JPS59143027A - Production of high-strength steel plate having good ductility and processability - Google Patents

Production of high-strength steel plate having good ductility and processability

Info

Publication number
JPS59143027A
JPS59143027A JP58018310A JP1831083A JPS59143027A JP S59143027 A JPS59143027 A JP S59143027A JP 58018310 A JP58018310 A JP 58018310A JP 1831083 A JP1831083 A JP 1831083A JP S59143027 A JPS59143027 A JP S59143027A
Authority
JP
Japan
Prior art keywords
steel plate
temperature
soaking
transformation point
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58018310A
Other languages
Japanese (ja)
Other versions
JPH0312131B2 (en
Inventor
Akio Tosaka
章男 登坂
Toshiyuki Kato
俊之 加藤
Minoru Nishida
稔 西田
Nobuo Matsuno
松野 伸男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP58018310A priority Critical patent/JPS59143027A/en
Publication of JPS59143027A publication Critical patent/JPS59143027A/en
Publication of JPH0312131B2 publication Critical patent/JPH0312131B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips

Abstract

PURPOSE:To produce a high-tension steel plate having excellent ductility and processability by subjecting a steel plate to a soaking treatment under a specific condition and the succeeding cooling treatment. CONSTITUTION:The heating of a steel plate contg. <0.15% C, 0.2-3.5% Mn, 0.01-0.15% P, and <0.10% Al, or a steel plate further contg. 1 or >=2 kinds selected from a group A consisting of 0.1-1.5% Si, 0.1-1.0% Cr, 0.1-1.0% Mo, 5-100ppm B and a group B consisting of 0.01-0.1% Nb, 0.01-0.2% Ti and 0.01 0.2% V up to a soaking temp. of the Ac3 transformation point or above is accomplished at a heating rate of >=5 deg.C/sec at least from 600 deg.C up to the Ac3 transformation point and the steel plate is held for 10sec- 10min at said temp., whereby the steel plate is subjected to a soaking treatment. The average cooling rate between 600-300 deg.C in the succeeding cooling is made to the critical cooling rate CR( deg.C/sec) calculated by the equation ( I ) or above in the case of the steel having the former compsn. and said rate calculated by the equation (II) or above in the case of the steel having the latter compsn.

Description

【発明の詳細な説明】 本発明は延性および加工性の良好な高強度鋼板の製造方
法に係り、特に引張強さが60 k!j f / m4
以上の高張力鋼板の低コストの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a high-strength steel plate with good ductility and workability, particularly a tensile strength of 60 k! j f / m4
The present invention relates to a low-cost manufacturing method for the above high-strength steel plate.

近年、自動車の安全性や軽量化の観点からバンパーやド
アーガードバ−などの強度部材に引張強さ60に9f/
−以上の高張力薄鋼板などが多用されつつある。このよ
うな用途に適用される材料の特性として引張強さが高い
と同時に延性および加工性が良好で更に車体の組立時に
はスポット溶接性が良好であることが要求される。最近
フェライトとマルテンサイトまたはベイナイトを主とす
る低温変態生成物から成る混合組織鋼板がこのような要
求を満足する鋼板として多用されている。しかし従来の
混合組織鋼板で強度を高めるにはMn、Sl、Nb、T
iなどの元素を多量に添加する必要があり、その結果コ
ストの上昇をもたらし、またMnやSIなどの多量添加
は、製造コストの上昇を伴うばかりでなく、連続焼鈍中
に表面酸化を起こしやすくスポット溶接性を劣化させる
問題があった。
In recent years, from the viewpoint of automobile safety and weight reduction, tensile strength of 60 to 9 f /
- High tensile strength thin steel sheets and the like are increasingly being used. Materials used in such applications are required to have high tensile strength, good ductility and workability, and good spot weldability when assembling a vehicle body. Recently, mixed-structure steel sheets consisting of ferrite and low-temperature transformation products mainly consisting of martensite or bainite have been widely used as steel sheets that satisfy these requirements. However, in order to increase the strength of conventional mixed structure steel sheets, Mn, Sl, Nb, and T
It is necessary to add large amounts of elements such as i, which results in an increase in cost, and addition of large amounts of Mn and SI not only increases manufacturing costs but also tends to cause surface oxidation during continuous annealing. There was a problem of deteriorating spot weldability.

まfcMnなどを多量に含む場合にはその偏析に起因す
ると考えられるバンド状組織が発達し特に曲げなどの加
工性、局部延性が劣下するという問題があった。
When a large amount of fcMn or the like is contained, a band-like structure is developed, which is thought to be caused by its segregation, and there is a problem in that workability such as bending and local ductility are deteriorated.

本発明の目的は、上記従来技術の問題を解消し、延性と
同時に良好な加工性を有し、かつ製造コストが低廉な高
強度鋼板の製造方法を提供するにある。
An object of the present invention is to provide a method for manufacturing a high-strength steel plate that has both ductility and good workability, and is inexpensive to manufacture, solving the problems of the prior art described above.

本発明のこの目的は次の2発明によって達成される。This object of the present invention is achieved by the following two inventions.

第1発明の要旨とするところは次の如くである。すなわ
ち重量比にてC:015%以下、Mn : 0.2〜3
.5 %、P:001〜015チ、Al:o、10%以
下を含み残部がFe および不可避的不純物より成る高
強度鋼板の製造方法(でおいて、前記鋼板をAc、変態
点以下の均熱温度まで加熱するに際し少くとも600℃
からAc、変麩点までの区間の加熱速度を51://S
eC以上で加熱する工程と、前記均熱温度において10
秒〜10分間保持する均熱工程と、前記均熱工程終了後
の冷却に際し600〜300℃の温度範囲における平均
冷却速度を下記(1)式で算出された臨界冷却速度CR
(’C/ 5ec)以上にて冷却する工程と、を有して
成ることを特徴とする延性および加工性の良好な高強度
鋼板の製造方法である。
The gist of the first invention is as follows. That is, in terms of weight ratio, C: 015% or less, Mn: 0.2 to 3
.. 5%, P:001-015CH, Al:o, 10% or less, and the balance is Fe and unavoidable impurities. At least 600℃ when heated to a temperature of at least 600℃
The heating rate in the section from Ac to the inflection point is 51://S
The step of heating at eC or higher and the soaking temperature of 10
The critical cooling rate CR is calculated using the following formula (1), which is the average cooling rate in the temperature range of 600 to 300°C during the soaking step held for seconds to 10 minutes and cooling after the end of the soaking step.
A method for producing a high-strength steel sheet with good ductility and workability, comprising the step of cooling at a temperature of ('C/5ec) or higher.

lo gC几(℃/s eC)=−1,73(Mn(%
)+−3,5P(%))+19s−(1)次に第2発明
の要旨とするところは、第1発明と同一のC、Mn、 
P、 Atの基本組成を有するほか、更+:si:o、
i 〜i、s%Crho、 1〜1.0%、M。
logC(℃/s eC)=-1,73(Mn(%
)+-3,5P(%))+19s-(1) Next, the gist of the second invention is that C, Mn, which is the same as the first invention,
In addition to having the basic composition of P and At,
i-i, s%Crho, 1-1.0%, M.

