JP4436275B2 - High yield ratio high strength cold rolled steel sheet, high yield ratio high strength hot dip galvanized steel sheet, high yield ratio high strength alloyed hot dip galvanized steel sheet, and methods for producing them - Google Patents
High yield ratio high strength cold rolled steel sheet, high yield ratio high strength hot dip galvanized steel sheet, high yield ratio high strength alloyed hot dip galvanized steel sheet, and methods for producing them Download PDFInfo
- Publication number
- JP4436275B2 JP4436275B2 JP2005097155A JP2005097155A JP4436275B2 JP 4436275 B2 JP4436275 B2 JP 4436275B2 JP 2005097155 A JP2005097155 A JP 2005097155A JP 2005097155 A JP2005097155 A JP 2005097155A JP 4436275 B2 JP4436275 B2 JP 4436275B2
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- yield ratio
- strength
- high yield
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Coating With Molten Metal (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Description
本発明は、高降伏比を有しかつ延性に優れ、しかも、自動車、建材、家庭用電気機器等に用いて好適な高降伏比高強度冷延鋼板と高降伏比高強度溶融亜鉛めっき鋼板及び高降伏比高強度合金化溶融亜鉛めっき鋼板並びにそれらの製造方法に関するものである。 The present invention has a high yield ratio and excellent ductility, and is suitable for use in automobiles, building materials, household electrical equipment, etc., and a high yield ratio high strength cold-rolled steel sheet and a high yield ratio high strength hot-dip galvanized steel sheet and The present invention relates to a high yield ratio high strength alloyed hot dip galvanized steel sheet and a method for producing them.
近年、特に自動車の車体において燃費の向上や耐久性の向上を目的とした加工性の良い高強度鋼板の需要が高まっている。加えて、衝突時の安全性やキャビンスペースの拡大という市場ニーズに答えるために、引張強さにして780MPa級以上の鋼板が、車体骨格用部材やレインフォースなどの部材に使用されつつある。
車体骨格用の鋼板として、まず重要な性能はスポット溶接性である。車体骨格部材は衝突時に衝撃を吸収することによって、搭乗者を保護する役割を担っている。したがって、スポット溶接部の強度が十分でないと、衝突時に破断し、十分な衝突エネルギー吸収性能を得ることができない。
従来、溶接性を考慮した高強度鋼板が提案され、実用化されている(例えば、特許文献1、2参照)。
In recent years, there has been a growing demand for high-strength steel sheets with good workability for the purpose of improving fuel efficiency and durability, particularly in automobile bodies. In addition, in order to respond to the market needs of safety at the time of collision and expansion of cabin space, steel sheets having a tensile strength of 780 MPa or more are being used for members such as body frame members and reinforcements.
As a steel plate for a vehicle body skeleton, the first important performance is spot weldability. The vehicle body frame member plays a role of protecting the passenger by absorbing an impact at the time of a collision. Therefore, if the strength of the spot weld is not sufficient, it breaks at the time of collision, and sufficient impact energy absorption performance cannot be obtained.
Conventionally, a high-strength steel sheet considering weldability has been proposed and put into practical use (for example, see Patent Documents 1 and 2).
車体骨格用の高強度鋼板として、次に重要な性能は降伏強度、すなわち降伏比が高いことである。
降伏比が高い材料は、衝突の際のエネルギー吸収能に優れている。高い降伏比を得るためには組織をベイナイト化することが有用であり、ベイナイト組織を主相とする鋼板及びその製造方法が提案されている(例えば、特許文献3参照)。
高強度鋼板が熱延鋼板の場合は、析出強化を有効に活用することができるため、高降伏比と良延性とを両立させることは、それほど困難ではない(例えば、特許文献4参照)。
一方、高強度鋼板が冷延鋼板の場合は、析出によって高強度化することは難しく、高降伏比と良延性とを両立させることは、非常に困難である。
As a high-strength steel sheet for body frame, the next important performance is high yield strength, that is, yield ratio.
A material with a high yield ratio is excellent in energy absorption capability in the event of a collision. In order to obtain a high yield ratio, it is useful to bainite the structure, and a steel sheet having a bainite structure as a main phase and a manufacturing method thereof have been proposed (for example, see Patent Document 3).
When the high-strength steel plate is a hot-rolled steel plate, precipitation strengthening can be used effectively, and it is not so difficult to achieve both a high yield ratio and good ductility (for example, see Patent Document 4).
On the other hand, when the high-strength steel sheet is a cold-rolled steel sheet, it is difficult to increase the strength by precipitation, and it is very difficult to achieve both a high yield ratio and good ductility.
車体骨格用の鋼板として、最後に重要な性能は鋼板の加工性、すなわち、延性、曲げ性、伸びフランジ性等である。
例えば、穴拡げ性については、主相をベイナイトとして穴拡げ性を向上させ、さらには張り出し性成形性についても、第2相に残留オーステナイトを生成させることで現行の残留オーステナイト鋼並の張り出し性を有する鋼が提案されている(例えば、非特許文献1参照)。
さらには、Ms温度以下にてオーステンパ処理を施すことで、体積率2〜3%の残留オーステナイトを生成させると、「引張り強度」と「穴拡率」の積が最大となることも提案されている。
As the steel sheet for the body frame, the last important performance is the workability of the steel sheet, that is, ductility, bendability, stretch flangeability, and the like.
For example, with regard to hole expandability, the main phase is bainite to improve hole expandability. Further, with regard to the formability, the second phase has a retained austenite. The steel which has is proposed (for example, refer nonpatent literature 1).
Furthermore, it has also been proposed that the product of “tensile strength” and “hole expansion ratio” is maximized when retained austenite with a volume ratio of 2 to 3% is generated by performing austempering at a temperature below Ms temperature. Yes.
また、高強度材の高延性化を図るためには、複合組織を積極的に活用することが一般的である。しかし、第2相にマルテンサイトや残留オーステナイトを活用した場合、穴拡げ性が著しく低下してしまうという問題があり、そこで、主相をフェライト、第2相をマルテンサイトとし、両者の硬度差を減少させることで穴拡げ率を向上させた高強度鋼材が提案されている(例えば、非特許文献2参照)。
また、穴拡げ性と延性の双方の特性に優れた鋼板も提案されている(例えば、特許文献5参照)。
In addition, a steel sheet excellent in both properties of hole expansibility and ductility has been proposed (see, for example, Patent Document 5).
ところで、従来の車体骨格用として有用な780MPa級の引張強度を有する鋼板、特に、高い降伏比と良好な延性とを両立させ、さらにスポット溶接性の良好な冷延鋼板については、十分な検討がなされてきたとは言い難く、特に0.70以上という高い降伏比を有し、かつ良延性を確保した冷延鋼板については、未だに提案がなされておらず、自動車車体への適用、すなわち自動車の軽量化に対する障害になっていた。 By the way, a steel plate having a tensile strength of 780 MPa class that is useful for a conventional vehicle body skeleton, particularly a cold-rolled steel plate that has both a high yield ratio and good ductility, and has good spot weldability, has been sufficiently studied. It is difficult to say that it has been made, and in particular, a cold-rolled steel sheet having a high yield ratio of 0.70 or more and ensuring good ductility has not been proposed yet, and it has been applied to automobile bodies, that is, the weight of automobiles. It became an obstacle to the transformation.
本発明は、上記の事情に鑑みてなされたものであって、780MPa以上の引張最高強度を有し、降伏比が高く、かつ自動車車体骨格部に適合し得る溶接性と延性を兼ね備えた高降伏比高強度冷延鋼板と高降伏比高強度溶融亜鉛めっき鋼板及び高降伏比高強度合金化溶融亜鉛めっき鋼板並びにそれらの製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, has a maximum tensile strength of 780 MPa or more, has a high yield ratio, and has high yield that combines weldability and ductility that can be adapted to an automobile body frame. It is an object of the present invention to provide a specific high-strength cold-rolled steel sheet, a high yield ratio high-strength galvanized steel sheet, a high yield ratio high-strength galvannealed steel sheet, and a method for producing them.
本発明者等は、鋭意検討した結果、車体骨格用部材に適合する鋼板として高降伏比と高延性とを両立させ、さらに、優れた溶接性を確保するためには、Cの含有量が極めて重要であり、Cの含有量が0.044%を越えてはならないことを見出した。
また、降伏比については、衝突エネルギーを吸収するという観点では、高い方が有利であるが、あまり高すぎるとプレス成形時の形状凍結性が劣化するので、0.83未満とすることが実用上重要であり、これを確保するためにCと共に重要な役割を担う元素がNb、Ti、Mo、Bの4元素で、特にTi、Nbの添加量を狭い範囲で厳密に管理することが非常に重要であり、これによって、高降伏比かつ良延性を確保できることを見出した。
本発明は、上記の知見に基づいてなされたものであり、その要旨とするところは以下の通りである。
As a result of intensive studies, the present inventors have achieved a high yield ratio and a high ductility as a steel sheet suitable for a vehicle body skeleton member, and furthermore, in order to ensure excellent weldability, the C content is extremely high. It was important to find that the C content should not exceed 0.044%.
As for the yield ratio, a higher yield is advantageous from the viewpoint of absorbing the collision energy, but if it is too high, the shape freezeability during press molding deteriorates, so it is practically less than 0.83. The elements that play an important role together with C to ensure this are the four elements Nb, Ti, Mo, and B, and it is very important to strictly control the addition amount of Ti and Nb in a narrow range. It is important, and it has been found that a high yield ratio and good ductility can be secured.
This invention is made | formed based on said knowledge, The place made into the summary is as follows.
(1) 質量%で、C:0.028%超〜0.044%未満、Si:0.8%未満、Mn:1.9〜2.3%、P:0.001〜0.035%、S:0.0001〜0.013%、Al:0.1%以下、N:0.0001〜0.008%、Ti:0.012%〜0.029%、Nb:0.029〜0.042%、Mo:0.05〜0.25%、B:0.0008〜0.0038%を含有し、残部が鉄および不可避不純物からなり、降伏比が0.70超〜0.83未満、かつ、引張最高強度が780MPa以上〜900MPa未満であることを特徴とする高降伏比高強度冷延鋼板。
(1) By mass%, C: more than 0.028% to less than 0.044%, Si: less than 0.8%, Mn: 1.9 to 2.3%, P: 0.001 to 0.035% , S: 0.0001 to 0.013%, Al: 0.1% or less, N: 0.0001 to 0.008%, Ti: 0.012% to 0.029%, Nb: 0.029 to 0 0.042%, Mo: 0.05% to 0.25%, B: 0.0008% to 0.0038%, the balance is made of iron and inevitable impurities, and the yield ratio is more than 0.70 to less than 0.83. and tensile high yield ratio high-strength cold-rolled steel sheet up to strength, wherein ~900MPa less der Rukoto than 780 MPa.
