーク溶接、レーザー溶接等の優れた継ぎ手強度を兼備することが求められている。しかしながら、鋼板の高強度化に伴って、C、Si、Mn等の含有量が増加し、それに伴い溶接部強度が低下するという問題点があり、含有する合金元素量を極力増やさずに高強度化させることが望まれていた。   On the other hand, even if the strength of the steel sheet is sufficient, if it breaks at the welded part at the time of collision, the collision energy cannot be sufficiently absorbed, and the predetermined collision energy absorption performance cannot be obtained. Therefore, automobile parts are required to have excellent joint strength such as spot welding, arc welding, and laser welding. However, as the strength of the steel plate increases, the content of C, Si, Mn, etc. increases, and the strength of the welded portion decreases accordingly, and the strength is increased without increasing the content of alloying elements as much as possible. It was desired to make it.

このような課題に対し、高強度と同時に高成形性を得る手法として特許文献1や特許文献2に記載されている残留オーステナイトのマルテンサイト変態を利用したTRIP(TRansformation Induced Plasticity)鋼があり、近年用途が拡大しつつある。しかしながら、この鋼は成形時のマルテンサイト変態を利用して、優れた成形性を確保していることから、成形性確保のためには、多量の残留オーステナイトが必要であり、その確保のためには、多量のC添加が必要である。その結果、780MPa超の強度確保を考えた場合、スポット溶接性が劣化してしまうという問題を有している。   In order to deal with such problems, there is TRIP (Transformation Induced Plasticity) steel using martensitic transformation of retained austenite described in Patent Document 1 and Patent Document 2 as a technique for obtaining high strength and high formability in recent years. Applications are expanding. However, since this steel uses martensite transformation during forming to ensure excellent formability, a large amount of retained austenite is necessary to ensure formability. Requires a large amount of C addition. As a result, when securing strength exceeding 780 MPa is considered, there is a problem that spot weldability deteriorates.

あるいは、成形性とスポット溶接性を具備するために、鋼板中へのC添加を抑えた冷延およびめっき鋼板が、特許文献3および特許文献4にて開示されている。しかしながら、この手法では、780MPa以上の強度確保を考えた場合、Cの多量添加は不可欠であり、スポット溶接性と優れた成形性を同時に具備することは難しいという問題を有していた。   Alternatively, Patent Document 3 and Patent Document 4 disclose cold-rolled and plated steel sheets in which the addition of C into the steel sheet is suppressed in order to provide formability and spot weldability. However, this method has a problem that it is indispensable to add a large amount of C when securing strength of 780 MPa or more, and it is difficult to simultaneously provide spot weldability and excellent formability.

一方、主相をベイナイト組織とすることで、優れた伸びフランジ性およびスポット溶接性を具備する手法が、特許文献5に開示されている。しかしながら、この方法では主相がベイナイト組織であるために降伏比が高く、伸びも低いことから成形性に劣るという問題を有していた。加えて、780MPa級の強度確保を考えた場合、CやMnの添加量を抑える必要があることから、焼入れ性が劣化し、主相をベイナイト組織とすることが難しいという問題を有している。   On the other hand, Patent Document 5 discloses a method having excellent stretch flangeability and spot weldability by making the main phase a bainite structure. However, this method has a problem that since the main phase is a bainite structure, the yield ratio is high and the elongation is low, so that the formability is inferior. In addition, when considering securing the strength of the 780 MPa class, it is necessary to suppress the addition amount of C and Mn, so that the hardenability deteriorates and it is difficult to make the main phase into a bainite structure. .

これに対し、主相であるフェライトと硬質組織であるマルテンサイトの硬度差を低減させ、フェライト及びマルテンサイトよりなる複合組織鋼板の穴拡げ性を向上させる手法がある。硬質組織であるマルテンサイトを焼戻すことで軟質化させ、フェライト組織との硬度差を低下させ穴拡げ性が改善可能であることが非特許文献1に示されている。しかしながら、マルテンサイト組織の軟質化による穴拡げ性の向上は、マルテンサイト組織の強化能の減少を意味することから、強度低下をC添加量の増加によるマルテンサイト体積率の増加によって補わねばならず、780MPa以上の強度確保を考えた場合、スポット溶接性に劣るという問題を有していた。加えて、高強度と優れた穴拡げ性の両立を考えると、マルテンサイト体積率が多くなり、延性の劣化が大きいという問題も有している。これに対し、硬質組織の硬度を低減させるのではなく、Siの固溶強化を用いて、軟質組織の硬度を増加させることで穴拡げ性を向上させる手法(例えば、非特許文献1)、あるいは、TiやNbを単独あるいは複合添加することで、フェライト組織を析出強化し穴拡げ性を向上させる手法(例えば、非特許文献2)がある。しかしながら、Siの固溶強化による硬度差の低減と穴拡げ性向上を行うためには、多量のSi添加が必要であり、化成性、めっき性及び溶接性を低下させるという問題を有している。一方では、TiやNb添加による穴拡げ性の向上は、TiやNbの炭窒化物の析出が熱延時に起こることから、熱延鋼板にての活用は可能なものの、その後、冷延-熱処理を行う冷延鋼板やめっき鋼板では、その析出強化能が低下することから多量のTiやNb添加が必要であるが、これら元素は再結晶を大幅に遅延し延性を低下させることから、制御し難いという問題を有していた。   On the other hand, there is a method of reducing the hardness difference between ferrite as a main phase and martensite as a hard structure, and improving the hole expandability of a composite structure steel plate made of ferrite and martensite. Non-Patent Document 1 shows that martensite, which is a hard structure, is softened by tempering, the hardness difference from the ferrite structure is reduced, and the hole expandability can be improved. However, the improvement in hole expansibility due to softening of the martensite structure means a decrease in the strengthening ability of the martensite structure, so the decrease in strength must be compensated by an increase in the volume ratio of martensite by increasing the amount of C added. When securing strength of 780 MPa or more was considered, there was a problem of poor spot weldability. In addition, considering both high strength and excellent hole expansibility, there is a problem that the martensite volume ratio increases and the ductility is greatly deteriorated. On the other hand, instead of reducing the hardness of the hard tissue, a technique for improving hole expansibility by increasing the hardness of the soft tissue using solid solution strengthening of Si (for example, Non-Patent Document 1), or There is a technique (for example, Non-Patent Document 2) in which Ti and Nb are added singly or in combination to enhance the precipitation structure and improve the hole expansibility. However, in order to reduce the hardness difference and improve the hole expansibility by solid solution strengthening of Si, it is necessary to add a large amount of Si, and there is a problem that chemical conversion property, plating property and weldability are deteriorated. . On the other hand, the improvement of hole expansibility by addition of Ti or Nb is caused by precipitation of Ti or Nb carbonitride during hot rolling, so that it can be used in hot rolled steel sheets, but then cold rolling-heat treatment In cold-rolled steel sheets and plated steel sheets, the precipitation strengthening ability decreases, so a large amount of Ti and Nb addition is necessary. However, these elements significantly delay recrystallization and reduce ductility, so control It had the problem of being difficult.

特開平1−230715号公報Japanese Patent Laid-Open No. 1-2230715 特開平2−217425号公報JP-A-2-217425 特開2001−152287号公報JP 2001-152287 A 特開2001−226742号公報JP 2001-226742 A 特開平11−279691号公報Japanese Patent Application Laid-Open No. 11-296991 CAMP-ISIJ vol.13(2000),p391CAMP-ISIJ vol. 13 (2000), p391 CAMP-ISIJ vol.13(2000),p411CAMP-ISIJ vol. 13 (2000), p411

本発明は、最大引張強度(TS)が780MPa以上、降伏比(YR)0.5〜0.7で、延性、曲げ性等の成形性とスポット溶接性に優れた高強度冷延鋼板、高強度溶融亜鉛めっき鋼板及び高強度合金化溶融亜鉛めっき鋼板の製造方法を提供することを目的とする。
The present invention is a high strength cold-rolled steel sheet having a maximum tensile strength (TS) of 780 MPa or more, a yield ratio (YR) of 0.5 to 0.7, and excellent formability such as ductility and bendability and spot weldability , and to provide a method for manufacturing strength galvanized steel sheet and high strength galvannealed steel sheet.

本発明者らは、上記の目的を達成すべく鋭意、検討を重ねた結果、鋼板にSi、NbおよびTiを複合添加させ、かつその他の合金元素を適正量添加し、主相であるフェライトを強化し第二相として高強度化に寄与しているマルテンサイトやベイナイト組織とフェライトとの硬度差を小さくすることで、適正な降伏比(0.5〜0.7)とし、780MPa以上の引張強度、曲げ性や延性等の成形性に優れ、かつ、溶接性に優れた鋼板を製造できることを見出した。   As a result of earnest and examination to achieve the above object, the present inventors have added Si, Nb and Ti to the steel sheet in combination, and added other alloy elements in an appropriate amount, and ferrite as the main phase is added. Reducing the hardness difference between ferrite and martensite or bainite structure, which contributes to strengthening as the second phase, has an appropriate yield ratio (0.5 to 0.7) and a tensile strength of 780 MPa or more. It has been found that a steel sheet having excellent formability such as strength, bendability and ductility and excellent weldability can be produced.

すなわち、本発明は成形性と溶接性に優れる高強度冷延鋼板であって、その要旨は以下の通りである。   That is, the present invention is a high-strength cold-rolled steel sheet excellent in formability and weldability, and the gist thereof is as follows.

(1) 質量%で、C:0.06〜0.1%未満、Si:0.4〜0.8%、Mn:1.8〜2.2%、Nb:0.014〜0.029%、Ti:0.014〜0.029%、P:0.04%以下、S:0.01%以下、Al:0.1%以下、N:0.01%以下、O:0.0010〜0.0045%を含有し、残部がFeおよび不可避不純物の化学成分からなる鋳造スラブを直接または一旦冷却した後1200℃以上に加熱し、Ar3変態点以上で熱間圧延を完了し、630℃以下の温度域にて巻き取り、酸洗後、圧下率40〜70%の冷間圧延を施し、次いで、連続焼鈍ラインを通板するに際して、580〜750℃の温度範囲を平均加熱速度1.4℃/秒以上にて加熱し、750℃以上かつ900℃以下で焼鈍し、その後、600℃〜500℃間を平均冷却速度4〜200℃/秒で冷却し、400℃〜200℃間の温度域で30秒以上保持することを特徴とする、降伏比が0.5〜0.7、かつ、引張強度780MPa以上で成形性と溶接性に優れた高強度冷延鋼板の製造方法。
(1) By mass%, C: 0.06 to less than 0.1%, Si: 0.4 to 0.8%, Mn: 1.8 to 2.2%, Nb: 0.014 to 0.029 %, Ti: 0.014 to 0.029%, P: 0.04% or less, S: 0.01% or less, Al: 0.1% or less, N: 0.01% or less, O: 0.0010 The cast slab containing ~ 0.0045% and the balance consisting of chemical components of Fe and inevitable impurities is directly or once cooled and then heated to 1200 ° C or higher, and the hot rolling is completed at the Ar3 transformation point or higher, 630 ° C. After winding in the following temperature range, pickling, cold rolling with a rolling reduction of 40 to 70%, and then passing through a continuous annealing line, a temperature range of 580 to 750 ° C. with an average heating rate of 1. Heat at 4 ° C./second or more, anneal at 750 ° C. or more and 900 ° C. or less, and then 600 ° C. to 5 ° C. It is cooled at an average cooling rate of 4 to 200 ° C./second between 0 ° C. and maintained for 30 seconds or more in a temperature range between 400 ° C. and 200 ° C., and the yield ratio is 0.5 to 0.7, and A method for producing a high-strength cold-rolled steel sheet having a tensile strength of 780 MPa or more and excellent formability and weldability.

(2) 前記鋳造スラブが、さらに、質量%で、Cr:0.005〜3%を含有することを特徴とする上記(1)に記載の、降伏比が0.5〜0.7、かつ、引張強度780MPa以上で成形性と溶接性に優れた高強度冷延鋼板の製造方法
(2) The yield ratio according to (1) above , wherein the cast slab further contains Cr: 0.005 to 3% by mass% , and A method for producing a high-strength cold-rolled steel sheet having a tensile strength of 780 MPa or more and excellent formability and weldability .

(3) 前記鋳造スラブが、さらに、質量%で、V、Wから選ばれる1種または2種を合計で0.005〜0.6%含有することを特徴とする上記(1)又は(2)に記載の、降伏比が0.5〜0.7、かつ、引張強度780MPa以上で成形性と溶接性に優れた高強度冷延鋼板の製造方法
(3) The above- mentioned (1) or (2), wherein the cast slab further contains 0.005 to 0.6% of one or two selected from V and W in mass%. described), yield ratio 0.5-0.7 and, the method of producing a high strength cold rolled steel sheet having excellent formability and weldability in tensile strength 780MPa or more.

(4) 前記鋳造スラブが、さらに、質量%で、B:0.0001〜0.1%を含有することを特徴とする上記(1)乃至(3)のいずれか1項に記載の、降伏比が0.5〜0.7、かつ、引張強度780MPa以上で成形性と溶接性に優れた高強度冷延鋼板の製造方法
(4) The yield according to any one of (1) to (3), wherein the cast slab further contains B: 0.0001 to 0.1% by mass%. A method for producing a high-strength cold-rolled steel sheet having a ratio of 0.5 to 0.7 and a tensile strength of 780 MPa or more and excellent in formability and weldability .

(5) 前記鋳造スラブが、さらに、質量%で、Ca、Mg、REM、Yから選ばれる1種または2種以上を合計で0.0005〜0.04%を含有することを特徴とする上記(1)乃至(4)の何れか1項に記載の、降伏比が0.5〜0.7、かつ、引張強度780MPa以上で成形性と溶接性に優れた高強度冷延鋼板の製造方法
(5) The above-mentioned cast slab further contains 0.0005 to 0.04% in total of one or more selected from Ca, Mg, REM, and Y by mass%. (1) A method for producing a high-strength cold-rolled steel sheet according to any one of (4) , having a yield ratio of 0.5 to 0.7 and a tensile strength of 780 MPa or more and excellent in formability and weldability .

) 上記(1)乃至(5)のいずれか1項に記載の化学成分からなる鋳造スラブを直接または一旦冷却した後1200℃以上に加熱し、Ar3変態点以上で熱間圧延を完了し、630℃以下の温度域にて巻き取り、酸洗後、圧下率40〜70%の冷間圧延を施し、次いで、連続溶融亜鉛めっきラインを通板するに際し、580〜750℃の温度範囲を平均加熱速度1.4℃/秒以上にて加熱し、750℃以上かつ900℃以下で焼鈍し、600℃〜500℃間を平均冷却速度4〜200℃/秒で亜鉛めっき浴温度より40℃低い温度から前記亜鉛めっき浴温度より50℃高い温度までの温度範囲に冷却し、その後、亜鉛めっき浴に浸漬することを特徴とする、降伏比が0.5〜0.7、かつ、引張強度780MPa以上で成形性と溶接性に優れた高強度溶融亜鉛めっき鋼板の製造方法。
( 6 ) The cast slab composed of the chemical component according to any one of (1) to (5) above is directly or once cooled and then heated to 1200 ° C or higher, and the hot rolling is completed at the Ar3 transformation point or higher. In the temperature range of 630 ° C. or less, after pickling, cold rolling with a rolling reduction of 40 to 70% is performed, and then when passing through a continuous hot dip galvanizing line, the temperature range of 580 to 750 ° C. Heated at an average heating rate of 1.4 ° C./second or more, annealed at 750 ° C. or more and 900 ° C. or less, and an average cooling rate of 4 to 200 ° C./second between 600 ° C. and 500 ° C. from the galvanizing bath temperature. It is cooled to a temperature range from a low temperature to a temperature 50 ° C. higher than the galvanizing bath temperature, and then immersed in a galvanizing bath . The yield ratio is 0.5 to 0.7, and the tensile strength formability and weldability at least 780MPa Method for producing a high strength galvanized steel sheet.

) 上記(1)乃至(5)のいずれか1項に記載の化学成分からなる鋳造スラブを直接または一旦冷却した後1200℃以上に加熱し、Ar3変態点以上で熱間圧延を完了し、630℃以下の温度域にて巻き取り、酸洗後、圧下率40〜70%の冷間圧延を施し、次いで、連続溶融亜鉛めっきラインを通板するに際し、580〜750℃の温度範囲を平均加熱速度1.4℃/秒以上にて加熱し、750℃以上かつ900℃以下で焼鈍し、600℃〜500℃間を平均冷却速度4〜200℃/秒で亜鉛めっき浴温度より40℃低い温度から前記亜鉛めっき浴温度より50℃高い温度までの温度範囲に冷却し、その後、亜鉛めっき浴に浸漬し、460℃以上の温度で合金化処理を施した後、室温まで冷却することを特徴とする、降伏比が0.5〜0.7、かつ、引張強度780MPa以上で成形性と溶接性に優れた高強度合金化溶融亜鉛めっき鋼板の製造方法。
( 7 ) The cast slab made of the chemical component according to any one of (1) to (5) above is directly or once cooled and then heated to 1200 ° C or higher, and the hot rolling is completed at the Ar3 transformation point or higher. In the temperature range of 630 ° C. or less, after pickling, cold rolling with a rolling reduction of 40 to 70% is performed, and then when passing through a continuous hot dip galvanizing line, the temperature range of 580 to 750 ° C. Heated at an average heating rate of 1.4 ° C./second or more, annealed at 750 ° C. or more and 900 ° C. or less, and an average cooling rate of 4 to 200 ° C./second between 600 ° C. and 500 ° C. from the galvanizing bath temperature. Cooling to a temperature range from a low temperature to a temperature higher by 50 ° C. than the galvanizing bath temperature, and then immersing in a galvanizing bath, alloying at a temperature of 460 ° C. or higher, and then cooling to room temperature. wherein, the yield ratio is 0. 0.7, and the method of producing a high strength galvannealed steel sheet excellent in formability and weldability in tensile strength 780MPa or more.

本発明は、自動車用の構造用部材、補強用部材、足廻り用部材に好適な引張強度で780MPa以上の高強度と、優れた成形加工性及び溶接性を兼備する鋼板を安価に提供できる。   INDUSTRIAL APPLICABILITY The present invention can provide a low-cost steel sheet that combines high strength of 780 MPa or more with excellent tensile strength suitable for automobile structural members, reinforcing members, and suspension members, and excellent formability and weldability.

本発明者らは、上記課題を解決すべく鋭意検討を行った。まず、優れたスポット溶接性を確保するためには、C量を0.1%未満とすることが重要である。次に、引張強度を780MPa以上とし、降伏比を上記の適切な範囲とするためには、C、Si、Mn、Ti及びNbを同時に添加し、かつ、あるバランスで制御することが極めて重要であることを見出した。降伏比を適正な範囲とすることで、延性、曲げ性、穴拡げ性、形状凍結性及び衝突特性の良好なバランスの良い高強度鋼板を得ることが出来る。
以下に、本発明について詳細に説明する。
The present inventors have intensively studied to solve the above problems. First, in order to ensure excellent spot weldability, it is important that the C content is less than 0.1%. Next, it is extremely important to add C, Si, Mn, Ti, and Nb at the same time and to control with a certain balance in order to set the tensile strength to 780 MPa or more and the yield ratio to the above appropriate range. I found out. By setting the yield ratio to an appropriate range, a high-strength steel sheet having a good balance of ductility, bendability, hole expansibility, shape freezing property, and impact characteristics can be obtained.
The present invention is described in detail below.

まず、鋳造スラブ(鋼片)の化学成分の限定理由について説明する。なお、%は質量%を意味する。
C:Cは、鋼板の強度を上昇できる元素である。しかし、0.06%未満であると780MPa以上の引張強度と成形加工性を両立することが難しくなる。一方、0.1%以上となるとスポット溶接性の確保が困難となる。このため、その範囲を0.06〜0.1%未満に限定した。
First, the reasons for limiting the chemical components of the cast slab (steel piece) will be described. In addition,% means the mass%.
C: C is an element that can increase the strength of the steel sheet. However, if it is less than 0.06%, it becomes difficult to achieve both a tensile strength of 780 MPa or more and molding processability. On the other hand, if it is 0.1% or more, it is difficult to ensure spot weldability. For this reason, the range was limited to 0.06 to less than 0.1%.

Si:Siは、強化元素であり、鋼板の強度を上昇させることに有効である。しかしながら、0.4%未満であると伸びの劣化による成形性の低下が顕著になり、また0.8%を超えると化成処理性あるいは亜鉛めっき鋼板の場合はめっきの濡れ性が低下する。従って、Si含有量は0.4〜0.8%の範囲に制限した。より好ましい範囲は、0.5〜0.7%である。   Si: Si is a strengthening element and is effective in increasing the strength of the steel sheet. However, if it is less than 0.4%, the decrease in formability due to the deterioration of elongation becomes remarkable, and if it exceeds 0.8%, the wettability of plating decreases in the case of chemical conversion treatment or galvanized steel sheet. Therefore, the Si content is limited to the range of 0.4 to 0.8%. A more preferable range is 0.5 to 0.7%.

Mn:Mnは、強化元素であり、鋼板の強度を上昇させることに有効である。しかしながら、1.8%未満であると780MPa以上の引張強度を得ることが困難である。逆に多いとP、Sとの共偏析を助長し、曲げ性や伸び穴拡げ性の著しい劣化を招くことから、2.2%を上限とする。また、降伏比をより狭い範囲で制御するには、1.9〜2.1%がより好ましい範囲である。   Mn: Mn is a strengthening element and is effective in increasing the strength of the steel sheet. However, if it is less than 1.8%, it is difficult to obtain a tensile strength of 780 MPa or more. On the other hand, if the amount is too large, co-segregation with P and S is promoted, and the bendability and the stretchability of the elongated hole are significantly deteriorated. In order to control the yield ratio in a narrower range, 1.9 to 2.1% is a more preferable range.

NbおよびTiを複合で含有することで、適正な降伏比、延性、曲げ性及び穴拡げ性の具備が可能となる。
Nb:Nbは、強化元素である。析出物強化、フェライト結晶粒の成長抑制による細粒強化および再結晶の抑制を通じた転位強化にて、鋼板の強度上昇に寄与することから、その添加は極めて重要である。また、主相であるフェライトの硬質化をもたらすことから、強化相であるベイナイト及びマルテンサイト組織との硬度差を低下させ曲げ性及び穴拡げ性を向上させる。これらの効果は、0.014%未満ではこれらの効果が得られないため、下限値を0.014%とした。0.029%超含有すると、炭窒化物の析出が多くなり成形性が劣化するため、上限値を0.029%とした。
By containing Nb and Ti in combination, it is possible to have an appropriate yield ratio, ductility, bendability, and hole expandability.
Nb: Nb is a strengthening element. Addition is extremely important because it contributes to increasing the strength of the steel sheet by strengthening precipitates, strengthening fine grains by suppressing the growth of ferrite crystal grains, and strengthening dislocations by suppressing recrystallization. Further, since the main phase ferrite is hardened, the hardness difference between the strengthened phase bainite and martensite structure is reduced, and the bendability and hole expansibility are improved. Since these effects cannot be obtained if the effect is less than 0.014%, the lower limit is set to 0.014%. If the content exceeds 0.029%, precipitation of carbonitrides increases and the formability deteriorates, so the upper limit was made 0.029%.

Ti:Tiは、強化元素である。析出物強化、フェライト結晶粒の成長抑制による細粒強化および再結晶の抑制を通じた転位強化にて、鋼板の強度上昇に寄与することから、その添加は極めて重要である。また、主相であるフェライトの硬質化をもたらすことから、強化相であるベイナイト及びマルテンサイト組織との硬度差を低下させ曲げ性及び穴拡げ性を向上させる。これらの効果は、0.014%未満ではこれらの効果が得られないため、下限値を0.014%とした。0.029%超含有すると、炭窒化物の析出が多くなり成形性が劣化するため、上限値を0.029%とした。加えて、Tiは強力な窒化物形成元素であることから、Alに比較して、Nと優先的に結び付くことで、微細な窒化物を形成し、粗大なAlNの形成を抑制し、曲げ性の劣化を抑制することから、特に、重要である。   Ti: Ti is a strengthening element. Addition is extremely important because it contributes to increasing the strength of the steel sheet by strengthening precipitates, strengthening fine grains by suppressing the growth of ferrite crystal grains, and strengthening dislocations by suppressing recrystallization. Further, since the main phase ferrite is hardened, the hardness difference between the strengthened phase bainite and martensite structure is reduced, and the bendability and hole expansibility are improved. Since these effects cannot be obtained if the effect is less than 0.014%, the lower limit is set to 0.014%. If the content exceeds 0.029%, precipitation of carbonitrides increases and the formability deteriorates, so the upper limit was made 0.029%. In addition, since Ti is a strong nitride-forming element, it binds preferentially to N compared to Al, thereby forming fine nitrides, suppressing the formation of coarse AlN, and bending properties. This is particularly important because it suppresses the deterioration of the material.

P:Pは鋼板の板厚中央部に偏析する傾向があり、溶接部を脆化させる。0.04%を超えると溶接部の脆化が顕著になるため、その適正範囲を0.04%以下に限定した。Pの下限値は特に定めないが、0.0001質量%未満とすることは、経済的に不利であることからこの値を下限値とすることが好ましい。   P: P tends to segregate in the central part of the plate thickness of the steel sheet and embrittles the weld. When the content exceeds 0.04%, the weld becomes brittle, so the appropriate range is limited to 0.04% or less. Although the lower limit value of P is not particularly defined, it is preferable to set this value as the lower limit value because it is economically disadvantageous to set it to less than 0.0001% by mass.

S:Sは、溶接性ならびに鋳造時および熱延時の製造性に悪影響を及ぼす。このことから、その上限値を0.01質量%以下とした。Sの下限値は特に定めないが、0.0001%未満とすることは、経済的に不利であることからこの値を下限値とすることが好ましい。   S: S adversely affects weldability and manufacturability during casting and hot rolling. For this reason, the upper limit value was set to 0.01% by mass or less. Although the lower limit of S is not particularly defined, it is preferable to set this value as the lower limit because it is economically disadvantageous to make it less than 0.0001%.

Al:Alは、フェライト形成を促進し、延性を向上させるので添加しても良い。また、脱酸材としても活用可能である。しかしながら、過剰な添加はAl系の粗大介在物を形成し、表面傷や穴拡げ性の劣化の原因になる。このことから、Al添加の上限を0.1%とした。下限は、特に限定しないが、0.0005以下とするのは困難であるのでこれが実質的な下限である。   Al: Al may be added because it promotes ferrite formation and improves ductility. It can also be used as a deoxidizer. However, excessive addition forms Al-based coarse inclusions, which causes surface damage and deterioration of hole expansibility. From this, the upper limit of Al addition was set to 0.1%. The lower limit is not particularly limited, but since it is difficult to make the lower limit 0.0005 or less, this is a practical lower limit.

N:Nは、粗大な窒化物を形成し、曲げ性や穴拡げ性を劣化させることから、添加量を抑える必要がある。これは、Nが0.01%を超えると、この傾向が顕著となることから、N含有量の範囲を0.01%以下とした。加えて、溶接時のブローホール発生の原因になることから少ない方が良い。下限は、特に定めることなく本発明の効果は発揮されるが、N含有量を0.0005%未満とすることは、製造コストの大幅な増加を招くことから、これが実質的な下限である。   N: N forms coarse nitrides and degrades bendability and hole expansibility, so it is necessary to suppress the addition amount. This is because when N exceeds 0.01%, this tendency becomes remarkable. Therefore, the range of N content is set to 0.01% or less. In addition, it is better to use less because it causes blowholes during welding. Although the lower limit is not particularly defined, the effect of the present invention is exhibited. However, if the N content is less than 0.0005%, the manufacturing cost is significantly increased, and this is a substantial lower limit.

O:Oは、酸化物を形成し、曲げ性や穴拡げ性を劣化させることから、添加量を抑える必要がある。加えて、Oは、NよりもTiと優先的に化合物を形成することから、O含有量が多いと、Tiは酸化物として存在する割合が多く、粗大なAlNの形成を促進することから、曲げ性や穴拡げ性をさらに劣化させる。これは、Oが0.0045%を超えると、この傾向が顕著となることから、O含有量の上限を0.0045%以下とした。0.0010%と未満とすることは、過度のコスト高を招き経済的に好ましくないことから、これを下限とした。   O: O forms an oxide and degrades bendability and hole expansibility, so it is necessary to suppress the addition amount. In addition, since O preferentially forms a compound with Ti rather than N, if the O content is large, Ti is present in a large proportion as an oxide and promotes the formation of coarse AlN. Further deteriorates bendability and hole expandability. This is because when O exceeds 0.0045%, this tendency becomes remarkable. Therefore, the upper limit of the O content is set to 0.0045% or less. Since setting it as less than 0.0010% invites excessive cost and is not economically preferable, this was made into the minimum.

Cr:Crは、強化元素であるとともに焼入れ性の向上に重要である。しかし、0.005%未満ではこれらの効果が得られないため下限値を0.005%とした。逆に、3%超含有すると製造時および熱延時の製造性に悪影響を及ぼすため、上限値を3%とした。   Cr: Cr is a strengthening element and is important for improving hardenability. However, if the content is less than 0.005%, these effects cannot be obtained, so the lower limit is set to 0.005%. On the other hand, if the content exceeds 3%, the manufacturability during production and hot rolling is adversely affected, so the upper limit was made 3%.

さらに、本発明が対象とする鋼板は、強度の更なる向上を目的に、強炭化物形成元素であるV及びWから選ばれる1種または2種を含有できる。これらの元素は、微細な炭化物、窒化物または炭窒化物を形成することから、鋼板の強化には極めて有効であることから、必要に応じて1種または2種類を合計で0.005質量%以上添加できるものとした。一方で、多量の添加は、延性の劣化を招くことから、その添加の上限を合計で0.6質量%とした。   Furthermore, the steel plate which this invention makes object can contain the 1 type or 2 types chosen from V and W which are strong carbide forming elements for the purpose of the further improvement of intensity | strength. Since these elements form fine carbides, nitrides, or carbonitrides, and are extremely effective for strengthening steel sheets, one or two kinds are added in total in an amount of 0.005% by mass as necessary. The above can be added. On the other hand, since a large amount of addition causes deterioration of ductility, the upper limit of addition is set to 0.6% by mass in total.

Bもまた必要に応じて添加できる。Bは、0.0001質量%以上の添加で粒界の強化や鋼材の強度化に有効であるが、その添加量が0.1質量%を超えると、その効果が飽和するばかりでなく、熱延時の製造製を低下させることから、その上限を0.1質量%とした。   B can also be added as needed. B is effective for strengthening grain boundaries and strengthening steel by addition of 0.0001% by mass or more, but when the addition amount exceeds 0.1% by mass, the effect is not only saturated but also heat The upper limit is set to 0.1% by mass because the production at the time of stretching is lowered.

Ca、Mg、Y、REMから選ばれる1種または2種以上を合計で0.0005〜0.04%添加できる。Ca、Mg、Zr、YおよびREMは脱酸に用いる元素であり、1種または2種を合計で0.0005%以上含有することが好ましい。しかしながら、含有量が合計で0.04%を超えると、成形加工性の悪化の原因となる。そのため、合計量の範囲を合計で0.0005〜0.04%とした。なお、本発明において、REMとはLaおよびランタノイド系列の元素を指すものであり、ミッシュメタルにて添加されることが多く、LaやCe等の系列の元素を複合で含有する。ただし、金属LaやCeを添加したとしても本発明の効果は発揮される。   One or two or more selected from Ca, Mg, Y, and REM can be added in a total amount of 0.0005 to 0.04%. Ca, Mg, Zr, Y, and REM are elements used for deoxidation, and it is preferable that one or two of them are contained in a total amount of 0.0005% or more. However, when the content exceeds 0.04% in total, it causes deterioration of molding processability. Therefore, the total amount range is set to 0.0005 to 0.04% in total. In the present invention, REM refers to La and lanthanoid series elements, which are often added by misch metal, and contain complex series elements such as La and Ce. However, the effects of the present invention are exhibited even when metal La or Ce is added.

なお、その他の不可避不純物として、Mo、Ni、Cuを合計で0.03%未満含んでも良い。   In addition, as other inevitable impurities, Mo, Ni, and Cu may be included in total less than 0.03%.

鋼板中に含まれる各組織の分率は特に定めることなく、本発明の効果は発揮されるが、優れた延性を確保するためには、主相をフェライトとすることが望ましい。なお、フェライト相の形態としてはポリゴナルフェライトの他に、アシキラーフェライト、回復した未再結晶フェライトを含むものとする。鋼板の高強度化を目的に、マルテンサイト及びベイナイト組織のうち1種又は2種を含有しても良い。ベイナイト組織とマルテンサイト組織の分率については、特に、限定することなく本発明の効果は発揮されるが、マルテンサイトに比較して、ベイナイト組織体積率が大きいと、より優れた延性と曲げ性及び穴拡げ性のバランスが得られる。更なる延性の向上を目的に、オーステナイト相を含んでも構わない。   The fraction of each structure contained in the steel sheet is not particularly defined and the effects of the present invention are exhibited. However, in order to ensure excellent ductility, it is desirable that the main phase is ferrite. In addition, as a form of the ferrite phase, in addition to polygonal ferrite, it is assumed that it includes acicular ferrite and recovered non-recrystallized ferrite. For the purpose of increasing the strength of the steel sheet, one or two of martensite and bainite structures may be contained. With respect to the fraction of the bainite structure and martensite structure, the effect of the present invention is particularly demonstrated without limitation, but when the volume fraction of bainite structure is large compared to martensite, more excellent ductility and bendability. And a balance of hole expansibility. An austenite phase may be included for the purpose of further improving ductility.

なお、上記ミクロ組織の各相、フェライト、マルテンサイト、ベイナイト、オーステナイトおよび残部組織の同定、存在位置の観察および面積率の測定は、ナイタール試薬および特開59−219473号公報に開示された試薬により鋼板圧延方向断面または圧延方向直角方向断面を腐食して、1000倍の光学顕微鏡観察及び1000〜100000倍の走査型および透過型電子顕微鏡により定量化が可能である。なお、回復した未再結晶フェライトとラスベイナイト組織の分離は、FESEM−EBSP法の結晶方位マッピングにより行い、粒内で連続的に方位が変化しているフェライト相あるいは回復して微細なセル構造を有しているフェライト相については未再結晶フェライト相と判断する。各20視野以上の観察を行い、ポイントカウント法や画像解析により各組織の面積率を求めることが出来る。   In addition, each phase of the above microstructure, ferrite, martensite, bainite, austenite, and the remaining structure are identified, the observation of the existing position and the measurement of the area ratio are performed by the Nital reagent and the reagent disclosed in Japanese Patent Application Laid-Open No. 59-219473. The steel plate rolling direction cross section or the rolling direction perpendicular direction cross section is corroded and can be quantified by observation with a 1000 times optical microscope and 1000 to 100000 times scanning and transmission electron microscopes. The recovered unrecrystallized ferrite and the lath bainite structure are separated by the crystal orientation mapping of the FESEM-EBSP method, and the ferrite phase in which the orientation continuously changes in the grains or the recovered fine cell structure is obtained. The ferrite phase possessed is judged as an unrecrystallized ferrite phase. It is possible to obtain an area ratio of each tissue by observing 20 fields of view or more and using a point counting method or image analysis.

フェライトの結晶粒径については特に限定しないが、強度伸びバランスの観点から公称粒径で7μm以下であることが望ましい。   The crystal grain size of ferrite is not particularly limited, but it is preferably 7 μm or less in terms of nominal grain size from the viewpoint of balance of strength elongation.

降伏比とは最大引張強度(TS)と降伏強度(YS)の比(YS/TS)で定義される値であり、0.5〜0.7の範囲に制御することで、曲げ性と延性の両立が可能となる。一般的に、フェライト相は軟質であることから、硬質なマルテンサイトと混在すると降伏比を低下させる。しかしながら、NbとTiによる析出強化とSiによる固溶強化を併用し、フェライト相を硬質化することで、降伏比を適正な範囲に制御し、かつ、優れた延性を保ったままで、曲げ性の確保を可能とする。フェライト相の強化手法としては、固溶強化や析出強化に加え、NbやTiによる粒成長抑制による細粒強化、あるいは、未再結晶フェライトを用いた転位強化も同時に併用可能である。   Yield ratio is a value defined by the ratio (YS / TS) of maximum tensile strength (TS) and yield strength (YS), and bendability and ductility are controlled within the range of 0.5 to 0.7. Can be achieved. Generally, since the ferrite phase is soft, when it is mixed with hard martensite, the yield ratio is lowered. However, by combining precipitation strengthening with Nb and Ti and solid solution strengthening with Si and hardening the ferrite phase, the yield ratio is controlled to an appropriate range, and while maintaining excellent ductility, It can be secured. As a strengthening method of the ferrite phase, in addition to solid solution strengthening and precipitation strengthening, fine grain strengthening by suppressing grain growth with Nb or Ti, or dislocation strengthening using non-recrystallized ferrite can be used at the same time.

降伏比が0.70を超えるとn値が低くなりすぎてしまい延性や張り出し成形性が低くなることから、その上限を0.7とした。一方では、降伏比が0.5を下回ると十分な衝突安全性が確保できない。加えて、極端な降伏比の低下は、曲げ性の劣化をも招くことから0.5を下限値とした。また、降伏比を狭い範囲で制御することは、成形時の形状のばらつきを低減することになり、非常に効果的である。0.55〜0.65の範囲とすることがより好ましい。   When the yield ratio exceeds 0.70, the n value becomes too low and the ductility and the stretch formability become low, so the upper limit was set to 0.7. On the other hand, if the yield ratio is less than 0.5, sufficient collision safety cannot be ensured. In addition, since the extreme decrease in yield ratio also leads to deterioration of bendability, 0.5 was set as the lower limit. Also, controlling the yield ratio within a narrow range is very effective because it reduces the variation in shape during molding. A range of 0.55 to 0.65 is more preferable.

本発明では、スポット溶接性に優れる鋼板を提供する。本発明で得られる鋼板のスポット溶接性は、散り発生となる溶接電流であっても、散り発生の直前の電流で溶接した際の十字型引張試験による引張荷重(CTS)に関して、CTSの劣化代が小さいことが特徴として挙げられる。すなわち、通常の鋼板では散り発生を伴う溶接を行うと、CTSが大きく低下したりCTSのばらつきが大きくなったりするのに対して、本発明の鋼板ではCTSの低下率やばらつきが小さい。散り発生領域での溶接電流値としては、散り発生の電流値(CEとする)に1.5kAを加えた電流値とする。溶接電流をCEとする溶接を5回行ったときのCTSの平均値を1としたとき、溶接電流を(CE+1.5kA)とする試験を5回行ったときのCTSの最低値が0.7以上となる。好ましくは0.8以上、さらに好ましくは0.9以上である。なお、CTSはJIS Z 3137の方法に準拠して評価する。   In this invention, the steel plate excellent in spot weldability is provided. The spot weldability of the steel sheet obtained in the present invention is such that even if the welding current causes spilling, the CTS degradation allowance is related to the tensile load (CTS) by the cross-type tensile test when welding is performed immediately before the spilling. Is characterized as being small. That is, when welding accompanied by the occurrence of scattering is performed on a normal steel plate, the CTS is greatly reduced or the CTS variation is increased, whereas the CTS reduction rate and variation are small in the steel plate of the present invention. The welding current value in the scatter occurrence region is a current value obtained by adding 1.5 kA to the scatter occurrence current value (CE). When the average value of CTS when welding with CE as the welding current is performed 5 times is 1, the minimum value of CTS when the test with welding current as (CE + 1.5 kA) is performed 5 times is 0.7. That's it. Preferably it is 0.8 or more, More preferably, it is 0.9 or more. CTS is evaluated according to the method of JIS Z 3137.

本発明の鋼は、上述の通りスポット溶接に対して特に優れた特性を示す他、通常行われる溶接方法、たとえば、アーク、TIG、MIG、マッシュシーム及びレーザー等の溶接方法にも適する。   As described above, the steel of the present invention exhibits particularly excellent characteristics with respect to spot welding, and is also suitable for commonly used welding methods such as arc, TIG, MIG, mash seam and laser.

なお、本発明では優れた延性、曲げ性及び穴拡げ性を有し成形加工性に優れる鋼板を提供する。延性に関しては、具体的にはTS(MPa)×引張試験の全伸び(El)(%)で16000(MPa×%)以上を有するものを優れた延性を有するものと定義する。曲げ性に関しては、圧延方向と垂直方向に100mm、圧延方向に30mmの試験片を採取し、90°曲げ時の割れ発生限界曲げ半径にが、0.5mmとなるものを優れた曲げ性を有するものと定義する。本発明の鋼は、曲げ性と同様に優れた穴拡げ性をも具備する。   In the present invention, a steel sheet having excellent ductility, bendability and hole expansibility and excellent formability is provided. Regarding the ductility, specifically, a material having 16000 (MPa ×%) or more in terms of TS (MPa) × tensile test total elongation (El) (%) is defined as having excellent ductility. With respect to bendability, a specimen having a thickness of 100 mm in the direction perpendicular to the rolling direction and 30 mm in the rolling direction is sampled, and has a superior bendability when the crack generation limit bending radius at 90 ° bending is 0.5 mm. It is defined as a thing. The steel of the present invention has excellent hole expandability as well as bendability.

熱間圧延に供するスラブは特に限定するものではない。すなわち、連続鋳造スラブや薄スラブキャスターなどで製造したものであればよい。また、鋳造後に直ちに熱間圧延を行う連続鋳造−直接圧延(CC−DR)のようなプロセスにも適合する。   The slab used for hot rolling is not particularly limited. That is, what was manufactured with the continuous casting slab, the thin slab caster, etc. should just be used. It is also compatible with processes such as continuous casting-direct rolling (CC-DR) in which hot rolling is performed immediately after casting.

熱延スラブ加熱温度は、鋳造中時に析出した炭窒化物を再溶解させる必要があるので、1200℃以上にする必要がある。上限は特に定めることなく、本発明の効果は発揮されるが、加熱温度を過度に高温にすることは、経済上好ましくないことから、加熱温度の上限は1300℃未満とすることが望ましい。   The hot-rolled slab heating temperature needs to be 1200 ° C. or higher because it is necessary to redissolve carbonitride deposited during casting. Although the upper limit is not particularly defined, the effect of the present invention is exhibited. However, since it is not economically preferable to raise the heating temperature to an excessively high temperature, the upper limit of the heating temperature is preferably less than 1300 ° C.

仕上げ圧延温度はオーステナイト+フェライトの2相域になると、鋼板内の組織不均一性および材質の異方性が大きくなり、焼鈍後の成形加工性が劣化するので、Ar3温度以上が望ましい。
なお、Ar3温度は次の式により計算する。
Ar3=901−325×C+33×Si−92×(Mn+Ni/2+Cr/2+Cu/2+Mo/2)
When the finish rolling temperature is in the two-phase region of austenite + ferrite, the structure non-uniformity in the steel sheet and the material anisotropy increase, and the formability after annealing deteriorates. Therefore, the Ar3 temperature or higher is desirable.
The Ar3 temperature is calculated by the following formula.
Ar3 = 901-325 × C + 33 × Si-92 × (Mn + Ni / 2 + Cr / 2 + Cu / 2 + Mo / 2)

巻き取り温度は630℃以下にする必要がある。630℃を超えると熱延組織中に粗大なフェライトやパーライト組織が存在するため、焼鈍後の組織不均一性が大きくなり、最終製品の曲げ性や穴拡げ性が劣化する。焼鈍後の組織を微細にして強度延性バランスを向上させる観点からは600℃以下で巻き取ることがより好ましい。下限については特に定めることなく本発明の効果は発揮されるが、室温以下の温度で巻き取ることは技術的に難しいので、これが実質の下限となる。なお、熱延時に粗圧延板同士を接合して連続的に仕上げ圧延を行っても良い。また、粗圧延板を一旦巻き取っても構わない。   The winding temperature needs to be 630 ° C. or lower. When the temperature exceeds 630 ° C., coarse ferrite and pearlite structures exist in the hot-rolled structure, so that the structure non-uniformity after annealing increases, and the bendability and hole expandability of the final product deteriorate. From the viewpoint of making the microstructure after annealing fine and improving the strength ductility balance, it is more preferable to wind up at 600 ° C. or lower. Although the lower limit is not particularly defined, the effect of the present invention is exhibited. However, since it is technically difficult to wind up at a temperature of room temperature or lower, this is the actual lower limit. Note that rough rolling sheets may be joined to each other during hot rolling to continuously perform finish rolling. Moreover, you may wind up a rough rolling board once.

このようにして製造した熱延鋼板に、必要に応じて酸洗を行っても良い。酸洗は鋼板表面の酸化物の除去が可能であることから、化成処理性およびめっき性向上のためには重要である。酸洗は、インラインで行っても良いし、オフラインで行っても良い。また、一回の酸洗を行っても良いし、複数回に分けて酸洗を行っても良い。   The hot-rolled steel sheet thus manufactured may be pickled as necessary. Pickling is important for improving chemical conversion and plating properties because it can remove oxides on the surface of the steel sheet. Pickling may be performed inline or offline. Moreover, pickling may be performed once, or pickling may be performed in a plurality of times.

酸洗した熱延鋼板を圧下率40〜70%で冷間圧延して、連続焼鈍ラインまたは連続溶融亜鉛めっきラインに通板する。圧下率が40%未満では、形状を平坦に保つことが困難である。また、最終製品の延性が劣悪となるのでこれを下限とする。一方、70%を越える冷延は、冷延荷重が大きくなりすぎてしまい冷延が困難となることから、これを上限とする。45〜65%より好ましい範囲である。圧延パスの回数、各パス毎の圧下率については特に規定することなく本発明の効果は発揮される。   The pickled hot-rolled steel sheet is cold-rolled at a rolling reduction of 40 to 70% and passed through a continuous annealing line or a continuous hot dip galvanizing line. If the rolling reduction is less than 40%, it is difficult to keep the shape flat. Moreover, since the ductility of the final product becomes poor, this is the lower limit. On the other hand, cold rolling exceeding 70% makes the cold rolling difficult because the cold rolling load becomes too large. It is a more preferable range than 45 to 65%. The effect of the present invention is exhibited without particularly specifying the number of rolling passes and the rolling reduction for each pass.

連続焼鈍ラインを通板する場合の580〜750℃の温度範囲での加熱速度は1.4℃/秒以上とする必要がある。TiとNbの複合添加を用いた強化を行っていることから、加熱時の粒成長および再結晶の制御は極めて重要である。詳細なメカニズムは不明であるものの、加熱速度が1.4℃/秒未満であると、粒成長あるいは再結晶が進行しすぎてしまい降伏比が大幅に低下する。あるいは、硬質組織との硬度差が大きくなることから、曲げ性及び穴拡げ性の劣化を招く。このことから下限を1.4℃/秒とした。一方、上限は特に定めることなく本発明の効果は発揮されるが、加熱速度を100℃超とすることは、過度の設備投資を招き、経済的に好ましくないことから、これが実質的な上限である。   The heating rate in the temperature range of 580 to 750 ° C when passing through the continuous annealing line needs to be 1.4 ° C / second or more. Since strengthening is performed using a combined addition of Ti and Nb, control of grain growth and recrystallization during heating is extremely important. Although the detailed mechanism is unknown, when the heating rate is less than 1.4 ° C./second, the grain growth or recrystallization proceeds excessively, and the yield ratio is greatly reduced. Or since the hardness difference with a hard structure becomes large, the deterioration of bendability and hole expansibility is caused. Therefore, the lower limit was set to 1.4 ° C./second. On the other hand, the effect of the present invention is exhibited without any particular upper limit, but setting the heating rate above 100 ° C. causes excessive capital investment and is not economically preferable. is there.

最高加熱温度は、750〜900℃の範囲である。最高加熱温度が750℃未満になると、熱延時に形成した炭化物が再固溶するのに時間がかかりすぎてしまい炭化物、あるいは、その一部が残存することから、780MPa以上の強度が確保できない。さらには、鋼板中に残存する粗大な炭化物は、穴拡げ性の劣化をもたらす。このことから、750℃が最高加熱温度の下限である。一方、過度の高温加熱は、コストの上昇を招くことから経済的に好ましくないばかりでなく、高温通板時の板形状が劣悪になったり、ロールの寿命を低下させたりとトラブルを誘発することから、最高加熱温度の上限を900℃とする。この温度域での熱処理時間は特に限定しないが、炭化物の溶解のために、10秒以上の熱処理が望ましい。一方、熱処理時間が600秒超となると、コストの上昇を招くことから経済的に好ましくない。熱処理についても、最高加熱温度にて等温保持を行っても良いし、傾斜加熱を行い最高加熱温度に到達した後、直ちに、冷却を開始したとしても、本発明の効果は発揮される。   The maximum heating temperature is in the range of 750 to 900 ° C. When the maximum heating temperature is less than 750 ° C., it takes too much time for the carbide formed at the time of hot rolling to re-dissolve, and the carbide or a part thereof remains, so that a strength of 780 MPa or more cannot be secured. Furthermore, coarse carbides remaining in the steel plate cause deterioration of hole expansibility. Therefore, 750 ° C. is the lower limit of the maximum heating temperature. On the other hand, excessively high temperature heating not only is economically undesirable because it leads to an increase in cost, but also induces troubles such as deterioration of the plate shape at the time of hot plate passing and reduction of roll life. Therefore, the upper limit of the maximum heating temperature is set to 900 ° C. The heat treatment time in this temperature range is not particularly limited, but a heat treatment of 10 seconds or more is desirable for dissolving the carbide. On the other hand, if the heat treatment time exceeds 600 seconds, the cost increases, which is not economically preferable. Regarding the heat treatment, the isothermal holding may be performed at the maximum heating temperature, or even if cooling is started immediately after the gradient heating is performed and the maximum heating temperature is reached, the effect of the present invention is exhibited.

上記焼鈍終了後、引き続き600℃〜500℃間を、4〜200℃/秒にて冷却し、硬質相を形成させる処理を施す。600〜500℃の温度域にてオーステナイトがパーライトへと変態することから、その抑制が必要である。この間の平均冷却速度が4℃/秒未満では、オーステナイトがパーライトへと変態してしまい、十分な量のマルテンサイトやベイナイト組織が得られず、780MPa以上の強度確保が困難になることから、下限値を4℃/秒以上とした。また、200℃/秒を超えて、冷却したとしても、材質上はなんら問題を生じないが、過度に冷却速度を上げる事は、製造コスト高を招くこととなるので、上限を200℃/秒とすることが好ましい。600℃と500℃間の冷却方法については、ロール冷却、空冷、水冷およびこれらを併用したいずれの方法でも構わない。冷却速度を限定する温度範囲を500〜600℃としたのは、この温度域にてパーライト変態が起こるからである。600℃を超える温度域から冷却を開始したとしても、本発明の効果は発揮されるが、冷却開始温度を、750℃超とすることは、最高加熱温度との差が小さくなりすぎてしまい冷却開始温度の確保が困難となることから、これが実質上の上限である。冷却速度を限定する冷却下限については、特に限定せず本発明の効果を発揮できるが、室温以下とすることは技術的に困難であることから、これが実質上の下限である。   After the completion of the annealing, a process of continuously cooling between 600 ° C. and 500 ° C. at 4 to 200 ° C./second to form a hard phase is performed. Since austenite transforms into pearlite in the temperature range of 600 to 500 ° C., it is necessary to suppress it. If the average cooling rate during this period is less than 4 ° C./second, austenite is transformed into pearlite, a sufficient amount of martensite and bainite structure cannot be obtained, and it is difficult to ensure a strength of 780 MPa or more. The value was set to 4 ° C./second or more. Further, even if the cooling is performed at a temperature exceeding 200 ° C./second, no problem is caused in terms of the material. However, excessively increasing the cooling rate leads to a high manufacturing cost, so the upper limit is 200 ° C./second. It is preferable that As a cooling method between 600 ° C. and 500 ° C., roll cooling, air cooling, water cooling, and any method using these in combination may be used. The reason why the temperature range for limiting the cooling rate is 500 to 600 ° C. is that pearlite transformation occurs in this temperature range. Even if the cooling is started from a temperature range exceeding 600 ° C., the effect of the present invention is exhibited. However, if the cooling start temperature exceeds 750 ° C., the difference from the maximum heating temperature becomes too small and the cooling is started. This is a practical upper limit because it is difficult to ensure the starting temperature. The cooling lower limit for limiting the cooling rate is not particularly limited, and the effect of the present invention can be exhibited. However, since it is technically difficult to set the cooling temperature to be room temperature or lower, this is a practical lower limit.

また、連続焼鈍ラインの場合、過時効帯を利用して、200〜400℃の温度範囲で、30秒以上の熱処理を行っても良い。過時効帯内における平均板温度が400℃超であると、鋼板中に含まれるマルテンサイト体積率が減少することから、引張最大強度780MPaと優れた溶接性の両立が困難になる。一方、200℃未満での熱処理は、降伏比を0.5未満としてしまうことから、その下限値を200℃とした。250℃以上がより好ましい範囲である。保持時間とは、単なる等温保持だけでなく、200〜400℃の温度範囲の滞留時間を意味し、この温度域での除冷や加熱も含まれる。   Moreover, in the case of a continuous annealing line, you may perform the heat processing for 30 second or more in a 200-400 degreeC temperature range using an overaging zone. If the average plate temperature in the overaged zone is more than 400 ° C., the martensite volume fraction contained in the steel sheet is reduced, so that it is difficult to achieve both a maximum tensile strength of 780 MPa and excellent weldability. On the other hand, the heat treatment at less than 200 ° C. makes the yield ratio less than 0.5, so the lower limit was set to 200 ° C. 250 degreeC or more is a more preferable range. The holding time means not only mere isothermal holding but also a residence time in a temperature range of 200 to 400 ° C., and includes cooling and heating in this temperature range.

熱処理後のスキンパス圧延の圧下率は、0.1〜1.5%の範囲が好ましい。0.1%未満では効果が小さく、制御も困難であることから、これが下限となる。1.5%超えると生産性が著しく低下するのでこれを上限とする。スキンパスは、インラインで行っても良いし、オフラインで行っても良い。また、一度に目的の圧下率のスキンパスを行っても良いし、数回に分けて行っても構わない。   The reduction ratio of the skin pass rolling after the heat treatment is preferably in the range of 0.1 to 1.5%. If it is less than 0.1%, the effect is small and control is difficult, so this is the lower limit. If it exceeds 1.5%, the productivity is remarkably lowered, so this is the upper limit. The skin pass may be performed inline or offline. Further, a skin pass having a desired reduction rate may be performed at once, or may be performed in several steps.

冷延後に溶融亜鉛めっきラインを通板する場合の580〜750℃の温度範囲での加熱速度も、連続焼鈍ラインを通板する場合と同様の理由により、1.4℃/秒以上とする。最高加熱温度も連続焼鈍ラインを通板する場合と同様の理由により、750〜900℃とする。焼鈍後の冷却に関しても、連続焼鈍ラインを通板する場合と同様の理由により、600℃と500℃間を4℃/秒以上の冷却速度にて冷却する必要がある。   The heating rate in the temperature range of 580 to 750 ° C. when passing through the hot dip galvanizing line after cold rolling is set to 1.4 ° C./second or more for the same reason as when passing through the continuous annealing line. The maximum heating temperature is also set to 750 to 900 ° C. for the same reason as when the continuous annealing line is passed. Regarding cooling after annealing, it is necessary to cool between 600 ° C. and 500 ° C. at a cooling rate of 4 ° C./second or more for the same reason as when passing through a continuous annealing line.

めっき浴浸漬板温度は、溶融亜鉛めっき浴温度より40℃低い温度から溶融亜鉛めっき浴温度より50℃高い温度までの温度範囲とすることが望ましい。浴浸漬板温度が溶融亜鉛めっき浴温度−40)℃を下回ると、めっき浴浸漬進入時の抜熱が大きく、溶融亜鉛の一部が凝固してしまいめっき外観を劣化させる場合があることから、下限を(溶融亜鉛めっき浴温度−40)℃とする。ただし、浸漬前の板温度が(溶融亜鉛めっき浴温度−40)℃を下回っても、めっき浴浸漬前に再加熱を行い、板温度を(溶融亜鉛めっき浴温度−40)℃以上としてめっき浴に浸漬させても良い。また、めっき浴浸漬温度が(溶融亜鉛めっき浴温度+50)℃を超えると、めっき浴温度上昇に伴う操業上の問題を誘発する。また、めっき浴は、純亜鉛に加え、Fe、Al、Mg、Mn、Si、Crなどを含有しても構わない。   The plating bath immersion plate temperature is preferably in a temperature range from a temperature 40 ° C. lower than the hot dip galvanizing bath temperature to a temperature 50 ° C. higher than the hot dip galvanizing bath temperature. If the bath immersion plate temperature is lower than the hot dip galvanizing bath temperature −40) ° C., the heat removal at the time of immersion in the plating bath is large, and part of the molten zinc may solidify and deteriorate the plating appearance. The lower limit is (hot dip galvanizing bath temperature −40) ° C. However, even if the plate temperature before immersion is lower than (hot dip galvanizing bath temperature −40) ° C., reheating is performed before immersion in the plating bath, and the plate temperature is set to (hot dip galvanizing bath temperature −40) ° C. or higher. It may be immersed in. On the other hand, if the plating bath immersion temperature exceeds (hot dip galvanizing bath temperature +50) ° C., operational problems accompanying the rise of the plating bath temperature are induced. Further, the plating bath may contain Fe, Al, Mg, Mn, Si, Cr, etc. in addition to pure zinc.

また、めっき層の合金化を行う場合には、460℃以上で行う。合金化処理温度が460℃未満であると合金化の進行が遅く、生産性が悪い。上限は特に限定しないが、600℃を超えると、パーライト変態が起こり硬質組織(マルテンサイト、ベイナイト、残留オーステナイト)体積率を減少させ、引張強度780MPa以上の確保が難しくなるので、これが実質的な上限である。また、めっき浴浸漬前に、500〜200℃の温度範囲にて、付加的な熱処理を行っても良い。溶融亜鉛めっき鋼板にスキンパス圧延を施しても構わない。   Moreover, when alloying a plating layer, it carries out at 460 degreeC or more. When the alloying treatment temperature is less than 460 ° C., the progress of alloying is slow and the productivity is poor. The upper limit is not particularly limited, but if it exceeds 600 ° C., pearlite transformation occurs and the volume fraction of hard structure (martensite, bainite, retained austenite) is decreased, and it becomes difficult to ensure a tensile strength of 780 MPa or more. It is. Moreover, you may perform additional heat processing in the temperature range of 500-200 degreeC before plating bath immersion. Skin-pass rolling may be applied to the hot-dip galvanized steel sheet.

また、めっき密着性をさらに向上させるために、焼鈍前に鋼板に、Ni、Cu、Co、Feの単独あるいは複数より成るめっきを施しても本発明を逸脱するものではない。   Further, in order to further improve the plating adhesion, the present invention does not depart from the present invention even if the steel plate is plated with Ni, Cu, Co, or Fe alone or before the annealing.

さらには、めっき前の焼鈍については、「脱脂酸洗後、非酸化雰囲気にて加熱し、H及びNを含む還元雰囲気にて焼鈍後、めっき浴温度近傍まで冷却し、めっき浴に侵漬」というゼンジマー法、「焼鈍時の雰囲気を調節し、最初、鋼板表面を酸化させた後、その後還元することによりめっき前の清浄化を行った後にめっき浴に侵漬」という全還元炉方式、あるいは、「鋼板を脱脂酸洗した後、塩化アンモニウムなどを用いてフラックス処理を行って、めっき浴に侵漬」というフラックス法等があるが、いずれの条件で処理を行ったとしても本発明の効果は発揮できる。また、めっき前の焼鈍の手法によらず、加熱中の露点を―20℃以上とすることで、めっきの濡れ性やめっきの合金化の際の合金化反応に有利に働く。 Further, regarding annealing before plating, “after degreasing pickling, heating in a non-oxidizing atmosphere, annealing in a reducing atmosphere containing H 2 and N 2 , cooling to near the plating bath temperature, and invading the plating bath. Zenjimer method called “Kizuke”, a total reduction furnace method called “immersion in the plating bath after adjusting the atmosphere during annealing, first oxidizing the surface of the steel sheet, and then reducing it before cleaning by plating” Alternatively, there is a flux method such as “after degreasing and pickling a steel plate, and then fluxing it with ammonium chloride and soaking it in a plating bath”, etc. The effect of can be demonstrated. Regardless of the annealing method prior to plating, the dew point during heating is set to −20 ° C. or higher, which advantageously works on the wettability of the plating and the alloying reaction at the time of plating alloying.

なお、本冷延鋼板を電気めっきしても鋼板の有する引張強度、成形性、溶接性を何ら損なうことはない。すなわち、本発明鋼板は電気めっき用素材としても好適である。
また、本発明の加工性に優れた高強度高延性溶融亜鉛めっき鋼板の素材は、通常の製鉄工程である精錬、製鋼、鋳造、熱延、冷延工程を経て製造されることを原則とするが、その一部あるいは全部を省略して製造されるものでも、本発明に係わる条件を満足する限り、本発明の効果を得ることができる。
In addition, even if this cold-rolled steel sheet is electroplated, the tensile strength, formability, and weldability of the steel sheet are not impaired at all. That is, the steel sheet of the present invention is also suitable as a material for electroplating.
In addition, the material of the high-strength and high-ductility hot-dip galvanized steel sheet having excellent workability according to the present invention is manufactured in principle through refining, steelmaking, casting, hot rolling, and cold rolling processes, which are ordinary steelmaking processes. However, even if manufactured by omitting a part or all of them, the effects of the present invention can be obtained as long as the conditions according to the present invention are satisfied.

次に、本発明を実施例により詳細に説明する。   Next, the present invention will be described in detail with reference to examples.

表1に示す成分を有するスラブを、1220℃に加熱し、仕上げ熱延温度900℃にて熱間圧延を行い、水冷帯にて水冷の後、表2に示す温度で巻き取り処理を行った。熱延板を酸洗した後、厚み3mmの熱延板を1.4mmまで冷延を行い、冷延板とした。その後、これらの冷延板に表2に示す条件で焼鈍熱処理を行い、600℃−500℃間を0.5〜50℃/秒まで冷却し、各温度にて付加的な熱処理を250秒間行い、その後室温まで冷却した。最後に、得られた鋼板について0.3%の圧下率でスキンパス圧延を行った。   A slab having the components shown in Table 1 was heated to 1220 ° C., hot-rolled at a finish hot rolling temperature of 900 ° C., water-cooled in a water-cooled zone, and then wound up at a temperature shown in Table 2. . After pickling the hot-rolled sheet, a hot-rolled sheet having a thickness of 3 mm was cold-rolled to 1.4 mm to obtain a cold-rolled sheet. Thereafter, an annealing heat treatment is performed on these cold-rolled sheets under the conditions shown in Table 2, cooling between 600 ° C. and 500 ° C. to 0.5 to 50 ° C./second, and additional heat treatment is performed at each temperature for 250 seconds. And then cooled to room temperature. Finally, skin pass rolling was performed on the obtained steel sheet at a rolling reduction of 0.3%.

一部の鋼板については、上記と同様の手法で冷延まで行い、連続合金化溶融亜鉛めっき設備にて、熱処理と溶融亜鉛めっき処理を施した。溶融亜鉛めっきを施す鋼板については、焼鈍の後、600℃−460℃間を冷却し、その後、亜鉛めっき浴に通板し、室温まで10℃/秒の冷却速度で室温まで冷却した。合金化処理を行うものについては、亜鉛めっき浴に通板の後、500℃で30秒の合金化処理を行い、室温まで10℃/秒の冷却速度で室温まで冷却し、最後に、得られた鋼板について0.3%の圧下率でスキンパス圧延を行った。一部の鋼板については、めっき処理に引き続き合金化処理を行った。その際の目付け量としては、両面とも約50g/m2とした。めっき後の鋼板に、0.3%スキンパス圧延を施した。 About some steel plates, it carried out to cold rolling by the method similar to the above, and performed the heat processing and the hot dip galvanization process in the continuous alloying hot dip galvanization equipment. About the steel plate which hot-dip galvanized, after annealing, between 600 degreeC-460 degreeC was cooled, and it passed through the zinc plating bath, and it cooled to room temperature with the cooling rate of 10 degree-C / sec to room temperature. For the alloying treatment, after passing through a galvanizing bath, the alloying treatment is performed at 500 ° C. for 30 seconds, cooled to room temperature at a cooling rate of 10 ° C./second, and finally obtained. The steel plate was subjected to skin pass rolling at a rolling reduction of 0.3%. About some steel plates, the alloying process was performed following the plating process. The basis weight at that time was about 50 g / m 2 on both sides. The plated steel sheet was subjected to 0.3% skin pass rolling.

得られた冷延焼鈍板あるいは亜鉛めっき板について、引張試験を行い、YS,TS,Elを測定した。なお、降伏応力は0.2%オフセット法により測定した。
引張試験は、1.4mm厚の板から圧延方向に直角方向にJIS5号試験片を採取し、引張特性を評価した。
The obtained cold-rolled annealed plate or galvanized plate was subjected to a tensile test to measure YS, TS, and El. The yield stress was measured by the 0.2% offset method.
In the tensile test, a JIS No. 5 test piece was sampled in a direction perpendicular to the rolling direction from a 1.4 mm thick plate, and the tensile properties were evaluated.

曲げ性に関しては、圧延方向と垂直方向に100mm、圧延方向に30mmの試験片を採取し、90°曲げの割れ発生限界曲げ半径によって評価した。すなわち、ポンチ先端部の曲げ半径を0.5〜5.0mmまで、0.5mm刻みで曲げ性を評価し、割れ発生のない最小曲げ半径を限界曲げ半径と定義した。   With respect to bendability, a test piece of 100 mm in the direction perpendicular to the rolling direction and 30 mm in the rolling direction was sampled and evaluated by the crack generation limit bending radius of 90 ° bending. That is, the bendability was evaluated in increments of 0.5 mm from the bend radius of the punch tip to 0.5 to 5.0 mm, and the minimum bend radius without occurrence of cracking was defined as the limit bend radius.

スポット溶接性は次の条件で行った。電極(ドーム型):先端径6mmφ、加圧力 4.3kN、溶接電流:散り発生直前の電流(CE)及び(CE+1.5)kA、溶接時間:15サイクル、保持時間:10サイクル。溶接後、JIS Z 3137に従って、十字引張試験を行った。溶接電流をCEとする溶接を10回行い、その中の最低値をCTS(CE)とした。これに対し、溶接電流を散り発生領域である(CE+1.5)kAとする溶接を10回行った時のCTSの最低値をCTS(CE+1.5)とした。これら値の比(=CTS(CE+1.5)/CTS(CE))が、0.7未満を×、0.7以上0.8未満を△、0.8以上を○とした。   Spot weldability was performed under the following conditions. Electrode (dome type): tip diameter 6 mmφ, applied pressure 4.3 kN, welding current: current (CE) and (CE + 1.5) kA immediately before the occurrence of scattering, welding time: 15 cycles, holding time: 10 cycles. After welding, a cross tension test was performed according to JIS Z 3137. Welding with CE as the welding current was performed 10 times, and the lowest value among them was CTS (CE). On the other hand, CTS (CE + 1.5) was defined as the minimum value of CTS when welding was performed 10 times with the welding current being scattered (CE + 1.5) kA. The ratio of these values (= CTS (CE + 1.5) / CTS (CE)) was evaluated as x when less than 0.7, Δ when 0.7 or more and less than 0.8, and ○ when 0.8 or more.

めっき性、合金化反応はそれぞれ下記のように評価した。
めっき性
○:不めっきなし
△:不めっき若干あり
×:不めっき多数あり
・合金化反応性
○:表面外観に合金化ムラなし
△:表面外観に合金化ムラ若干あり
×:表面外観に合金化ムラ多い
Plating properties and alloying reactions were evaluated as follows.
Plating property ○: No unplating △: Slightly unplated ×: Many unplated ・ Alloying reactivity ○: No alloying unevenness on surface appearance △: Some alloying unevenness on surface appearance ×: Alloying on surface appearance Unevenness

測定した引張特性、曲げ性、穴拡げ性、めっき性、合金化反応性、スポット溶接性を表2に示す。本発明の鋼板は、いずれも溶接性に優れ、適度に高い降伏比と延性及び曲げ性にも優れていることがわかる。   Table 2 shows the measured tensile properties, bendability, hole expandability, plating properties, alloying reactivity, and spot weldability. It can be seen that the steel sheets of the present invention are all excellent in weldability, and are excellent in reasonably high yield ratio, ductility and bendability.

Figure 0004500197
Figure 0004500197

Figure 0004500197
Figure 0004500197

本発明は、自動車用の構造用部材、補強用部材、足廻り用部材に好適な、TSで780MPa以上の高強度と優れた延性、曲げ性、穴拡げ性及び溶接性を兼備する鋼板を安価に提供するものであり、自動車の軽量化に大きく貢献することが期待でき、産業上の効果は極めて高い。   The present invention is suitable for structural members, reinforcing members and suspension members for automobiles, and steel sheets having high strength of 780 MPa or more and excellent ductility, bendability, hole expansibility and weldability at TS are inexpensive. It can be expected to contribute greatly to the weight reduction of automobiles, and the industrial effect is extremely high.

Claims (7)

質量%で、C:0.06〜0.1%未満、Si:0.4〜0.8%、Mn:1.8〜2.2%、Nb:0.014〜0.029%、Ti:0.014〜0.029%、P:0.04%以下、S:0.01%以下、Al:0.1%以下、N:0.01%以下、O:0.0010〜0.0045%を含有し、残部がFeおよび不可避不純物の化学成分からなる鋳造スラブを直接または一旦冷却した後1200℃以上に加熱し、Ar3変態点以上で熱間圧延を完了し、630℃以下の温度域にて巻き取り、酸洗後、圧下率40〜70%の冷間圧延を施し、次いで、連続焼鈍ラインを通板するに際して、580〜750℃の温度範囲を平均加熱速度1.4℃/秒以上にて加熱し、750℃以上かつ900℃以下で焼鈍し、その後、600℃〜500℃間を平均冷却速度4〜200℃/秒で冷却し、400℃〜200℃間の温度域で30秒以上保持することを特徴とする、降伏比が0.5〜0.7、かつ、引張強度780MPa以上で成形性と溶接性に優れた高強度冷延鋼板の製造方法。 In mass%, C: 0.06 to less than 0.1%, Si: 0.4 to 0.8%, Mn: 1.8 to 2.2%, Nb: 0.014 to 0.029%, Ti : 0.014-0.029%, P: 0.04% or less, S: 0.01% or less, Al: 0.1% or less, N: 0.01% or less, O: 0.0010-0. The cast slab containing 0045% and the balance consisting of chemical components of Fe and inevitable impurities is directly or once cooled and then heated to 1200 ° C. or higher, and the hot rolling is completed at the Ar3 transformation point or higher, and the temperature is 630 ° C. or lower. In the zone, after pickling, cold rolling with a rolling reduction of 40 to 70%, and then passing through a continuous annealing line, a temperature range of 580 to 750 ° C. with an average heating rate of 1.4 ° C. / Heat for more than a second, anneal at 750 ° C or higher and 900 ° C or lower, then 600 ° C-500 ° C It cooled at an average cooling rate of 4 to 200 ° C. / sec, and wherein the holding in a temperature range between 400 ° C. to 200 DEG ° C. 30 seconds or more, the yield ratio is 0.5 to 0.7 and a tensile strength A method for producing a high-strength cold-rolled steel sheet having excellent formability and weldability at 780 MPa or more . 前記鋳造スラブが、さらに、質量%で、Cr:0.005〜3%を含有することを特徴とする請求項1に記載の、降伏比が0.5〜0.7、かつ、引張強度780MPa以上で成形性と溶接性に優れた高強度冷延鋼板の製造方法。 The cast slab further contains, by mass% Cr: according to claim 1, characterized in that it contains from 0.005 to 3%, the yield ratio is 0.5 to 0.7 and a tensile strength 780MPa A method for producing a high-strength cold-rolled steel sheet having excellent formability and weldability . 前記鋳造スラブが、さらに、質量%で、V、Wから選ばれる1種または2種を合計で0.005〜0.6%含有することを特徴とする請求項1又は請求項2に記載の、降伏比が0.5〜0.7、かつ、引張強度780MPa以上で成形性と溶接性に優れた高強度冷延鋼板の製造方法。 The said cast slab further contains 0.005-0.6% of 1 type or 2 types chosen from V and W by mass% in total, The Claim 1 or Claim 2 characterized by the above-mentioned. A method for producing a high-strength cold-rolled steel sheet having a yield ratio of 0.5 to 0.7 and a tensile strength of 780 MPa or more and excellent formability and weldability . 前記鋳造スラブが、さらに、質量%で、B:0.0001〜0.1%を含有することを特徴とする請求項1乃至請求項3のいずれか1項に記載の、降伏比が0.5〜0.7、かつ、引張強度780MPa以上で成形性と溶接性に優れた高強度冷延鋼板の製造方法。 The yield ratio according to any one of claims 1 to 3, wherein the cast slab further contains B: 0.0001 to 0.1% by mass . A method for producing a high-strength cold-rolled steel sheet having a formability and weldability of 5 to 0.7 and a tensile strength of 780 MPa or more . 前記鋳造スラブが、さらに、質量%で、Ca、Mg、REM、Yから選ばれる1種または2種以上を合計で0.0005〜0.04%含有することを特徴とする請求項1乃至請求項4の何れか1項に記載の、降伏比が0.5〜0.7、かつ、引張強度780MPa以上で成形性と溶接性に優れた高強度冷延鋼板の製造方法。 The cast slab further contains 0.0005 to 0.04% in total of one or more selected from Ca, Mg, REM, and Y by mass%. Item 5. The method for producing a high-strength cold-rolled steel sheet according to any one of Items 4 having a yield ratio of 0.5 to 0.7 and a tensile strength of 780 MPa or more and excellent in formability and weldability . 請求項1乃至請求項5のいずれか1項に記載の化学成分からなる鋳造スラブを直接または一旦冷却した後1200℃以上に加熱し、Ar3変態点以上で熱間圧延を完了し、630℃以下の温度域にて巻き取り、酸洗後、圧下率40〜70%の冷間圧延を施し、次いで、連続溶融亜鉛めっきラインを通板するに際し、580〜750℃の温度範囲を平均加熱速度1.4℃/秒以上にて加熱し、750℃以上かつ900℃以下で焼鈍し、600℃〜500℃間を平均冷却速度4〜200℃/秒で亜鉛めっき浴温度より40℃低い温度から前記亜鉛めっき浴温度より50℃高い温度までの温度範囲に冷却し、その後、亜鉛めっき浴に浸漬することを特徴とする、降伏比が0.5〜0.7、かつ、引張強度780MPa以上で成形性と溶接性に優れた高強度溶融亜鉛めっき鋼板の製造方法。 The cast slab comprising the chemical component according to any one of claims 1 to 5 is directly or once cooled and then heated to 1200 ° C or higher, and hot rolling is completed at an Ar3 transformation point or higher, and 630 ° C or lower. In the temperature range, after pickling, cold rolling with a rolling reduction of 40 to 70%, and then passing through a continuous hot dip galvanizing line, a temperature range of 580 to 750 ° C. with an average heating rate of 1 Heated at 4 ° C./second or higher, annealed at 750 ° C. or higher and 900 ° C. or lower, and between 600 ° C. and 500 ° C. at an average cooling rate of 4 to 200 ° C./second from a temperature lower by 40 ° C. than the galvanizing bath temperature. Cooling to a temperature range up to 50 ° C. higher than the galvanizing bath temperature, and then immersed in the galvanizing bath , forming at a yield ratio of 0.5 to 0.7 and a tensile strength of 780 MPa or more Excellent in weldability and weldability Method for manufacturing strength galvanized steel sheet. 請求項1乃至請求項5のいずれか1項に記載の化学成分からなる鋳造スラブを直接または一旦冷却した後1200℃以上に加熱し、Ar3変態点以上で熱間圧延を完了し、630℃以下の温度域にて巻き取り、酸洗後、圧下率40〜70%の冷間圧延を施し、次いで、連続溶融亜鉛めっきラインを通板するに際し、580〜750℃の温度範囲を平均加熱速度1.4℃/秒以上にて加熱し、750℃以上かつ900℃以下で焼鈍し、600℃〜500℃間を平均冷却速度4〜200℃/秒で亜鉛めっき浴温度より40℃低い温度から前記亜鉛めっき浴温度より50℃高い温度までの温度範囲に冷却し、その後、亜鉛めっき浴に浸漬し、460℃以上の温度で合金化処理を施した後、室温まで冷却することを特徴とする、降伏比が0.5〜0.7、かつ、引張強度780MPa以上で成形性と溶接性に優れた高強度合金化溶融亜鉛めっき鋼板の製造方法。 The cast slab comprising the chemical component according to any one of claims 1 to 5 is directly or once cooled and then heated to 1200 ° C or higher, and hot rolling is completed at an Ar3 transformation point or higher, and 630 ° C or lower. In the temperature range, after pickling, cold rolling with a rolling reduction of 40 to 70%, and then passing through a continuous hot dip galvanizing line, a temperature range of 580 to 750 ° C. with an average heating rate of 1 Heated at 4 ° C./second or higher, annealed at 750 ° C. or higher and 900 ° C. or lower, and between 600 ° C. and 500 ° C. at an average cooling rate of 4 to 200 ° C./second from a temperature lower by 40 ° C. than the galvanizing bath temperature. Cooled to a temperature range up to 50 ° C. higher than the galvanizing bath temperature, then immersed in a galvanizing bath, subjected to alloying treatment at a temperature of 460 ° C. or higher, and then cooled to room temperature , Yield ratio is 0.5-0. And, the method of producing a high strength galvannealed steel sheet excellent in formability and weldability in tensile strength 780MPa or more.
JP2005106506A 2005-04-01 2005-04-01 Manufacturing method of high-strength cold-rolled steel sheet, high-strength hot-dip galvanized steel sheet, and high-strength galvannealed steel sheet with excellent formability and weldability Active JP4500197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005106506A JP4500197B2 (en) 2005-04-01 2005-04-01 Manufacturing method of high-strength cold-rolled steel sheet, high-strength hot-dip galvanized steel sheet, and high-strength galvannealed steel sheet with excellent formability and weldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005106506A JP4500197B2 (en) 2005-04-01 2005-04-01 Manufacturing method of high-strength cold-rolled steel sheet, high-strength hot-dip galvanized steel sheet, and high-strength galvannealed steel sheet with excellent formability and weldability

Publications (2)

Publication Number Publication Date
JP2006283156A JP2006283156A (en) 2006-10-19
JP4500197B2 true JP4500197B2 (en) 2010-07-14

Family

ID=37405363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005106506A Active JP4500197B2 (en) 2005-04-01 2005-04-01 Manufacturing method of high-strength cold-rolled steel sheet, high-strength hot-dip galvanized steel sheet, and high-strength galvannealed steel sheet with excellent formability and weldability

Country Status (1)

Country Link
JP (1) JP4500197B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7404782B2 (en) 2019-10-31 2023-12-26 ニプロ株式会社 Manufacturing method for glass containers or glass container intermediate products

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100782760B1 (en) 2006-12-19 2007-12-05 주식회사 포스코 Method for manufacturing cold-rolled steel sheet and galvanized steel sheet having yield ratio and high strength
KR100782759B1 (en) 2006-12-19 2007-12-05 주식회사 포스코 Method for manufacturing cold-rolled steel sheet and galvanized steel sheet having yield ratio and high strength
JP5272547B2 (en) * 2007-07-11 2013-08-28 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet with low yield strength and small material fluctuation and method for producing the same
JP7288184B2 (en) 2019-03-22 2023-06-07 日本製鉄株式会社 Method for producing hot-dip Zn-Al-Mg plated steel sheet
CN114525448A (en) * 2022-01-19 2022-05-24 邯郸钢铁集团有限责任公司 780 MPa-grade reinforced forming hot-dip galvanized dual-phase steel and manufacturing method thereof
CN115261738B (en) * 2022-07-28 2023-08-15 马鞍山钢铁股份有限公司 560 MPa-level galvanized high-strength steel plate with excellent coating adhesion and production method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60224717A (en) * 1984-04-20 1985-11-09 Nippon Steel Corp Manufacture of high-tension cold-rolled steel sheet having superior cold workability and weldability
JP2001192767A (en) * 2000-01-06 2001-07-17 Kawasaki Steel Corp Low yield ratio high tensile strength hot dip galvanized steel plate excellent in ductility and producing method therefor
JP2001207235A (en) * 2000-01-25 2001-07-31 Kawasaki Steel Corp High tensile strength hot dip galvanized steel plate and producing method therefor
JP2002080931A (en) * 2000-09-07 2002-03-22 Nippon Steel Corp High strength cold rolled steel sheet and high strength plated steel sheet having excellent workability and spot weldability and method for producing the same
JP2002363685A (en) * 2001-06-07 2002-12-18 Nkk Corp Low yield ratio high strength cold rolled steel sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60224717A (en) * 1984-04-20 1985-11-09 Nippon Steel Corp Manufacture of high-tension cold-rolled steel sheet having superior cold workability and weldability
JP2001192767A (en) * 2000-01-06 2001-07-17 Kawasaki Steel Corp Low yield ratio high tensile strength hot dip galvanized steel plate excellent in ductility and producing method therefor
JP2001207235A (en) * 2000-01-25 2001-07-31 Kawasaki Steel Corp High tensile strength hot dip galvanized steel plate and producing method therefor
JP2002080931A (en) * 2000-09-07 2002-03-22 Nippon Steel Corp High strength cold rolled steel sheet and high strength plated steel sheet having excellent workability and spot weldability and method for producing the same
JP2002363685A (en) * 2001-06-07 2002-12-18 Nkk Corp Low yield ratio high strength cold rolled steel sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7404782B2 (en) 2019-10-31 2023-12-26 ニプロ株式会社 Manufacturing method for glass containers or glass container intermediate products

Also Published As

Publication number Publication date
JP2006283156A (en) 2006-10-19

Similar Documents

Publication Publication Date Title
JP4542515B2 (en) High strength cold-rolled steel sheet excellent in formability and weldability, high-strength hot-dip galvanized steel sheet, high-strength galvannealed steel sheet, manufacturing method of high-strength cold-rolled steel sheet, and manufacturing method of high-strength hot-dip galvanized steel sheet , Manufacturing method of high strength galvannealed steel sheet
US10196727B2 (en) High strength galvanized steel sheet having excellent bendability and weldability, and method of manufacturing the same
JP4737319B2 (en) High-strength galvannealed steel sheet with excellent workability and fatigue resistance and method for producing the same
JP4964494B2 (en) High-strength steel sheet excellent in hole expansibility and formability and method for producing the same
JP5194878B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and weldability and method for producing the same
US10544474B2 (en) High-strength cold-rolled steel sheet and method for producing the same
JP4730056B2 (en) Manufacturing method of high-strength cold-rolled steel sheet with excellent stretch flange formability
JP4781836B2 (en) Ultra-high strength steel sheet excellent in hydrogen embrittlement resistance, its manufacturing method, manufacturing method of ultra-high strength hot-dip galvanized steel sheet, and manufacturing method of ultra-high-strength galvannealed steel sheet
JP5493986B2 (en) High-strength steel sheet and high-strength hot-dip galvanized steel sheet excellent in workability and methods for producing them
JP5651964B2 (en) Alloyed hot-dip galvanized steel sheet excellent in ductility, hole expansibility and corrosion resistance, and method for producing the same
KR101410435B1 (en) High-strength hot-dip galvanized steel sheet with excellent formability and process for producing same
JP4926814B2 (en) High strength steel plate with controlled yield point elongation and its manufacturing method
WO2009125874A1 (en) High-strength steel sheets which are extremely excellent in the balance between burring workability and ductility and excellent in fatigue endurance, zinc-coated steel sheets, and processes for production of both
JP5412746B2 (en) High strength steel plate with good weldability and stretch flangeability
WO2010126161A1 (en) High-strength hot-dip zinc-coated steel sheet having excellent workability, weldability and fatigue properties, and process for production thereof
JP2005105367A (en) High yield ratio and high strength cold-rolled steel plate and high yield ratio and high strength galvanized steel plate excellent in weldability and ductility, and high yield ratio and high strength alloyed galvanized steel plate and its manufacturing method
JP4500197B2 (en) Manufacturing method of high-strength cold-rolled steel sheet, high-strength hot-dip galvanized steel sheet, and high-strength galvannealed steel sheet with excellent formability and weldability
KR102217100B1 (en) High-strength steel sheet and its manufacturing method
JP4211520B2 (en) High strength and high ductility galvanized steel sheet with excellent aging resistance and method for producing the same
JP5305149B2 (en) Hot-dip galvanized high-strength steel sheet with excellent formability and manufacturing method thereof
JP4407449B2 (en) High strength steel plate and manufacturing method thereof
JP5256689B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
JP5853884B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JP4288146B2 (en) Method for producing burring high-strength steel sheet with excellent softening resistance in weld heat affected zone
JP2006274378A (en) High yield ratio high strength cold rolled steel sheet, high yield ratio high strength hot dip galvanized steel sheet, high yield ratio high strength alloyed hot dip galvanized steel sheet, and method for producing them

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100416

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4500197

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350