: 0.1〜1.0%、B:5〜1100pp  よシ
成るA群およびNb:0.01〜o、 iチ、Ti:0
.01〜0、2チ、V : 0.01〜0.2%j、Q
成るB群のうちよシ選ばれた1穐または2種以上を含有
し残部はFeおよび不可避的不純物よシ成る高強度鋼板
の製造方法において、前記鋼板をAc3変態点以上の均
熱温度まで加熱するに際し少くとも600℃からAcs
変態点までの区間の加熱速度を5℃/sec以上で加熱
する工程と、前記均熱温度におい℃0秒〜10分間保持
する均熱工程と、前記均熱工程終了後の冷却に際し60
0〜300℃の温度範囲における平均冷却速度を下記(
2)式で算出された臨界冷却速度CR(℃/5ee)以
上にて冷却する工程と、を有して成ることを特徴とする
延性および加工性の良好な高強度鋼板の製造方法である
: 0.1-1.0%, B: 5-1100pp, Group A and Nb: 0.01-o, Ichi, Ti: 0
.. 01~0, 2chi, V: 0.01~0.2%j, Q
A method for producing a high-strength steel plate containing one or more selected members of Group B, the remainder being Fe and unavoidable impurities, wherein the steel plate is heated to a soaking temperature of Ac3 transformation point or higher. Acs from at least 600℃
A step of heating at a heating rate of 5°C/sec or more in the section up to the transformation point, a soaking step of holding the temperature at the soaking temperature for 0 seconds to 10 minutes, and a cooling step of 60°C after the soaking step is completed.
The average cooling rate in the temperature range of 0 to 300°C is shown below (
2) A method for producing a high-strength steel sheet with good ductility and workability, comprising the step of cooling at a critical cooling rate CR (° C./5ee) or higher calculated by the formula.

Lo gCf% (c/s e c ) =−1,73
(Mn(%)+ 0.26 S i (%)+ 3.5
 P(%)+ 1.3 Cr(%)+2.67Mo(%
)、:]+3.95 (2)ただしB添加の場合は(2
)式の3.95を3.40に変更する。
LogCf% (c/sec) = -1,73
(Mn (%) + 0.26 S i (%) + 3.5
P (%) + 1.3 Cr (%) + 2.67 Mo (%
), :]+3.95 (2) However, in the case of B addition, (2
) Change 3.95 in formula to 3.40.

上記の要旨の如く、本発明はその焼鈍に描ってAc3変
態点以上の温度範囲で10秒から10分間均熱するに際
し、その加熱において600℃からAc3変態点までの
区間を従来開示されてbる加熱速度より急速加熱し、更
に均熱後の冷却条件を制御することによって延性および
加工性の良好な高強度鋼板を製造する方法である。
As summarized above, the present invention relates to soaking for 10 seconds to 10 minutes at a temperature above the Ac3 transformation point during annealing, and the heating range from 600°C to the Ac3 transformation point has not been previously disclosed. This is a method for manufacturing high-strength steel sheets with good ductility and workability by heating rapidly at a heating rate of 1.b and further controlling the cooling conditions after soaking.

まず、本発明の高強度鋼板の成分限定理由について説明
する。
First, the reason for limiting the components of the high-strength steel sheet of the present invention will be explained.

C: Cは鋼の基本成分の一つとして重要な元素であシ、Cの
増加によ9強度を低コストで増加させることができるが
、0.15%を越えるとスポット溶接性が急激に劣化す
るため上限を0.15%に限定した。
C: C is an important element as one of the basic components of steel, and strength can be increased at low cost by increasing C, but if it exceeds 0.15%, spot weldability will sharply decrease. Because of deterioration, the upper limit was limited to 0.15%.

Mn: Mnは固溶体強化元素であシ同時に低温変態生成物形成
のためにも特に重要な元素である。Mnは熱間脆性を防
ぐ目的で0.1%以上必要であるが溶製上の観点から0
.2%を下限とした。またMnは3.5 %を越えると
Cと同様にスポット溶接性を劣化させるので上限を3.
5%とした。
Mn: Mn is a solid solution strengthening element and at the same time is a particularly important element for the formation of low temperature transformation products. Mn is required to be 0.1% or more to prevent hot embrittlement, but from the viewpoint of melting, 0.1% or more is required.
.. The lower limit was set at 2%. Also, if Mn exceeds 3.5%, spot weldability deteriorates like C, so the upper limit should be set at 3.5%.
It was set at 5%.

P : Pは安価で、固溶強化能の大きいフェライト生成元素で
強化元素として有利であシ、0.01%未満とすると製
造コストが羊昇し特に利点もないので下限を0.01%
とした。
P: P is a ferrite-forming element that is inexpensive and has a large solid solution strengthening ability, and is advantageous as a reinforcing element.If it is less than 0.01%, the manufacturing cost will increase and there is no particular advantage, so the lower limit is set at 0.01%.
And so.

次ニ0.059hC−1,51A4n −(0〜0.8
)%Pの鋼板をスポット溶接し、溶接部の延性比、せん
断引張強度および十字引張強度を調査し、P含有量との
関係を第1図に示した。第1爾からPが0、15 %を
越すと溶接部の強度、延性比が急激に劣化するのでPの
上限を0.15%に限定した。
Next 20.059hC-1,51A4n-(0~0.8
)%P steel plates were spot welded and the ductility ratio, shear tensile strength and cross tensile strength of the welded part were investigated, and the relationship with the P content is shown in Figure 1. From the first point, if P exceeds 0.15%, the strength and ductility ratio of the weld will deteriorate rapidly, so the upper limit of P was limited to 0.15%.

At: Atは脱酸元素として必要であるが、0.10 %を越
して過剰となるとアルミナクラスターを形成し表面性状
を劣化させ、また熱間割れの危険が高くなるので上限を
0.10%に限定した。
At: At is necessary as a deoxidizing element, but if it exceeds 0.10%, it will form alumina clusters and deteriorate the surface quality, and the risk of hot cracking will increase, so the upper limit should be set at 0.10%. limited to.