(2) さらに、質量%で、Cr:0.01〜0.8%を含有してなることを特徴とする上記(1)に記載の高降伏比高強度冷延鋼板。 (2) The high yield ratio high strength cold-rolled steel sheet according to (1) above, further comprising, by mass%, Cr: 0.01 to 0.8%.
(3) さらに、質量%で、Ca、Ceから選択された1種または2種を合計で0.0001〜0.5%含有してなることを特徴とする上記(1)または(2)に記載の高降伏比高強度冷延鋼板。
(3) In addition, by mass%, Ca, above, characterized in that comprising 0.0001 to 0.5% one or two or selected Ce or al total (1) or (2) high yield ratio high-strength cold-rolled steel sheet of the mounting come to.
(4) 前記鋼板の金属組織中に、アスペクト比が3以上の圧延方向に伸びた結晶粒、粒径が3μm未満の結晶粒、粒径が3μm未満でありアスペクト比が3以上の圧延方向に伸びた結晶粒、のいずれかを20〜80%の面積率にて含有してなることを特徴とする上記(1)ないし(3)のいずれかに記載の高降伏比高強度冷延鋼板。
( 4 ) In the metallographic structure of the steel sheet, crystal grains extending in the rolling direction with an aspect ratio of 3 or more, crystal grains with a grain size of less than 3 μm, and rolling directions with a grain size of less than 3 μm and an aspect ratio of 3 or more. The high yield ratio high strength cold-rolled steel sheet according to any one of (1) to ( 3 ) above, wherein any one of the elongated crystal grains is contained at an area ratio of 20 to 80%.
(5) 上記(1)ないし(4)のいずれかに記載の高降伏比高強度冷延鋼板の表面に溶融亜鉛めっきが施され、降伏比が0.70超〜0.83未満、かつ、引張最高強度が780MPa以上〜900MPa未満であることを特徴とする高降伏比高強度溶融亜鉛めっき鋼板。
( 5 ) Hot galvanizing is performed on the surface of the high yield ratio high strength cold-rolled steel sheet according to any one of (1) to ( 4 ), and the yield ratio is more than 0.70 to less than 0.83, and high yield ratio high-strength hot-dip galvanized steel sheet tensile maximum strength and said ~900MPa less der Rukoto than 780 MPa.
(6) 上記(1)ないし(4)のいずれかに記載の高降伏比高強度冷延鋼板の表面に合金化溶融亜鉛めっきが施され、降伏比が0.70超〜0.83未満、かつ、引張最高強度が780MPa以上〜900MPa未満であることを特徴とする高降伏比高強度合金化溶融亜鉛めっき鋼板。
( 6 ) Alloying hot dip galvanizing is performed on the surface of the high yield ratio high strength cold-rolled steel sheet according to any one of (1) to (4), and the yield ratio is more than 0.70 to less than 0.83. and high yield ratio high-strength galvannealed steel sheet tensile maximum strength and said ~900MPa less der Rukoto than 780 MPa.
(7) 上記(1)ないし(4)のいずれかに記載の鋼成分からなる鋳造スラブを直接または一旦冷却した後に1130℃以上に加熱し、次いで、Ar3変態温度以上の温度にて熱間圧延を施し、その後、750℃以下の温度にて取り出し、次いで、圧下率35〜85%の冷間圧延を施し、次いで、最高加熱温度が740℃以上950℃以下の温度範囲にて連続焼鈍を施すことを特徴とする、降伏比が0.70超〜0.83未満、かつ、引張最高強度が780MPa以上〜900MPa未満である高降伏比高強度冷延鋼板の製造方法。
( 7 ) The cast slab comprising the steel component according to any one of (1) to ( 4 ) above is directly or once cooled and then heated to 1130 ° C or higher, and then hot-rolled at a temperature equal to or higher than the Ar3 transformation temperature. Then, it is taken out at a temperature of 750 ° C. or lower, then cold-rolled at a rolling reduction of 35 to 85%, and then subjected to continuous annealing at a maximum heating temperature of 740 ° C. or higher and 950 ° C. or lower. A method for producing a high-strength cold-rolled steel sheet having a yield ratio of more than 0.70 to less than 0.83 and a maximum tensile strength of 780 MPa to less than 900 MPa .
(8) 前記連続焼鈍を施した後、100〜550℃の温度範囲にて60秒以上保持する熱処理を施すことを特徴とする上記(7)に記載の高降伏比高強度冷延鋼板の製造方法。
( 8 ) The high yield ratio high strength cold-rolled steel sheet according to the above ( 7 ), which is subjected to a heat treatment for 60 seconds or more in a temperature range of 100 to 550 ° C after the continuous annealing. Method.
(9) 前記熱処理を施した後、圧下率0.1%以上のスキンパス圧延を施すことを特徴とする上記(8)に記載の高降伏比高強度冷延鋼板の製造方法。
( 9 ) The method for producing a high yield ratio high strength cold-rolled steel sheet as described in ( 8 ) above, wherein after the heat treatment, skin pass rolling with a rolling reduction of 0.1% or more is performed.
(10) 上記(1)ないし(4)のいずれかに記載の鋼成分からなる鋳造スラブを直接または一旦冷却した後に1130℃以上に加熱し、次いで、Ar3変態温度以上の温度にて熱間圧延を施し、その後、750℃以下の温度にて取り出し、次いで、圧下率35〜85%の冷間圧延を施し、次いで、最高加熱温度が740℃以上950℃以下の温度範囲にて連続焼鈍を施し、次いで、亜鉛めっき浴温度より40℃低い温度から前記亜鉛めっき浴温度より50℃高い温度までの温度範囲に冷却し、その後、亜鉛めっき浴に浸漬することを特徴とする、降伏比が0.70超〜0.83未満、かつ、引張最高強度が780MPa以上〜900MPa未満である高降伏比高強度溶融亜鉛めっき鋼板の製造方法。
( 10 ) The cast slab comprising the steel component according to any one of (1) to ( 4 ) above is directly or once cooled and then heated to 1130 ° C or higher, and then hot-rolled at a temperature equal to or higher than the Ar3 transformation temperature. After that, it is taken out at a temperature of 750 ° C. or lower, then cold-rolled at a rolling reduction of 35 to 85%, and then subjected to continuous annealing at a maximum heating temperature of 740 ° C. or higher and 950 ° C. or lower. Then, it is cooled to a temperature range from a temperature lower by 40 ° C. than the temperature of the galvanizing bath to a temperature higher by 50 ° C. than the temperature of the galvanizing bath, and then immersed in the galvanizing bath . A method for producing a high-yield ratio high-strength hot-dip galvanized steel sheet having a strength exceeding 70 to less than 0.83 and having a maximum tensile strength of 780 MPa to less than 900 MPa .
(11) 上記(1)ないし(4)のいずれかに記載の高降伏比高強度冷延鋼板の表面に合金化溶融亜鉛めっきを施す高降伏比高強度合金化溶融亜鉛めっき鋼板の製造方法であって、上記(10)に記載の条件で亜鉛めっき浴に浸漬する工程までを行った後、さらに、460℃以上の温度にて合金化処理を施すことを特徴とする、降伏比が0.70超〜0.83未満、かつ、引張最高強度が780MPa以上〜900MPa未満である高降伏比高強度合金化溶融亜鉛めっき鋼板の製造方法。
( 11 ) In the method for producing a high yield ratio high strength alloyed hot dip galvanized steel sheet, wherein the surface of the high yield ratio high strength cold rolled steel sheet according to any one of (1) to (4) is subjected to alloying hot dip galvanizing. In addition, after performing the step of immersing in a galvanizing bath under the conditions described in ( 10 ) above, the alloying treatment is further performed at a temperature of 460 ° C. or higher, and the yield ratio is 0.00. A method for producing a high-yield ratio high-strength galvannealed steel sheet having a tensile strength of more than 70 and less than 0.83 and having a maximum tensile strength of 780 MPa to less than 900 MPa .
(12) 前記合金化処理を施した後、圧下率0.1%以上のスキンパス圧延を施すことを特徴とする上記(11)に記載の高降伏比高強度合金化溶融亜鉛めっき鋼板の製造方法。 ( 12 ) The method for producing a high yield ratio high-strength galvannealed steel sheet according to ( 11 ) above, wherein after the alloying treatment, skin pass rolling with a rolling reduction of 0.1% or more is performed. .
本発明の高降伏比高強度冷延鋼板によれば、質量%で、C:0.028%超〜0.044%未満、Si:0.8%未満、Mn:1.9〜2.3%、P:0.001〜0.035%、S:0.0001〜0.013%、Al:0.1%以下、N:0.0001〜0.008%、Ti:0.012%〜0.029%、Nb:0.029〜0.042%、Mo:0.05〜0.25%、B:0.0008〜0.0038%を含有し、残部を鉄および不可避不純物とすることで、降伏比が0.70超〜0.83未満、かつ、引張最高強度が780MPa以上〜900MPa未満となり、延性が良好でありかつ引張強さ(TS)が780MPa級の高降伏比高強度冷延鋼板を提供することができる。 According to the high yield ratio high strength cold-rolled steel sheet of the present invention, in mass%, C: more than 0.028% to less than 0.044%, Si: less than 0.8%, Mn: 1.9 to 2.3 %, P: 0.001 to 0.035%, S: 0.0001 to 0.013%, Al: 0.1% or less, N: 0.0001 to 0.008%, Ti: 0.012% to Containing 0.029%, Nb: 0.029-0.042%, Mo: 0.05-0.25%, B: 0.0008-0.0038%, the balance being iron and inevitable impurities The yield ratio is more than 0.70 to less than 0.83, the maximum tensile strength is 780 MPa to less than 900 MPa, the ductility is good, and the tensile strength (TS) is 780 MPa class high yield ratio high strength cold. A rolled steel sheet can be provided.
本発明の溶接性と延性を兼ね備えた高降伏比高強度冷延鋼板と高降伏比高強度溶融亜鉛めっき鋼板及び高降伏比高強度合金化溶融亜鉛めっき鋼板並びにそれらの製造方法の最良の形態について説明する。ここでは、延性が良好でありかつ引張強さ(TS)が780MPa級の高降伏比高強度冷延鋼板を例に取り説明する。
なお、この形態は、発明の趣旨をより良く理解させるために詳細に説明するものであるから、特に指定の無い限り、本発明を限定するものではない。
High yield ratio high strength cold-rolled steel sheet having high weldability and ductility according to the present invention, high yield ratio high strength hot-dip galvanized steel sheet, high yield ratio high-strength galvannealed steel sheet, and the best mode of their production method explain. Here, a high yield ratio high strength cold-rolled steel sheet having good ductility and tensile strength (TS) of 780 MPa class will be described as an example.
In addition, since this form is demonstrated in detail in order to make the meaning of invention be better understood, unless otherwise specified, this invention is not limited.
