JP5213307B2 - Method for producing high ductility and high strength alloyed hot-dip galvanized steel sheet with excellent surface properties - Google Patents

Method for producing high ductility and high strength alloyed hot-dip galvanized steel sheet with excellent surface properties Download PDF

Info

Publication number
JP5213307B2
JP5213307B2 JP2006058459A JP2006058459A JP5213307B2 JP 5213307 B2 JP5213307 B2 JP 5213307B2 JP 2006058459 A JP2006058459 A JP 2006058459A JP 2006058459 A JP2006058459 A JP 2006058459A JP 5213307 B2 JP5213307 B2 JP 5213307B2
Authority
JP
Japan
Prior art keywords
less
steel sheet
temperature range
mass
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006058459A
Other languages
Japanese (ja)
Other versions
JP2006307326A (en
Inventor
貴之 二塚
達也 中垣内
広志 松田
康伸 長滝
浩 淡路谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006058459A priority Critical patent/JP5213307B2/en
Publication of JP2006307326A publication Critical patent/JP2006307326A/en
Application granted granted Critical
Publication of JP5213307B2 publication Critical patent/JP5213307B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、自動車用鋼板としての用途に用いる表面性状に優れる高延性高強度合金化溶融亜鉛めっき鋼板の製造方法に関する。 The present invention relates to a method of manufacturing a high-ductility and high strength galvannealed steel sheet excellent in surface properties for use in applications as automotive steel sheets.

近年、地球環境の保全の見地から、自動車の燃費向上が重要な課題となっている。このため、車体材料の高強度化により薄肉化を図り、車体そのものを軽量化しようとする動きが活発となっている。しかしながら、鋼板の高強度化は延性の低下、すなわち成形加工性の低下を招くことから、高強度と高加工性を兼備した材料の開発が望まれている。   In recent years, improving the fuel efficiency of automobiles has become an important issue from the viewpoint of conservation of the global environment. For this reason, a movement to reduce the thickness of the vehicle body by increasing the strength of the vehicle body material and to reduce the weight of the vehicle body has become active. However, increasing the strength of a steel sheet causes a decrease in ductility, that is, a decrease in forming processability, and therefore development of a material having both high strength and high processability is desired.

このような要求に対して、これまでにフェライト、マルテンサイト二相鋼(Dual−Phase鋼)や残留オーステナイトの変態誘起塑性を利用したTRIP鋼など、種々の複合組織鋼が開発されてきた。   In response to such demands, various composite structure steels such as ferrite, martensite duplex steel (Dual-Phase steel) and TRIP steel utilizing transformation-induced plasticity of retained austenite have been developed so far.

これらの鋼板は実使用時の防錆向上を目的に表面にめっきを施す場合があるが、めっき鋼板としては、プレス性、スポット溶接性、塗装密着性を確保する観点から、溶融亜鉛めっき後に熱処理を施してめっき層中に鋼板のFeを拡散させた合金化溶融亜鉛めっき鋼板が多用されており、それに関して種々の提案がなされている。   These steel plates may be plated on the surface for the purpose of improving rust prevention during actual use, but as a plated steel plate, heat treatment is performed after hot dip galvanization from the viewpoint of ensuring pressability, spot weldability, and paint adhesion. An alloyed hot-dip galvanized steel sheet in which Fe of the steel sheet is diffused in the plated layer is widely used, and various proposals have been made in connection therewith.

例えば、特許文献1では、多量のSiを添加することにより残留γを確保し、高延性を達成する加工性に優れた合金化溶融亜鉛めっき鋼板が提案されている。しかし、Siはめっき性を低下させるため、このような高Si鋼にめっきをつけるには、Niのプレめっきや特殊な薬剤の塗布を行ったり、鋼板表面の酸化物層を還元し、酸化膜厚を適当に制御するなどの煩雑な工程が必要となる。   For example, Patent Document 1 proposes an alloyed hot-dip galvanized steel sheet having excellent workability that ensures residual ductility by adding a large amount of Si and achieves high ductility. However, since Si deteriorates the plateability, in order to plate such high Si steel, pre-plating of Ni or application of a special agent is performed, or the oxide layer on the steel sheet surface is reduced, and the oxide film A complicated process such as appropriately controlling the thickness is required.

また、特許文献2では、めっき性に対して悪影響の小さいAlをSiの代わりに添加することにより、めっき濡れ性およびパウダリング性を改善した延性に優れた合金化溶融亜鉛めっき鋼板が提案されている。しかし、高Al鋼では連続鋳造中に鋼中のNとAlがAlNとなってオーステナイト粒界に多量に析出し、粒界が脆化する。通常の連続鋳造では垂直方向から水平方向への曲げ矯正を行うため、粒界が脆化すると矯正部においてスラブ割れが生じやすくなる。割れの生じたスラブをそのまま圧延すると、その割れが最終製品でも残り表面性状が著しく劣化するため、スラブの割れをグラインダーなどで除去する手入れが必要となり、大幅なコスト上昇を招く。   Further, Patent Document 2 proposes an alloyed hot-dip galvanized steel sheet having excellent ductility and improved plating wettability and powdering properties by adding Al, which has a small adverse effect on plating properties, instead of Si. Yes. However, in high Al steel, N and Al in the steel become AlN during continuous casting and precipitate in large amounts at the austenite grain boundaries, and the grain boundaries become brittle. In normal continuous casting, since bending correction from the vertical direction to the horizontal direction is performed, if the grain boundary becomes brittle, a slab crack is likely to occur in the correction portion. If a cracked slab is rolled as it is, the crack remains in the final product and the surface properties are significantly deteriorated. Therefore, it is necessary to take care of removing the crack of the slab with a grinder or the like, resulting in a significant cost increase.

特許文献3では、上記のようなスラブ割れを回避するためにTiを添加してNをTiNとして固着することによりスラブ割れを回避する方法が提案されている。しかし、実際には、NがTiNとして完全に固着される温度よりも高温からAlNの析出が開始し、完全にスラブ割れを回避することが困難である。   Patent Document 3 proposes a method for avoiding slab cracking by adding Ti and fixing N as TiN in order to avoid such slab cracking. However, in practice, precipitation of AlN starts at a temperature higher than the temperature at which N is completely fixed as TiN, and it is difficult to completely avoid slab cracking.

さらにAlは強力なフェライト安定化元素でありA変態点を上昇させるため、その変態点上昇により、熱間圧延時に加熱炉を出てスラブの幅圧下を行うまでに温度低下が生じやすいスラブコーナー部においてフェライトが生成しやすくなる。その結果、幅圧下時にコーナー部に局所的な歪みの集中が起こり、ヘゲなどの表面欠陥が生じやすくなる。
特開平11−279691号公報 特開2002−030403号公報 特許第3596316号公報
For further Al is to increase the are A 3 transformation point a powerful ferrite stabilizing element, by its transformation point rises, the temperature drop is likely to occur slab corner until exiting the furnace during hot rolling performed a width reduction of the slab It becomes easy to generate ferrite in the part. As a result, local strain concentration occurs at the corner portion when the width is reduced, and surface defects such as baldness are likely to occur.
Japanese Patent Application Laid-Open No. 11-296991 JP 2002-030403 A Japanese Patent No. 3596316

本発明はかかる事情に鑑みてなされたものであって、煩雑な工程を経ることなく良好な合金化溶融亜鉛めっき性を得ることができ、連続鋳造時のスラブ割れおよび熱延時の表面欠陥を抑制することにより、めっき後の最終製品の表面性状に優れる高延性高強度合金化溶融亜鉛めっき鋼板の製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and can obtain good alloyed hot dip galvanizing properties without going through complicated steps, and suppresses slab cracking during continuous casting and surface defects during hot rolling. An object of the present invention is to provide a method for producing a high ductility, high-strength galvannealed steel sheet having excellent surface properties of the final product after plating.