上記C,Mn、 P、 Azの各限定量をもって本発明
の高強度鋼板の基本成分とするが、更に8i、Cr。
The above-mentioned limited amounts of C, Mn, P, and Az are the basic components of the high-strength steel sheet of the present invention, and 8i and Cr are also included.

M o 、 Bの各元素よシ成るA群およびNb、Ti
、Vの各元素よシ成るB群のうちより選ばれた1種また
は2種以上を下記限定量の範囲で含有する高強度鋼板に
おいても、本発明の目的を有効に達成することができる
。これらの選定元素の限定理由は次の如くである。
A group consisting of each element of Mo, B, Nb, Ti
The object of the present invention can also be effectively achieved in a high-strength steel sheet containing one or more selected from Group B consisting of each element of , V, in the following limited amounts. The reasons for limiting these selected elements are as follows.

A群(8i、 Or、 Mo、 B、) :A群の元素
は上記(2)式から明らかな如く、いずれも混合組織形
成に必要な焼鈍時の冷却工程における臨界冷却速度を下
げると同時に、低温変態生成物の量を増し、その結果強
度増加の効果がおる。
Group A (8i, Or, Mo, B,): As is clear from the above formula (2), the elements of Group A lower the critical cooling rate in the cooling process during annealing necessary for forming a mixed structure, and at the same time The amount of low-temperature transformation products is increased, which has the effect of increasing strength.

この効果を有効に発揮させるためには、8i、 Cr。In order to effectively exhibit this effect, 8i, Cr.

MOの各元素は少くとも0.1%以上、Bは5ppm以
上が必要である7、シかし過剰の添加は効果が飽和しコ
ストも上昇するので上限をSiは1.5%、Cr、Mo
は1.0チ、Bは100 ppmに限定し、それぞれ8
i:0.1〜1.5S、Cr:O11〜1.0 %、M
o : 0.1〜1.096、B:5〜1100ppの
範囲に限定した。
Each element of MO needs to be at least 0.1%, and B needs to be at least 5 ppm7.However, since adding too much Si will saturate the effect and increase costs, the upper limit should be 1.5% for Si, 1.5% for Cr, Mo
is limited to 1.0 ppm, B is limited to 100 ppm, and 8
i:0.1-1.5S, Cr:O11-1.0%, M
o: 0.1 to 1.096, B: limited to a range of 5 to 1100 pp.

B群(Nb、 Ti、 V) : Nb、Ti、Vの各元素はいずれも炭窒化物形成元素で
あシ、結晶の細粒化、析出物による強度増加、あるいは
フェライト相の再結晶抑制等による材質強化の効果があ
る。しかしこれらの効果は各元素とも0.011未満で
は十分発揮されないので下限をいずれも0.01 %に
限定した。また過剰の添加は効果が飽和しコストも上昇
するので上限をNbは0.1チ、Ti 、Vは0.2%
とし、それぞれ、Nb:0.01〜0.1%、ji:0
.01〜0.2チ、v : o、 o i〜0.2%の
範囲に限定した。
Group B (Nb, Ti, V): Nb, Ti, and V are all carbonitride-forming elements, and have the effect of making crystal grains finer, increasing strength due to precipitates, or suppressing recrystallization of ferrite phase, etc. This has the effect of strengthening the material. However, these effects are not fully exhibited when each element is less than 0.011%, so the lower limit was set to 0.01% for each element. Also, if excessive addition saturates the effect and increases the cost, the upper limit is set at 0.1% for Nb and 0.2% for Ti and V.
and Nb: 0.01-0.1%, ji: 0, respectively.
.. 01 to 0.2%, v: o, oi to 0.2%.

なお、上記A#、B群の各元素は単独に使用してそれぞ
れ効果を発揮するが、複合添加してもそれぞれの効果が
減殺されることがない。
It should be noted that each element of the A# and B groups above exerts its own effect when used alone, but the effects of each element are not diminished even if they are added in combination.

上記限定組成を有する本発明鋼は溶製後熱延、酸洗、冷
延後連続焼鈍される。熱延は通常の条件下で行って差支
えないが、高強度を得るためには600℃以下の低温巻
取が好ましい。更に下記の如く熱処理条件を限定管理す
ることによって延性および加工性の良好な高強度鋼板を
低廉なコストで製造できる。
The steel of the present invention having the above-described limited composition is hot-rolled, pickled, cold-rolled and continuously annealed after being melted. Although hot rolling may be carried out under normal conditions, low temperature winding of 600° C. or lower is preferred in order to obtain high strength. Furthermore, by controlling heat treatment conditions in a limited manner as described below, high-strength steel plates with good ductility and workability can be manufactured at low cost.

次に本発明における焼鈍条件の限定理由について説明す
る。焼鈍条件は本発明の最も重要な要件である。高強度
かつ延性にすぐれた鋼板を得るにはA c 1変態点以
上でAC3変態点以下に加熱、均熱して急冷し、フェラ
イトとマルテンサイトの混合組織とするのが有利である
。しかしながら、Mn量が多くなるとその偏析によ[A
cl変態点以上、Ac3変態点以下の均熱では最終的に
得られる組織がバンド状となシ曲げなどの加工性、局部
延性は低い。一方A c3変態点以上のオーステナイト
単相域で加熱、均熱して急冷すると、得られる組織は主
としてフェライトとベイナイトのバンド状でない混合組
織となり、延性は若干低下するものの、依然として回復
焼鈍鋼などよりは良好であり、曲げなどの加工性、局部
延性は高い。すなわち、第第2表 1表に示した化学組成の鋼を第2表に示す如く2種の温
度で焼鈍し、ナイタールで腐食し、その顕微鏡写真を第
2図(5)、(B)に系した。
Next, the reason for limiting the annealing conditions in the present invention will be explained. Annealing conditions are the most important requirement of the present invention. In order to obtain a steel plate with high strength and excellent ductility, it is advantageous to heat the steel sheet to a temperature above the A c 1 transformation point and below the AC 3 transformation point, soak it, and rapidly cool it to form a mixed structure of ferrite and martensite. However, when the amount of Mn increases, its segregation causes [A
If soaking is carried out at a temperature above the Cl transformation point and below the Ac3 transformation point, the final structure obtained will be band-like, and the workability such as bending and local ductility will be low. On the other hand, when heated in the austenite single phase region above the A c3 transformation point, soaked, and rapidly cooled, the resulting structure becomes a non-band-like mixed structure of mainly ferrite and bainite, and although the ductility is slightly reduced, it is still better than recovery annealed steel. It has good workability such as bending and local ductility. That is, steel with the chemical composition shown in Table 2 Table 1 was annealed at two temperatures as shown in Table 2, corroded with nital, and the micrographs are shown in Figure 2 (5) and (B). It was related.