本発明の高降伏比高強度冷延鋼板は、質量%で、C:0.028%超〜0.044%未満、Si:0.8%未満、Mn:1.9〜2.3%、P:0.001〜0.035%、S:0.0001〜0.013%、Al:0.1%以下、N:0.0001〜0.008%、Ti:0.012%〜0.029%、Nb:0.029〜0.042%、Mo:0.05〜0.25%、B:0.0008〜0.0038%を含有し、残部が鉄および不可避不純物からなるものである。 The high yield ratio high-strength cold-rolled steel sheet of the present invention is in mass%, C: more than 0.028% to less than 0.044%, Si: less than 0.8%, Mn: 1.9 to 2.3%, P: 0.001-0.035%, S: 0.0001-0.013%, Al: 0.1% or less, N: 0.0001-0.008%, Ti: 0.012% -0. 029%, Nb: 0.029 to 0.042%, Mo: 0.05 to 0.25%, B: 0.0008 to 0.0038%, with the balance being iron and inevitable impurities .
ここで、鋼の組成を上記の様に限定した理由について説明する。
Cの含有量を0.028質量%超〜0.044質量%未満と限定したのは、Cが高強度化に有効な元素であるので0.028%超の添加が必要だからである。一方、0.044質量%以上となると、高降伏比と良延性とを両立させることが困難で、自動車の車体骨格用部品の成形時に不具合が生じたり、鋼板製造時に生産性が劣化したりする場合がある。
Cの含有量の好ましい範囲は、0.032質量%以上〜0.040質量%未満である。
Here, the reason for limiting the steel composition as described above will be described.
The reason why the C content is limited to more than 0.028% by mass and less than 0.044% by mass is that addition of more than 0.028% is necessary because C is an element effective for increasing the strength. On the other hand, if it is 0.044% by mass or more, it is difficult to achieve both a high yield ratio and good ductility, and problems may occur when molding car body skeleton parts, and productivity may deteriorate when manufacturing steel sheets. There is a case.
A preferable range of the C content is 0.032% by mass or more and less than 0.040% by mass.
Siの含有量を0.8質量%未満と限定したのは、Siは安価に強度を高めるのに有効であるため必要に応じて添加するのが好ましく、高強度鋼板の延性を高めるのにも効果があるからである。Siの含有量は0.25質量%以上が好ましい。また、比較的粗大な炭化物の生成を抑制することで穴拡げ性を向上させるが、多量の添加は降伏比を下げる他、めっき性や合金化反応性を劣化させ、溶接性にも悪影響を及ぼすので、0.8質量%未満を上限とする。Siの含有量のより好ましい範囲は、0.30質量%超〜0.65質量%である。 The reason for limiting the Si content to less than 0.8% by mass is that Si is effective for increasing the strength at low cost, so it is preferable to add it as necessary, and also to increase the ductility of the high-strength steel sheet. This is because there is an effect. The content of Si is preferably 0.25% by mass or more. Moreover, hole expansion is improved by suppressing the formation of relatively coarse carbides. However, addition of a large amount lowers the yield ratio and degrades the plating and alloying reactivity, which also adversely affects weldability. Therefore, the upper limit is less than 0.8% by mass. A more preferable range of the Si content is more than 0.30 mass% to 0.65 mass%.
Mnの含有量を1.9〜2.3質量%と限定したのは、Mnは、変態組織強化によって高強度化を図るのに有効で、例えば、フェライト変態を抑制し、主相をベイナイトまたはベイニティックフェライトとすることで均一組織をもたらす他、強度低下及び穴拡げ性劣化の一因である炭化物析出やパーライト生成を抑制し、あた、降伏比を高めるのにも有効であるので、1.9質量%以上添加する必要がある。なお、1.9質量%未満では、Mo、Ti、Nb、Bとの複合添加によってCが低含有量でありながら高い降伏比と良好な延性とを両立させることができない。一方、Mnの過剰な添加は、溶接性を劣化させる他、多量のマルテンサイト生成を促進し、降伏比が低下したり、偏析などによって延性や穴拡げ性の著しい低下を招く等の虞があるので、2.3質量%を上限とする。
Mnの含有量のより好ましい範囲は、2.0質量%〜2.3質量%である。
The reason why Mn content is limited to 1.9 to 2.3% by mass is that Mn is effective in increasing the strength by strengthening the transformation structure. For example, it suppresses ferrite transformation and the main phase is bainite or In addition to providing a uniform structure by using bainitic ferrite, it is effective for suppressing carbide precipitation and pearlite generation, which are a cause of strength reduction and hole expandability deterioration, and to increase the yield ratio. It is necessary to add 1.9% by mass or more. In addition, if it is less than 1.9 mass%, high yield ratio and favorable ductility cannot be made compatible, although C is low content by combined addition with Mo, Ti, Nb, and B. On the other hand, excessive addition of Mn deteriorates weldability and promotes the formation of a large amount of martensite, which may lead to a decrease in yield ratio and a significant decrease in ductility and hole expandability due to segregation. Therefore, the upper limit is 2.3 mass%.
A more preferable range of the Mn content is 2.0% by mass to 2.3% by mass.
Pの含有量を0.001〜0.035質量%と限定したのは、Pは、強化元素であるが、過剰な添加は穴広げ性や曲げ性、さらには溶接部の接合強度や疲労強度を劣化させるので、上限を0.035質量%とする。一方、Pの極低含有量化は経済的にも不利であることから0.001質量%を下限とする。Pの含有量のより好ましい範囲は0.005〜0.013質量%である。 The P content is limited to 0.001 to 0.035% by mass, although P is a strengthening element, but excessive addition causes hole-expandability and bendability, as well as joint strength and fatigue strength of welds. Therefore, the upper limit is made 0.035% by mass. On the other hand, since the extremely low P content is economically disadvantageous, the lower limit is set to 0.001% by mass. A more preferable range of the content of P is 0.005 to 0.013 mass%.
Sの含有量を0.0001〜0.013質量%と限定したのは、Sの極低含有量化は経済的に不利であることから、0.0001質量%を下限とし、一方、0.013質量%を超える量の添加では、鋼板の穴拡げ性や曲げ性、さらには溶接部の接合強度や疲労強度に悪影響を及ぼすため、0.013質量%を上限とする。この上限値のより好ましい値は0.005質量%である。 The reason why the S content is limited to 0.0001 to 0.013 mass% is that the extremely low content of S is economically disadvantageous, so 0.0001 mass% is the lower limit, while 0.013 mass%. Addition in an amount exceeding mass% adversely affects the hole expandability and bendability of the steel sheet, as well as the joint strength and fatigue strength of the welded portion, so 0.013 mass% is the upper limit. A more preferable value of this upper limit is 0.005% by mass.
Alの含有量を0.1質量%以下と限定したのは、Alは脱酸元素として有効であるが、過剰に添加すると粗大なAl系の介在物、例えばアルミナのクラスタを形成し、曲げ性や穴拡げ性を劣化させる虞があるので、0.1質量%を上限とした。また、下限は特に限定しないが、脱酸をAlによって行い、さらに残存するAl量を0.003質量%以下とするのは困難であるので、0.003質量%が実質的な下限である。なお、脱酸をAl以外の元素で行ったり、Al以外の元素を併用したりする場合には、この限りではない。 The Al content is limited to 0.1% by mass or less because Al is effective as a deoxidizing element, but when added in excess, coarse Al-based inclusions, for example, alumina clusters are formed, and bendability is increased. In addition, there is a possibility of deteriorating the hole expansibility, so 0.1 mass% was made the upper limit. Further, the lower limit is not particularly limited, but it is difficult to deoxidize with Al and to make the remaining Al amount 0.003% by mass or less, so 0.003% by mass is a practical lower limit. Note that this is not the case when deoxidation is performed with an element other than Al or when an element other than Al is used in combination.
Nの含有量を0.0001〜0.008質量%と限定したのは、Nは高強度化や焼付き硬化性(BH性)を付与するのには効果的であるが、含有量が多すぎると粗大な結晶粒子を形成し曲げ性や穴拡げ性を劣化させるので、0.008質量%を上限とする。一方、0.0001質量%未満は、技術的に極めて困難なのでこれを下限とする。Nの含有量のより好ましい範囲は、0.0010〜0.0040質量%である。 The N content is limited to 0.0001 to 0.008% by mass. N is effective for imparting high strength and seizure curability (BH property), but the content is large. If it is too large, coarse crystal grains are formed and the bendability and hole expansibility are deteriorated, so 0.008% by mass is made the upper limit. On the other hand, a content of less than 0.0001% by mass is extremely difficult technically, so this is the lower limit. A more preferable range of the N content is 0.0010 to 0.0040% by mass.
Ti:0.012質量%〜0.029質量%
Nb:0.029〜0.042質量%
Mo:0.05〜0.25質量%
B :0.0008〜0.0038質量%
これら4種類の元素は本発明において重要な元素であり、これら4種類の元素の含有量を上記のように狭い範囲に限定した理由は、これら4種類の元素を同時に添加することによって、高降伏比が得られ、かつ車体骨格部品に成形加工するのに必要な延性を初めて確保できることが明らかとなったからである。
Ti: 0.012 mass% to 0.029 mass%
Nb: 0.029-0.042 mass%
Mo: 0.05-0.25 mass%
B: 0.0008-0.0038 mass%
These four kinds of elements are important elements in the present invention, and the reason why the contents of these four kinds of elements are limited to a narrow range as described above is that high yielding can be achieved by adding these four kinds of elements simultaneously. This is because it has been clarified that the ductility required for molding into a body frame part can be secured for the first time.
さらに、SiやMnの添加は溶接性を劣化させることが知られているが、これら4種類の元素を所定の量、SiやMnと同時に添加することで良好な溶接性を確保できることも見出した。このような複合添加によって上記のような効果が発現することについては、本発明者らが溶接性と延性、さらには高降伏比とを兼備した鋼を創出するとの課題のもとに種々の鋼について鋭意検討した結果、初めて見出されたものであり、これら4種類の元素のそれぞれの含有量も、このような観点から決定されたものである。 Furthermore, it is known that the addition of Si or Mn deteriorates the weldability, but it has also been found that good weldability can be secured by adding these four kinds of elements at the same time as the Si and Mn. . Regarding the manifestation of the effects as described above by such a composite addition, various steels have been developed under the problem that the present inventors create steels having both weldability, ductility, and high yield ratio. As a result of intensive studies on the above, it has been found for the first time, and the content of each of these four elements has also been determined from such a viewpoint.
これら4種類の元素の含有量が上記の範囲から外れては、十分な効果を得ることが出来ない。これら4種類の元素のそれぞれの含有量のより好ましい範囲は、以下のとおりである。
Ti:0.016質量%〜0.025質量%
Nb:0.033質量%〜0.040質量%
Mo:0.08質量%〜0.19質量%
B :0.0016質量%〜0.0025質量%。
If the contents of these four elements are out of the above ranges, sufficient effects cannot be obtained. A more preferable range of the content of each of these four types of elements is as follows.
Ti: 0.016 mass% to 0.025 mass%
Nb: 0.033 mass% to 0.040 mass%
Mo: 0.08 mass% to 0.19 mass%
B: 0.0016 mass% to 0.0025 mass%.