本発明者らは、表面性状に優れる高延性高強度合金化亜鉛めっき鋼板を得るため、鋼板の組成およびミクロ組織の観点から鋭意研究を重ねた。その結果、高延性高強度を達成するために残留オーステナイトを活用し、かつ質量%でN:0.005%未満、かつN≦0.007%−(0.003×Al)%とすることにより連続鋳造時のスラブ割れを抑制することができることを見出した。すなわち、N量を0.005質量%未満とすることでAlNの析出量が減少し、スラブ割れ抑制に有効に働くが、Al量が0.7質量%を超えるような高AlとなるとN量を0.005質量%未満に抑えるだけでは不十分となり、NとAlとの関係式であるN≦0.007%−(0.003×Al)%を満たすことも必要となることを見出した。その理由の詳細は必ずしも明らかではないが、Al量が高くなると高温からAlNの析出が生じ、析出物の粗大化が起こりやすくなり、スラブ割れに対するAlNの悪影響が大きくなるためであると考えられる。   In order to obtain a high ductility, high-strength galvanized steel sheet having excellent surface properties, the present inventors have conducted intensive research from the viewpoints of the composition and microstructure of the steel sheet. As a result, in order to achieve high ductility and high strength, residual austenite is utilized, and N: less than 0.005% and N ≦ 0.007% − (0.003 × Al)% by mass%. It was found that slab cracking during continuous casting can be suppressed. That is, when the amount of N is less than 0.005% by mass, the amount of precipitated AlN is reduced and effectively works to suppress slab cracking. It has been found that it is not sufficient to suppress the content to less than 0.005% by mass, and it is necessary to satisfy N ≦ 0.007% − (0.003 × Al)%, which is a relational expression between N and Al. . Although the details of the reason are not necessarily clear, it is considered that when the amount of Al is increased, precipitation of AlN occurs from a high temperature, and the precipitate is likely to be coarsened, and the adverse effect of AlN on slab cracking is increased.

また、Al≦(1.25×C0.5−0.57Si+0.625Mn)%に制御することにより、熱間圧延時のヘゲの発生が抑制されることを見出した。これは、Al、Si添加によるAr変態点の上昇とC、Mn添加による変態点の低下のバランスで、成分を上記の範囲とすることで、幅圧下前のスラブコーナー部でのフェライトの生成が抑制されるためであると考えられる。 Further, by controlling the Al ≦ (1.25 × C 0.5 -0.57Si + 0.625Mn)%, it found that the occurrence of scab at the time of hot rolling is suppressed. This is a balance between an increase in the Ar 3 transformation point due to the addition of Al and Si and a decrease in the transformation point due to the addition of C and Mn. By setting the component within the above range, ferrite is generated at the slab corner before the width reduction. Is considered to be suppressed.

さらに、鋼板の金属組織が残留オーステナイトを一定の範囲で含むように制御することで、延性がより一層向上することを見出した。   Furthermore, it discovered that ductility improved further by controlling so that the metal structure of a steel plate may contain a retained austenite in a fixed range.

本発明は上記知見に基づいて完成されたものであり、以下の(1)〜()を提供する。 This invention is completed based on the said knowledge, and provides the following (1)-( 7 ).

(1)質量%で、C:0.05〜0.25%、Si:0.30%以上0.5%以下、Mn:1〜3%、P:0.1%以下、S:0.01%以下、Al:0.1〜2%、N:0.005%未満を含み、かつSi+Al≧0.6%、N≦0.007%−(0.003×Al)%、Al≦(1.25×C0.5−0.57Si+0.625Mn)%を満たし、Cr:1%以下、V:1%以下から選ばれる1種または2種の元素をさらに含有し、残部Feおよび不可避的不純物からなる鋼を、溶製し、鋳造、熱間圧延、冷間圧延を施した後、730〜900℃の温度域で焼鈍し、焼鈍温度から20℃/s超50℃/s以下の冷却速度で350〜600℃の温度域まで冷却し、その温度域で30〜250秒保持し、その後亜鉛めっきした後、470〜600℃で合金化を行ない、上記成分組成を有し、かつ体積率で3〜20%の残留オーステナイト相を含有する金属組織を有する合金化溶融亜鉛めっき鋼板を製造することを特徴とする合金化溶融亜鉛めっき鋼板の製造方法。 (1) By mass%, C: 0.05 to 0.25%, Si: 0.30% to 0.5%, Mn: 1 to 3%, P: 0.1% or less, S: 0.00. 01% or less, Al: 0.1 to 2%, N: less than 0.005%, and Si + Al ≧ 0.6%, N ≦ 0.007% − (0.003 × Al)%, Al ≦ ( meets 1.25 × C 0.5 -0.57Si + 0.625Mn) %, Cr: 1% or less, V: further contain one or two elements selected from 1% or less, and the balance Fe and unavoidable Steel made of mechanical impurities is melted, cast, hot rolled, and cold rolled, and then annealed in a temperature range of 730 to 900 ° C., and the annealing temperature is 20 ° C./s to 50 ° C./s or less. After cooling to a temperature range of 350 to 600 ° C. at a cooling rate, holding in that temperature range for 30 to 250 seconds, and then galvanizing, 470 to 6 Alloying is performed at 00 ° C., and an alloyed hot-dip galvanized steel sheet having a metal structure having the above component composition and containing a retained austenite phase of 3 to 20% by volume is produced. Manufacturing method of hot dip galvanized steel sheet.

(2)質量%で、C:0.05〜0.25%、Si:0.30%以上0.5%以下、Mn:1〜3%、P:0.1%以下、S:0.01%以下、Al:0.1〜2%、N:0.005%未満を含み、かつSi+Al≧0.6%、N≦0.007%−(0.003×Al)%、Al≦(1.25×C 0.5 −0.57Si+0.625Mn)%を満たし、Nb:0.1%以下をさらに含有し、残部Feおよび不可避的不純物からなる鋼を、溶製し、鋳造、熱間圧延、冷間圧延を施した後、730〜900℃の温度域で焼鈍し、焼鈍温度から20℃/s超50℃/s以下の冷却速度で350〜600℃の温度域まで冷却し、その温度域で30〜250秒保持し、その後亜鉛めっきした後、470〜600℃で合金化を行ない、上記成分組成を有し、かつ体積率で3〜20%の残留オーステナイト相を含有する金属組織を有する合金化溶融亜鉛めっき鋼板を製造することを特徴とする合金化溶融亜鉛めっき鋼板の製造方法。 (2) By mass%, C: 0.05 to 0.25%, Si: 0.30% to 0.5%, Mn: 1 to 3%, P: 0.1% or less, S: 0.00. 01% or less, Al: 0.1 to 2%, N: less than 0.005%, and Si + Al ≧ 0.6%, N ≦ 0.007% − (0.003 × Al)%, Al ≦ ( 1.25 × C 0.5 -0.57Si + 0.625Mn)%, Nb: further containing 0.1% or less, the balance Fe and unavoidable impurities are melted, cast, hot After performing rolling and cold rolling, annealing is performed at a temperature range of 730 to 900 ° C., and cooling is performed from the annealing temperature to a temperature range of 350 to 600 ° C. at a cooling rate of more than 20 ° C./s and 50 ° C./s or less. Hold for 30 to 250 seconds in the temperature range, then galvanize, alloy at 470 to 600 ° C., and have the above component composition And method for producing a galvannealed steel sheet characterized by producing a galvannealed steel sheet having a metal structure containing 3-20% of residual austenite phase by volume.

(3)質量%で、C:0.05〜0.25%、Si:0.30%以上0.5%以下、Mn:1〜3%、P:0.1%以下、S:0.01%以下、Al:0.1〜2%、N:0.005%未満を含み、かつSi+Al≧0.6%、N≦0.007%−(0.003×Al)%、Al≦(1.25×C 0.5 −0.57Si+0.625Mn)%を満たし、B:0.005%以下、Ni:1%以下から選ばれる1種または2種の元素をさらに含有し、残部Feおよび不可避的不純物からなる鋼を、溶製し、鋳造、熱間圧延、冷間圧延を施した後、730〜900℃の温度域で焼鈍し、焼鈍温度から20℃/s超50℃/s以下の冷却速度で350〜600℃の温度域まで冷却し、その温度域で30〜250秒保持し、その後亜鉛めっきした後、470〜600℃で合金化を行ない、上記成分組成を有し、かつ体積率で3〜20%の残留オーステナイト相を含有する金属組織を有する合金化溶融亜鉛めっき鋼板を製造することを特徴とする合金化溶融亜鉛めっき鋼板の製造方法。 (3) By mass%, C: 0.05 to 0.25%, Si: 0.30% to 0.5%, Mn: 1 to 3%, P: 0.1% or less, S: 0.00. 01% or less, Al: 0.1 to 2%, N: less than 0.005%, and Si + Al ≧ 0.6%, N ≦ 0.007% − (0.003 × Al)%, Al ≦ ( 1.25 × C 0.5 −0.57 Si + 0.625 Mn)%, B: further containing one or two elements selected from 0.005% or less, Ni: 1% or less, the balance Fe and Steel made of inevitable impurities is melted, cast, hot rolled, and cold rolled, then annealed in the temperature range of 730 to 900 ° C., and from the annealing temperature to 20 ° C./s over 50 ° C./s. After cooling to a temperature range of 350 to 600 ° C. at that cooling rate, holding in that temperature range for 30 to 250 seconds, and then galvanizing, 4 Alloying is performed at 0 to 600 ° C., and an alloyed hot-dip galvanized steel sheet having the above component composition and having a metal structure containing a residual austenite phase of 3 to 20% by volume is produced. A method for producing a galvannealed steel sheet.

質量%で、C:0.05〜0.25%、Si:0.30%以上0.5%以下、Mn:1〜3%、P:0.1%以下、S:0.01%以下、Al:0.1〜2%、N:0.005%未満を含み、かつSi+Al≧0.6%、N≦0.007%−(0.003×Al)%、Al≦(1.25×C 0.5 −0.57Si+0.625Mn)%を満たし、CaおよびREMの1種または2種を合計で0.01%以下をさらに含有し、残部Feおよび不可避的不純物からなる鋼を、溶製し、鋳造、熱間圧延、冷間圧延を施した後、730〜900℃の温度域で焼鈍し、焼鈍温度から20℃/s超50℃/s以下の冷却速度で350〜600℃の温度域まで冷却し、その温度域で30〜250秒保持し、その後亜鉛めっきした後、470〜600℃で合金化を行ない、上記成分組成を有し、かつ体積率で3〜20%の残留オーステナイト相を含有する金属組織を有する合金化溶融亜鉛めっき鋼板を製造することを特徴とする合金化溶融亜鉛めっき鋼板の製造方法。 ( 4 ) By mass%, C: 0.05 to 0.25%, Si: 0.30% or more and 0.5% or less, Mn: 1 to 3%, P: 0.1% or less, S: 0.00. 01% or less, Al: 0.1 to 2%, N: less than 0.005%, and Si + Al ≧ 0.6%, N ≦ 0.007% − (0.003 × Al)%, Al ≦ ( 1.25 × C 0.5 −0.57 Si + 0.625 Mn)%, steel further containing a total of 0.01% or less of one or two of Ca and REM, the balance being Fe and inevitable impurities After melting, casting, hot rolling, and cold rolling, annealing is performed in a temperature range of 730 to 900 ° C., and 350 to 350 ° C. at a cooling rate of 20 ° C./s or more and 50 ° C./s or less from the annealing temperature. After cooling to a temperature range of 600 ° C., holding in that temperature range for 30 to 250 seconds, and then galvanizing, 470 to 600 Alloyed hot dip galvanized steel, characterized by producing an alloyed hot dip galvanized steel sheet having a metal structure containing the above component composition and containing 3-20% residual austenite phase by volume Manufacturing method of plated steel sheet.

(5)上記(1)において、前記鋼は、質量%で、Nb:0.1%以下をさらに含有することを特徴とする合金化溶融亜鉛めっき鋼板の製造方法。(5) The method for producing an galvannealed steel sheet according to (1), wherein the steel further contains, by mass%, Nb: 0.1% or less.
(6)上記(1)、(2)または(5)において、前記鋼は、質量%で、B:0.005%以下、Ni:1%以下から選ばれる1種または2種の元素をさらに含有することを特徴とする合金化溶融亜鉛めっき鋼板の製造方法。(6) In the above (1), (2) or (5), the steel further contains one or two elements selected from B: 0.005% or less and Ni: 1% or less in mass%. A method for producing an alloyed hot-dip galvanized steel sheet, comprising:

(7)上記(1)、(2)、(3)、(5)または(6)のいずれかにおいて、前記鋼は、質量%で、CaおよびREMの1種または2種を合計で0.01%以下をさらに含有することを特徴とする合金化溶融亜鉛めっき鋼板の製造方法。(7) In any one of the above (1), (2), (3), (5) or (6), the steel is in% by mass, and one or two of Ca and REM are combined in a total of 0.00. The manufacturing method of the galvannealed steel plate characterized by further containing 01% or less.

本発明によれば、煩雑な工程を経ることなく良好な合金化溶融亜鉛めっき性を得ることができ、かつ、連続鋳造時のスラブ割れおよび熱延時の表面欠陥を抑制することにより、めっき後の最終製品の表面性状に優れる高延性高強度合金化溶融亜鉛めっき鋼板を得ることができる。   According to the present invention, it is possible to obtain good alloying hot dip galvanizing properties without going through complicated steps, and by suppressing surface defects during slab cracking and hot rolling during continuous casting, A highly ductile and high-strength galvannealed steel sheet having excellent surface properties of the final product can be obtained.

以下、本発明について具体的に説明する。
まず、本発明の合金化溶融亜鉛めっき鋼板の組成限定理由について説明する。以下において%は質量%を意味する。
Hereinafter, the present invention will be specifically described.
First, the reasons for limiting the composition of the galvannealed steel sheet of the present invention will be described. In the following,% means mass%.

C:0.05〜0.25%
Cはオーステナイトを安定化させる元素であり、マルテンサイト量の確保および室温で残留オーステナイトを残留させるために必要な元素である。C量が0.05%未満では、鋼板の強度の確保と同時に、残留オーステナイト量を確保して高延性を達成することが難しい。一方、C量が0.25%を超えると溶接部および熱影響部の硬化が著しく、溶接性が劣化する。このため、C量を0.05〜0.25%の範囲とする。
C: 0.05-0.25%
C is an element that stabilizes austenite, and is an element necessary for securing the amount of martensite and for retaining residual austenite at room temperature. If the amount of C is less than 0.05%, it is difficult to secure the strength of the steel sheet and at the same time secure the amount of retained austenite and achieve high ductility. On the other hand, if the amount of C exceeds 0.25%, the welded part and the heat-affected zone are markedly cured, and the weldability deteriorates. For this reason, C amount is made into the range of 0.05 to 0.25%.