第2図(A)、(B)において、第2図(A)はAC7
変態点以上、Ac、変態点以下の725℃で焼鈍したも
のでバンド状組織が強く残っているが、一方第2図(B
)はAc、変態点以上の870℃で焼鈍したもの゛であ
り、バンド状組織は消失している。曲げ性も第2表に示
す如く、725℃焼鈍では臨界の曲げ半径が6mm、8
70℃焼鈍ではOmmであり、Ac、変態点以上で焼鈍
した方がすぐれている。これらの結果から本発明におい
ては焼鈍温度なAc、変態点以上に限定し、延性は若干
犠牲((シて加工性の向上を図った。
In Figure 2 (A) and (B), Figure 2 (A) is AC7
It was annealed at 725°C above the transformation point, Ac, below the transformation point, and a strong band-like structure remained;
) is Ac and was annealed at 870° C. above the transformation point, and the band-like structure has disappeared. As for bendability, as shown in Table 2, the critical bending radius is 6 mm and 8 mm for 725°C annealing.
When annealed at 70°C, the result is Omm, and annealing at Ac or above the transformation point is better. Based on these results, in the present invention, the annealing temperature was limited to Ac, which was higher than the transformation point, and the ductility was slightly sacrificed ((()) to improve workability.

次に加熱速度は、実機の焼鈍炉においては室温から均熱
温度までの平均加熱速度を5℃/ sec以上に達成す
るのは困難ではない。しかし鋼板の加熱速度は高温にな
るほど小さくなるのは第3図に示す如くよく知られた事
実である。第3図において、実線は鋼板温度、点線は平
均加熱速度を示している。従って鋼板を室温近傍の低温
からAc、変態点以上の均熱温度まで加熱する際の平均
加熱速度は5℃/ sec以上が達成されたとしても、
例えば500〜600℃から目的とするAc、変態点以
上の均熱温度までの高温域における加熱速度5℃/ s
ecよりかなり小さくなり、この傾向はより高温になる
ほど著しい。
Next, regarding the heating rate, it is not difficult to achieve an average heating rate of 5° C./sec or more from room temperature to the soaking temperature in an actual annealing furnace. However, it is a well-known fact, as shown in FIG. 3, that the heating rate of a steel plate decreases as the temperature increases. In FIG. 3, the solid line indicates the steel plate temperature, and the dotted line indicates the average heating rate. Therefore, even if an average heating rate of 5°C/sec or more is achieved when heating a steel plate from a low temperature near room temperature to a soaking temperature above the Ac transformation point,
For example, a heating rate of 5°C/s in a high temperature range from 500 to 600°C to the target Ac, soaking temperature above the transformation point.
ec, and this tendency becomes more pronounced as the temperature increases.

本発明者らはこのような高温部における加熱速度が焼鈍
後の引張特性に及ぼす影響に着目し次の基礎実験を行っ
た。第1表に示す化学組成の12町厚の冷延鋼板をまず
通常の連続焼鈍法で充分に可能と思われる加熱速度とし
て600℃までは約10℃/ secで加熱し、その後
、Ac、変態点以上のオーステナイト単相となる均熱温
度850℃までの加熱速度を大幅に変えて加熱し、85
0℃で1分間均熱後30℃/ secの冷却速度で冷却
する短時間焼鈍を行いその引張特性を調査しその結果を
第4図に示した。
The present inventors focused on the influence of the heating rate in such a high-temperature zone on the tensile properties after annealing, and conducted the following basic experiment. A 12 town thick cold rolled steel plate having the chemical composition shown in Table 1 was first heated at a heating rate of about 10°C/sec up to 600°C, which is considered to be sufficient for normal continuous annealing, and then subjected to Ac, transformation, etc. The heating rate was significantly changed until the soaking temperature reached 850°C, which is a single phase of austenite with a temperature of 85°C.
After soaking at 0°C for 1 minute, short-time annealing was performed by cooling at a cooling rate of 30°C/sec, and the tensile properties were investigated. The results are shown in Figure 4.

第4図において、引張強さ、降伏応力のいずれも加熱速
度を大きくすることにより大きくなるが、伸びの低下は
ほとんどない。かつ、この効果は5℃/ sec以上の
加熱速度の場合に特に顕著であるので、600℃からA
C8変態点までの区間の加熱温度を5℃/ sec以上
に限定した。
In FIG. 4, both tensile strength and yield stress increase as the heating rate increases, but elongation hardly decreases. Moreover, this effect is particularly remarkable when the heating rate is 5°C/sec or more, so from 600°C to A
The heating temperature in the section up to the C8 transformation point was limited to 5°C/sec or higher.

次に高温域において急速加熱を必要とする開始温度T□
について検討した。すなわち、同じく第1表に示す化学
組成の冷延鋼板を第5図に示す如く室温から急速加熱開
始温度THまでは1.07 secで加熱し、急速加熱
開始温度THを変えこの温度から850℃1でを5℃/
 secの急速加熱を行い、850℃で一分間の均熱後
、30 ℃/ secで冷却した。
Next, the starting temperature T□ that requires rapid heating in the high temperature range
We considered this. That is, a cold-rolled steel sheet having the chemical composition shown in Table 1 is heated from room temperature to the rapid heating start temperature TH in 1.07 seconds as shown in FIG. 1 and 5℃/
sec, and after soaking at 850°C for 1 minute, it was cooled at 30°C/sec.

第6図から600’C以上の温度領域において5’C/
sec以上の急速加熱速度で加熱して熱処理することに
より、延性を劣化させずに高強度が得られることが明ら
かなので急速加熱開始温度T8を600℃以上に限定し
た。なお、自明のことであるが加熱速度は低温域におい
ても高温域においても速い方がすぐれた材質が得られる
From Figure 6, 5'C/
It is clear that high strength can be obtained without deteriorating ductility by heat treatment at a rapid heating rate of sec or more, so the rapid heating start temperature T8 was limited to 600° C. or higher. It is obvious that the faster the heating rate is in both the low temperature range and the high temperature range, the better the quality of the material will be obtained.

上記の如く600℃以上の高温域においてAC3変態点
以上の均熱温度まで5ヅsec以上の加熱速度で熱処理
することで強贋と延性のバランスが改善される理由は次
のように推定できる。すなわち、本発明の限定成分の鋼
の焼鈍について考えると600℃という温度はフェライ
ト粒の再結晶開始温度にほぼ対応する。その温度から上
の領域における加熱速度を大きくし、再結晶開始温度と
冷延後A C1変態点の間における滞留時間を短くする
ことで、非常に微細な再結晶粒の状態あるいは再結晶が
完全に終了しないままA c 1変態点に達してオース
テナイト変態が始まシ、更に短時間でAC3変態点以上
の温度に加熱することで均熱時に存在するオーステナイ
ト粒径は小さくなり、冷却後はこの微細なオーステナイ
トが変態するので最終的にはフェライトとベイナイト(
一部はマルテンサイトを含む)の微細組織が得られる。
The reason why the balance between strength and ductility is improved by heat treatment at a heating rate of 5 seconds or more to a soaking temperature of AC3 transformation point or higher in a high temperature range of 600° C. or higher as described above can be presumed as follows. That is, when considering the annealing of the steel with limited components of the present invention, the temperature of 600° C. almost corresponds to the recrystallization start temperature of ferrite grains. By increasing the heating rate in the region above that temperature and shortening the residence time between the recrystallization start temperature and the A C1 transformation point after cold rolling, the state of extremely fine recrystallized grains or complete recrystallization can be achieved. The austenite transformation begins when the A c 1 transformation point is reached without completing the heating process.By further heating to a temperature above the AC 3 transformation point in a short time, the austenite grain size that exists during soaking becomes smaller, and after cooling, the austenite transformation begins. As the austenite undergoes metamorphosis, it eventually becomes ferrite and bainite (
A microstructure (some of which contains martensite) is obtained.

この組織の微細化が強度と延性のバランスの改善に効果
があると考えられる。
It is thought that this microstructural refinement is effective in improving the balance between strength and ductility.

上記の如く再結晶開始温度である約600℃から少くと
もAc3変態点まで望ましくは均熱温度までの加熱速度
を5 t?//sec以上の速度で加熱することが延性
の良好な高強度鋼を得るための重要な女性の一つである
As mentioned above, the heating rate from about 600°C, which is the recrystallization start temperature, to at least the Ac3 transformation point, preferably to the soaking temperature, is 5 t? Heating at a rate of 1/sec or higher is one of the important factors for obtaining high-strength steel with good ductility.

また均熱時間はオーステナイト変態を完了させるため1
0秒以上の保持が必要であり、また10分を越えて保持
するとオーステナイト粒の粗大化を招来するので、均熱
時間を10秒〜10分間に限定した。
In addition, the soaking time is 1 to complete the austenite transformation.
The soaking time was limited to 10 seconds to 10 minutes because it was necessary to hold the temperature for 0 seconds or more, and if it was held for more than 10 minutes, the austenite grains would become coarse.

均熱後の冷却は高強度と良好な延性を得るため冷却速度
が規定される。すなわち、冷却速度は下記(1)式もし
くは(2)式で求まる臨界冷却速度CR(t、/s e
 c )以上で冷却する必要がある。
The cooling rate after soaking is determined in order to obtain high strength and good ductility. In other words, the cooling rate is the critical cooling rate CR(t,/s e
c) It is necessary to cool down at or above.

(イ) C,Mn、 P、 A4の基本成分のみを限定
量含有した場合(第1発明) togcR(′c/5ec)=−1,73(Mn(%)
−1−3,5P(%))+3.95 +・+ ++ +
+(1)(ロ) C,Mn、 P、 Atの基本成分の
他(: S i 。
(a) When only basic components of C, Mn, P, and A4 are contained in limited amounts (first invention) togcR ('c/5ec) = -1,73 (Mn (%)
-1-3,5P(%))+3.95 +・+ ++ +
+ (1) (b) In addition to the basic components of C, Mn, P, and At (: S i ).

Cr、Mo、Bよシ成るA群およびNb、 Ti、 V
よシ成るB群のうちより選ばれた1種または2棹以上の
各限定量を含有した場合(第2発明)LogCJヒ1−
(107sec) =−1,73(Mn %+0.26
S i(%)→−3SP(%)+130r(%))−1
67Mo(%))+3.95−・−・−−(2)ただし
B添加の場合(2)式の3.95を3.40に変更する
Group A consisting of Cr, Mo, and B, and Nb, Ti, and V
When containing a limited amount of one or more selected from Group B (Second invention) Log CJ Hi1-
(107sec) =-1,73(Mn%+0.26
S i (%) → -3SP (%) + 130r (%)) -1
67Mo(%))+3.95-・-・--(2) However, in the case of B addition, 3.95 in equation (2) is changed to 3.40.

冷却速度を上記の如く限定したのは、冷却速度が(1)
式もしくは(2)式で求まる臨界冷却速度CR(c/5
eC)未満では7エライ゛ドーパ−ライト組織となシ高
強度が得られないが、臨界冷却速度CR(℃/5ec)
以上であれば通常、フェライトとベイナイト(一部マル
テンサイトを含む)の組織となり高強度と良好な延性、
加工性が得られるので、冷却速度を(1)式もしくは(
2)式で求められる臨界冷却速匿以上に限定した。
The reason why the cooling rate is limited as above is that the cooling rate is (1)
The critical cooling rate CR (c/5
If the temperature is less than 7-element doperite structure, high strength cannot be obtained, but the critical cooling rate CR (℃/5ec)
If it is above, the structure is usually composed of ferrite and bainite (including some martensite), which has high strength and good ductility.
Since workability is obtained, the cooling rate can be calculated using equation (1) or (
2) The cooling speed was limited to the critical cooling speed determined by equation (2).

次に600〜300℃間の範囲における冷却速度を規定
したのは、均熱温度から冷却してくる場合に、600℃
とMs点より十分(=低い300℃との間の冷却速度が
小さいと拡散製変態が起り強度と延性のバランスに対し
て悪影響があるので、600〜300℃間の冷却速度を
(1)、 (2)式で求まる臨界冷却速度C凡Cc/5
ec)以上に限定した。
Next, the cooling rate in the range of 600 to 300°C was specified. When cooling from the soaking temperature, 600°C
If the cooling rate between 600 and 300°C, which is sufficiently lower than the Ms point, is small, diffusion transformation will occur and have an adverse effect on the balance between strength and ductility. Therefore, the cooling rate between 600 and 300°C is Critical cooling rate C calculated by formula (2) Cc/5
ec) limited to the above.

かくの如く、本発明は基本組成および選択添加元素の組
成を限定し、焼鈍において600℃からAc3変態点ま
での加熱速度を5vSeC以上で加熱し、AC3変態点
以上の均熱温度(二おいて10秒〜10分間均熱し、均
熱後600〜300℃間の冷却を(1)式もしくは(2
)式にて求まる臨界冷却速度以上にて急冷することによ
りフェライトと一部マルチンサイトを含むベイナイトか
ら成る微細組織が得られ、これによって高強度で延性お
よび加工性の良好な高張力鋼板を得ることができた。
As described above, the present invention limits the basic composition and the composition of selected additive elements, heats at a heating rate of 5 vSeC or more from 600°C to the Ac3 transformation point in annealing, and heats at a soaking temperature (2 Soak for 10 seconds to 10 minutes, and then cool to 600 to 300°C using formula (1) or (2).
) A microstructure consisting of ferrite and bainite containing some martinsite can be obtained by rapid cooling at a rate higher than the critical cooling rate determined by the formula (2), thereby obtaining a high-strength steel plate with high strength, good ductility, and workability. was completed.

実施例 第3表;二示す4種類の成分を有する鋼について、仕上
圧延温度830〜870℃、巻取温度500−550℃
にて熱延し、つづいて、同じく第3表に示す600℃か
らAc、変態までの加熱速度、均熱温度、600℃から
300℃までの冷却速度等の熱処理条件で焼鈍を行った
。これらの焼鈍鋼板について降伏応力(ys)、引張強
さくTS )、伸びおよび曲げ性を調査し、結果を同じ
く第3表に示しだ。なお曲げ性は下記の臨界曲げ半径で
表示した。
Example Table 3: For steel having the four types of components shown in Table 2, the finish rolling temperature is 830-870°C, and the coiling temperature is 500-550°C.
Then, annealing was performed under the same heat treatment conditions as shown in Table 3, including heating rate from 600°C to Ac, transformation temperature, soaking temperature, and cooling rate from 600°C to 300°C. The yield stress (ys), tensile strength (TS), elongation, and bendability of these annealed steel plates were investigated, and the results are also shown in Table 3. The bendability was expressed using the critical bending radius shown below.

第3表において、本発明例の供試材A1と比較例の供試
材屋5および本発明例の供試材屋2と比較例の供試材應
7はそれぞれ回−成分で均熱温度も同一であるが、本発
明例は加熱速度が比較例と異なり5℃/sec以上であ
るため伸びの劣化を伴わずに強度を増加できることがわ
かる。
In Table 3, the sample material A1 of the invention example, the sample material 5 of the comparative example, the sample material 2 of the invention example and the sample material 7 of the comparative example are each soaked at a temperature of However, unlike the comparative example, the heating rate of the present invention example is 5° C./sec or more, so it can be seen that the strength can be increased without deterioration of elongation.

また本発明例の供試材AIと比較例の供試材屋6を比較
するとそれぞれ均熱温度は870℃と750℃であり、
均熱温度がAc3変態点以上である本発明例は臨界曲げ
半径が1とすぐれているのに対し、A c 3変態点未
満である比較例は5と曲げ性が著しく悪い。
Furthermore, when comparing the sample material AI of the present invention example and the sample material shop 6 of the comparative example, the soaking temperatures are 870°C and 750°C, respectively.
The examples of the present invention, in which the soaking temperature is equal to or higher than the A c3 transformation point, have an excellent critical bending radius of 1, whereas the comparative examples, in which the soaking temperature is less than the A c3 transformation point, have a significantly poor bendability of 5.

上記実施例よυも明らかなとおり、本発明による延性お
よび加工性の良好な高強度鋼板は化学組成を限定した鋼
スラブを通常の方法で熱延、冷延した鋼板の焼鈍におけ
るAc3変態点以上の均熱温度までの加熱に際し、60
0℃からAc3変態点までの区間を5′c7SeC以上
の加熱速度で急熱し、10熟 秒〜10分間均熱し、均嚇後の冷却に当り、600〜3
00℃の区間を本発明者らが鋼成分の関数として足めた
臨界冷却速度CR(c/5eC)以上の冷却速度で冷却
し、鋼組織をフェライトおよび一部マルチンサイトを含
むベイナイトの微細組織とすることにより延性および加
工性の良好な強度6゜1(yf/−以上を確保する高強
度鋼板を製造する方法を確立した。また本発明は製造コ
ストも低置で鋼の特性としてスポット溶接性もすぐれて
いるという効果を有しているので自動車等の′強度部制
として広く利用できる。
As is clear from the above examples, the high-strength steel sheet with good ductility and workability according to the present invention is obtained by hot-rolling and cold-rolling a steel slab with a limited chemical composition in a conventional manner. When heating to the soaking temperature of 60
The section from 0°C to the Ac3 transformation point is rapidly heated at a heating rate of 5'c7SeC or higher, soaked for 10 seconds to 10 minutes, and cooled to 600 to 3
The 00°C section is cooled at a cooling rate higher than the critical cooling rate CR (c/5eC) that the inventors have determined as a function of the steel composition, and the steel structure is changed to a microstructure of bainite containing ferrite and some martinsite. By doing so, we have established a method for manufacturing a high-strength steel plate that has good ductility and workability, and has a strength of 6°1 (yf/-) or more.Also, the present invention has a low manufacturing cost and uses spot welding as a characteristic of steel. Because of its excellent properties, it can be widely used as a reinforcement system for automobiles, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を得る実験におけるP含有量とスポット
溶接部の引張試験結果との関係を示す線図、第2図(5
)、(ロ)は本発明を得る実験における焼鈍均熱温度が
それぞれA c3変態点未満とAc3変態点以上の場合
の金属組織を示す顕微鏡写真、第3図は通常の焼鈍にお
ける鋼板の加熱、冷却のパターンであって鋼板温度は高
温になるほど加熱速度が小さくなることを示す線図、第
4図は本発明を得る実験の焼鈍における600〜850
℃間の加熱速度と引張試験結果との関係を示す線図、第
5図は本発明を得る焼鈍実験における焼鈍方法の加熱冷
却パターンを示す線図、第6図は第5図に示す焼純実験
における急速加熱開始温度/IT□と引張試験結果との
関係を示す線図である。 代理人 弁理士  中 路 武 雄 第1図 P量(重量2) 第 2図 (Bン d立−一     J乞芒り 第3図 第4 図 (0%ec) 第5 図 吟 關 第60 bvu精絢融 TH
Figure 1 is a diagram showing the relationship between the P content and the tensile test results of spot welds in experiments to obtain the present invention, and Figure 2 (5
) and (b) are micrographs showing the metal structure when the annealing soaking temperature in the experiment for obtaining the present invention was below the A c3 transformation point and above the A c3 transformation point, respectively. A cooling pattern showing that the heating rate decreases as the temperature of the steel plate increases, and Figure 4 shows the cooling pattern from 600 to 850 during annealing in the experiment to obtain the present invention.
5 is a diagram showing the relationship between the heating rate between °C and the tensile test results, FIG. 5 is a diagram showing the heating and cooling pattern of the annealing method in the annealing experiment to obtain the present invention, and FIG. 6 is a diagram showing the relationship between the heating rate and the tensile test results. It is a diagram showing the relationship between rapid heating start temperature/IT□ and tensile test results in an experiment. Agent Patent Attorney Takeo Nakaji Figure 1 P amount (weight 2) Figure 2 (Bnd stand-1 J Keiko Figure 3 Figure 4 (0%ec) Figure 5 Figure 60 bvu TH

Claims (1)

【特許請求の範囲】[Claims] (1)重量比にてC:0.15%以下、Mn:0.2〜
3.5チ、P:0.01〜0.15%、Al:0.10
チ以下を含み残部がFeおよび不可避的不純物より成る
高強度鋼板の製造方法において、前記鋼板lAc、変態
点以上の均熱温度まで加熱するに際し少くとも600℃
からAc、変態点までの区間の加熱速度を5℃/ se
c以上で加熱する工程と、前記均熱温度において10秒
〜10分間保持する均熱工程と、前記均熱工程終了後の
冷却に際し600〜300℃の温度範囲における平均冷
却速度を下記(1)式で算出された臨界冷却速度CR(
’C/ sec )以上にて冷却する工程と、を有して
成ることを特徴とする延性および加工性の良好な高強度
鋼板の製造方法。 A!ogcR(’C/5ec) =−1,73(Mn 
(%)+3.5P(96):]+3.95  ・(1)
(2)重量比にてC:0.15%以下、Mn:0.2〜
3.5 係、P:0.01〜0.15係、AAI:0.
10チ以下な含み、更にSi  : 0.1〜1.5%
、Cr二〇、1〜1.0チ、 Mo:0.1〜1.0 
チ、B : 5〜1001)pmより成るA群およびN
b:0.01〜0.1チ、Ti : 0.01〜0.2
%、 V : 0.01〜0.2俤より成るB群のうち
より選ばれた1種または2種以上を含有し残部はFeお
よび不可避的不純物より成る高強度鋼板の製造方法にお
いて、前記鋼板をA c 3変態点以上の均熱温度まで
加熱するに際し少くとも600℃からA c H変態点
までの区間の加熱速度を5℃/ sec以上で加熱する
工程と、前記均熱温度において10秒〜10分間保持す
る均熱工程と、前記均熱工程終了後の冷却に際し600
〜300℃の温度範囲における平均冷却速度な下記(2
)式で算出された臨界冷却速度CR(℃A6c)以上に
て冷却する工程と、を有して成ることを特徴とする延性
および加工性の良好な高強度鋼板の製造方法。 logCR(″(、/5ec)”  −1,73(Mn
(%) +〇、26Si (%)+3.5P(%)+1
.3Cr (%1 +2.67Mo (1))+3.9
5  −(2)ただしB添加の場合は(2)式の3.9
−5 & 3.40に変更する。
(1) C: 0.15% or less, Mn: 0.2~ by weight ratio
3.5chi, P: 0.01-0.15%, Al: 0.10
In the method for manufacturing a high-strength steel plate comprising Fe and unavoidable impurities, the steel plate lAc is heated to a soaking temperature of at least 600°C above its transformation point.
The heating rate in the section from Ac to transformation point is 5℃/se
The average cooling rate in the temperature range of 600 to 300 ° C. for the step of heating above c, the soaking step of holding at the soaking temperature for 10 seconds to 10 minutes, and the cooling after the soaking step is as follows (1) The critical cooling rate CR (
A method for producing a high-strength steel plate with good ductility and workability, comprising the step of cooling at a temperature of 1.5 C/sec or more. A! ogcR('C/5ec) = -1,73(Mn
(%)+3.5P(96):]+3.95 ・(1)
(2) C: 0.15% or less, Mn: 0.2~ by weight ratio
3.5 section, P: 0.01-0.15 section, AAI: 0.
Contains 10% or less, and furthermore, Si: 0.1-1.5%
, Cr20, 1~1.0chi, Mo:0.1~1.0
Group A and N consisting of H, B: 5-1001) pm
b: 0.01-0.1 Ti, Ti: 0.01-0.2
%, V: 0.01 to 0.2 In the method for manufacturing a high strength steel plate containing one or more selected from Group B consisting of 0.01 to 0.2 yen, the remainder being Fe and unavoidable impurities, the steel plate heating to a soaking temperature equal to or higher than the A c 3 transformation point at a heating rate of at least 5° C./sec or more in the section from at least 600° C. to the A c H transformation point, and 10 seconds at the soaking temperature. 600℃ during the soaking step for ~10 minutes and cooling after the soaking step.
The average cooling rate in the temperature range of ~300°C is as follows (2
) A method for producing a high-strength steel plate with good ductility and workability, comprising the step of cooling at a critical cooling rate CR (°C A6c) or higher calculated by the formula. logCR(″(,/5ec)” −1,73(Mn
(%) +〇、26Si (%)+3.5P(%)+1
.. 3Cr (%1 +2.67Mo (1)) +3.9
5 - (2) However, in the case of B addition, 3.9 of equation (2)
-5 & Change to 3.40.
JP58018310A 1983-02-07 1983-02-07 Production of high-strength steel plate having good ductility and processability Granted JPS59143027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58018310A JPS59143027A (en) 1983-02-07 1983-02-07 Production of high-strength steel plate having good ductility and processability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58018310A JPS59143027A (en) 1983-02-07 1983-02-07 Production of high-strength steel plate having good ductility and processability

Publications (2)

Publication Number Publication Date
JPS59143027A true JPS59143027A (en) 1984-08-16
JPH0312131B2 JPH0312131B2 (en) 1991-02-19

Family

ID=11968036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58018310A Granted JPS59143027A (en) 1983-02-07 1983-02-07 Production of high-strength steel plate having good ductility and processability

Country Status (1)

Country Link
JP (1) JPS59143027A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60152655A (en) * 1984-01-20 1985-08-10 Kobe Steel Ltd High-strength low-carbon steel material having superior heavy workability
JPS60152654A (en) * 1984-01-20 1985-08-10 Kobe Steel Ltd Steel material having superior resistance to hydrogen induced cracking, high strength, ductility and toughness and its manufacture
JPS6156264A (en) * 1984-08-24 1986-03-20 Kobe Steel Ltd High strength and high ductility ultrathin steel wire
JPS6250436A (en) * 1985-08-29 1987-03-05 Kobe Steel Ltd Low carbon steel wire superior in cold wire drawability
JPS63282240A (en) * 1987-05-12 1988-11-18 Nippon Steel Corp High tensile strength rolled steel plate having excellent fatigue characteristics
WO1994000615A1 (en) * 1992-06-22 1994-01-06 Nippon Steel Corporation Cold-rolled steel plate having excellent baking hardenability, non-cold-ageing characteristics and moldability, and molten zinc-plated cold-rolled steel plate and method of manufacturing the same
JPH0657376A (en) * 1992-08-11 1994-03-01 Kobe Steel Ltd High strength hot-rolled steel plate good in workability and having 730n/mm2 or higher strength and its production
WO1994005823A1 (en) * 1992-08-31 1994-03-17 Nippon Steel Corporation Cold-rolled sheet and hot-galvanized, cold-rolled sheet, both excellent in bake hardening, cold nonaging and forming properties, and process for producing the same
US5690755A (en) * 1992-08-31 1997-11-25 Nippon Steel Corporation Cold-rolled steel sheet and hot-dip galvanized cold-rolled steel sheet having excellent bake hardenability, non-aging properties at room temperature and good formability and process for producing the same
JP2005314792A (en) * 2004-03-31 2005-11-10 Jfe Steel Kk High-rigidity high-strength thin steel sheet and method for producing same
JP2005314793A (en) * 2004-03-31 2005-11-10 Jfe Steel Kk High-rigidity high-strength thin steel sheet and method for producing same
JP2008174825A (en) * 2007-01-22 2008-07-31 Jfe Steel Kk High strength steel sheet, and method for manufacturing high strength plated steel sheet
JP2015503676A (en) * 2011-12-28 2015-02-02 ポスコ Wear-resistant steel with excellent toughness and weldability

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60152654A (en) * 1984-01-20 1985-08-10 Kobe Steel Ltd Steel material having superior resistance to hydrogen induced cracking, high strength, ductility and toughness and its manufacture
JPH048485B2 (en) * 1984-01-20 1992-02-17
JPH0525941B2 (en) * 1984-01-20 1993-04-14 Kobe Steel Ltd
JPS60152655A (en) * 1984-01-20 1985-08-10 Kobe Steel Ltd High-strength low-carbon steel material having superior heavy workability
JPS6156264A (en) * 1984-08-24 1986-03-20 Kobe Steel Ltd High strength and high ductility ultrathin steel wire
JPS6250436A (en) * 1985-08-29 1987-03-05 Kobe Steel Ltd Low carbon steel wire superior in cold wire drawability
JPS63282240A (en) * 1987-05-12 1988-11-18 Nippon Steel Corp High tensile strength rolled steel plate having excellent fatigue characteristics
US5470403A (en) * 1992-06-22 1995-11-28 Nippon Steel Corporation Cold rolled steel sheet and hot dip zinc-coated cold rolled steel sheet having excellent bake hardenability, non-aging properties and formability, and process for producing same
WO1994000615A1 (en) * 1992-06-22 1994-01-06 Nippon Steel Corporation Cold-rolled steel plate having excellent baking hardenability, non-cold-ageing characteristics and moldability, and molten zinc-plated cold-rolled steel plate and method of manufacturing the same
JPH0657376A (en) * 1992-08-11 1994-03-01 Kobe Steel Ltd High strength hot-rolled steel plate good in workability and having 730n/mm2 or higher strength and its production
WO1994005823A1 (en) * 1992-08-31 1994-03-17 Nippon Steel Corporation Cold-rolled sheet and hot-galvanized, cold-rolled sheet, both excellent in bake hardening, cold nonaging and forming properties, and process for producing the same
US5690755A (en) * 1992-08-31 1997-11-25 Nippon Steel Corporation Cold-rolled steel sheet and hot-dip galvanized cold-rolled steel sheet having excellent bake hardenability, non-aging properties at room temperature and good formability and process for producing the same
JP2005314792A (en) * 2004-03-31 2005-11-10 Jfe Steel Kk High-rigidity high-strength thin steel sheet and method for producing same
JP2005314793A (en) * 2004-03-31 2005-11-10 Jfe Steel Kk High-rigidity high-strength thin steel sheet and method for producing same
JP4506439B2 (en) * 2004-03-31 2010-07-21 Jfeスチール株式会社 High-rigidity and high-strength steel sheet and manufacturing method thereof
JP2008174825A (en) * 2007-01-22 2008-07-31 Jfe Steel Kk High strength steel sheet, and method for manufacturing high strength plated steel sheet
JP2015503676A (en) * 2011-12-28 2015-02-02 ポスコ Wear-resistant steel with excellent toughness and weldability
US9708698B2 (en) 2011-12-28 2017-07-18 Posco Wear resistant steel having excellent toughness and weldability

Also Published As

Publication number Publication date
JPH0312131B2 (en) 1991-02-19

Similar Documents

Publication Publication Date Title
JPH0127128B2 (en)
WO2003106723A1 (en) High strength cold rolled steel plate and method for production thereof
JPS59143027A (en) Production of high-strength steel plate having good ductility and processability
US4830686A (en) Low yield ratio high-strength annealed steel sheet having good ductility and resistance to secondary cold-work embrittlement
JPS61276927A (en) Production of cold rolled steel sheet having good deep drawability
JPH0949026A (en) Production of high strength hot rolled steel plate excellent in balance between strength and elongation and in stretch-flange formability
US4770719A (en) Method of manufacturing a low yield ratio high-strength steel sheet having good ductility and resistance to secondary cold-work embrittlement
JP4265152B2 (en) High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same
JP4265153B2 (en) High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same
JPS63286517A (en) Manufacture of high-tensile steel with low yielding ratio
US20220205059A1 (en) Cold rolled steel sheet with ultra-high strength, and manufacturing method therefor
JPH01184226A (en) Production of steel sheet having high-ductility high-strength multiple structure
JP2000256777A (en) High tensile strength steel plate excellent in strength and low temperature toughness
JPS625216B2 (en)
JPH0693332A (en) Production of high tensile strength and high toughness fine bainitic steel
JPH0225968B2 (en)
JPS61276930A (en) Production of cold rolled dead soft steel sheet having good elongation and deep drawability
JPH04371520A (en) Production of thick 9% ni steel having excellent ctod characteristic of base material and weld heat-affected zone
JPS63143223A (en) Manufacture of high tension cold rolled steel sheet
JPS6145687B2 (en)
JPS6119733A (en) Preparation of super 70kg grade high strength hot rolled steel plate excellent in elongation flange property
JP2652538B2 (en) Method for producing high-strength steel with excellent weldability and low-temperature toughness
JPH0665685A (en) Cold rolled sheet of ultrahigh tensile strength steel and its production
JP2002088413A (en) Method for producing high tension steel excellent in weldability and ductility
JPH0688129A (en) Production of high strength steel pipe as welded low in residual stress