本発明の鋼板の降伏比(YR)は、0.70超〜0.83未満である。
降伏比(YR)が0.70以下では、十分な衝突安全性を確保できない場合があるからである。一方、0.83以上では、成形時の形状凍結性が劣化し、また、延性の確保も困難となるので、上限を0.83未満とする。この降伏比(YR)のより好ましい範囲は0.72〜0.79、さらに好ましい範囲は0.73〜0.77である。
なお、降伏比は、日本工業規格JIS Z 2201「金属材料引張試験片」に規定された圧延方向と垂直方向を引張方向とする引張試験片により評価する。
The yield ratio (YR) of the steel sheet of the present invention is more than 0.70 and less than 0.83.
This is because if the yield ratio (YR) is 0.70 or less, sufficient collision safety may not be ensured. On the other hand, if it is 0.83 or more, the shape freezing property at the time of molding deteriorates and it becomes difficult to ensure ductility, so the upper limit is made less than 0.83. A more preferable range of the yield ratio (YR) is 0.72 to 0.79, and a more preferable range is 0.73 to 0.77.
The yield ratio is evaluated by a tensile test piece whose tensile direction is the rolling direction and the vertical direction defined in Japanese Industrial Standard JIS Z 2201 “Metallic material tensile test piece”.
本発明の鋼板の延性は板厚によって変化する。ここでは、鋼板の延性を次のように規定する。1.2mm厚未満では14%以上、1.2〜1.4mm厚では15%以上、1.4mm厚超では16%以上とする。 The ductility of the steel sheet of the present invention varies depending on the plate thickness. Here, the ductility of the steel sheet is defined as follows. If the thickness is less than 1.2 mm, 14% or more, 1.2 to 1.4 mm thickness, 15% or more, and more than 1.4 mm thickness, 16% or more.
本発明の鋼板のミクロ組織は、本発明において重要である。すなわち、鋼板の金属組織中に、アスペクト比が3以上の圧延方向に伸びた結晶粒、粒径が3μm未満の結晶粒、粒径が3μm未満でありアスペクト比が3以上の圧延方向に伸びた結晶粒、のいずれかを20〜80%の面積率にて含有する必要がある。これらの組織は冷延後の700℃までの加熱時にフェライトをできるだけ再結晶させない、すなわち未再結晶組織をできるだけ多く残存させた上で、その後のα+γ域またはγ域での熱処理を行う必要がある。 The microstructure of the steel sheet of the present invention is important in the present invention. That is, in the metallographic structure of the steel sheet, crystal grains extending in the rolling direction having an aspect ratio of 3 or more, crystal grains having a grain size of less than 3 μm, and extending in the rolling direction having a grain size of less than 3 μm and an aspect ratio of 3 or more. Any one of the crystal grains needs to be contained at an area ratio of 20 to 80%. It is necessary that these structures do not recrystallize ferrite as much as possible when heated to 700 ° C. after cold rolling, that is, leave as much unrecrystallized structure as possible, and then perform heat treatment in the α + γ region or the γ region. .
これら組織の面積率が80%を超えると、延性が極端に低下するので、80%が上限である。この面積率の好ましい範囲は60%以下である。この組織は、圧延方向に平行で板面と垂直な断面をナイタールによりエッチングし、1000倍の写真を任意に10視野以上撮影し、画像解析などの手法により確認することができる。なお、アスペクト比は、上記の断面において「圧延方向の長さ/板厚方向の長さ」で定義され、また、粒径は、結晶粒の最長径を採用する。
ここで、上記の結晶粒の相は、特に限定しないが、主としてフェライト、ベイナイト、マルテンサイト、オーステナイトの他、これらに炭化物等の析出物を含有するもので構成される。
If the area ratio of these structures exceeds 80%, the ductility is extremely lowered, so 80% is the upper limit. A preferable range of the area ratio is 60% or less. This structure can be confirmed by a method such as image analysis by etching a cross section perpendicular to the plate surface parallel to the rolling direction with Nital and arbitrarily taking 10 times or more of 1000-fold photographs. The aspect ratio is defined by “the length in the rolling direction / the length in the plate thickness direction” in the cross section, and the grain diameter adopts the longest diameter of the crystal grains.
Here, the phase of the crystal grains is not particularly limited, but is mainly composed of ferrite, bainite, martensite, austenite, and those containing precipitates such as carbides.
その他の組織的な限定は、特に設けないが、高い降伏比と良好な延性を得るには、主相としてベイナイトまたはベイニティックフェライトが好適であり、面積率で10%以上が好ましい。ここで、上記のベイナイトには、ラス境界に炭化物が生成している上部ベイナイト、ラス内に微細炭化物が生成している下部ベイナイト、の双方を含む。また、ベイニティックフェライトは炭化物のないベイナイトを意味し、例えば、アシキュラーフェライトがその一例である。穴拡げ性や曲げ性の向上には、炭化物が微細分散している下部ベイナイトもしくは炭化物の無いベイニティックフェライトやフェライトが主相で、面積率が25%を超えることが望ましい。 Other structural limitations are not particularly provided, but in order to obtain a high yield ratio and good ductility, bainite or bainitic ferrite is suitable as the main phase, and the area ratio is preferably 10% or more. Here, the bainite includes both an upper bainite in which carbide is generated at the lath boundary and a lower bainite in which fine carbide is generated in the lath. Bainitic ferrite means bainite having no carbide, and for example, acicular ferrite is an example. In order to improve hole expansibility and bendability, it is desirable that the lower bainite in which carbide is finely dispersed or bainitic ferrite or ferrite without carbide is the main phase and the area ratio exceeds 25%.
本発明の鋼板のスポット溶接性の特徴は、散り発生領域となる溶接電流であっても散り発生直前の溶接電流で溶接した際の十字型引張試験による引張荷重(CTS)に比較して、CTSの劣化代が小さいことである。
すなわち、通常の鋼板では、散り発生を伴う溶接を行うと、CTSが大きく低下したり、あるいはCTSのばらつきが大きくなったりするのに対し、本発明の鋼板では、CTSの低下率やばらつきが小さい。
The feature of the spot weldability of the steel sheet of the present invention is that the CTS is compared with the tensile load (CTS) obtained by the cross-type tensile test when welding is performed at the welding current immediately before the occurrence of the scattering even in the case where the welding current becomes the scattering occurrence region. That is, the cost of deterioration is small.
That is, when welding with scattering occurs in a normal steel sheet, the CTS greatly decreases or the CTS variation increases, whereas the steel sheet of the present invention has a low CTS decrease rate and dispersion. .
上記の散り発生領域での溶接電流値としては、散り発生直前の電流値(CE)に1.5kAを加えた電流値とする。例えば、溶接電流をCE(kA)とする溶接を5回行ったときのCTSの平均値を1としたとき、溶接電流を(CE+1.5)kAとする試験を5回行ったときのCTSの最低値は0.7以上となる。
このCTSの最低値の好ましい値は0.8以上、さらに好ましい値は0.9以上である。
なお、CTSは、日本工業規格JIS Z 3137「抵抗スポット及びプロジェクション溶接継手の十字引張試験片寸法及び試験方法」に規定された方法に準拠して評価する。
The welding current value in the scattering occurrence region is a current value obtained by adding 1.5 kA to the current value (CE) immediately before the occurrence of scattering. For example, when the average value of CTS when welding with a welding current of CE (kA) is performed five times is 1, the CTS of when the test with a welding current of (CE + 1.5) kA is performed five times The minimum value is 0.7 or more.
A preferable value of the minimum value of CTS is 0.8 or more, and a more preferable value is 0.9 or more.
CTS is evaluated according to the method specified in Japanese Industrial Standard JIS Z 3137 “Dimensions and Test Methods of Resistance Spots and Projection Welded Joints for Cross Tensile Test Specimens”.
本発明の高降伏比高強度冷延鋼板は、上記の組成に加えて、
さらに、質量%で、Cr:0.01%〜0.8%を含有してなることが好ましい。
Crは、高強度化に有効であるほか、炭化物生成の抑制とベイナイトおよびベイニティックフェライト生成を通じて曲げ性や穴拡げ性を向上させる。また、高強度化に対する効果の割には溶接性の劣化が小さい元素でもあるので、必要に応じて添加するのが好ましい。
含有量が0.01質量%未満では、顕著な効果が得られないので、0.01質量%を下限とし、一方、含有量が0.8質量%を超えると、コストアップとなるだけでなく、加工性やめっき性に悪影響を及ぼすため、0.8質量%を上限とした。この含有量の好ましい範囲は、0.2質量%〜0.5質量%である。
In addition to the above composition, the high yield ratio high strength cold rolled steel sheet of the present invention is
Further, it is preferable to contain Cr: 0.01% to 0.8% by mass%.
Cr is effective for increasing the strength, and improves bendability and hole expansibility through suppression of carbide formation and generation of bainite and bainitic ferrite. Moreover, since it is an element with little deterioration of weldability for the effect with respect to high strengthening, it is preferable to add as needed.
If the content is less than 0.01% by mass, a remarkable effect cannot be obtained, so 0.01% by mass is the lower limit. On the other hand, if the content exceeds 0.8% by mass, not only the cost increases. In order to adversely affect workability and plating properties, the upper limit was set to 0.8 mass%. The preferable range of this content is 0.2 mass%-0.5 mass%.
本発明の高降伏比高強度冷延鋼板は、上記の組成に加えて、
さらに、質量%で、Ni:0.01〜2.0%、Cu:0.001〜2.0%の群から選択された1種または2種を含有してなることが好ましい。
本発明の鋼板でCu、Niを添加する目的は、強度−穴拡げ性バランスに悪影響を与えずにめっき性を向上させることである。
In addition to the above composition, the high yield ratio high strength cold rolled steel sheet of the present invention is
Furthermore, it is preferable to contain 1 type or 2 types selected from the group of Ni: 0.01-2.0% and Cu: 0.001-2.0% by the mass%.
The purpose of adding Cu and Ni in the steel sheet of the present invention is to improve the plateability without adversely affecting the strength-hole expandability balance.
Niは、めっき性向上以外に焼き入れ性向上の目的もあるので、0.01質量%以上含有することとし、一方、2.0質量%を超える量の添加では、合金コストの増加、加工性への悪影響、特にマルテンサイト生成に伴う硬度上昇等が発現する悪影響のため、2.0%を上限とする。
Cuは、めっき性向上以外に強度向上の目的もあるので、0.001質量%以上含有することとし、一方、2.0質量%を超える量の添加では、加工性やリサイクル性に悪影響を及ぼすからである。
Since Ni has the purpose of improving hardenability in addition to improving the plating property, it should be contained in an amount of 0.01% by mass or more. On the other hand, addition of more than 2.0% by mass increases the alloy cost and the workability. The upper limit is set to 2.0% because of adverse effects such as an increase in hardness associated with martensite formation.
Since Cu has the purpose of improving the strength in addition to improving the plating property, it should be contained in an amount of 0.001% by mass or more. On the other hand, addition of an amount exceeding 2.0% by mass adversely affects workability and recyclability. Because.
本発明の高降伏比高強度冷延鋼板は、上記の組成に加えて、
さらに、質量%で、Co:0.01〜1%、W:0.01〜0.3%の群から選択された1種または2種を含有してなることが好ましい。
Coは、ベイナイト変態制御による強度−穴拡げ性(および曲げ性)の良好なバランスのため、含有量の下限を0.01質量%とした。一方、1%を越えた場合、強度−穴拡げ性(および曲げ性)のバランスが飽和してしまい、また、高価な元素であるため多量添加は経済性を損なうため、1質量%以下が好ましい。
Wは、0.01質量%以上で強化効果が現れる。ここで、0.3質量%を上限としたのは、これを超える量の添加では、加工性に悪影響を及ぼすからである。
In addition to the above composition, the high yield ratio high strength cold rolled steel sheet of the present invention is
Furthermore, it is preferable to contain 1 type or 2 types selected from the group of Co: 0.01-1% and W: 0.01-0.3% by mass%.
Co has a lower content limit of 0.01% by mass for a good balance of strength-hole expansibility (and bendability) by bainite transformation control. On the other hand, if it exceeds 1%, the balance of strength-hole expansibility (and bendability) is saturated, and since it is an expensive element, the addition of a large amount impairs the economy, so 1% by mass or less is preferable. .
When W is 0.01% by mass or more, a strengthening effect appears. Here, the reason why the upper limit is 0.3% by mass is that if the amount exceeds this, the workability is adversely affected.
本発明の高降伏比高強度冷延鋼板は、上記の組成に加えて、
さらに、質量%で、Zr、Hf、Ta、Vの群から選択された1種または2種以上を合計で0.001〜1%含有してもよい。
これらZr、Hf、Ta、Vは強炭化物形成元素であるから、これらを合計で0.001%以上含有することにより、強度と穴拡げ性とのバランスのさらなる向上を図ることが可能である。
一方、これらの添加は、延性や熱間加工性の劣化を招くことから、これらの含有量の合計の上限を1質量%とする。
In addition to the above composition, the high yield ratio high strength cold rolled steel sheet of the present invention is
Furthermore, you may contain 0.001 to 1% of 1 type (s) or 2 or more types selected from the group of Zr, Hf, Ta, and V in the mass%.
Since these Zr, Hf, Ta, and V are strong carbide forming elements, it is possible to further improve the balance between strength and hole expansibility by containing them in total of 0.001% or more.
On the other hand, since these additions cause deterioration of ductility and hot workability, the upper limit of the total of these contents is set to 1% by mass.
本発明の高降伏比高強度冷延鋼板は、上記の組成に加えて、
さらに、質量%で、Ca、Mg、La、Y、Ceの群から選択された1種または2種以上を合計で0.0001〜0.5%含有してもよい。
これらCa、Mg、La、Y、Ceは、適量添加により介在物制御、特に微細分散化に寄与することから、これらの1種または2種以上の含有量を合計で0.0001質量%以上とした。一方、過剰添加は鋳造性や熱間加工性などの製造性および鋼板製品の延性を低下させるため、0.5質量%を上限とした。
In addition to the above composition, the high yield ratio high strength cold rolled steel sheet of the present invention is
Furthermore, you may contain 0.0001-0.5% of 1 type (s) or 2 or more types selected from the group of Ca, Mg, La, Y, and Ce in the mass%.
Since these Ca, Mg, La, Y, and Ce contribute to inclusion control, particularly fine dispersion, by adding appropriate amounts, the total content of one or more of these is 0.0001% by mass or more. did. On the other hand, excessive addition reduces the manufacturability such as castability and hot workability and the ductility of the steel sheet product, so the upper limit was made 0.5 mass%.
本発明の高降伏比高強度冷延鋼板は、上記の組成に加えて、
さらに、質量%で、希土類元素のうちLa、Y及びCeを除いた元素、すなわち、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luの群から選択された1種または2種以上を合計で0.0001〜0.5%含有してもよい。
これらLa、Y、Ce以外の希土類元素(REM)も適量添加することにより、介在物制御、特に微細分散化に寄与することから、含有量の下限を0.0001質量%とした。一方、過剰添加はコストアップを伴うほか、鋳造性や熱間加工性などの製造性および鋼板製品の延性を低下させるため、含有量の上限を0.5質量%とした。
In addition to the above composition, the high yield ratio high strength cold rolled steel sheet of the present invention is
Furthermore, by mass%, elements other than La, Y and Ce among rare earth elements, that is, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu You may contain 0.0001-0.5% of the selected 1 type (s) or 2 or more types in total.
The addition of an appropriate amount of rare earth elements (REM) other than La, Y, and Ce contributes to inclusion control, particularly fine dispersion, so the lower limit of the content was set to 0.0001% by mass. On the other hand, excessive addition is accompanied by an increase in cost, and also lowers the manufacturability such as castability and hot workability and the ductility of the steel sheet product, so the upper limit of the content was set to 0.5 mass%.
本発明の高降伏比高強度冷延鋼板では、不可避不純物として、例えば、Sn、Sb等があるが、これら元素を合計で0.2質量%以下の範囲で含有しても、本発明の効果を損なうものではない。
本発明の高降伏比高強度冷延鋼板では、Oは特に限定しないが、適量を含有すると曲げ性や穴拡げ性を改善する効果がある。一方、多すぎると逆にこれらの特性を劣化させる。したがって、Oの含有量は0.0005質量%〜0.004質量%の範囲とするのが好ましい。
In the high yield ratio high strength cold-rolled steel sheet of the present invention, there are, for example, Sn and Sb as inevitable impurities. Even if these elements are contained in a total amount of 0.2% by mass or less, the effects of the present invention are included. Is not detrimental.
In the high yield ratio high strength cold-rolled steel sheet of the present invention, O is not particularly limited, but if it contains an appropriate amount, there is an effect of improving bendability and hole expansibility. On the other hand, when the amount is too large, these characteristics are deteriorated. Therefore, the O content is preferably in the range of 0.0005 mass% to 0.004 mass%.
この高降伏比高強度冷延鋼板の表面に溶融亜鉛めっきを施せば、高降伏比高強度溶融亜鉛めっき鋼板となる。
また、この高降伏比高強度溶融亜鉛めっき鋼板に合金化処理を施せば、高降伏比高強度合金化溶融亜鉛めっき鋼板となる。
これらの鋼板の製造方法については、後述する。
If the surface of the high yield ratio high strength cold rolled steel sheet is hot dip galvanized, a high yield ratio high strength hot dip galvanized steel sheet is obtained.
Further, if this high yield ratio high strength hot dip galvanized steel sheet is subjected to an alloying treatment, a high yield ratio high strength galvannealed steel sheet is obtained.
The manufacturing method of these steel plates will be described later.
次に、本発明の高降伏比高強度冷延鋼板の製造方法について説明する。
この製造方法は、本発明の高降伏比高強度冷延鋼板の鋼成分からなる鋳造スラブを直接または一旦冷却した後に1130℃以上に加熱し、次いで、Ar3変態温度以上の温度にて熱間圧延を施し、その後、750℃以下の温度にて取り出し、次いで、圧下率35〜85%の冷間圧延を施し、次いで、最高加熱温度が740℃以上950℃以下の温度範囲にて連続焼鈍を施す製造方法である。
Next, the manufacturing method of the high yield ratio high strength cold-rolled steel sheet of the present invention will be described.
In this production method, the cast slab made of the steel component of the high yield ratio high strength cold rolled steel sheet of the present invention is directly or once cooled and then heated to 1130 ° C. or higher, and then hot rolled at a temperature equal to or higher than the Ar3 transformation temperature. Then, it is taken out at a temperature of 750 ° C. or lower, then cold-rolled at a rolling reduction of 35 to 85%, and then subjected to continuous annealing at a maximum heating temperature of 740 ° C. or higher and 950 ° C. or lower. It is a manufacturing method.
上記の連続焼鈍を施した後、100〜550℃の温度範囲にて60秒以上保持する熱処理を施してもよい。
また、上記の熱処理を施した後、圧下率0.1%以上のスキンパス圧延を施してもよい。
After performing said continuous annealing, you may perform the heat processing hold | maintained for 60 second or more in the temperature range of 100-550 degreeC.
Further, after the above heat treatment, skin pass rolling with a rolling reduction of 0.1% or more may be performed.
成分調整は、通常の高炉−転炉法のほか電気炉等で行っても良い。
鋳造法も特に限定するものではなく、通常の連続鋳造法、インゴット法、薄スラブ鋳造法等により製造すればよい。
鋳造スラブを一旦冷却し再加熱してから熱間圧延を施しても良いし、冷却せずに直接熱間圧延を行っても良い。ここで、鋳造スラブの温度が1130℃未満となった場合には、再度加熱して1130℃以上とする。
鋳造スラブの温度が1130℃未満では、偏析などの影響で製品の曲げ性や穴拡げ性が劣化するので、1130℃を下限とする。この鋳造スラブの好ましい温度は1150℃以上、より好ましい温度は1210℃以上である。
The component adjustment may be performed by an electric furnace or the like in addition to a normal blast furnace-converter method.
The casting method is not particularly limited, and may be produced by a normal continuous casting method, an ingot method, a thin slab casting method, or the like.
The cast slab may be cooled and reheated before hot rolling, or may be directly hot rolled without cooling. Here, when the temperature of a casting slab becomes less than 1130 degreeC, it heats again and makes it 1130 degreeC or more.
If the temperature of the casting slab is less than 1130 ° C, the bendability and hole expandability of the product deteriorate due to segregation and the like, so 1130 ° C is set as the lower limit. A preferable temperature of the cast slab is 1150 ° C. or higher, and a more preferable temperature is 1210 ° C. or higher.
この熱間圧延の最終仕上げ温度はAr3変態温度以上とする。本発明の鋼板のAr3変態点は650℃以下である。この最終仕上げ温度がAr3変態温度より低くなると、熱間圧延された鋼板に圧延方向に展伸したフェライト粒が生成し、鋼板の延性や曲げ性が劣化するので好ましくない。
熱間圧延後は750℃以下で取り出し、巻き取る。この温度が750℃より高くなると、得られた熱間圧延鋼板の金属組織中にフェライトやパーライトが多量に生成するため、最終製品の組織が不均一となり、曲げ性や穴拡げ性が低下する。
この取り出し温度、すなわち、巻き取り温度は、650℃以下が好ましく、600℃以下であればより好ましい。
下限は特に定めないが、室温以下とするのは困難であるため、室温を下限とすることが好ましい。
The final finishing temperature of this hot rolling is not less than the Ar3 transformation temperature. The Ar3 transformation point of the steel sheet of the present invention is 650 ° C. or lower. If this final finishing temperature is lower than the Ar3 transformation temperature, ferrite grains that are stretched in the rolling direction are formed on the hot-rolled steel sheet, which is not preferable because the ductility and bendability of the steel sheet deteriorate.
After hot rolling, it is taken out at 750 ° C. or lower and wound up. When this temperature is higher than 750 ° C., a large amount of ferrite and pearlite is generated in the metal structure of the obtained hot-rolled steel sheet, so that the structure of the final product becomes non-uniform, and the bendability and hole expandability deteriorate.
The take-out temperature, that is, the winding temperature is preferably 650 ° C. or less, and more preferably 600 ° C. or less.
The lower limit is not particularly defined, but it is difficult to set it to room temperature or lower, so it is preferable to set room temperature to the lower limit.
なお、粗圧延バー同士を接合して連続的に仕上げの熱間圧延を行っても良い。この際に粗圧延バーを一旦巻き取っても構わない。
このようにして製造した熱間圧延鋼板に必要に応じて酸洗、スキンパス圧延を行っても良い。また、スキンパス圧延では、形状矯正、強度調整等のため4.0%まで圧延を行っても良い。ここでは、4.0%を超えるとスキンパス圧延機の負荷が大きくなるので、4.0%を圧延の上限とする。また、圧延率が0.1%未満では、スキンパス圧延の効果が小さく、制御も困難なので、0.1%を下限とする。スキンパス圧延はインラインで行っても良く、オフラインで行っても良い。また、一度に目的の圧下率のスキンパス圧延を行っても良く、数回に分けて行っても構わない。
In addition, you may join the rough rolling bars and perform hot rolling of finishing continuously. At this time, the rough rolling bar may be wound once.
The hot-rolled steel sheet manufactured in this way may be subjected to pickling and skin pass rolling as necessary. In skin pass rolling, rolling may be performed up to 4.0% for shape correction, strength adjustment, and the like. Here, if it exceeds 4.0%, the load on the skin pass rolling mill increases, so 4.0% is set as the upper limit of rolling. If the rolling rate is less than 0.1%, the effect of skin pass rolling is small and control is difficult, so 0.1% is made the lower limit. Skin pass rolling may be performed in-line or offline. In addition, skin pass rolling at a desired reduction rate may be performed at once, or may be performed in several steps.
このようにして得られた熱間圧延鋼板に圧下率35〜85%の冷間圧延を施す。
酸洗した熱間圧延鋼板を圧下率35〜85%で冷間圧延し、連続焼鈍ラインまたは連続溶融亜鉛めっきラインに通板する。ここで、冷間圧延の圧下率が35%未満では、形状を平坦に保つことが困難である。また、最終製品の延性が劣悪となるのでこれを下限とする。一方、冷間圧延の圧下率を85%以上とすると、冷間圧延の荷重が非常に大きくなり、生産性を阻害する。この冷間圧延の圧下率の好ましい範囲は40〜70%である。
The hot-rolled steel sheet thus obtained is cold-rolled at a reduction rate of 35 to 85%.
The pickled hot-rolled steel sheet is cold-rolled at a rolling reduction of 35 to 85% and passed through a continuous annealing line or a continuous hot dip galvanizing line. Here, if the rolling reduction of cold rolling is less than 35%, it is difficult to keep the shape flat. Moreover, since the ductility of the final product becomes poor, this is the lower limit. On the other hand, when the rolling reduction of cold rolling is 85% or more, the load of cold rolling becomes very large, and the productivity is hindered. A preferable range of the cold rolling reduction is 40 to 70%.
連続焼鈍ラインを通板する場合の最高加熱温度は、740〜950℃である。740℃未満では、α→γ変態が生じないか、またはわずかしか生じないので、最終組織における変態組織分率が小さすぎることとなり、十分な強度を得ることができない。よって、740℃を最高加熱温度の下限とする。一方、最高加熱温度を950℃より高くすると、鋼板の形状が劣悪となるなどのトラブルを誘発するので、950℃を最高加熱温度の上限とする。 The maximum heating temperature when passing through the continuous annealing line is 740 to 950 ° C. If it is less than 740 ° C., the α → γ transformation does not occur or only slightly occurs, so that the transformed tissue fraction in the final structure is too small, and sufficient strength cannot be obtained. Therefore, 740 ° C. is set as the lower limit of the maximum heating temperature. On the other hand, when the maximum heating temperature is higher than 950 ° C., troubles such as deterioration of the shape of the steel sheet are induced, so 950 ° C. is set as the upper limit of the maximum heating temperature.
この最高加熱温度を通過するのに要する時間は特に限定しないが、鋼板の温度を均一化するためには、1秒以上が必要である。しかし、10分超では、粒界における酸化相生成が促進されるうえ、降伏比(YR)の制御が困難になったりする。さらに、コストの上昇を招いたりもする。 The time required to pass this maximum heating temperature is not particularly limited, but one second or more is necessary to make the temperature of the steel plate uniform. However, if it exceeds 10 minutes, formation of an oxidized phase at the grain boundary is promoted, and it becomes difficult to control the yield ratio (YR). In addition, the cost may increase.
この連続焼鈍ラインの通板後、必要に応じて100〜550℃の範囲で60秒以上保持する熱処理を施しても良い。この熱処理によって、伸びや曲げ性が向上する場合がある。
この熱処理の温度は、100℃未満では熱処理の効果が小さく、一方、550℃を超えると、粗大な析出物の生成によりむしろ曲げ性が劣化する場合がある。また、経済的にも不利となるので、550℃を上限とする。
この熱処理の好ましい温度範囲は、200〜450℃の範囲である。
After passing through the continuous annealing line, a heat treatment may be performed for 60 seconds or longer in the range of 100 to 550 ° C. as necessary. This heat treatment may improve elongation and bendability.
If the temperature of the heat treatment is less than 100 ° C., the effect of the heat treatment is small, whereas if it exceeds 550 ° C., the bendability may be rather deteriorated due to the formation of coarse precipitates. Moreover, since it becomes economically disadvantageous, 550 degreeC is made an upper limit.
A preferred temperature range for this heat treatment is in the range of 200 to 450 ° C.
この熱処理終了後、スキンパス圧延を施してもよい。
熱処理後のスキンパス圧延の圧下率は、上記と同じ理由により0.1%以上とする。降伏比を高め、延性を良好に保つには、圧下率を0.7%以上〜2.0%以下の範囲にすることが好ましい。熱処理の後、各種めっきを施しても構わない。
After this heat treatment, skin pass rolling may be performed.
The reduction rate of the skin pass rolling after the heat treatment is set to 0.1% or more for the same reason as described above. In order to increase the yield ratio and maintain good ductility, the rolling reduction is preferably in the range of 0.7% to 2.0%. Various plating may be performed after the heat treatment.
次に、本発明の高降伏比高強度溶融亜鉛めっき鋼板の製造方法について説明する。
この製造方法は、本発明の高降伏比高強度冷延鋼板の鋼成分からなる鋳造スラブを直接または一旦冷却した後に1130℃以上に加熱し、次いで、Ar3変態温度以上の温度にて熱間圧延を施し、その後、750℃以下の温度にて取り出し、次いで、圧下率35〜85%の冷間圧延を施し、次いで、最高加熱温度が740℃以上950℃以下の温度範囲にて連続焼鈍を施し、次いで、亜鉛めっき浴温度より40℃低い温度から前記亜鉛めっき浴温度より50℃高い温度までの温度範囲に冷却し、その後、亜鉛めっき浴に浸漬する方法である。
Next, the manufacturing method of the high yield ratio high strength hot-dip galvanized steel sheet of the present invention will be described.
In this production method, the cast slab made of the steel component of the high yield ratio high strength cold rolled steel sheet of the present invention is directly or once cooled and then heated to 1130 ° C. or higher, and then hot rolled at a temperature equal to or higher than the Ar3 transformation temperature. After that, it is taken out at a temperature of 750 ° C. or lower, then cold-rolled at a rolling reduction of 35 to 85%, and then subjected to continuous annealing at a maximum heating temperature of 740 ° C. or higher and 950 ° C. or lower. Then, it is cooled to a temperature range from a temperature lower by 40 ° C. than the temperature of the galvanizing bath to a temperature higher by 50 ° C. than the temperature of the galvanizing bath, and then immersed in the galvanizing bath.
上記の亜鉛めっき浴に浸漬した後、460℃以上の温度にて合金化処理を施してもよい。
また、上記の合金化処理を施した後、圧下率0.1%以上のスキンパス圧延を施してもよい。
After dipping in the above galvanizing bath, an alloying treatment may be performed at a temperature of 460 ° C. or higher.
Further, after the above alloying treatment, skin pass rolling with a rolling reduction of 0.1% or more may be performed.
冷間圧延後に連続溶融亜鉛めっきラインを通板する場合の最高到達温度も、上述した連続焼鈍ラインを通板する場合と同様の理由により、740〜950℃とする。いわゆる無酸化炉(NOF)−還元炉(RF)からなる溶融亜鉛めっきラインの場合には、無酸化炉での空気比を0.9〜1.2とすることにより、鉄の酸化を促し、続く還元処理により、表面に生じた鉄酸化物を還元して金属鉄とすることにより、めっき性や合金化反応性を向上させることができる。 The maximum temperature reached when the continuous hot-dip galvanizing line is passed after the cold rolling is set to 740 to 950 ° C. for the same reason as when passing the continuous annealing line. In the case of a hot dip galvanizing line consisting of a so-called non-oxidizing furnace (NOF) -reducing furnace (RF), the air ratio in the non-oxidizing furnace is set to 0.9 to 1.2 to promote iron oxidation, By reducing the iron oxide generated on the surface by the subsequent reduction treatment to form metallic iron, the plating property and the alloying reactivity can be improved.
また、無酸化炉(NOF)の無いタイプの溶融亜鉛めっきラインでは、露点を−20℃以上とすることが、めっき性や合金化反応性に有利である。
最高加熱温度到達後のめっき浴浸漬前の冷却終点温度は、亜鉛めっき浴温度より40℃低い温度から前記亜鉛めっき浴温度より50℃高い温度までの温度範囲、すなわち、「亜鉛めっき浴温度−40」℃〜「亜鉛めっき浴温度+50」℃とする。
この冷却終点温度が「亜鉛めっき浴温度−40」℃より低くなると、降伏比が0.70を下回る場合があるばかりでなく、めっき浴浸入時の抜熱が大きいことなどの操業上の問題もある。また、冷却終点温度が「亜鉛めっき浴温度+50」℃より高くなると、めっき浴温度上昇に伴う操業上の問題を誘発する。亜鉛めっき浴は、必要に応じて亜鉛以外の元素を含有しても構わない。
In addition, in a hot dip galvanizing line of a type without a non-oxidizing furnace (NOF), it is advantageous in terms of plating properties and alloying reactivity to have a dew point of −20 ° C. or higher.
The cooling end point temperature before immersion in the plating bath after reaching the maximum heating temperature is a temperature range from a temperature 40 ° C. lower than the galvanizing bath temperature to a temperature 50 ° C. higher than the galvanizing bath temperature, that is, “zinc plating bath temperature−40”. “° C. to“ zinc plating bath temperature + 50 ”° C.
When this cooling end point temperature is lower than “zinc plating bath temperature −40” ° C., not only the yield ratio may be less than 0.70, but also there are operational problems such as large heat removal when entering the plating bath. is there. Further, when the end point temperature of cooling is higher than “zinc plating bath temperature + 50” ° C., operational problems accompanying the increase in plating bath temperature are induced. The galvanizing bath may contain elements other than zinc as necessary.
この溶融亜鉛めっき鋼板に合金化処理を施してもよい。
合金化処理を行う場合には、460℃以上で行う。合金化処理温度が460℃未満であると、合金化の進行が遅く、生産性が悪くなる。この合金化処理温度の上限は特に限定しないが、620℃より高くなると、パーライト変態を生ずる場合があり、降伏比が低下したり、曲げ性や穴拡げ性が劣化したりするので、620℃が実質的な上限である。
また、上記の溶融亜鉛めっき鋼板に0.1%以上のスキンパス圧延を施してもよい。降伏比を高め、延性を良好に保つには、0.7%以上〜2.0%以下のスキンパス圧延を施すことが好ましい。
This hot dip galvanized steel sheet may be alloyed.
When the alloying process is performed, it is performed at 460 ° C. or higher. When the alloying treatment temperature is less than 460 ° C., the progress of alloying is slow, and the productivity is deteriorated. The upper limit of the alloying treatment temperature is not particularly limited, but if it exceeds 620 ° C., pearlite transformation may occur, and the yield ratio decreases, and the bendability and hole expansibility deteriorate. This is a practical upper limit.
Further, the above hot-dip galvanized steel sheet may be subjected to skin pass rolling of 0.1% or more. In order to increase the yield ratio and maintain good ductility, it is preferable to perform skin pass rolling of 0.7% to 2.0%.
本発明の高降伏比高強度冷延鋼板は、溶接性にも優れている。溶接方法については、上述の通りスポット溶接に対して特に優れた特性を示す他、通常行われる溶接方法、たとえばアーク溶接、TIG溶接、MIG溶接、マッシュ溶接、レーザー溶接等の溶接方法にも適合する。また、テーラードブランクにも適している。
本発明の高降伏比高強度冷延鋼板は、ホットプレスにも適合する。すなわち、本鋼板を600℃以上の温度に加熱後、プレス成形することによって降伏比の高い成形品を得ることができ、その後の溶接性にも優れている。
また、本発明の高降伏比高強度冷延鋼板は耐水素脆性にも優れている。
The high yield ratio high strength cold-rolled steel sheet of the present invention is also excellent in weldability. As for the welding method, in addition to exhibiting particularly excellent characteristics with respect to spot welding as described above, it is also suitable for welding methods that are usually performed, such as arc welding, TIG welding, MIG welding, mash welding, laser welding, and the like. . It is also suitable for tailored blanks.
The high yield ratio high strength cold-rolled steel sheet of the present invention is also suitable for hot pressing. That is, by heating the steel plate to a temperature of 600 ° C. or higher and then press forming, a molded product having a high yield ratio can be obtained, and the subsequent weldability is also excellent.
Moreover, the high yield ratio high-strength cold-rolled steel sheet of the present invention is also excellent in resistance to hydrogen embrittlement.
次に、本発明の鋼板を実施例及び比較例にて説明する。
「実験例1」
転炉により、表1に示す様々な組成の鋼スラブを溶製し、次いで、これらの鋼スラブを1240℃に加熱し、Ar3変態温度以上である約900℃にて熱間圧延を完了し、その後、550℃まで冷却して厚さ2.8mmの鋼帯とし、巻き取り装置を用いて所定の巻き取り速度にて巻き取った。
次いで、これらの鋼帯を酸洗後、冷間圧延によって板厚を1.2mmとし、引き続き表2に示す条件にて熱処理を行った。
この熱処理では、表2に示す最高到達温度(最高加熱温度)にて90秒間保持し、次いで、(最高到達温度−130)℃まで5℃/秒の冷却速度にて冷却した。その後、続く付加的な熱処理温度までは40℃/秒の冷却速度にて冷却し、この付加的な熱処理を約350秒間行った。
Next, the steel plate of this invention is demonstrated in an Example and a comparative example.
"Experiment 1"
With a converter, steel slabs having various compositions shown in Table 1 were melted, then these steel slabs were heated to 1240 ° C., and hot rolling was completed at about 900 ° C., which is higher than the Ar3 transformation temperature, Then, it cooled to 550 degreeC and set it as the steel strip of thickness 2.8mm, and wound up with the predetermined winding speed using the winding device.
Next, after pickling these steel strips, the sheet thickness was changed to 1.2 mm by cold rolling, and subsequently heat treatment was performed under the conditions shown in Table 2.
In this heat treatment, the sample was held for 90 seconds at the maximum temperature (maximum heating temperature) shown in Table 2, and then cooled to (maximum temperature −130) ° C. at a cooling rate of 5 ° C./second. Thereafter, cooling was performed at a cooling rate of 40 ° C./second until the subsequent additional heat treatment temperature, and this additional heat treatment was performed for about 350 seconds.
この熱処理の後、圧下率が0.4%のスキンパス圧延を施した。これらの鋼板から日本工業規格JIS Z 2201「金属材料引張試験片」に準拠して引張り試験片を採取し、圧延方向に対して直角方向の引張特性を測定した。
ここでは、引張特性として、引張最高強度(TS)、降伏強度(YS)、降伏比(YR)の3点を評価した。なお、表中、「El」は全伸びである。
次いで、スキンパス圧延を施した鋼板に対してスポット溶接を実施した。
After this heat treatment, skin pass rolling with a rolling reduction of 0.4% was performed. Tensile test specimens were taken from these steel sheets in accordance with Japanese Industrial Standards JIS Z 2201 “Metallic material tensile test specimens”, and the tensile properties in the direction perpendicular to the rolling direction were measured.
Here, as tensile properties, three points of maximum tensile strength (TS), yield strength (YS), and yield ratio (YR) were evaluated. In the table, “El” is the total elongation.
Next, spot welding was performed on the steel plate subjected to skin pass rolling.
スポット溶接は次の条件で行った。
電極(ドーム型):先端径6mmφ
加圧力:4.3kN
溶接電流:散り発生直前の電流(CE)および(CE+1.5)kA
溶接時間:15サイクル
保持時間:10サイクル
Spot welding was performed under the following conditions.
Electrode (dome type): Tip diameter 6mmφ
Applied pressure: 4.3kN
Welding current: Current (CE) and (CE + 1.5) kA immediately before the occurrence of scattering
Welding time: 15 cycles Holding time: 10 cycles
溶接後、スポット溶接の評価を行うために、日本工業規格JIS Z 3137「抵抗スポット及びプロジェクション溶接継手の十字引張試験片寸法及び試験方法」に準拠して十字型引張試験を行った。
ここでは、溶接電流をCEとする溶接を10回行ったときのCTSの最低値を1としたとき、溶接電流を散り発生領域である(CE+1.5)kAとする溶接を10回行ったときのCTSの最低値が0.85未満を「×」、0.85以上0.95未満を「○」、0.95以上を「◎」とした。
After welding, in order to evaluate spot welding, a cross-type tensile test was performed in accordance with Japanese Industrial Standard JIS Z 3137 “Dimensions and Test Methods of Resistance Spots and Projection Welded Joints for Cross-Tensile Test Pieces”.
Here, when the minimum value of CTS when welding with CE as the welding current is performed 10 times is 1, when welding is performed 10 times with the welding current being scattered (CE + 1.5) kA The minimum value of CTS was less than 0.85 as “x”, 0.85 or more and less than 0.95 as “◯”, and 0.95 or more as “◎”.
また、曲げ性の評価については、圧延方向と垂直方向の長さが100mm、圧延方向の長さが30mmの矩形状の試験片を採取し、この試験片の長手方向を90°曲げた時に割れが発生する限界曲げ半径を測定することによって評価した。
すなわち、ポンチ先端部の曲率半径を0.5mmから5.0mmまで0.5mm間隔にて曲げ試験を行い、割れ発生のない最小曲げ半径を「限界曲げ半径」とした。
これらの試験結果を表2に示す。
For evaluation of bendability, a rectangular test piece having a length of 100 mm in the direction perpendicular to the rolling direction and a length of 30 mm in the rolling direction was sampled, and cracked when the longitudinal direction of the test piece was bent by 90 °. It was evaluated by measuring the limit bending radius at which occurrence occurred.
That is, a bending test was performed at intervals of 0.5 mm from 0.5 mm to 5.0 mm in the radius of curvature of the tip of the punch, and the minimum bending radius without occurrence of cracking was defined as “limit bending radius”.
These test results are shown in Table 2.
これらの評価結果によれば、本発明の鋼板は、高降伏比でありながら良好な延性を有し、かつ溶接性と曲げ性にも優れていることが分かった。 According to these evaluation results, it was found that the steel sheet of the present invention has good ductility while having a high yield ratio, and is excellent in weldability and bendability.
「実験例2」
表1に示す様々な組成の鋼スラブに対して「実験例1」と同様にして冷間圧延まで行い、連続合金化溶融亜鉛めっき設備にて熱処理と溶融亜鉛めっきを施した。
熱処理は、加熱速度15℃/秒にて700℃まで昇温させ、次いで、約100秒間で最高到達温度まで昇温させた。このとき、最高到達温度(最高加熱温度)を表3に示す様に種々変化させた。その後、1℃/秒の冷却速度で「最高到達温度−30」℃まで冷却し、次いで、90秒間で460℃まで冷却した。
"Experimental example 2"
The steel slabs having various compositions shown in Table 1 were subjected to cold rolling in the same manner as in “Experimental Example 1”, and were subjected to heat treatment and hot dip galvanization in a continuous alloying hot dip galvanizing facility.
In the heat treatment, the temperature was raised to 700 ° C. at a heating rate of 15 ° C./second, and then raised to the maximum temperature in about 100 seconds. At this time, the maximum attained temperature (maximum heating temperature) was varied as shown in Table 3. Thereafter, it was cooled to “maximum attained temperature −30” ° C. at a cooling rate of 1 ° C./second, and then cooled to 460 ° C. in 90 seconds.
これらの鋼板を、引き続きめっき槽(浴組成:0.11%Al−Zn、浴温:455℃)に浸漬し、鋼板の表面に亜鉛めっき膜を形成した。その後、30℃/秒の昇温速度で530℃〜570℃まで加熱し、合金化処理を施した。その後、室温(25℃)まで冷却した。
めっきの目付け量は両面とも約55g/m2とした。また、スキンパス圧延における圧下率は0.8%とした。
These steel plates were subsequently immersed in a plating tank (bath composition: 0.11% Al—Zn, bath temperature: 455 ° C.) to form a galvanized film on the surface of the steel plate. Then, it heated to 530 degreeC-570 degreeC with the temperature increase rate of 30 degreeC / second, and performed the alloying process. Then, it cooled to room temperature (25 degreeC).
The amount of plating was about 55 g / m 2 on both sides. The rolling reduction in skin pass rolling was 0.8%.
次いで、これらの鋼板から日本工業規格JIS Z 2201「金属材料引張試験片」に準拠して引張り試験片を採取し、圧延方向に対して直角方向の引張特性を測定した。各鋼板の引張特性、めっき性、合金化反応性、スポット溶接性を表3に示す。スポット溶接性の評価は実験例1と同様に行い、めっき性、合金化反応性はそれぞれ以下のようにして評価した。
「めっき性」
○:不めっきなし
△:不めっき若干あり
×:不めっき多い
「合金化反応性」
○:表面外観に合金化ムラなし
△:表面外観に合金化ムラ若干あり
×:表面外観に合金化ムラ多い
これらの試験結果を表3に示す。
Next, tensile test specimens were collected from these steel plates in accordance with Japanese Industrial Standard JIS Z 2201 “Metal Material Tensile Test Specimens”, and tensile properties in a direction perpendicular to the rolling direction were measured. Table 3 shows the tensile properties, plating properties, alloying reactivity, and spot weldability of each steel plate. The spot weldability was evaluated in the same manner as in Experimental Example 1, and the plating property and the alloying reactivity were evaluated as follows.
"Plating property"
○: No plating △: There is some non-plating ×: “No alloying reactivity”
◯: No alloying unevenness on the surface appearance Δ: Some alloying unevenness on the surface appearance ×: Many alloying unevenness on the surface appearance These test results are shown in Table 3.
これらの評価結果によれば、本発明の鋼板は、比較例の鋼板と比べて降伏比、溶接性と強度とのバランスに優れていることが分かった。 According to these evaluation results, it was found that the steel sheet of the present invention was superior in the balance between the yield ratio, weldability and strength as compared with the steel sheet of the comparative example.
「実験例3」
表1におけるNo.1−1、1−2、4−1、4−2、6−1、6−2のそれぞれの鋼板について実験例2と同様にしてめっき槽への浸漬まで行った後、室温(25℃)まで空冷した。めっきの目付け量は両面とも約50g/m2とした。また、スキンパス圧延の圧下率は0.7%とした。
"Experiment 3"
No. in Table 1 For each of the steel sheets 1-1, 1-2, 4-1, 4-2, 6-1, and 6-2, the immersion was performed in the plating tank in the same manner as in Experimental Example 2, and then room temperature (25 ° C.). Air-cooled until. The amount of plating was about 50 g / m 2 on both sides. Moreover, the rolling reduction of the skin pass rolling was set to 0.7%.
これらの評価結果によれば、本発明の鋼板は、比較例の鋼板と比べて降伏比、溶接性と強度とのバランスに優れていることが分かった。 According to these evaluation results, it was found that the steel sheet of the present invention was superior in the balance between the yield ratio, weldability and strength as compared with the steel sheet of the comparative example.
本発明の高降伏比高強度冷延鋼板は、降伏比を適切なレベルに制御することで、延性、曲げ性等が良好であり、かつ溶接性と強度とのバランスの良い鋼板としたものであるから、自動車車体骨格部用鋼板等の鋼材として広く利用が可能であり、その産業上の利用価値は極めて大きい。 The high yield ratio high strength cold-rolled steel sheet of the present invention is a steel sheet that has good ductility, bendability, etc. and a good balance between weldability and strength by controlling the yield ratio to an appropriate level. Therefore, it can be widely used as a steel material such as a steel plate for automobile body frame parts, and its industrial utility value is extremely large.
Claims (12)
請求項10記載の条件で亜鉛めっき浴に浸漬する工程までを行った後、さらに、460℃以上の温度にて合金化処理を施すことを特徴とする、降伏比が0.70超〜0.83未満、かつ、引張最高強度が780MPa以上〜900MPa未満である高降伏比高強度合金化溶融亜鉛めっき鋼板の製造方法。 A method for producing a high yield ratio, high strength alloyed hot dip galvanized steel sheet, which comprises subjecting the surface of the high yield ratio high strength cold rolled steel sheet according to any one of claims 1 to 4 to alloying hot dip galvanizing ,
After the steps up to the step of immersion in a zinc plating bath under the conditions of claim 10, further characterized by applying alloying treatment at 460 ° C. or higher, the yield ratio is 0.70 super to 0. A method for producing a high yield ratio high-strength galvannealed steel sheet having a tensile strength of less than 83 and a tensile maximum strength of 780 MPa to less than 900 MPa .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005097155A JP4436275B2 (en) | 2005-03-30 | 2005-03-30 | High yield ratio high strength cold rolled steel sheet, high yield ratio high strength hot dip galvanized steel sheet, high yield ratio high strength alloyed hot dip galvanized steel sheet, and methods for producing them |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005097155A JP4436275B2 (en) | 2005-03-30 | 2005-03-30 | High yield ratio high strength cold rolled steel sheet, high yield ratio high strength hot dip galvanized steel sheet, high yield ratio high strength alloyed hot dip galvanized steel sheet, and methods for producing them |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006274378A JP2006274378A (en) | 2006-10-12 |
JP4436275B2 true JP4436275B2 (en) | 2010-03-24 |
Family
ID=37209411
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005097155A Active JP4436275B2 (en) | 2005-03-30 | 2005-03-30 | High yield ratio high strength cold rolled steel sheet, high yield ratio high strength hot dip galvanized steel sheet, high yield ratio high strength alloyed hot dip galvanized steel sheet, and methods for producing them |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4436275B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180112817A (en) | 2016-03-11 | 2018-10-12 | 제이에프이 스틸 가부시키가이샤 | High Strength Steel Sheet and Manufacturing Method Thereof |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5412746B2 (en) * | 2008-04-22 | 2014-02-12 | 新日鐵住金株式会社 | High strength steel plate with good weldability and stretch flangeability |
JP5438302B2 (en) | 2008-10-30 | 2014-03-12 | 株式会社神戸製鋼所 | High yield ratio high strength hot dip galvanized steel sheet or alloyed hot dip galvanized steel sheet with excellent workability and manufacturing method thereof |
JP5545077B2 (en) * | 2010-06-30 | 2014-07-09 | 新日鐵住金株式会社 | Method for producing galvannealed steel sheet |
JP5699860B2 (en) * | 2011-08-24 | 2015-04-15 | 新日鐵住金株式会社 | Hot-dip galvanized steel sheet and manufacturing method thereof |
FI124825B (en) * | 2013-02-22 | 2015-02-13 | Rautaruukki Oyj | Process for producing a metal-coated and hot-worked steel component and metal-coated steel strip product |
-
2005
- 2005-03-30 JP JP2005097155A patent/JP4436275B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180112817A (en) | 2016-03-11 | 2018-10-12 | 제이에프이 스틸 가부시키가이샤 | High Strength Steel Sheet and Manufacturing Method Thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2006274378A (en) | 2006-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6631760B1 (en) | High strength galvanized steel sheet and high strength members | |
CN111433380B (en) | High-strength galvanized steel sheet and method for producing same | |
JP6544494B1 (en) | High strength galvanized steel sheet and method of manufacturing the same | |
JP5858199B2 (en) | High-strength hot-dip galvanized steel sheet and manufacturing method thereof | |
JP4445365B2 (en) | Manufacturing method of high-strength thin steel sheet with excellent elongation and hole expandability | |
KR101165168B1 (en) | High-yield-ratio high-strength thin steel sheet and high-yield-ratio high-strength hot-dip galvanized thin steel sheet excelling in weldability and ductility as well as high-yield-ratio high-strength alloyed hot-dip galvanized thin steel sheet and process for producing the same | |
JP4926814B2 (en) | High strength steel plate with controlled yield point elongation and its manufacturing method | |
JP4486336B2 (en) | High yield ratio high strength cold-rolled steel sheet and high yield ratio high strength hot-dip galvanized steel sheet excellent in weldability and ductility, high yield ratio high-strength galvannealed steel sheet, and manufacturing method thereof | |
JP4445420B2 (en) | High-strength cold-rolled steel sheet, high-strength hot-dip galvanized steel sheet and high-strength galvanized steel sheet, high-strength cold-rolled steel sheet manufacturing method, high-strength hot-dip galvanized steel sheet manufacturing method, high-strength galvannealed steel sheet Manufacturing method | |
EP2527484B1 (en) | Method for manufacturing a high-strength galvanized steel sheet having excellent formability and spot weldability | |
JP2010275627A (en) | High-strength steel sheet and high-strength hot-dip galvanized steel sheet having excellent workability, and method for producing them | |
JP7261822B2 (en) | Al-Fe alloy plated steel sheet for hot forming with excellent TWB welding properties, and method for producing hot formed member | |
KR20140007476A (en) | Process for producing high-strength hot-dip galvanized steel sheet with excellent material-quality stability, processability, and deposit appearance | |
JP4325998B2 (en) | High-strength hot-dip galvanized steel sheet with excellent spot weldability and material stability | |
JP4436275B2 (en) | High yield ratio high strength cold rolled steel sheet, high yield ratio high strength hot dip galvanized steel sheet, high yield ratio high strength alloyed hot dip galvanized steel sheet, and methods for producing them | |
JP4500197B2 (en) | Manufacturing method of high-strength cold-rolled steel sheet, high-strength hot-dip galvanized steel sheet, and high-strength galvannealed steel sheet with excellent formability and weldability | |
JP4265152B2 (en) | High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same | |
JP4486334B2 (en) | High yield ratio high strength hot-rolled steel sheet and high yield ratio high strength hot dip galvanized steel sheet excellent in weldability and ductility, high yield ratio high strength alloyed hot dip galvanized steel sheet and manufacturing method thereof | |
JP2004292869A (en) | High strength hot dip galvannealed steel sheet having excellent press formability, and production method therefor | |
JP5213307B2 (en) | Method for producing high ductility and high strength alloyed hot-dip galvanized steel sheet with excellent surface properties | |
JP6624352B1 (en) | High-strength galvanized steel sheet, high-strength member, and method for producing them | |
JP2004315882A (en) | Hot dip galvanized high strength steel sheet having excellent bore eaxpandability, and its production method | |
JP2002317245A (en) | High strength galvanized steel sheet having excellent press workability and production method therefor | |
JP2005008940A (en) | Cold rolled high tensile strength steel sheet and its manufacturing method | |
JP2006083471A (en) | Method for producing hot dip galvanized steel sheet having excellent strain age hardening property |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070904 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090915 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090924 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091124 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091218 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091225 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4436275 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130108 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130108 Year of fee payment: 3 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: R3D04 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130108 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140108 Year of fee payment: 4 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |