JP5651964B2 - Alloyed hot-dip galvanized steel sheet excellent in ductility, hole expansibility and corrosion resistance, and method for producing the same - Google Patents

Alloyed hot-dip galvanized steel sheet excellent in ductility, hole expansibility and corrosion resistance, and method for producing the same Download PDF

Info

Publication number
JP5651964B2
JP5651964B2 JP2010031739A JP2010031739A JP5651964B2 JP 5651964 B2 JP5651964 B2 JP 5651964B2 JP 2010031739 A JP2010031739 A JP 2010031739A JP 2010031739 A JP2010031739 A JP 2010031739A JP 5651964 B2 JP5651964 B2 JP 5651964B2
Authority
JP
Japan
Prior art keywords
steel sheet
ductility
corrosion resistance
dip galvanized
hole expansibility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010031739A
Other languages
Japanese (ja)
Other versions
JP2011168816A (en
Inventor
幸一 佐野
幸一 佐野
千智 若林
千智 若林
裕之 川田
川田  裕之
力 岡本
力 岡本
川崎 薫
薫 川崎
吉永 直樹
直樹 吉永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2010031739A priority Critical patent/JP5651964B2/en
Publication of JP2011168816A publication Critical patent/JP2011168816A/en
Application granted granted Critical
Publication of JP5651964B2 publication Critical patent/JP5651964B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、優れた延性及び穴広げ性並びに耐食性を有する合金化溶融亜鉛めっき鋼板とその製造方法に関わるものである。 The present invention relates to an alloyed hot-dip galvanized steel sheet having excellent ductility, hole expansibility and corrosion resistance, and a method for producing the same.

自動車の車体、部品等の軽量化と安全性とを両立させるために、素材である鋼板の高強度化が進められている。一般に、鋼板を高強度化すると、延性や穴広げ性などが低下し、成形性が損なわれる。従って、自動車用の部材として高強度鋼板を使用するためには、強度、延性及び穴広げ性などのバランスが必要である。一方で、自動車用の部材として使用を目的とした場合、耐食性及び溶接性を確保する観点から、合金化溶融亜鉛めっき鋼板が好ましく、加工性及び耐食性に優れた高強度の合金化溶融亜鉛めっき鋼板が望まれている。   In order to achieve both weight reduction and safety of automobile bodies, parts, etc., the strength of steel plates as materials is being increased. In general, when the strength of a steel plate is increased, ductility, hole expansibility and the like are lowered, and formability is impaired. Therefore, in order to use a high-strength steel sheet as a member for automobiles, balances such as strength, ductility and hole expansibility are necessary. On the other hand, when it is intended for use as a member for automobiles, from the viewpoint of ensuring corrosion resistance and weldability, an alloyed hot-dip galvanized steel sheet is preferred, and a high-strength hot-dip alloyed hot-dip galvanized steel sheet excellent in workability and corrosion resistance Is desired.

延性の要求に対しては、これまでに、残留オーステナイトの変態誘起塑性を利用した、いわゆるTRIP鋼板が提案されている(例えば、特許文献1及び2)。これらは、SiやAl等の炭化物析出抑制元素を添加することによってオーステナイト中にCを濃化し、オーステナイトを安定化させている。一方、合金化溶融亜鉛めっき鋼板は、鋼板の表面に溶融亜鉛をつけた後、再加熱処理を行うことによって鉄と亜鉛を合金化させ作り込むことが出来る。   In response to the demand for ductility, so-called TRIP steel sheets utilizing transformation-induced plasticity of retained austenite have been proposed so far (for example, Patent Documents 1 and 2). These concentrate C in austenite and stabilize austenite by adding carbide precipitation inhibiting elements such as Si and Al. On the other hand, an alloyed hot-dip galvanized steel sheet can be made by alloying iron and zinc by performing reheating treatment after applying hot-dip zinc to the surface of the steel sheet.

しかし、TRIP鋼において合金化溶融亜鉛めっき鋼板を作ろうとした場合、オーステナイトの一部が炭化物に分解しやすく、残留オーステナイト量が減少するため、強度-延性バランスが低下してしまう。また、脆化相である炭化物が多量に析出することによって穴広げ性の低下などが問題となる。   However, when trying to make an alloyed hot-dip galvanized steel sheet in TRIP steel, a part of austenite is easily decomposed into carbides and the amount of retained austenite is reduced, so that the strength-ductility balance is lowered. In addition, since a large amount of carbide which is an embrittlement phase precipitates, there is a problem such as a decrease in hole expansibility.

また、炭化物が析出による残留オーステナイト量の減少分をC量の増加により補うと、溶接性の低下が問題になる。   Further, when the decrease in the amount of retained austenite due to precipitation of carbide is compensated for by an increase in the amount of C, a decrease in weldability becomes a problem.

特開昭61−217529号公報Japanese Patent Laid-Open No. 61-217529 特開平5−59429号公報Japanese Patent Laid-Open No. 5-59429

本発明は、強度及び延性を確保するために、鋼板中に一定量以上の残中γを分散させたTRIP鋼とし、かつ、耐食性を向上させるために鋼板の上面に合金化溶融亜鉛めっきを施した鋼板を造りこみ、延性及び穴広げ性に優れた耐食性に優れる高強度鋼板及びその製造方法を提供するものである。   In order to ensure strength and ductility, the present invention uses TRIP steel in which a certain amount or more of residual γ is dispersed in a steel sheet, and alloyed hot dip galvanizing is applied to the upper surface of the steel sheet in order to improve corrosion resistance. The present invention provides a high-strength steel plate excellent in corrosion resistance excellent in ductility and hole expansibility, and a method for producing the same.

本発明者らは、TRIP鋼の成分及び製造条件を最適化し、組織を制御することにより、延性、即ち、全伸び及び一様伸び並びに穴広げ性にも優れ、かつ、耐食性に優れる鋼板の製造に成功した。本発明の要旨は以下のとおりである。   The inventors have optimized the components and production conditions of TRIP steel and controlled the structure to produce a steel sheet that is excellent in ductility, that is, total elongation, uniform elongation, and hole expandability, and excellent in corrosion resistance. succeeded in. The gist of the present invention is as follows.

(1)質量%で、
C:0.10〜0.50%、
Mn:1.0〜3.0%
Si:0.005〜2.5%、
Al:0.005〜2.5%、
を含有し、
P:0.05%以下、
S:0.02%以下、
N:0.006%以下
を含有し、残部Fe及び不可避的不純物からなり、上記SiとAlの総和をSi+Al≧0.8%とし、ミクロ組織が、面積率で10〜75%のフェライト、2〜30%の残留オーステナイトに制限し、残部ベイナイトからなり、当該残留オーステナイト中のC量が0.8〜1.0%であって、引張強度と全伸びとの積が19000MPa・%以上、引張強度と一様伸びとの積が14000MPa・%以上、引張強度と一様伸びと穴広げ性との積:TS×u−EL×λが550GPa・%・%以上であることを特徴とする延性及び穴広げ性並びに耐食性に優れた合金化溶融亜鉛めっき鋼板。
(1) In mass%,
C: 0.10 to 0.50%,
Mn: 1.0-3.0%
Si: 0.005 to 2.5%,
Al: 0.005 to 2.5%,
Containing
P: 0.05% or less,
S: 0.02% or less,
N: 0.006% or less, consisting of Fe and unavoidable impurities, the sum of Si and Al is Si + Al ≧ 0.8%, the microstructure is ferrite with an area ratio of 10 to 75%, 2 to 30 % Of retained austenite, the balance is bainite, the amount of C in the retained austenite is 0.8 to 1.0%, the product of tensile strength and total elongation is 19000 MPa ·% or more, Ductility and hole characterized in that the product of uniform elongation is 14000 MPa ·% or more, the product of tensile strength, uniform elongation and hole expansibility: TS × u−EL × λ is 550 GPa ·% ·% or more Alloyed hot-dip galvanized steel sheet with excellent spreadability and corrosion resistance.

(2)さらに、質量%で、
Cr:0.01〜0.8%、
Mo:0.01〜0.3%、
Ni:0.01〜5%、
Cu:0.01〜5%
の1種又は2種以上を含有することを特徴とする上記(1)に記載の延性及び穴広げ性並びに耐食性に優れた合金化溶融亜鉛めっき鋼板。
(2) Furthermore, in mass%,
Cr: 0.01 to 0.8%
Mo: 0.01 to 0.3%,
Ni: 0.01 to 5%,
Cu: 0.01 to 5%
The alloyed hot-dip galvanized steel sheet having excellent ductility, hole expansibility and corrosion resistance as described in (1) above, comprising one or more of the above.

(3)さらに、質量%で、
Nb:0.001〜0.10%
Ti:0.001〜0.10%
V:0.001〜0.10%
W:0.001〜0.10%
の1種又は2種以上を含有することを特徴とする上記(1)又は(2)に記載の延性及び穴広げ性並びに耐食性に優れた合金化溶融亜鉛めっき鋼板。
(3) Furthermore, in mass%,
Nb: 0.001 to 0.10%
Ti: 0.001 to 0.10%
V: 0.001 to 0.10%
W: 0.001% to 0.10%
An alloyed hot-dip galvanized steel sheet excellent in ductility, hole expansibility and corrosion resistance as described in (1) or (2) above, comprising one or more of the above.

(4)さらに、質量%で、
B:0.0003〜0.003%以下
を含有することを特徴とする上記(1)〜(3)の何れか1項に記載の延性及び穴広げ性並びに耐食性に優れた合金化溶融亜鉛めっき鋼板。
(4) Furthermore, in mass%,
B: Alloyed hot dip galvanizing excellent in ductility, hole expansibility and corrosion resistance as described in any one of (1) to (3) above, containing 0.0003 to 0.003% or less steel sheet.

(5)さらに、質量%で、
Ca:0.0005〜0.05%、
REM:0.0005〜0.05%
Mg:0.0005〜0.05%
Zr:0.0005〜0.05%
の1種又は2種を含有することを特徴とする上記(1)〜(4)の何れか1項に記載の延性及び穴広げ性並びに耐食性に優れた合金化溶融亜鉛めっき鋼板。
(5) Furthermore, in mass%,
Ca: 0.0005 to 0.05%,
REM: 0.0005 to 0.05%
Mg: 0.0005 to 0.05%
Zr: 0.0005 to 0.05%
The alloyed hot-dip galvanized steel sheet having excellent ductility, hole expansibility and corrosion resistance according to any one of the above (1) to (4), comprising one or two of the following.

(6)ミクロ組織において、フェライトの平均結晶粒径が10μm以下であることを特徴とする上記(1)〜(5)の何れか1項に記載の延性及び穴広げ性並びに耐食性に優れた合金化溶融亜鉛めっき鋼板。 (6) The alloy having excellent ductility, hole expansibility and corrosion resistance according to any one of the above (1) to (5), wherein the ferrite has an average crystal grain size of 10 μm or less in a microstructure Hot-dip galvanized steel sheet.

(7)ミクロ組織において、マルテンサイト又は焼戻しマルテンサイトが25%以下であることを特徴とする(1)〜(6)のいずれか1項に記載の延性及び穴広げ性並びに耐食性に優れた合金化溶融亜鉛めっき鋼板。 (7) In the microstructure, martensite or tempered martensite is equal to or less than 25% (1) to (6) excellent alloy ductility and hole expansion and corrosion resistance according to any one of Hot-dip galvanized steel sheet.

(8)鋼板の引張強度が900MPa以上であることを特徴とする(1)〜(7)のいずれか1項に記載の延性及び穴広げ性並びに耐食性に優れた合金化溶融亜鉛めっき鋼板。 (8) Tensile strength of the steel sheet is characterized in that the on 900MPa or more (1) ductility and hole expansion and excellent galvannealed steel sheet in corrosion resistance according to any one of (1) to (7).

(9)(1)〜(5)の何れか1項に記載された組成の合金化溶融亜鉛めっき鋼板の製造方法であって、(1)から(4)の何れか1項に記載の組成を有する鋼を、溶製して鋳造し、熱間圧延、冷間圧延を施した後、Ac1〜Ac3℃の温度域に10〜300s保持した後、3〜200℃/sにて冷却を行い、300〜550℃の温度域にて、214362s保持し、溶融亜鉛めっきした後、470〜600℃にて合金化を行ない、且、当該溶融亜鉛めっきの後のオーステナイト中のC量を0.8〜1.0%に制御することを特徴とする延性及び穴広げ性並びに耐食性に優れた合金化溶融亜鉛めっき鋼板の製造方法。 (9) A method for producing a galvannealed steel sheet having the composition described in any one of (1) to (5), wherein the composition is any one of (1) to (4) After melting and casting steel having hot rolling and cold rolling, the steel is held in the temperature range of Ac1 to Ac3 ° C for 10 to 300 seconds and then cooled at 3 to 200 ° C / s. In the temperature range of 300 to 550 ° C., hold for 214 to 362 s, hot dip galvanize, then alloy at 470 to 600 ° C., and the amount of C in the austenite after the hot dip galvanization A method for producing an alloyed hot-dip galvanized steel sheet excellent in ductility, hole expansibility and corrosion resistance, characterized by being controlled to 0.8 to 1.0%.

(10)(9)に記載の合金化溶融亜鉛めっき鋼板の製造方法において、前記熱間圧延の仕上温度を1000〜850℃とし、仕上げ後に600℃以下の温度域まで10〜100℃/sの平均冷却速度で冷却し、600℃以下で巻き取ることを特徴とする延性及び穴広げ性並びに耐食性に優れた合金化溶融亜鉛めっき鋼板の製造方法。 (10) In the manufacturing method of the alloyed hot-dip galvanized steel sheet according to (9), the finishing temperature of the hot rolling is 1000 to 850 ° C, and 10 to 100 ° C / s up to a temperature range of 600 ° C or less after finishing. A method for producing an galvannealed steel sheet excellent in ductility, hole expansibility and corrosion resistance, characterized by cooling at an average cooling rate and winding up at 600 ° C. or less.

(11)(9)又は(10)に記載の延性及び耐食性に優れた合金化溶融亜鉛めっき鋼板の製造方法において、前記冷間圧延の圧下率を40〜85%とすることを特徴とする延性及び穴広げ性並びに耐食性に優れた合金化溶融亜鉛めっき鋼板の製造方法。 (11) In the method for producing an alloyed hot-dip galvanized steel sheet having excellent ductility and corrosion resistance as described in (9) or (10), the reduction ratio of the cold rolling is 40 to 85%. And a method for producing an alloyed hot-dip galvanized steel sheet having excellent hole expandability and corrosion resistance.

本発明によれば、延性及び穴広げ等の成形性並びに耐食性に優れた高強度鋼板を提供することができる。この鋼板を使用すれば、特に、自動車の軽量化と安全性を両立し、かつ、耐食性も確保できることが可能になるなど、産業上の貢献が極めて顕著である。   ADVANTAGE OF THE INVENTION According to this invention, the high strength steel plate excellent in formability, such as ductility and hole expansion, and corrosion resistance can be provided. If this steel plate is used, industrial contributions are particularly remarkable, such as making it possible to achieve both weight reduction and safety of automobiles and secure corrosion resistance.

セメンタイトの重量密度に及ぼす残留γ中のC量の影響Effect of C content in residual γ on weight density of cementite 強度、延性及び穴広げ性のバランスに及ぼす残留γ中のC量の影響Effect of C content in residual γ on balance of strength, ductility and hole expansibility

本発明者らは鋭意研究を重ねた結果、残留オーステナイト中のC量を0.8〜1.0%に制限することによって、延性及び穴広げ性等の成形性並びに耐食性に優れた高強度の鋼板を作製出来ることを見出して本発明を完成するに至った。以下にその理由について説明する。   As a result of intensive studies, the present inventors have limited the amount of C in the retained austenite to 0.8 to 1.0%, thereby achieving high strength with excellent moldability such as ductility and hole expansibility and corrosion resistance. The inventors have found that a steel plate can be produced and have completed the present invention. The reason will be described below.

TRIP鋼は、焼鈍の過程において、フェライトやベイナイト変態をさせることによってオーステナイト中のCを濃化し、オーステナイトが室温でも安定的に存在する。しかし、耐食性及びスポット溶接性の高い鋼板である合金化溶融亜鉛めっき鋼板を作り込むためには、焼鈍後、めっき浴を通り合金化処理を行う必要がある。合金化処理は480℃以上の温度で保持するプロセスであるが、この合金化処理中にオーステナイトからセメンタイトが析出すると、当該オーステナイト中のC量が低下し、強度と延性のバランスが減少する。また、穴広げ試験時において割れの起点となり、成形性が劣化する。   TRIP steel concentrates C in austenite by ferrite and bainite transformation in the annealing process, and austenite exists stably even at room temperature. However, in order to make an alloyed hot-dip galvanized steel sheet, which is a steel sheet having high corrosion resistance and spot weldability, it is necessary to perform an alloying treatment through a plating bath after annealing. The alloying treatment is a process of holding at a temperature of 480 ° C. or higher. However, when cementite is precipitated from austenite during the alloying treatment, the amount of C in the austenite is lowered, and the balance between strength and ductility is reduced. Moreover, it becomes a starting point of a crack at the time of a hole expansion test, and a moldability deteriorates.

そこで本発明者らは、当該セメンタイトの析出量を少なくする方法の調査を行った。焼鈍の温度や加熱時間を調整し、鋼中の組織分率を調整した結果、残留オーステナイト中のC量を0.8〜1.0%に調整することによって、図1のようにセメンタイトの析出量が減少し、また、図2のように強度、延性、穴広げ性のバランスに優れることが分かった。   Therefore, the present inventors investigated a method for reducing the amount of cementite deposited. As a result of adjusting the annealing temperature and heating time and adjusting the structural fraction in the steel, the amount of C in the retained austenite is adjusted to 0.8 to 1.0%, so that the precipitation of cementite as shown in FIG. The amount was reduced, and it was found that the balance of strength, ductility and hole expandability was excellent as shown in FIG.

残留オーステナイト中のC量の下限が0.8%としたのは、0.8%未満ではオーステナイトが不安定であるため、TRIP効果が小さく、延性の向上が小さいためである。一方、残留オーステナイト中のC量の上限を1.0%としたのは、それを超えた場合、オーステナイトから炭化物が多量に発生し、穴広げ試験時において割れの起点となり、強度、延性及び穴広げ性のバランスが減少するためである。残留オーステナイト中のC量が1.0%を超えると炭化物が析出しやすい理由は、明確にはなっていないが、一般的にオーステナイト中のC量が高いほどセメンタイト析出の駆動力が大きくなることに起因しているものと考えられる。   The lower limit of the amount of C in the retained austenite is set to 0.8% because if less than 0.8%, austenite is unstable, the TRIP effect is small, and the ductility improvement is small. On the other hand, the upper limit of the amount of C in the retained austenite is set to 1.0%. When the upper limit is exceeded, a large amount of carbide is generated from austenite, which becomes the starting point of cracking during the hole expansion test, and the strength, ductility and hole This is because the balance of spreadability is reduced. The reason why carbide tends to precipitate when the amount of C in the retained austenite exceeds 1.0% is not clear, but generally the higher the amount of C in the austenite, the greater the driving force for precipitation of cementite. It is thought to be caused by

次に、本発明の鋼板の成分について説明する。   Next, the components of the steel sheet of the present invention will be described.

Cは、鋼の強度を高め、残留オーステナイトを確保するために、極めて重要な元素である。十分な残留オーステナイト量を得るためには、0.10%以上のC量が必要となる。一方、Cを過剰に含有すると、溶接性を損なうため、C量の上限を0.50%とした。   C is an extremely important element for increasing the strength of the steel and securing retained austenite. In order to obtain a sufficient amount of retained austenite, a C amount of 0.10% or more is required. On the other hand, when C is contained excessively, weldability is impaired, so the upper limit of the C content is set to 0.50%.

Mnは、オーステナイトを安定化させ、焼入れ性を高める元素である。十分な焼入れ性を確保するためには、1.0%以上のMnの添加が必要である。一方、Mnを過剰に添加すると延性を損なうため、Mn量の上限を3.0%とする。   Mn is an element that stabilizes austenite and improves hardenability. In order to ensure sufficient hardenability, it is necessary to add 1.0% or more of Mn. On the other hand, if Mn is added excessively, ductility is impaired, so the upper limit of the amount of Mn is made 3.0%.

Si、Alは、脱酸剤であり、それぞれ0.005%以上の添加が好ましい。また、焼鈍時にフェライトを安定化する元素であり、且、ベイナイト変態時のセメンタイト析出をおさえるためオーステナイトのC濃度を高め、残留オーステナイトの確保に寄与する。当該セメンタイト析出を抑制する効果はSiとAlの総和が0.8以上で得られるため、Si+Al≧0.8%と制限した。Si、Alが高いほどその効果は大きくなるが、SiやAlを過剰に添加すると、表面性状、塗装性、溶接性などの劣化を招くので、それぞれ上限を2.5%とする。   Si and Al are deoxidizers, and 0.005% or more of each is preferably added. In addition, it is an element that stabilizes ferrite during annealing, and suppresses precipitation of cementite during bainite transformation, thereby increasing the C concentration of austenite and contributing to securing retained austenite. The effect of suppressing the precipitation of cementite was obtained when the total sum of Si and Al was 0.8 or more, and thus was limited to Si + Al ≧ 0.8%. The higher the Si and Al, the greater the effect. However, excessive addition of Si or Al causes deterioration of the surface properties, paintability, weldability, etc., so the upper limit is set to 2.5%.

Pは、不純物であり、過剰に含有すると延性や溶接性を損なう。したがって、P量の上限を0.05%とする。   P is an impurity, and if contained excessively, ductility and weldability are impaired. Therefore, the upper limit of the P content is 0.05%.

Sは、不純物であり、過剰に含有すると、熱間圧延によって伸張したMnSが生成し、延性及び穴広げ性などの成形性の劣化を招く。したがって、S量の上限を0.02%とする。   S is an impurity, and if contained excessively, MnS stretched by hot rolling is generated, which causes deterioration of formability such as ductility and hole expansibility. Therefore, the upper limit of the S amount is 0.02%.

Nは、不純物であり、0.006%を超えると延性の劣化を招く。したがって、N量の上限を0.006%とする。   N is an impurity. When it exceeds 0.006%, ductility is deteriorated. Therefore, the upper limit of the N amount is set to 0.006%.

更に、Cr、Mo、Ni、Cuの1種又は2種以上を添加してもよい。Cr、Mo、Ni,Cuは、鋼板の強度を向上させる元素である。この効果を得るためには0.01%以上の添加が必要である。しかし、これらの元素を過剰に添加すると、強度が高くなり、延性を損なうことがある。したがって、上限をそれぞれ、Mo:0.3%、Cr:0.8%、Ni:5%、Cu:5%にすることが好ましい。   Furthermore, you may add 1 type, or 2 or more types of Cr, Mo, Ni, Cu. Cr, Mo, Ni, and Cu are elements that improve the strength of the steel sheet. In order to obtain this effect, addition of 0.01% or more is necessary. However, when these elements are added excessively, the strength increases and ductility may be impaired. Therefore, it is preferable to set the upper limit to Mo: 0.3%, Cr: 0.8%, Ni: 5%, and Cu: 5%, respectively.

Nb,Ti,V,Wは微細な炭化物、窒化物または炭窒化物を生成する元素であり、強度確保に有効であるため、必要に応じて1種または2種以上を添加することが可能である。これを達成するためには,0.010%の添加が必要である。従って下限を0.010%とした。一方で,過度の添加は、強度が上昇しすぎて延性が低下するため、上限を0.10%とした。   Nb, Ti, V, and W are elements that generate fine carbides, nitrides, or carbonitrides, and are effective in securing strength. Therefore, it is possible to add one or more as necessary. is there. To achieve this, an addition of 0.010% is necessary. Therefore, the lower limit was made 0.010%. On the other hand, excessive addition increases the strength too much and lowers the ductility, so the upper limit was made 0.10%.

Bは変態を遅らせ鋼の強度を高めることができる。添加する量が少ないと焼入れ性が弱く、高温でフェライト形成を促すために、必要な強度を得ることができない。従って、Bの下限を0.0003%とした。一方で、多量に添加すると焼き入れ性が強くなりすぎて、フェライト,ベイナイト変態が遅くなるため残留オーステナイト相へのC濃化を遅れさせてしまう。従って、上限を0.003%とした。   B can delay the transformation and increase the strength of the steel. If the amount to be added is small, the hardenability is weak and the required strength cannot be obtained to promote ferrite formation at high temperatures. Therefore, the lower limit of B is set to 0.0003%. On the other hand, if it is added in a large amount, the hardenability becomes too strong and the ferrite and bainite transformation is slowed down, so that the concentration of C into the retained austenite phase is delayed. Therefore, the upper limit was made 0.003%.

鋼はさらに、Ca、Mg、Zr、REM(希土類元素)の1種または2種以上を、単独または合計で0.0005%以上、0.05%以下含有することができる。Ca、Mg、Zr、REMは、硫化物や酸化物の形状を制御して局部延性や穴拡げ性を向上させる。この目的のためには、これらの元素の1種または2種以上を単独または合計で0.0005%以上添加する必要がある。しかし、過度の添加は加工性を劣化させるため、その上限を0.05%とした。   The steel can further contain one or more of Ca, Mg, Zr, and REM (rare earth elements) alone or in total from 0.0005% to 0.05%. Ca, Mg, Zr, and REM improve the local ductility and hole expansibility by controlling the shapes of sulfides and oxides. For this purpose, it is necessary to add one or more of these elements alone or in total of 0.0005% or more. However, excessive addition deteriorates workability, so the upper limit was made 0.05%.

次に、本発明の鋼板のミクロ組織について説明する。本発明の鋼板のミクロ組織は、フェライト、残留オーステナイト、マルテンサイトと、残部がベイナイトからなる。   Next, the microstructure of the steel sheet of the present invention will be described. The microstructure of the steel sheet of the present invention is composed of ferrite, retained austenite, martensite, and the balance is bainite.

フェライトは、延性に優れる組織であるが、多すぎると強度が減少してしまう。開発の狙いの強度レベルとすればよいが、10〜75%とすることによって、優れた強度と延性のバランスが得られる。   Ferrite is a structure with excellent ductility, but if it is too much, the strength decreases. The strength level may be a target level of development, but by setting the strength level to 10 to 75%, an excellent balance between strength and ductility can be obtained.

残留オーステナイトは、変態誘起塑性によって延性、特に一様伸びを高める組織であり、面積率で、2%以上が必要である。また、加工によってマルテンサイトに変態するため、強度の向上にも寄与する。残留オーステナイトの面積は高いほど好ましいが、面積率で30%超の残留オーステナイトを確保するためには、C、Si量を増加させる必要があり、溶接性や表面性状を損なう。したがって、残留オーステナイトの面積率の上限を30%以下とする。   Residual austenite is a structure that increases ductility, particularly uniform elongation, by transformation-induced plasticity, and an area ratio of 2% or more is required. Moreover, since it transforms into martensite by processing, it contributes to the improvement of strength. The higher the area of retained austenite, the better. However, in order to ensure retained austenite with an area ratio of more than 30%, it is necessary to increase the amount of C and Si, which impairs weldability and surface properties. Therefore, the upper limit of the area ratio of retained austenite is set to 30% or less.

更にマルテンサイト又は焼戻しマルテンサイトを25%以下含んでいてもよい。これらの組織は硬質の組織であり、強度の確保に有効である。しかし、本発明では、延性を確保するために、面積率で25%を上限とする。   Furthermore, it may contain 25% or less of martensite or tempered martensite. These structures are hard structures and are effective in securing strength. However, in the present invention, in order to ensure ductility, the upper limit is 25% in area ratio.

以下に上記組織の同定方法を示す。   A method for identifying the tissue will be described below.

ミクロ組織の観察は、ナイタール腐食した試料を用いて、光学顕微鏡によって行う。フェライトの面積率は、組織写真を画像解析して求める。また、光学顕微鏡で、パーライトが観察されないことを確認し、フェライト、残留オーステナイト、マルテンサイトの残部をベイナイトとする。   The microstructure is observed with an optical microscope using a sample that has undergone nital corrosion. The area ratio of the ferrite is obtained by analyzing the structure photograph. Moreover, it is confirmed by an optical microscope that pearlite is not observed, and the remainder of ferrite, retained austenite, and martensite is defined as bainite.

マルテンサイトは、光学顕微鏡では、残留オーステナイトとの判別が困難である。そのため、まず、レペラ腐食した試料を用いて、光学顕微鏡による組織観察を行い、画像解析によって残留オーステナイトとマルテンサイトの合計の面積率を求める。次に、残留オーステナイトの面積率は、X線回折法によって測定する。そして、光学顕微鏡によって測定した残留オーステナイトとマルテンサイトの合計の面積率から、X線回折によって測定した残留オーステナイトの面積率を減じて算出する。   Martensite is difficult to distinguish from retained austenite with an optical microscope. For this reason, first, a structure subjected to repeller corrosion is observed with an optical microscope, and the total area ratio of residual austenite and martensite is obtained by image analysis. Next, the area ratio of retained austenite is measured by an X-ray diffraction method. Then, the area ratio of residual austenite measured by X-ray diffraction is subtracted from the total area ratio of residual austenite and martensite measured by an optical microscope.

フェライトの平均結晶粒径は、10μm以下にすることが好ましい。10μm以下にした場合、組織が微細になるため、高強度化するが、微細になった分均一化するため、歪が均一の導入されるため延性や穴拡げが良化する。   The average crystal grain size of ferrite is preferably 10 μm or less. When the thickness is 10 μm or less, the structure becomes fine, so that the strength is increased. However, since the structure is made uniform, the strain is uniformly introduced, and the ductility and hole expansion are improved.

フェライトの結晶粒径は、光学顕微鏡、走査型電子顕微鏡によって組織写真を撮影し、切断法、画像処理によって求めることができる。   The crystal grain size of ferrite can be determined by taking a structure photograph with an optical microscope or a scanning electron microscope, and by a cutting method or image processing.

次に、本発明の鋼板の引張特性について説明する。
引張強度は、900MPa以上であることが好ましい。これは、鋼板を自動車のメンバー類やピラー類の素材として使用する際、高強度化によって板厚を減少させ、軽量化に寄与するためである。また、プレス成形をするためには、主として絞り成形が重要となる。従って、強度と延性の積が高いほどよく、TS×t-EL≧19000MPa%、TS×u-EL≧14000MPa%とする必要がある。また、絞り成形以外にも穴広げ加工が必要な部材には、延性及び穴広げ性が必要であるため、引張強度、一様伸び及び穴広げ性の積550GPa・%%以上にすることが必要である。
Next, the tensile properties of the steel sheet of the present invention will be described.
The tensile strength is preferably 900 MPa or more. This is because when a steel plate is used as a material for automobile members or pillars, the plate thickness is reduced by increasing the strength, thereby contributing to weight reduction. In order to perform press molding, drawing is mainly important. Therefore, rather than good the higher the product of strength and ductility, TS × t-EL ≧ 19000MPa %, it is necessary to make the TS × u-EL ≧ 14000MPa% . In addition to drawing, members that require hole expansion need to have ductility and hole expandability, so the product of tensile strength, uniform elongation, and hole expandability must be 550 GPa · %% or more. It is.

次に、本発明の鋼板の製造方法について説明する。   Next, the manufacturing method of the steel plate of this invention is demonstrated.

本発明の鋼板は、鋼を常法で溶製し、鋳造して得られた鋼片を熱間圧延し、熱延鋼板に、酸洗、冷間圧延、焼鈍を施して製造する。熱間圧延は、通常の連続熱間圧延ラインで行い、冷間圧延後の焼鈍は、連続焼鈍ラインで行う。更に、冷延鋼板には、スキンパス圧延を行ってもよい。   The steel sheet of the present invention is produced by hot rolling a steel piece obtained by melting and casting steel in a conventional manner, and subjecting the hot-rolled steel sheet to pickling, cold rolling, and annealing. Hot rolling is performed with a normal continuous hot rolling line, and annealing after cold rolling is performed with a continuous annealing line. Further, skin pass rolling may be performed on the cold-rolled steel sheet.

溶鋼は通常の高炉法で溶製されたものの他、電炉法のようにスクラップを多量に使用したものでもよい。スラブは、通常の連続鋳造プロセスで製造されたものでもよいし、薄スラブ鋳造で製造されたものでもよい。   The molten steel may be one produced by a normal blast furnace method or one using a large amount of scrap as in the electric furnace method. The slab may be manufactured by a normal continuous casting process or may be manufactured by thin slab casting.

鋼片を加熱し、熱間圧延を行う。鋼片の加熱温度は特に規定しないが、変形抵抗を低下させるために、1000℃以上にすることが好ましい。また、炭化物を固溶させるために、加熱温度を1050℃以上にすることが更に好ましい。鋼片の加熱温度の上限は、粒径の粗大化を抑制するために、1250℃以下にすることが好ましい。   The steel slab is heated and hot rolled. The heating temperature of the steel slab is not particularly specified, but is preferably set to 1000 ° C. or higher in order to reduce the deformation resistance. In order to dissolve the carbide, it is more preferable to set the heating temperature to 1050 ° C. or higher. The upper limit of the heating temperature of the steel slab is preferably 1250 ° C. or lower in order to suppress the coarsening of the particle size.

熱間圧延の仕上温度は、高すぎるとスケール形成を助長し、製品の表面品位及び耐食性等に悪影響を及ぼす。したがって、熱間圧延の仕上温度を1000℃以下とする。一方、熱間圧延の仕上温度が850℃未満であると、(α+γ)二相域圧延となり、板の形状が悪くなる場合があるからである。   If the finishing temperature of the hot rolling is too high, scale formation is promoted, and the surface quality and corrosion resistance of the product are adversely affected. Therefore, the finishing temperature of hot rolling is set to 1000 ° C. or less. On the other hand, when the finishing temperature of hot rolling is less than 850 ° C., (α + γ) two-phase region rolling occurs, and the shape of the plate may be deteriorated.

仕上圧延を行った後、冷却し、巻取り、コイルとする。冷却速度は規定しないが、層状のパーライトを抑制するために、10℃/s以上にすることが好ましい。更に、粒径を微細化するには、冷却速度は30℃/s以上が好ましい。冷却速度の上限は、巻取温度を精度良く制御するために、100℃/s以下が好ましい。   After finishing rolling, it is cooled, wound and coiled. Although the cooling rate is not specified, it is preferably 10 ° C./s or more in order to suppress layered pearlite. Furthermore, in order to refine the particle size, the cooling rate is preferably 30 ° C./s or more. The upper limit of the cooling rate is preferably 100 ° C./s or less in order to accurately control the coiling temperature.

冷却後の巻取温度を600℃以下が好ましい。巻取温度が600℃を超えると、熱延組織にフェライト-パーライトの粗大で不均一な組織となり、その影響を引き継ぎ冷延鋼板のフェライトの平均粒径が10μm超になるためである。   The coiling temperature after cooling is preferably 600 ° C. or lower. This is because when the coiling temperature exceeds 600 ° C., a ferrite-pearlite coarse and non-uniform structure is formed in the hot-rolled structure, and the average grain diameter of the ferrite of the cold-rolled steel sheet is over 10 μm.

冷間圧延は、焼鈍後のミクロ組織を微細化するため、圧下率を40%以上とする。一方、冷間圧延の圧下率は、85%を超えると、加工硬化によって負荷が高くなり、生産性を損なう。したがって、冷間圧延の圧下率は、40〜85%とする。   In cold rolling, the reduction ratio is set to 40% or more in order to refine the microstructure after annealing. On the other hand, if the rolling reduction of cold rolling exceeds 85%, the load increases due to work hardening, and the productivity is impaired. Therefore, the rolling reduction of cold rolling is 40 to 85%.

冷間圧延後、焼鈍を施す。本発明では、鋼板のミクロ組織を制御するために、焼鈍の加熱温度及び冷却条件が極めて重要である。   After cold rolling, annealing is performed. In the present invention, in order to control the microstructure of the steel sheet, the heating temperature and cooling conditions for annealing are extremely important.

焼鈍の加熱は、冷間圧延によって形成された加工組織を再結晶させ、C等のオーステナイト安定化元素をオーステナイトに濃化させることを目的とする。本発明では、焼鈍の加熱温度は、フェライトとオーステナイトとが共存する温度とする。焼鈍の加熱温度がAc1未満の場合には、焼鈍温度で得られるオーステナイト量が、少なく、鋼板中に十分な残留オーステナイトを残すことが出来ない。また、焼鈍の高温化は結晶粒の粗大化を招くので焼鈍温度の上限をAc3とした。   The purpose of annealing heating is to recrystallize the work structure formed by cold rolling and to concentrate austenite stabilizing elements such as C into austenite. In the present invention, the heating temperature for annealing is a temperature at which ferrite and austenite coexist. When the annealing heating temperature is less than Ac1, the amount of austenite obtained at the annealing temperature is small, and sufficient residual austenite cannot be left in the steel sheet. Moreover, since the higher temperature of annealing leads to coarsening of crystal grains, the upper limit of the annealing temperature was set to Ac3.

焼鈍の保持時間は、特に規定しないが、炭化物を十分に固溶させ、オーステナイトのC量を確保するために、10s以上保持することが好ましい。一方、焼鈍の保持時間は、300sを超えると生産性が低下する。したがって、焼鈍の加熱温度は、10〜300sとすることが好ましい。   The holding time for annealing is not particularly specified, but it is preferable to hold for 10 s or more in order to sufficiently dissolve the carbide and to secure the C amount of austenite. On the other hand, if the annealing holding time exceeds 300 s, the productivity decreases. Therefore, the heating temperature for annealing is preferably 10 to 300 s.

焼鈍後の冷却は、オーステナイト相からフェライト相への変態を促して、未変態のオーステナイト相中にCを濃化させてオーステナイトの安定化を図るのに重要である。この冷却速度を3℃/sec未満にするとパーライトが生成してしまう。一方、冷却速度が200℃/sec超の場合にはフェライト変態を十分進行させることが出来ないので焼鈍後の冷却速度は3〜200℃/secとする。   Cooling after annealing is important for promoting the transformation from the austenite phase to the ferrite phase and concentrating C in the untransformed austenite phase to stabilize the austenite. When this cooling rate is less than 3 ° C./sec, pearlite is generated. On the other hand, when the cooling rate exceeds 200 ° C./sec, the ferrite transformation cannot sufficiently proceed, so the cooling rate after annealing is set to 3 to 200 ° C./sec.

冷却温度は300〜550℃とする。300℃未満ではマルテンサイトが発生しやすくなるからであり、550℃を超えるとベイナイト変態を進行させることが困難となるからであり、又、ベイナイト変態中にセメンタイトを生成しやすいためである。   Cooling temperature shall be 300-550 degreeC. This is because martensite is likely to be generated at a temperature lower than 300 ° C., and it is difficult to cause the bainite transformation to proceed at a temperature higher than 550 ° C., and cementite is likely to be generated during the bainite transformation.

以上のようにして製造した冷延鋼板を溶融亜鉛のめっき浴に浸漬してめっきを施す。浴の温度は450〜475℃とする。450℃より低い場合には、溶融亜鉛の粘度が高く、ワイピングでの払拭に適さない、ボトムドロスを生じやすいなどの問題があるからであり、一方、475℃を超えて高い場合には酸化亜鉛の生成の増大、亜鉛蒸気量の増大などの問題を生じるからである。   The cold-rolled steel sheet produced as described above is immersed in a hot dip zinc plating bath for plating. The bath temperature is 450-475 ° C. If the temperature is lower than 450 ° C, the viscosity of the molten zinc is high, which is not suitable for wiping by wiping, and tends to cause bottom dross. This is because problems such as an increase in production and an increase in the amount of zinc vapor occur.

これらの焼鈍〜めっき浴浸漬までのプロセスによりオーステナイト中のC量を0.8〜1.0%に制限することが重要である。そのため、冷却後の300〜550℃の温度域において、亜鉛めっき処理を含めた保持時間を214362sに制限する必要がある。当該温度域において、ベイナイト変態が進みオーステナイト中にCが濃化する。214未満の場合、オーステナイト中のC濃度が0.8%以下となり、合金化処理後の冷却中にマルテンサイトに多量変態し、本発明の残留オーステナイト分率を達成できない。一方、362sを超える場合、オーステナイト中のCが1.0%を超え、その後の合金化処理中に多量のセメンタイトが析出し、延性及び穴広げ性が大きく劣化する。そのため、表2の実施例に記載されたように、冷却後の300〜550℃の温度域において、亜鉛めっき処理を含めた保持時間を214〜362sに制限する必要がある。当該温度領域において、ベイナイト変態が進みオーステナイト中にCが濃化する。上記保持時間の下限値未満の場合、オーステナイト中のC濃度が0.8%以下となり、合金化処理後の冷却中にマルテンサイトに多量変態し、本発明の残留オーステナイト分率を達成できない。一方、上記保持時間の上限値を超える場合、オーステナイト中のCが1.0%を超え、その後の合金化処理中に多量のセメンタイトが析出し、延性及び穴広げ性が大きく劣化する。当該制限によって、残留γ中のC量も0.8〜1.0%にすることが出来、且、その後の合金化処理によって炭化物が析出し難くなる。 It is important to limit the amount of C in the austenite to 0.8 to 1.0% by these processes from annealing to plating bath immersion. Therefore, in the temperature range of 300 to 550 ° C. after cooling, it is necessary to limit the holding time including the galvanizing process to 214 to 362 s. In the temperature range, bainite transformation proceeds and C is concentrated in austenite. If it is less than 214 s, the C concentration in the austenite becomes 0.8% or less, and a large amount of martensite is transformed during cooling after the alloying treatment, so that the retained austenite fraction of the present invention cannot be achieved. On the other hand, when it exceeds 362 s, C in the austenite exceeds 1.0%, and a large amount of cementite is precipitated during the subsequent alloying treatment, so that ductility and hole expandability are greatly deteriorated. Therefore, as described in the examples of Table 2, in the temperature range of 300 to 550 ° C. after cooling, it is necessary to limit the holding time including the galvanizing treatment to 214 to 362 s. In the said temperature range, bainite transformation advances and C concentrates in austenite. When the retention time is less than the lower limit, the C concentration in the austenite is 0.8% or less, and a large amount of martensite is transformed during cooling after the alloying treatment, so that the retained austenite fraction of the present invention cannot be achieved. On the other hand, when the upper limit value of the holding time is exceeded, C in the austenite exceeds 1.0%, and a large amount of cementite is precipitated during the subsequent alloying treatment, so that ductility and hole expandability are greatly deteriorated. Due to this limitation, the amount of C in the residual γ can be made 0.8 to 1.0%, and carbides are less likely to precipitate by the subsequent alloying treatment.

引き続いて470〜600℃の温度で合金化処理を行う。合金化処理温度が470度未満の場合には合金化が進行しないが、或いは合金化の進行が不十分で合金化溶融亜鉛めっき層を形成することが出来ず、鋼板の表面が加工性の劣るη相やζ相に覆われるためである。また、処理温度が600℃を超えて高い場合には、合金化が進みすぎて加工時におけるめっき密着力が低下したり、また、合金化中に合金化前のオーステナイトが炭化物を含むベイナイトやパーライトに変態してしまい引張特性が劣化したりするためである。   Subsequently, an alloying treatment is performed at a temperature of 470 to 600 ° C. When the alloying treatment temperature is less than 470 degrees, alloying does not proceed, or the progress of alloying is insufficient and an alloyed hot-dip galvanized layer cannot be formed, and the surface of the steel sheet is inferior in workability. This is because it is covered with the η phase and the ζ phase. In addition, when the processing temperature is higher than 600 ° C, alloying progresses too much and the plating adhesion during processing decreases, and austenite before alloying during alloying includes bainite and pearlite containing carbides. This is because the material is transformed to a tensile strength characteristic.

以上のように鋼板を製造することによって、成形性と耐食性に優れた900MPa以上の高強度の合金化溶融亜鉛めっき鋼板を得ることができる。   By manufacturing a steel plate as described above, a high-strength galvannealed steel plate of 900 MPa or more excellent in formability and corrosion resistance can be obtained.

表1に示す成分の鋼片を用いて、表2に示す条件で冷延鋼板を製造した。得られた鋼板のフェライト、残留オーステナイト、マルテンサイトの面積率は、光学顕微鏡による観察と、X線回折法によって測定した。パーライトが観察された場合は、ベイナイトの面積率及びパーライトの面積率を光学顕微鏡によって求めた。フェライトの結晶粒径は、光学顕微鏡写真を用いて、又は粒径が3μm以下である場合は走査型電子顕微鏡写真を用いて、画像処理によって求めた。炭化物の析出量は、電解抽出により抽出残渣を採取し、当該抽出残渣の量を蛍光X線回折によって求めた。電解による析出物の抽出は、10%アセチルアセトン−1%テトラメチルアンモニウムクロライド−メタノール系電解液を用いた。   Cold-rolled steel sheets were manufactured under the conditions shown in Table 2 using steel pieces having the components shown in Table 1. The area ratio of ferrite, retained austenite, and martensite in the obtained steel sheet was measured by observation with an optical microscope and by X-ray diffraction. When pearlite was observed, the area ratio of bainite and the area ratio of pearlite were obtained with an optical microscope. The ferrite crystal grain size was determined by image processing using an optical micrograph or, if the grain size was 3 μm or less, using a scanning electron micrograph. The precipitation amount of carbide was obtained by collecting an extraction residue by electrolytic extraction, and determining the amount of the extraction residue by fluorescent X-ray diffraction. For the extraction of the precipitate by electrolysis, a 10% acetylacetone-1% tetramethylammonium chloride-methanol electrolyte was used.

ミクロ組織を表3に示す。   Table 3 shows the microstructure.

鋼板の引張り特性は、JIS Z 2241に準拠して引張試験を行い、評価した。   The tensile properties of the steel sheet were evaluated by conducting a tensile test according to JIS Z 2241.

また、Ac1、Ac3は以下の式により求めた。(参考文献「鉄鋼材料学」:W.C.Leslie著、幸田成康監訳、丸善p273)
Ac1=723-10.7×Mn%-16.9×Ni%+29.1×Si%+16.9×Cr%+6.38×W%
Ac3=910-203×√(C%)―15.2×Ni%+44.7×Si%+104×V%+31.5×Mo%+13.1×W%−30×Mn%−11×Cr%+20×Cu%+700P%+400×Al%
Ac1 and Ac3 were determined by the following formulas. (Reference: “Steel Materials Science” by WCLeslie, translated by Koyasu Naruyasu, Maruzen p273)
Ac1 = 723-10.7 × Mn% -16.9 × Ni% + 29.1 × Si% + 16.9 × Cr% + 6.38 × W%
Ac3 = 910-203 × √ (C%) - 15.2 × Ni% + 44.7 × Si% + 104 × V% + 31.5 × Mo% + 13.1 × W% −30 × Mn% −11 × Cr% + 20 × Cu% + 700P% + 400 × Al%

Figure 0005651964
Figure 0005651964

Figure 0005651964
Figure 0005651964

Figure 0005651964
Figure 0005651964

以下試験結果について説明する。   The test results will be described below.

鋼種A〜Pは、化学成分が本発明の範囲内にある鋼である。これに対し、鋼種QではC量が少なく、処理番号45に示すように安定な残留オーステナイトを確保できず、引張特性が悪い。鋼種Rでは、Si+Alの総量が少なく、めっき浴〜合金化処理中に炭化物が生成し、処理番号44に示すように、残留オーステナイトを確保できず引張特性が悪い。鋼種SではMn量が少なく焼入れ性が悪いため、焼鈍からの冷却の際にパーライトが生成し、処理番号20に示すように残留オーステナイトを確保できず引張特性が悪い。   Steel types A to P are steels whose chemical components are within the scope of the present invention. On the other hand, steel type Q has a small amount of C, and as shown in treatment number 45, stable retained austenite cannot be secured and the tensile properties are poor. In steel type R, the total amount of Si + Al is small, and carbides are generated during the plating bath to alloying treatment, and as shown in treatment number 44, retained austenite cannot be secured and the tensile properties are poor. Steel type S has a small amount of Mn and poor hardenability, so that pearlite is generated during cooling from annealing, and retained austenite cannot be secured as shown in treatment number 20, resulting in poor tensile properties.

処理番号3、4、18〜20、23、29及び31は、ミクロ組織測定時の誤差等により、組織合計値が100%を超える結果となったので、参考例とした。
処理番号18〜29のものは、化学成分は本発明の範囲内にあるが、オーステナイト中のC量が0.8未満であるため、TRIP効果が十分得られず、強度-延性のバランスが低い。
Process Nos. 3, 4, 18-20, 23, 29, and 31 were used as reference examples because the total structure value exceeded 100% due to errors in microstructural measurement.
In the case of the treatment numbers 18 to 29, the chemical components are within the scope of the present invention, but since the C amount in the austenite is less than 0.8, the TRIP effect cannot be obtained sufficiently, and the balance between strength and ductility is low .

処理番号30〜42のものは化学成分が本発明の範囲内にあるが、オーステナイト中のC量が1%を超えており、セメンタイトが多量に析出してしまい、強度、延性、穴広げ性のバランスが低い。   Although the chemical components of the treatment numbers 30 to 42 are within the scope of the present invention, the amount of C in the austenite exceeds 1%, and a large amount of cementite is precipitated, resulting in strength, ductility, and hole expandability. The balance is low.

以上のような比較鋼に対して、処理番号1〜17のものは供試鋼の化学成分が適正であって、スラブの冷却、熱延、焼鈍、めっき等の諸条件及び、残留γ中のC量が本発明の範囲内にあったので、適度な残留オーステナイトを確保することが出来、また、セメンタイトの析出量が少ない。その結果強度、延性及び穴広げ性のバランスに優れた合金化溶融亜鉛めっき高強度鋼板を作製することが出来た。   For the comparative steels as described above, those with treatment numbers 1 to 17 have the appropriate chemical composition of the test steel, and various conditions such as cooling of the slab, hot rolling, annealing, plating, and residual γ Since the amount of C was within the range of the present invention, moderate retained austenite can be secured, and the amount of cementite precipitated is small. As a result, an alloyed hot-dip galvanized high-strength steel sheet having an excellent balance of strength, ductility and hole expandability could be produced.

本発明によれば、延性及び穴広げ等の成形性並びに耐食性に優れた高強度鋼板を提供することができる。この鋼板を使用すれば、特に、自動車の軽量化と安全性を両立し、かつ、耐食性も確保できることが可能になるなど、産業上の貢献が極めて顕著である。   ADVANTAGE OF THE INVENTION According to this invention, the high strength steel plate excellent in formability, such as ductility and hole expansion, and corrosion resistance can be provided. If this steel plate is used, industrial contributions are particularly remarkable, such as making it possible to achieve both weight reduction and safety of automobiles and secure corrosion resistance.

Claims (11)

質量%で、
C:0.10〜0.50%、
Mn:1.0〜3.0%
Si:0.005〜2.5%、
Al:0.005〜2.5%、
を含有し、
P:0.05%以下、
S:0.02%以下、
N:0.006%以下
を含有し、残部Fe及び不可避的不純物からなり、上記SiとAlの総和をSi+Al≧0.8%とし、ミクロ組織が、面積率で10〜75%のフェライト、2〜30%の残留オーステナイトに制限し、残部ベイナイトからなり、当該残留オーステナイト中のC量が0.8〜1.0%であって、引張強度と全伸びとの積が19000MPa・%以上、引張強度と一様伸びとの積が14000MPa・%以上、引張強度と一様伸びと穴広げ性との積:TS×u−EL×λが550GPa・%・%以上であることを特徴とする延性及び穴広げ性並びに耐食性に優れた合金化溶融亜鉛めっき鋼板。
% By mass
C: 0.10 to 0.50%,
Mn: 1.0-3.0%
Si: 0.005 to 2.5%,
Al: 0.005 to 2.5%,
Containing
P: 0.05% or less,
S: 0.02% or less,
N: 0.006% or less, balance Fe and inevitable impurities, the sum of Si and Al is Si + Al ≧ 0.8%, and the microstructure is ferrite with an area ratio of 10 to 75%, 2 to 30 % Of retained austenite, the balance is bainite, the amount of C in the retained austenite is 0.8 to 1.0%, the product of tensile strength and total elongation is 19000 MPa ·% or more, Ductility and hole characterized in that the product of uniform elongation is 14000 MPa ·% or more, the product of tensile strength, uniform elongation and hole expansibility: TS × u−EL × λ is 550 GPa ·% ·% or more Alloyed hot-dip galvanized steel sheet with excellent spreadability and corrosion resistance.
さらに、質量%で、
Cr:0.01〜0.8%、
Mo:0.01〜0.3%、
Ni:0.01〜5%、
Cu:0.01〜5%
の1種又は2種以上を含有することを特徴とする請求項1に記載の延性及び穴広げ性並びに耐食性に優れた合金化溶融亜鉛めっき鋼板。
Furthermore, in mass%,
Cr: 0.01 to 0.8%
Mo: 0.01 to 0.3%,
Ni: 0.01 to 5%,
Cu: 0.01 to 5%
The alloyed hot-dip galvanized steel sheet having excellent ductility, hole expansibility and corrosion resistance according to claim 1, comprising one or more of the following.
さらに、質量%で、
Nb:0.001〜0.10%
Ti:0.001〜0.10%
V:0.001〜0.10%
W:0.001〜0.10%
の1種又は2種以上を含有することを特徴とする請求項1又は2に記載の延性及び穴広げ性並びに耐食性に優れた合金化溶融亜鉛めっき鋼板。
Furthermore, in mass%,
Nb: 0.001 to 0.10%
Ti: 0.001 to 0.10%
V: 0.001 to 0.10%
W: 0.001% to 0.10%
The alloyed hot-dip galvanized steel sheet having excellent ductility, hole expansibility and corrosion resistance according to claim 1 or 2, characterized by containing at least one of the following.
さらに、質量%で、
B:0.0003〜0.003%以下
を含有することを特徴とする請求項1〜3の何れか1項に記載の延性及び穴広げ性並びに耐食性に優れた合金化溶融亜鉛めっき鋼板。
Furthermore, in mass%,
The alloyed hot-dip galvanized steel sheet having excellent ductility, hole expansibility and corrosion resistance according to any one of claims 1 to 3, wherein B: 0.0003 to 0.003% or less is contained.
さらに、質量%で、
Ca:0.0005〜0.05%、
REM:0.0005〜0.05%
Mg:0.0005〜0.05%
Zr:0.0005〜0.05%
の1種又は2種を含有することを特徴とする請求項1〜4の何れか1項に記載の延性及び穴広げ性並びに耐食性に優れた合金化溶融亜鉛めっき鋼板。
Furthermore, in mass%,
Ca: 0.0005 to 0.05%,
REM: 0.0005 to 0.05%
Mg: 0.0005 to 0.05%
Zr: 0.0005 to 0.05%
The alloyed hot-dip galvanized steel sheet having excellent ductility, hole expansibility and corrosion resistance according to any one of claims 1 to 4, wherein the alloyed hot-dip galvanized steel sheet is excellent.
ミクロ組織において、フェライトの平均結晶粒径が10μm以下であることを特徴とする請求項1〜5の何れか1項に記載の延性及び穴広げ性並びに耐食性に優れた合金化溶融亜鉛めっき鋼板。   The alloyed hot-dip galvanized steel sheet having excellent ductility, hole expansibility and corrosion resistance according to any one of claims 1 to 5, wherein the average crystal grain size of ferrite is 10 µm or less in a microstructure. ミクロ組織において、マルテンサイト又は焼戻しマルテンサイトが25%以下であることを特徴とする請求項1〜6のいずれか1項に記載の延性及び穴広げ性並びに耐食性に優れた合金化溶融亜鉛めっき鋼板。   The alloyed hot-dip galvanized steel sheet having excellent ductility, hole expansibility and corrosion resistance according to any one of claims 1 to 6, characterized in that in the microstructure, martensite or tempered martensite is 25% or less. . 鋼板の引張強度が900MPa以上であることを特徴とする請求項1〜7のいずれか1項に記載の延性及び穴広げ性並びに耐食性に優れた合金化溶融亜鉛めっき鋼板。   The alloyed hot-dip galvanized steel sheet excellent in ductility, hole expansibility and corrosion resistance according to any one of claims 1 to 7, wherein the steel sheet has a tensile strength of 900 MPa or more. 請求項1〜5の何れか1項に記載された組成の合金化溶融亜鉛めっき鋼板の製造方法であって、請求項1から4の何れか1項に記載の組成を有する鋼を、溶製して鋳造し、熱間圧延、冷間圧延を施した後、Ac1〜Ac3℃の温度域に10〜300s保持した後、3〜200℃/sにて冷却を行い、300〜550℃の温度域にて、214362s保持し、溶融亜鉛めっきした後、470〜600℃にて合金化を行ない、且、当該溶融亜鉛めっきの後のオーステナイト中のC量を0.8〜1.0%に制御することを特徴とする延性及び穴広げ性並びに耐食性に優れた合金化溶融亜鉛めっき鋼板の製造方法。 It is a manufacturing method of the alloying hot-dip galvanized steel plate of the composition described in any one of Claims 1-5 , Comprising: Steel which has a composition of any one of Claims 1-4 is melted. After casting, hot rolling and cold rolling, holding in the temperature range of Ac1 to Ac3 ° C for 10 to 300 s, cooling at 3 to 200 ° C / s, and a temperature of 300 to 550 ° C In the region, 214 to 362 s is held, hot dip galvanized, alloyed at 470 to 600 ° C., and the amount of C in the austenite after the hot dip galvanized is 0.8 to 1.0. A method for producing a galvannealed steel sheet excellent in ductility, hole expansibility and corrosion resistance, characterized by being controlled to%. 請求項9に記載の合金化溶融亜鉛めっき鋼板の製造方法において、前記熱間圧延の仕上温度を1000〜850℃とし、仕上げ後に600℃以下の温度域まで10〜100℃/sの平均冷却速度で冷却し、600℃以下で巻き取ることを特徴とする延性及び穴広げ性並びに耐食性に優れた合金化溶融亜鉛めっき鋼板の製造方法。   The manufacturing method of the galvannealed steel sheet according to claim 9, wherein a finishing temperature of the hot rolling is 1000 to 850 ° C, and an average cooling rate of 10 to 100 ° C / s to a temperature range of 600 ° C or less after finishing. A method for producing an alloyed hot-dip galvanized steel sheet excellent in ductility, hole expansibility and corrosion resistance, characterized by cooling at 600 ° C. and winding at 600 ° C. or lower. 請求項9又は10に記載の延性及び耐食性に優れた合金化溶融亜鉛めっき鋼板の製造方法において、前記冷間圧延の圧下率を40〜85%とすることを特徴とする延性及び穴広げ性並びに耐食性に優れた合金化溶融亜鉛めっき鋼板の製造方法。   In the manufacturing method of the galvannealed steel plate excellent in the ductility and corrosion resistance of Claim 9 or 10, The reduction rate of the said cold rolling shall be 40 to 85%, and the ductility and hole expansibility characterized by the above-mentioned A method for producing a galvannealed steel sheet having excellent corrosion resistance.
JP2010031739A 2010-02-16 2010-02-16 Alloyed hot-dip galvanized steel sheet excellent in ductility, hole expansibility and corrosion resistance, and method for producing the same Active JP5651964B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010031739A JP5651964B2 (en) 2010-02-16 2010-02-16 Alloyed hot-dip galvanized steel sheet excellent in ductility, hole expansibility and corrosion resistance, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010031739A JP5651964B2 (en) 2010-02-16 2010-02-16 Alloyed hot-dip galvanized steel sheet excellent in ductility, hole expansibility and corrosion resistance, and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011168816A JP2011168816A (en) 2011-09-01
JP5651964B2 true JP5651964B2 (en) 2015-01-14

Family

ID=44683229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010031739A Active JP5651964B2 (en) 2010-02-16 2010-02-16 Alloyed hot-dip galvanized steel sheet excellent in ductility, hole expansibility and corrosion resistance, and method for producing the same

Country Status (1)

Country Link
JP (1) JP5651964B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101598309B1 (en) * 2011-07-29 2016-02-26 신닛테츠스미킨 카부시키카이샤 High-strength steel sheet having excellent shape-retaining properties, high-strength zinc-plated steel sheet, and method for manufacturing same
ES2670893T3 (en) * 2011-09-30 2018-06-01 Nippon Steel & Sumitomo Metal Corporation High strength hot dipped galvanized steel sheet and high strength hot dipped galvanized alloy steel sheet, each having a tensile strength of 980 mpa or higher, excellent plating adhesion, excellent formability and excellent hole expansion properties, and method to produce them
JP5699889B2 (en) * 2011-09-30 2015-04-15 新日鐵住金株式会社 Hot-dip galvanized steel sheet excellent in formability with a tensile strength of 980 MPa or more and its manufacturing method
BR112014007530B1 (en) * 2011-09-30 2018-12-11 Nippon Steel & Sumitomo Metal Corporation high strength hot dip galvanized steel sheet and process for producing it
KR102060522B1 (en) 2012-03-30 2019-12-30 뵈스트알파인 스탈 게엠베하 High strength cold rolled steel sheet and method of producing such steel sheet
CN104245971B (en) 2012-03-30 2017-09-12 奥钢联钢铁有限责任公司 High strength cold rolled steel plate and the method for producing the steel plate
CN104169444B (en) * 2012-03-30 2017-03-29 奥钢联钢铁有限责任公司 The method of high strength cold rolled steel plate and this steel plate of production
JP5867436B2 (en) 2013-03-28 2016-02-24 Jfeスチール株式会社 High strength galvannealed steel sheet and method for producing the same
JP5867435B2 (en) 2013-03-28 2016-02-24 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet and manufacturing method thereof
CN104294153B (en) * 2014-09-05 2016-11-23 武汉钢铁(集团)公司 A kind of alkali resistance corrosion anchor steel and production method
KR102081361B1 (en) 2015-06-11 2020-02-25 닛폰세이테츠 가부시키가이샤 Alloyed hot dip galvanized steel sheet and its manufacturing method
EP3378958B1 (en) 2015-09-22 2021-08-04 Hyundai Steel Company Plated steel plate and manufacturing method thereof
EP3418413B1 (en) * 2016-02-18 2020-06-17 JFE Steel Corporation High-strength cold-rolled steel sheet, and production method therefor
CN105908089B (en) * 2016-06-28 2019-11-22 宝山钢铁股份有限公司 A kind of hot-dip low density steel and its manufacturing method
JP6524978B2 (en) * 2016-07-05 2019-06-05 Jfeスチール株式会社 High strength steel plate and method of manufacturing the same
CN111936658B (en) * 2018-03-30 2021-11-02 杰富意钢铁株式会社 High-strength steel sheet and method for producing same
CN111936656B (en) 2018-03-30 2022-05-03 杰富意钢铁株式会社 High-strength steel sheet and method for producing same
JP6988868B2 (en) * 2018-12-21 2022-01-05 Jfeスチール株式会社 Thin steel sheet and its manufacturing method
EP4269631A1 (en) 2020-12-24 2023-11-01 JFE Steel Corporation Steel sheet and method for producing same
WO2023112461A1 (en) 2021-12-13 2023-06-22 Jfeスチール株式会社 Steel sheet, member, method for producing said steel sheet and method for producing said member

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4325865B2 (en) * 2003-08-29 2009-09-02 株式会社神戸製鋼所 High-tensile steel plate with excellent workability and its manufacturing method
JP4221023B2 (en) * 2005-12-06 2009-02-12 株式会社神戸製鋼所 High strength galvannealed steel sheet with excellent powdering resistance and method for producing the same
JP5323563B2 (en) * 2009-03-31 2013-10-23 株式会社神戸製鋼所 High-strength cold-rolled steel sheet with excellent workability and shape freezeability

Also Published As

Publication number Publication date
JP2011168816A (en) 2011-09-01

Similar Documents

Publication Publication Date Title
JP5651964B2 (en) Alloyed hot-dip galvanized steel sheet excellent in ductility, hole expansibility and corrosion resistance, and method for producing the same
CN111433380B (en) High-strength galvanized steel sheet and method for producing same
JP4635525B2 (en) High-strength steel sheet excellent in deep drawability and manufacturing method thereof
JP6540162B2 (en) High strength cold rolled steel sheet excellent in ductility and stretch flangeability, high strength alloyed galvanized steel sheet, and method for producing them
JP4542515B2 (en) High strength cold-rolled steel sheet excellent in formability and weldability, high-strength hot-dip galvanized steel sheet, high-strength galvannealed steel sheet, manufacturing method of high-strength cold-rolled steel sheet, and manufacturing method of high-strength hot-dip galvanized steel sheet , Manufacturing method of high strength galvannealed steel sheet
JP5092507B2 (en) High tensile alloyed hot dip galvanized steel sheet and its manufacturing method
JP2011153336A (en) High strength cold rolled steel sheet having excellent formability, and method for producing the same
WO2009125874A1 (en) High-strength steel sheets which are extremely excellent in the balance between burring workability and ductility and excellent in fatigue endurance, zinc-coated steel sheets, and processes for production of both
JP4501699B2 (en) High-strength steel sheet excellent in deep drawability and stretch flangeability and method for producing the same
CN107429355B (en) High-strength steel sheet and method for producing same
JP2011241456A (en) Hot-dip-plated hot-rolled steel sheet and method of manufacturing the same
KR20120068990A (en) High-strength hot-dip galvanized steel sheet with excellent formability and process for producing same
WO2019003447A1 (en) Hot-pressed member and method for manufacturing same, and cold-rolled steel sheet for hot pressing
WO2017029814A1 (en) High-strength steel sheet and production method for same
WO2019003445A1 (en) Hot-press member and method for producing same, and cold-rolled steel sheet for hot pressing
JP4855442B2 (en) Low yield ratio alloyed hot dip galvanized high strength steel sheet manufacturing method
JP4000943B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5953693B2 (en) High-strength hot-dip galvanized steel sheet with excellent plating adhesion and formability and its manufacturing method
JP5332981B2 (en) Alloyed hot-dip galvanized steel sheet excellent in ductility and corrosion resistance and method for producing the same
JP4407449B2 (en) High strength steel plate and manufacturing method thereof
CN111448329A (en) Cold rolled and coated steel sheet and method for manufacturing the same
JP4500197B2 (en) Manufacturing method of high-strength cold-rolled steel sheet, high-strength hot-dip galvanized steel sheet, and high-strength galvannealed steel sheet with excellent formability and weldability
JP2006283071A (en) Method for producing galvannealed high strength steel sheet excellent in workability
JP5853884B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
WO2019097600A1 (en) High-strength cold-rolled steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141021

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141103

R151 Written notification of patent or utility model registration

Ref document number: 5651964

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350