Si:0.5%以下
Siは鋼の強化に有効な元素である。また、フェライト生成元素であり、オーステナイト中へのCの濃化を促進し、炭化物の生成を抑制することから、残留オーステナイトの生成を促進する働きを有する。しかし、Si量が0.5%を超えるとめっき性の劣化を招き、通常の溶融亜鉛めっき工程ではめっきが困難となる。したがって、Si量を0.5%以下とする。好ましくは0.03%以下である。Siが0.03%以下では熱延での赤スケール発生が抑制され、最終的なめっき外観が良好になり、自動車外板材への適用も可能となる。
Si: 0.5% or less Si is an element effective for strengthening steel. Further, it is a ferrite-forming element and promotes the formation of retained austenite because it promotes the concentration of C in austenite and suppresses the formation of carbides. However, if the amount of Si exceeds 0.5%, the plating property is deteriorated, and plating becomes difficult in a normal hot dip galvanizing process. Therefore, the Si content is 0.5% or less. Preferably it is 0.03% or less. When Si is 0.03% or less, the occurrence of red scale in hot rolling is suppressed, the final plating appearance is improved, and application to an automobile outer plate material is also possible.

Mn:1〜3%
Mnは鋼の強化に有効な元素である。また、オーステナイトを安定化させる元素であり、残留オーステナイトの増加に必要な元素である。しかし、Mn量が1%未満ではこのような効果を得難く、一方、3%を超えると、過度の第2相分率の増加や固溶強化量の増加により強度上昇が著しくなり、延性の低下を招く。したがって、Mn量を1〜3%の範囲とする。
Mn: 1-3%
Mn is an element effective for strengthening steel. Further, it is an element that stabilizes austenite, and is an element that is necessary for increasing retained austenite. However, when the amount of Mn is less than 1%, it is difficult to obtain such an effect. On the other hand, when the amount exceeds 3%, the increase in strength becomes significant due to an excessive increase in the second phase fraction and the increase in the amount of solid solution strengthening, and the ductility Incurs a decline. Therefore, the Mn content is in the range of 1 to 3%.

P:0.1%以下
Pは鋼の強化に有効な元素であるが、0.1%を超えると、粒界偏析により脆化を引き起こし、衝撃特性を劣化させる。したがって、P量を0.1%以下とする。
P: 0.1% or less P is an element effective for strengthening steel, but if it exceeds 0.1%, it causes embrittlement due to segregation at the grain boundaries and deteriorates impact characteristics. Therefore, the P content is 0.1% or less.

S:0.01%以下
SはMnSなどの介在物となって、耐衝撃特性の劣化や溶接部のメタルフローに沿った割れの原因になるので極力低い方が良いが、製造コストの面から0.01%以下とする。
S: 0.01% or less S is an inclusion such as MnS, which causes deterioration in impact resistance and cracks along the metal flow of the weld. 0.01% or less.

Al:0.1〜2%
Si+Al≧0.6%
AlはSiと同様にフェライト生成元素であり、オーステナイト中へのCの濃化を促進し、炭化物の生成を抑制することから、残留オーステナイトの生成を促進する働きがある。このような効果はAlとSiの添加量の合計が0.6%未満では不十分で十分な延性が得られない。Alが0.1%未満ではSiを上限まで添加してもSi+Al量が0.6%未満になる。一方、Al量が2%を超えると鋼板中の介在物が多くなり延性を劣化させる。したがって、Al量を0.1〜2%の範囲とし、Si+Al≧0.6%とする。
Al: 0.1 to 2%
Si + Al ≧ 0.6%
Al, like Si, is a ferrite-forming element and promotes the formation of retained austenite because it promotes the concentration of C in austenite and suppresses the formation of carbides. Such effects are insufficient if the total amount of Al and Si added is less than 0.6%, and sufficient ductility cannot be obtained. If Al is less than 0.1%, the Si + Al content is less than 0.6% even if Si is added up to the upper limit. On the other hand, if the Al content exceeds 2%, the inclusions in the steel sheet increase and the ductility deteriorates. Therefore, the Al content is in the range of 0.1 to 2%, and Si + Al ≧ 0.6%.

Al≦(1.25×C0.5−0.57Si+0.625Mn)%
Alの含有量が(1.25×C0.5−0.57Si+0.625Mn)%を超えると熱間圧延時のヘゲの発生が生じやすくため、Al量は、Al≦(1.25×C0.5−0.57Si+0.625Mn)%をも満たすものとする。
Al ≦ (1.25 × C 0.5 −0.57 Si + 0.625 Mn)%
When the Al content exceeds (1.25 × C 0.5 −0.57 Si + 0.625 Mn)%, the occurrence of shave during hot rolling is likely to occur. Therefore, the Al content is Al ≦ (1.25 × C 0.5 −0.57 Si + 0.625 Mn)%.

N:0.005%未満
N≦0.007%−(0.003×Al)%
Nは本発明における重要な元素であり、N量の増加に伴うAlNの析出量の増加により連続鋳造時のスラブ割れを引き起こしやすくなる。このようなスラブ割れを回避するために、N量を0.005%未満と制限した上で、さらにNとAlとの関係式であるN≦0.007%−(0.003×Al)%を満足するようにする。好ましくは、0.006×Al≦N≦0.0058−(0.0026×Al)である。
N: Less than 0.005% N ≦ 0.007% − (0.003 × Al)%
N is an important element in the present invention, and slab cracking during continuous casting is likely to occur due to an increase in the precipitation amount of AlN accompanying an increase in the N content. In order to avoid such slab cracking, the N amount is limited to less than 0.005%, and further, N ≦ 0.007% − (0.003 × Al)%, which is a relational expression between N and Al. To be satisfied. Preferably, 0.006 × Al ≦ N ≦ 0.0058− (0.0026 × Al).

Cr、V:それぞれ1%以下
Cr、Vは焼鈍温度からの冷却時にパーライトの生成を抑制する作用を有するので必要に応じて添加することができる。しかしながら、それぞれ1%を超えると、過度の強度上昇による延性の低下およびめっき性の劣化が懸念される。したがって、Cr、Vを添加する場合には、これらの量をそれぞれ1%以下とする。
Cr, V: 1% or less respectively Cr, V has an action of suppressing the formation of pearlite during cooling from the annealing temperature, and can be added as necessary. However, if each exceeds 1%, there is a concern about a decrease in ductility and a deterioration in plating properties due to an excessive increase in strength. Therefore, when Cr and V are added, these amounts are each 1% or less.

Nb:0.1%以下
bは鋼の析出強化に有効であるため必要に応じて添加することができる。しかし、0.1%を超えると加工性および形状凍結性が低下する。したがって、Nbを添加する場合には、その量を0.1%以下とする。
Nb: 0.1% or less
N b can be optionally added because they are effective in precipitation strengthening of steel. However, if it exceeds 0.1%, the workability and the shape freezing property decrease. Therefore , when Nb is added, the amount is reduced to 0 . 1% or less.

B:0.005%以下
Bは鋼の強化に有効に働くので必要に応じて添加することができる。しかし、0.005%を超えると過度に強度が上昇し、加工性が低下する。したがって、Bを添加する場合には、その量を0.005%以下とする。
B: 0.005% or less Since B works effectively for strengthening steel, it can be added as necessary. However, if it exceeds 0.005%, the strength increases excessively and the workability decreases. Therefore, when adding B, the amount is made 0.005% or less.

Ni:1%以下
Niはオーステナイト安定化元素であり、オーステナイトを残留させるとともに強度上昇にも効果があるので必要に応じて添加することができる。ただし、1%を超えると鋼板の延性を低下させる。したがって、Niを添加する場合には、その量を1%以下とする。
Ni: 1% or less Ni is an austenite stabilizing element, and austenite remains and is effective in increasing the strength, so it can be added as necessary. However, if it exceeds 1%, the ductility of the steel sheet is lowered. Therefore, when adding Ni, the amount is made 1% or less.

CaまたはREM:1種または2種を合計で0.01%以下
CaおよびREMは、硫化物形介在物の形態を制御する作用を有し、これらにより、鋼板の伸びフランジ性を向上させる効果を有するので必要に応じて添加することができる。このような効果は、これらの合計で0.01%を超えると飽和する。したがって、Ca、REMを添加する場合には、これらの1種または2種を合計で0.01%以下とする。
Ca or REM: 0.01% or less in total of 1 type or 2 types Ca and REM have the effect of controlling the form of sulfide-type inclusions, thereby improving the stretch flangeability of the steel sheet. It can be added as necessary. Such an effect is saturated when the total of these effects exceeds 0.01%. Therefore, when adding Ca and REM, these 1 type or 2 types shall be 0.01% or less in total.

なお、以上の元素および残部のFeの他、製造過程で各種不純物元素および製造過程で必須な微量添加元素等が不可避的に混入するが、このような不可避的な不純物は本発明の効果に特に影響を及ぼすものではなく、許容される。   In addition to the above elements and the remaining Fe, various impurity elements and trace addition elements essential in the manufacturing process are inevitably mixed in the manufacturing process. Such inevitable impurities are particularly effective for the effects of the present invention. It does not affect and is allowed.

次に、鋼板の金属組織について説明する。
残留オーステナイト相:体積率で3〜20%
本発明において、残留オーステナイト相は、歪誘起変態を有効に活用して高延性を得るために必須であり、その体積率の制御は極めて重要である。本発明では、高延性を確保する観点から、残留オーステナイト相は少なくとも3%以上とすることが好ましい。一方、残留オーステナイト相が20%を超える場合は、成形後に多量のマルテンサイトが生成し、脆性が大きくなり、脆性を許容範囲内に抑制し難くなるため、残留オーステナイト相は20%以下とすることが好ましい。本発明の鋼板の金属組織は、主相であるフェライト相と残留オーステナイト相を含む第2相からなるが、フェライト相の体積率は、高延性を確保する観点から、40〜90%が好ましい。また、残留オーステナイト相以外の第2相として、ベイナイト相、マルテンサイト相、パーライト相の体積率が合計で7〜50%であることが好ましい。
Next, the metal structure of the steel plate will be described.
Residual austenite phase: 3 to 20% by volume
In the present invention, the retained austenite phase is essential for obtaining high ductility by effectively utilizing strain-induced transformation, and the control of the volume ratio is extremely important. In the present invention, from the viewpoint of ensuring high ductility, the retained austenite phase is preferably at least 3% or more. On the other hand, when the retained austenite phase exceeds 20%, a large amount of martensite is formed after molding, the brittleness becomes large, and it is difficult to suppress the brittleness within an allowable range. Therefore, the retained austenite phase should be 20% or less. Is preferred. The metal structure of the steel sheet of the present invention comprises a second phase including a ferrite phase as a main phase and a retained austenite phase. The volume fraction of the ferrite phase is preferably 40 to 90% from the viewpoint of ensuring high ductility. Moreover, as a 2nd phase other than a retained austenite phase, it is preferable that the volume ratio of a bainite phase, a martensite phase, and a pearlite phase is 7 to 50% in total.

次に、本発明に係る合金化溶融亜鉛めっき鋼板の製造条件について説明する。
本発明においては、上記成分組成の鋼を溶製し、連続鋳造により鋳片とし、熱間圧延し、冷間圧延を行なうが、これらの条件は特に限定されない。その後、連続溶融めっきラインで730〜900℃の温度域で焼鈍し、3〜100℃/sで冷却して、350〜600℃の温度域で30〜250秒保持し、その後亜鉛めっきした後、470〜600℃で合金化を行なう。
Next, the manufacturing conditions of the galvannealed steel sheet according to the present invention will be described.
In the present invention, steel having the above-described composition is melted, made into a slab by continuous casting, hot-rolled, and cold-rolled, but these conditions are not particularly limited. Then, after annealing at a temperature range of 730 to 900 ° C. in a continuous hot dipping line, cooling at 3 to 100 ° C./s, holding at a temperature range of 350 to 600 ° C. for 30 to 250 seconds, and then galvanizing, Alloying is performed at 470 to 600 ° C.

焼鈍温度:730〜900℃
本発明では、オーステナイト単相またはオーステナイト相とフェライト相の2相域で焼鈍を行なうが、焼鈍温度が730℃未満の場合は、鋼板中の炭化物の溶解が不十分であり、また、フェライトの再結晶が未完了であるため、目標とする特性が得られない場合がある。一方、焼鈍温度が900℃を超える場合には、オーステナイト粒の成長が著しく、後の冷却によって生じる第2相からのフェライトの核生成サイトの減少を引き起こす場合がある。したがって、焼鈍温度を730℃〜900℃とする。
Annealing temperature: 730-900 ° C
In the present invention, annealing is performed in an austenite single phase or a two-phase region of an austenite phase and a ferrite phase. When the annealing temperature is less than 730 ° C., the carbide in the steel sheet is not sufficiently dissolved, and the ferrite Since the crystal is incomplete, the target characteristics may not be obtained. On the other hand, when the annealing temperature exceeds 900 ° C., the growth of austenite grains is remarkable, which may cause a decrease in ferrite nucleation sites from the second phase caused by subsequent cooling. Therefore, annealing temperature shall be 730-900 degreeC.

冷却速度:3〜100℃/s
冷却速度が3℃/s未満の場合は、パーライトが多量に析出し、未変態オーステナイト中の固溶C量が大幅に低下するため、目標とする組織が得られない場合がある。また、冷却速度が100℃/sを超える場合は、フェライトの成長が抑えられ、フェライトの体積率が著しく減少するため、十分な延性を確保できなくなる場合がある。したがって、冷却速度は3〜100℃/sとする。好ましくは、10℃/s以上、さらに好ましくは20℃/s超えである。
Cooling rate: 3-100 ° C / s
When the cooling rate is less than 3 ° C./s, a large amount of pearlite is precipitated, and the amount of solid solution C in the untransformed austenite is significantly reduced, so that the target structure may not be obtained. Further, when the cooling rate exceeds 100 ° C./s, the growth of ferrite is suppressed and the volume fraction of ferrite is remarkably reduced, so that sufficient ductility may not be ensured. Therefore, the cooling rate shall be the 3 to 100 ° C. / s. Good Mashiku is, 1 0 ° C. / s or higher, still more preferably greater than 20 ° C. / s.

保持温度:350〜600℃
保持温度が600℃を超える場合は、未変態オーステナイト中から炭化物が析出し、逆に、350℃未満の場合には、下部ベイナイト変態によりベイニティックフェライト中に炭化物が析出して、いずれも、安定した残留オーステナイトが十分に得られない。したがって、保持温度を350〜600℃とする。安定して残留オーステナイトを生成させるためには、500℃以下が好ましい。
Holding temperature: 350-600 ° C
When the holding temperature exceeds 600 ° C., carbide precipitates from untransformed austenite, and conversely, when it is less than 350 ° C., carbide precipitates in bainitic ferrite due to lower bainite transformation, Stable retained austenite cannot be obtained sufficiently. Accordingly, the holding temperature is set to 350 to 600 ° C. In order to stably generate retained austenite, 500 ° C. or lower is preferable.

保持時間:30〜250秒
保持時間は、残留オーステナイトの制御に関して、極めて重要な役割を果たす。つまり、保持時間が30秒未満の場合には、未変態オーステナイトの安定化が進まず、残留オーステナイト量を確保することができないため、所望の特性が得られない。一方、保持時間が250秒を超える場合は、長時間オーステンパ処理ができないCGLラインにおいては、通板速度を極度に低下させる必要があり、生産性が低下してしまう。したがって、保持時間を30〜250秒とする。量産性の観点からは、200秒以下が好ましい。
Holding time: 30 to 250 seconds The holding time plays a very important role in controlling the retained austenite. That is, when the holding time is less than 30 seconds, the stabilization of untransformed austenite does not proceed and the amount of retained austenite cannot be ensured, so that desired characteristics cannot be obtained. On the other hand, when the holding time exceeds 250 seconds, in the CGL line where the austempering process cannot be performed for a long time, it is necessary to extremely reduce the sheet passing speed, and the productivity is lowered. Accordingly, the holding time is set to 30 to 250 seconds. From the viewpoint of mass productivity, 200 seconds or less is preferable.

合金化処理温度:470〜600℃
上記保持処理後、さらに溶融亜鉛めっきを施した後の合金化処理温度は、めっき浴温度以上である必要があり、このため470℃を下限とする。また、合金化温度が600℃超えの場合は、上述した保持温度が600℃を超える場合と同様に、未変態オーステナイト中から炭化物が析出し、安定した残留オーステナイトを得ることができなくなる。したがって、合金化処理温度は470〜600℃とする。
Alloying temperature: 470-600 ° C
After the holding treatment, the alloying treatment temperature after further hot dip galvanizing needs to be equal to or higher than the plating bath temperature, and therefore 470 ° C. is the lower limit. Further, when the alloying temperature exceeds 600 ° C., as in the case where the holding temperature exceeds 600 ° C., carbides are precipitated from untransformed austenite, and stable retained austenite cannot be obtained. Therefore, the alloying treatment temperature is set to 470 to 600 ° C.

なお、本発明の製造条件において規定した、焼鈍温度、保持温度、合金化処理温度は、上記の範囲内であれば保持温度は一定である必要はない。また、めっき条件については、通常操業範囲内であればよく、目付量が20〜70g/m、めっき層中のFe量が6〜15%程度とすればよい。 In addition, if the annealing temperature, holding temperature, and alloying treatment temperature prescribed | regulated in the manufacturing conditions of this invention are in said range, holding temperature does not need to be constant. Moreover, about plating conditions, what is necessary is just to be in a normal operation range, What is necessary is just to set the weight per unit area to 20-70 g / m < 2 > and the amount of Fe in a plating layer to about 6-15%.

以下、本発明の実施例について説明する。
表1に示す組成の鋼を転炉で溶製し、連続鋳造により鋳片とした。そのときのスラブの割れの発生の有無を表1に併せて示す。割れの発生はスラブを室温まで冷却した後に目視での判定に加えてカラーチェックでの判定も行った。
Examples of the present invention will be described below.
Steel having the composition shown in Table 1 was melted in a converter and cast into a slab by continuous casting. The presence or absence of cracking of the slab at that time is also shown in Table 1. The occurrence of cracking was determined by color check in addition to visual determination after cooling the slab to room temperature.

得られたスラブを1250℃に加熱した後、仕上圧延温度900℃で熱間圧延を行い、板厚3.0mmの熱延鋼板とした。このようにして製造された熱延鋼板でのヘゲの発生について目視で判定を行った。ヘゲの有無も表1に併せて示す。   The obtained slab was heated to 1250 ° C. and then hot-rolled at a finish rolling temperature of 900 ° C. to obtain a hot-rolled steel plate having a thickness of 3.0 mm. Generation | occurrence | production of the shaving in the hot-rolled steel plate manufactured in this way was determined visually. Table 1 also shows the presence or absence of baldness.

熱間圧延後、酸洗し、さらに冷間圧延を行って板厚1.2mmの冷延鋼板とした。その後、連続溶融亜鉛めっきラインで表2に示す条件で熱処理後、50/50g/mのめっきを施し、めっき層中のFe量を9%となるように合金化処理を施した。 After hot rolling, pickling and cold rolling were performed to obtain a cold-rolled steel sheet having a thickness of 1.2 mm. Thereafter, after heat treatment under the conditions shown in Table 2 in a continuous hot dip galvanizing line, 50/50 g / m 2 plating was performed, and an alloying treatment was performed so that the amount of Fe in the plating layer was 9%.

得られた鋼板について、0.5%の調質圧延を施し、機械的特性を調査した。機械的特性としては、鋼板から圧延直角方向に採取したJIS5号引張試験片を用いて、引張強さTS、伸びELを測定した。これらの測定値と、TS×ELの値を併せて表2に示す。   The obtained steel sheet was subjected to temper rolling of 0.5%, and the mechanical properties were investigated. As mechanical properties, tensile strength TS and elongation EL were measured using a JIS No. 5 tensile test specimen taken from the steel sheet in the direction perpendicular to the rolling direction. These measured values and TS × EL values are shown together in Table 2.

表2に示すように、本発明の組成および製造条件を満たす本発明鋼であるNo.11、12、17、18、22は、いずれもスラブ割れも熱延板のヘゲも発生しておらず、強度も伸びも十分であった。これに対してN量、N≦0.007%−(0.003×Al)%、Al≦(1.25×C0.5−0.57Si+0.625Mn)%または本発明の製造条件を満たしていない比較鋼板であるNo.2〜4、9、10、13、14、21、23〜34は、スラブ割れおよび熱延板のヘゲの少なくとも一方が発生した。またMn量が多いNo.33は、表2に示すように、強度の上昇が著しく、伸びが不十分であった。さらに、Al+Si量の少ないNo.34は、表2に示すように、強度の割には伸びが低く、TS×ELの値が低かった。 As shown in Table 2, No. 1 is a steel of the present invention that satisfies the composition and production conditions of the present invention. In Nos. 11 , 12, 17 , 18 , and 22 , neither slab cracking nor hot-rolled plate dents occurred, and the strength and elongation were sufficient. On the other hand, N amount, N ≦ 0.007% − (0.003 × Al)%, Al ≦ (1.25 × C 0.5 −0.57Si + 0.625Mn)% or the production conditions of the present invention are satisfied No., which is a comparative steel plate that is not In Nos. 2 to 4, 9, 10, 13, 14, 21, 23 to 34, at least one of slab cracking and hot-rolled sheet shaving occurred. Further, No. with a large amount of Mn As shown in Table 2, No. 33 had a significant increase in strength and insufficient elongation. Furthermore, no. 34, as shown in Table 2, the elongation was low for the strength, and the value of TS × EL was low.

Figure 0005213307
Figure 0005213307

Figure 0005213307
Figure 0005213307

Claims (7)

質量%で、C:0.05〜0.25%、Si:0.30%以上0.5%以下、Mn:1〜3%、P:0.1%以下、S:0.01%以下、Al:0.1〜2%、N:0.005%未満を含み、かつSi+Al≧0.6%、N≦0.007%−(0.003×Al)%、Al≦(1.25×C  In mass%, C: 0.05 to 0.25%, Si: 0.30% to 0.5%, Mn: 1 to 3%, P: 0.1% or less, S: 0.01% or less , Al: 0.1 to 2%, N: less than 0.005%, and Si + Al ≧ 0.6%, N ≦ 0.007% − (0.003 × Al)%, Al ≦ (1.25 × C 0.50.5 −0.57Si+0.625Mn)%を満たし、Cr:1%以下、V:1%以下から選ばれる1種または2種の元素をさらに含有し、残部Feおよび不可避的不純物からなる鋼を、溶製し、鋳造、熱間圧延、冷間圧延を施した後、730〜900℃の温度域で焼鈍し、焼鈍温度から20℃/s超50℃/s以下の冷却速度で350〜600℃の温度域まで冷却し、その温度域で30〜250秒保持し、その後亜鉛めっきした後、470〜600℃で合金化を行ない、上記成分組成を有し、かつ体積率で3〜20%の残留オーステナイト相を含有する金属組織を有する合金化溶融亜鉛めっき鋼板を製造することを特徴とする合金化溶融亜鉛めっき鋼板の製造方法。-0.57Si + 0.625Mn)%, further containing one or two elements selected from Cr: 1% or less, V: 1% or less, and the remainder comprising Fe and inevitable impurities. Then, after casting, hot rolling, and cold rolling, annealing is performed in a temperature range of 730 to 900 ° C., and a temperature of 350 to 600 ° C. at a cooling rate of 20 ° C./s to 50 ° C./s or less from the annealing temperature. After cooling to the temperature range, holding at that temperature range for 30 to 250 seconds, and then galvanizing, alloying is performed at 470 to 600 ° C., the above composition is included, and the retained austenite having a volume ratio of 3 to 20% A method for producing an alloyed hot-dip galvanized steel sheet having a metal structure containing a phase. 質量%で、C:0.05〜0.25%、Si:0.30%以上0.5%以下、Mn:1〜3%、P:0.1%以下、S:0.01%以下、Al:0.1〜2%、N:0.005%未満を含み、かつSi+Al≧0.6%、N≦0.007%−(0.003×Al)%、Al≦(1.25×C  In mass%, C: 0.05 to 0.25%, Si: 0.30% to 0.5%, Mn: 1 to 3%, P: 0.1% or less, S: 0.01% or less , Al: 0.1 to 2%, N: less than 0.005%, and Si + Al ≧ 0.6%, N ≦ 0.007% − (0.003 × Al)%, Al ≦ (1.25 × C 0.50.5 −0.57Si+0.625Mn)%を満たし、Nb:0.1%以下をさらに含有し、残部Feおよび不可避的不純物からなる鋼を、溶製し、鋳造、熱間圧延、冷間圧延を施した後、730〜900℃の温度域で焼鈍し、焼鈍温度から20℃/s超50℃/s以下の冷却速度で350〜600℃の温度域まで冷却し、その温度域で30〜250秒保持し、その後亜鉛めっきした後、470〜600℃で合金化を行ない、上記成分組成を有し、かつ体積率で3〜20%の残留オーステナイト相を含有する金属組織を有する合金化溶融亜鉛めっき鋼板を製造することを特徴とする合金化溶融亜鉛めっき鋼板の製造方法。−0.57Si + 0.625Mn)%, further containing Nb: 0.1% or less, and the balance Fe and unavoidable impurities were melted and cast, hot rolled, and cold rolled. Then, it anneals in the temperature range of 730-900 degreeC, it cools to the temperature range of 350-600 degreeC with the cooling rate of 20 degreeC / s more than 50 degreeC / s from annealing temperature, and hold | maintains for 30 to 250 second in the temperature range Then, after galvanizing, alloying is performed at 470 to 600 ° C., and the alloyed hot-dip galvanized steel sheet having the above component composition and having a metal structure containing 3-20% residual austenite phase by volume ratio. The manufacturing method of the galvannealed steel plate characterized by manufacturing this. 質量%で、C:0.05〜0.25%、Si:0.30%以上0.5%以下、Mn:1〜3%、P:0.1%以下、S:0.01%以下、Al:0.1〜2%、N:0.005%未満を含み、かつSi+Al≧0.6%、N≦0.007%−(0.003×Al)%、Al≦(1.25×C  In mass%, C: 0.05 to 0.25%, Si: 0.30% to 0.5%, Mn: 1 to 3%, P: 0.1% or less, S: 0.01% or less , Al: 0.1 to 2%, N: less than 0.005%, and Si + Al ≧ 0.6%, N ≦ 0.007% − (0.003 × Al)%, Al ≦ (1.25 × C 0.50.5 −0.57Si+0.625Mn)%を満たし、B:0.005%以下、Ni:1%以下から選ばれる1種または2種の元素をさらに含有し、残部Feおよび不可避的不純物からなる鋼を、溶製し、鋳造、熱間圧延、冷間圧延を施した後、730〜900℃の温度域で焼鈍し、焼鈍温度から20℃/s超50℃/s以下の冷却速度で350〜600℃の温度域まで冷却し、その温度域で30〜250秒保持し、その後亜鉛めっきした後、470〜600℃で合金化を行ない、上記成分組成を有し、かつ体積率で3〜20%の残留オーステナイト相を含有する金属組織を有する合金化溶融亜鉛めっき鋼板を製造することを特徴とする合金化溶融亜鉛めっき鋼板の製造方法。-0.57Si + 0.625Mn)%, B: 0.005% or less, Ni: further containing one or two elements selected from 1% or less, the balance Fe and inevitable impurities steel, After melting, casting, hot rolling, and cold rolling, annealing is performed at a temperature range of 730 to 900 ° C., and 350 to 600 ° C. at a cooling rate of 20 ° C./s to 50 ° C./s or less from the annealing temperature. After cooling to the temperature range of 30 to 250 seconds and then galvanizing, alloying is performed at 470 to 600 ° C., the composition is as described above, and the volume ratio is 3 to 20%. A method for producing an alloyed hot-dip galvanized steel sheet, comprising producing an alloyed hot-dip galvanized steel sheet having a metal structure containing a retained austenite phase. 質量%で、C:0.05〜0.25%、Si:0.30%以上0.5%以下、Mn:1〜3%、P:0.1%以下、S:0.01%以下、Al:0.1〜2%、N:0.005%未満を含み、かつSi+Al≧0.6%、N≦0.007%−(0.003×Al)%、Al≦(1.25×C  In mass%, C: 0.05 to 0.25%, Si: 0.30% to 0.5%, Mn: 1 to 3%, P: 0.1% or less, S: 0.01% or less , Al: 0.1 to 2%, N: less than 0.005%, and Si + Al ≧ 0.6%, N ≦ 0.007% − (0.003 × Al)%, Al ≦ (1.25 × C 0.50.5 −0.57Si+0.625Mn)%を満たし、CaおよびREMの1種または2種を合計で0.01%以下をさらに含有し、残部Feおよび不可避的不純物からなる鋼を、溶製し、鋳造、熱間圧延、冷間圧延を施した後、730〜900℃の温度域で焼鈍し、焼鈍温度から20℃/s超50℃/s以下の冷却速度で350〜600℃の温度域まで冷却し、その温度域で30〜250秒保持し、その後亜鉛めっきした後、470〜600℃で合金化を行ない、上記成分組成を有し、かつ体積率で3〜20%の残留オーステナイト相を含有する金属組織を有する合金化溶融亜鉛めっき鋼板を製造することを特徴とする合金化溶融亜鉛めっき鋼板の製造方法。-0.57Si + 0.625Mn)%, and further containing a total of 0.01% or less of one or two of Ca and REM, and the balance Fe and unavoidable impurities are melted, cast, After performing hot rolling and cold rolling, annealing is performed in a temperature range of 730 to 900 ° C., and cooling is performed from the annealing temperature to a temperature range of 350 to 600 ° C. at a cooling rate of more than 20 ° C./s and 50 ° C./s or less. , Held for 30 to 250 seconds in that temperature range, and then galvanized, then alloyed at 470 to 600 ° C., having the above component composition, and containing 3-20% residual austenite phase by volume ratio A method for producing an galvannealed steel sheet, characterized by producing an galvannealed steel sheet having a metal structure. 前記鋼は、質量%で、Nb:0.1%以下をさらに含有することを特徴とする請求項1に記載の合金化溶融亜鉛めっき鋼板の製造方法。  The said steel is the mass%, and further contains Nb: 0.1% or less, The manufacturing method of the galvannealed steel plate of Claim 1 characterized by the above-mentioned. 前記鋼は、質量%で、B:0.005%以下、Ni:1%以下から選ばれる1種または2種の元素をさらに含有することを特徴とする請求項1、請求項2、または請求項5に記載の合金化溶融亜鉛めっき鋼板の製造方法。  The steel further contains one or two elements selected from B: 0.005% or less and Ni: 1% or less by mass%. Item 6. A method for producing the galvannealed steel sheet according to Item 5. 前記鋼は、質量%で、CaおよびREMの1種または2種を合計で0.01%以下をさらに含有することを特徴とする請求項1、請求項2、請求項3、請求項5、または請求項6のいずれか1項に記載の合金化溶融亜鉛めっき鋼板の製造方法。  The said steel further contains 0.01% or less in total of 1 type or 2 types of Ca and REM by the mass%, The claim 1, 2, 3, 5, Or the manufacturing method of the galvannealed steel plate of any one of Claim 6.
JP2006058459A 2005-03-31 2006-03-03 Method for producing high ductility and high strength alloyed hot-dip galvanized steel sheet with excellent surface properties Expired - Fee Related JP5213307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006058459A JP5213307B2 (en) 2005-03-31 2006-03-03 Method for producing high ductility and high strength alloyed hot-dip galvanized steel sheet with excellent surface properties

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005103833 2005-03-31
JP2005103833 2005-03-31
JP2006058459A JP5213307B2 (en) 2005-03-31 2006-03-03 Method for producing high ductility and high strength alloyed hot-dip galvanized steel sheet with excellent surface properties

Publications (2)

Publication Number Publication Date
JP2006307326A JP2006307326A (en) 2006-11-09
JP5213307B2 true JP5213307B2 (en) 2013-06-19

Family

ID=37474535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006058459A Expired - Fee Related JP5213307B2 (en) 2005-03-31 2006-03-03 Method for producing high ductility and high strength alloyed hot-dip galvanized steel sheet with excellent surface properties

Country Status (1)

Country Link
JP (1) JP5213307B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5250938B2 (en) * 2005-03-31 2013-07-31 Jfeスチール株式会社 Low yield ratio type high strength galvannealed steel sheet with excellent ductility and method for producing the same
EP2439290B1 (en) 2010-10-05 2013-11-27 ThyssenKrupp Steel Europe AG Multiphase steel, cold rolled flat product produced from this multiphase steel and method for producing same
BR112018011831B1 (en) 2015-12-15 2022-11-29 Tata Steel Ijmuiden Bv HIGH STRENGTH HOT DIPPED GALVANIZED STEEL STRIP AND PRODUCTION METHOD

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3636033B2 (en) * 2000-05-23 2005-04-06 住友金属工業株式会社 Alloyed hot-dip galvanized steel sheet and method for producing the same
JP3716718B2 (en) * 2000-07-31 2005-11-16 住友金属工業株式会社 Alloyed hot-dip galvanized steel sheet and manufacturing method thereof
JP3749684B2 (en) * 2001-09-28 2006-03-01 新日本製鐵株式会社 High-strength steel sheet, hot-dip galvanized steel sheet excellent in formability, and manufacturing method thereof
JP4000974B2 (en) * 2002-09-25 2007-10-31 住友金属工業株式会社 High tensile alloyed hot dip galvanized steel sheet and method for producing the same

Also Published As

Publication number Publication date
JP2006307326A (en) 2006-11-09

Similar Documents

Publication Publication Date Title
JP5333298B2 (en) Manufacturing method of high-strength steel sheet
US9157132B2 (en) High-strength galvanized steel sheet having excellent formability and method for manufacturing the same
JP5765092B2 (en) High yield ratio high-strength hot-dip galvanized steel sheet with excellent ductility and hole expansibility and method for producing the same
JP5250938B2 (en) Low yield ratio type high strength galvannealed steel sheet with excellent ductility and method for producing the same
JP5250939B2 (en) Method for producing galvannealed steel sheet
JP2019506530A (en) High strength steel plate having excellent formability and method of manufacturing the same
KR20180016518A (en) Alloying hot-dip galvanized steel sheet and manufacturing method thereof
JP2017053001A (en) Galvanized steel sheet, galvannealed steel sheet, and their production methods
KR101445465B1 (en) High-strength hot-dip galvanized steel sheet with excellent processability and spot weldability and process for producing same
JP2005528519A5 (en)
JP5256690B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and impact resistance and method for producing the same
JP5953693B2 (en) High-strength hot-dip galvanized steel sheet with excellent plating adhesion and formability and its manufacturing method
JP4855442B2 (en) Low yield ratio alloyed hot dip galvanized high strength steel sheet manufacturing method
JP6384623B2 (en) High strength steel plate and manufacturing method thereof
JP4407449B2 (en) High strength steel plate and manufacturing method thereof
JP5251207B2 (en) High strength steel plate with excellent deep drawability and method for producing the same
JP5256689B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
JP5397141B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP4436275B2 (en) High yield ratio high strength cold rolled steel sheet, high yield ratio high strength hot dip galvanized steel sheet, high yield ratio high strength alloyed hot dip galvanized steel sheet, and methods for producing them
JP5213307B2 (en) Method for producing high ductility and high strength alloyed hot-dip galvanized steel sheet with excellent surface properties
JP2009144225A (en) High-strength hot-dip galvanized steel sheet superior in formability and manufacturing method therefor
JP4544579B2 (en) Manufacturing method of high strength molten Zn-Al-Mg alloy plated steel sheet
JP4140962B2 (en) Manufacturing method of low yield ratio type high strength galvannealed steel sheet
JP4351465B2 (en) Hot-dip galvanized high-strength steel sheet excellent in hole expansibility and method for producing the same
JP3464611B2 (en) High-strength hot-dip galvanized steel sheet excellent in formability and corrosion resistance and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110519

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110928

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111005

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20111104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130226

R150 Certificate of patent or registration of utility model

Ref document number: 5213307

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees