JPH06179922A - Production of high tensile strength steel sheet for deep drawing - Google Patents

Production of high tensile strength steel sheet for deep drawing

Info

Publication number
JPH06179922A
JPH06179922A JP35340892A JP35340892A JPH06179922A JP H06179922 A JPH06179922 A JP H06179922A JP 35340892 A JP35340892 A JP 35340892A JP 35340892 A JP35340892 A JP 35340892A JP H06179922 A JPH06179922 A JP H06179922A
Authority
JP
Japan
Prior art keywords
less
steel sheet
annealing
rolled
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35340892A
Other languages
Japanese (ja)
Inventor
Naomitsu Mizui
直光 水井
Ryujiro Onodera
隆二郎 小野寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP35340892A priority Critical patent/JPH06179922A/en
Publication of JPH06179922A publication Critical patent/JPH06179922A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To inexpensively produce a high tensile strength steel sheet excellent in deep drawability and minimal in partial dispersion of strength with superior productivity. CONSTITUTION:A slab of a steel which has a composition consisting of 0.0005-0.012% C, <=1.5% Si, 0.05-3.0% Mn, <=0.15% P, <=0.01% S, <=0.1% sol.Al, <=0.005% N, 0.5-2% Cu, 1/3Cu to 2/3Cu% Ni, 0.01-0.2% Ti, and the balance Fe with inevitable impurities or further containing 0.003-0.1% Nb and/or 0.0003-0.003% B is hot-rolled and coiled at <=550 deg.C. After cold rolling at 65% draft, the resulting steel sheet is subjected to primary annealing by means of a continuous annealing line, to temper rolling at 0.5-5% elongation percentage, and then to secondary annealing consisting of heating and holding at 500-750 deg.C for 5sec-2min in a continuous annealing line again or a continuous hot dip galvanizing line.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、プレス加工等により
様々な形状に成形されて構造部材として用いられるとこ
ろの、深絞り性に優れ、かつ強度のバラツキの小さい高
張力薄鋼板の製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-strength thin steel sheet which is formed into various shapes by press working or the like and is used as a structural member, which is excellent in deep drawability and has small variations in strength. It is a thing.

【0002】[0002]

【従来技術とその課題】製鋼段階で十分に脱炭処理して
からTiを添加した“極低炭素Ti添加鋼”をベ−スとし、
これにSi,Mn,Cr或いはPを添加して強度を上げた高張
力冷延鋼板については、これまで多くの提案がなされて
いる。例えば、特公昭57−57945号公報を参照す
ると上記極低炭素Ti添加鋼に多量のPを添加した冷延鋼
板が開示されており、また特開昭57−47832号公
報には、極低炭素Ti添加鋼に多量のMnを単独添加した冷
延鋼板が開示されている。
[Prior art and its problems] Based on an "ultra-low carbon Ti-added steel" in which Ti was added after sufficient decarburization at the steelmaking stage,
Many proposals have been made so far regarding a high-strength cold-rolled steel sheet in which Si, Mn, Cr, or P is added to increase the strength. For example, referring to Japanese Patent Publication No. 57-57945, there is disclosed a cold-rolled steel sheet obtained by adding a large amount of P to the above ultra-low carbon Ti-added steel, and Japanese Patent Laid-Open No. 57-47832 discloses ultra-low carbon. A cold-rolled steel sheet in which a large amount of Mn is added alone to Ti-added steel is disclosed.

【0003】しかし、このような高張力冷延鋼板は何れ
も成形加工性が十分でなく、深絞り加工を要する用途に
は適用できないという問題があった。つまり、上記高張
力冷延鋼板では、引張強度が50kgf/mm2 程度になると
r値(ランクフォ−ド値)が1.6 程度と低い値しか示さ
ず、トラブル無く深絞り加工を行うことが困難であった
ためである。
However, none of such high-tensile cold-rolled steel sheets has sufficient formability and cannot be applied to applications requiring deep drawing. In other words, in the above high-tensile cold-rolled steel sheet, when the tensile strength is about 50 kgf / mm 2 , the r value (rankfode value) shows only a low value of about 1.6, and it is difficult to perform deep drawing without trouble. It is due to the fact.

【0004】そこで、本発明者等は先に、極低炭素Ti添
加鋼に所定量のPとMnを複合添加することで深絞り性の
改善を図った深絞り用高張力冷延鋼板を提案した(特開
昭63−190141号公報参照)。ところが、本発明者等の提
案になる上記鋼板は引張強度を500N/mm2以上に高め
得る上に比較的良好な深絞り性を確保することが可能で
あったが、一方で多量の合金元素を添加しなければなら
ないためにコストが高くなるという問題があった。しか
も、冷延鋼板を製造する際、中間材たる熱延板の強度も
製品とほぼ同じ高いレベルになるので冷間圧延機に少な
からぬ負担がかかり、鋼板の平坦度を制御するのが困難
になるといった不都合も指摘された。
Therefore, the inventors of the present invention previously proposed a high-tensile cold-rolled steel sheet for deep drawing, in which a predetermined amount of P and Mn are added to ultra-low carbon Ti-added steel to improve the deep drawability. (See JP-A-63-190141). However, the above-mentioned steel sheet proposed by the present inventors was able to increase the tensile strength to 500 N / mm 2 or more and was able to secure a relatively good deep drawability. However, there is a problem in that the cost becomes high because of the addition of. Moreover, when manufacturing a cold-rolled steel sheet, the strength of the hot-rolled sheet, which is an intermediate material, is at the same high level as that of the product, so a considerable burden is placed on the cold rolling mill, making it difficult to control the flatness of the steel sheet. It was also pointed out that there was an inconvenience.

【0005】また、これとは別に、本発明者等は「所定
量のCuを添加すると共にMn,S,Pの成分調整を行った
極低炭素Ti添加鋼を冷間圧延し、 次いで高温で連続焼鈍
することにより、 比較的良好な深絞り性を示すと共に、
成形加工後熱処理を施すことにより製品強度が満足され
る冷延鋼板が得られる」ことを見出し、有用な「高成形
性高張力鋼板の製造方法」であるとして提案済である
(特開平2−156025号公報参照)。しかし、この方法で
得られる鋼板は、実用上の難点として“成形後に強度向
上のために施す熱処理費用がかさむ点”が問題視される
ものであった。
Separately from this, the inventors of the present invention "cold-rolled an ultra-low carbon Ti-added steel in which a predetermined amount of Cu was added and the composition of Mn, S, and P was adjusted, and then at high temperature. By continuous annealing, it shows relatively good deep drawability and
It has been proposed as a useful "method for producing a high-formability high-strength steel sheet" by finding that "a cold-rolled steel sheet satisfying product strength can be obtained by performing heat treatment after forming processing" (JP-A-2- (See Japanese Patent No. 156025). However, the steel sheet obtained by this method has a problem in practical use that "the heat treatment cost for improving strength after forming is high".

【0006】同様にCuを添加した極低炭素鋼冷延鋼板に
関するものとして、特開昭64−4429号公報には
「Cuを添加した極低炭素鋼を冷間圧延した後、 再結晶と
Cuの固溶を図るために連続焼鈍を施し、 更に2次焼鈍を
行って成形前にε-Cu を鋼板中に析出させることから成
る深絞り用高張力鋼板の製造法」が開示されている。
Similarly, as an ultra low carbon steel cold-rolled steel sheet to which Cu is added, Japanese Patent Laid-Open No. 64-4429 discloses, "Cold-added ultra low carbon steel is cold-rolled and then recrystallized.
A method for producing a high-strength steel sheet for deep drawing, which comprises continuously annealing to form a solid solution of Cu and further performing secondary annealing to precipitate ε-Cu in the steel sheet before forming ”is disclosed. .

【0007】しかしながら、この特開昭64−4429
号公報に開示されている方法では、2次焼鈍に“箱焼
鈍”を適用した場合には(a) 鋼帯の長手方向に温度斑が
生じると共に、ε-Cu の析出状態が鋼帯の位置によって
変化し、結果として強度のバラツキが生じる。この傾向
は、特に箱焼鈍温度が低い場合に生じる,(b) 加熱・冷
却に時間がかかるために極めて生産性が悪く、そのため
製造コストが嵩む,等の問題が指摘された。
However, this Japanese Patent Laid-Open No. 64-4429
In the method disclosed in the publication, when "box annealing" is applied to the secondary annealing, (a) temperature unevenness occurs in the longitudinal direction of the steel strip, and the precipitation state of ε-Cu is the position of the steel strip. Change, resulting in variations in strength. It has been pointed out that this tendency occurs especially when the box annealing temperature is low, and that (b) the productivity is extremely poor because heating and cooling take a long time, which increases the manufacturing cost.

【0008】また、2次焼鈍に“連続焼鈍”を適用した
場合には、短時間で時効硬化させなければならないため
に多量のCu添加が必要であり、そのためこれに併せて多
量のNiを添加することも必要となって焼鈍後の深絞り性
が劣化するのみならず、製造コストが高くなる等の問題
を避け得なかった。
When "continuous annealing" is applied to the secondary annealing, it is necessary to add a large amount of Cu because it must be age-hardened in a short time. Therefore, a large amount of Ni is added together with this. Therefore, it is inevitable that not only the deep drawability after annealing deteriorates, but also the manufacturing cost increases.

【0009】このようなことから、本発明が目的とした
のは、深絞り性に優れると共に部分的な強度バラツキの
小さい高張力薄鋼板を生産性良く安価に製造できる手段
を確立することである。
In view of the above, an object of the present invention is to establish means for manufacturing a high-strength thin steel sheet which is excellent in deep drawability and has a small partial strength variation with good productivity. .

【0010】[0010]

【課題を解決するための手段】本発明者等は、上記目的
を達成すべく鋭意研究を行ったところ、次のような知見
を得ることができた。
Means for Solving the Problems The inventors of the present invention have conducted the earnest research to achieve the above object, and have obtained the following findings.

【0011】即ち、本発明者等は前述した特開平2−1
56025号に係る発明の検討過程で「所定量のCuを含
有させた極低炭素Ti添加鋼では熱処理に先立って付加さ
れる歪がε-Cu の析出を著しく促進すること」を見出し
ていたが、この現象が“2回焼鈍法による深絞り用高張
力鋼板の製造法”に指摘された問題点を解消する鍵にな
るのではないかと考えて研究を進めた。
That is, the inventors of the present invention have described the above-mentioned Japanese Patent Laid-Open No. 2-1.
In the process of studying the invention relating to No. 56025, it was found that "in an ultra-low carbon Ti-added steel containing a predetermined amount of Cu, the strain added prior to the heat treatment significantly promotes the precipitation of ε-Cu". , And proceeded with the research, thinking that this phenomenon might be the key to solve the problems pointed out in the "method of manufacturing high-strength steel sheet for deep drawing by double annealing method".

【0012】つまり、Cuを含有させた極低炭素Ti添加鋼
の冷延板に1次,2次の焼鈍を施して改質を行う際、2
次焼鈍に先立って予歪を鋼板に付加しておくと、“連続
焼鈍ライン”或いは“連続溶融亜鉛めっきライン”の如
き生産性の良好な急速加熱・冷却設備で熱処理を行うだ
けでε-Cu の均一析出がなされる筈であるとの推測の下
に、鋼板の強度に及ぼす予歪の量と2次焼鈍温度の影響
調査を実施した。ここて、予歪は調質圧延により付与し
た。
That is, when cold-rolled steel sheet containing ultra-low carbon Ti containing Cu is subjected to primary and secondary annealing for modification, 2
If a pre-strain is added to the steel sheet prior to the next annealing, ε-Cu can be obtained by simply performing heat treatment in a rapid heating / cooling facility with good productivity such as a “continuous annealing line” or “continuous hot dip galvanizing line”. Based on the assumption that the uniform precipitation of P should be performed, the effect of the amount of pre-strain and the secondary annealing temperature on the strength of the steel sheet was investigated. Here, the pre-strain was applied by temper rolling.

【0013】その結果、次のことが明らかとなったので
ある。 a) 調質圧延の延び率が大きいほど2次焼鈍後の引張強
度は高くなる。しかし、調質圧延の延び率が大きくなる
と全伸びは低下する。 b) そして、2次焼鈍での焼鈍温度が680℃近傍で2
次焼鈍後の引張強度が極大になる。 c) 同じ強度上昇が生じる時は、「調質圧延の伸び率を
小さくして高温で2次焼鈍する場合」の方が「調質圧延
の伸び率を大きくして低温で2次焼鈍する場合」よりも
全伸びの劣化程度が小さい。
As a result, the following has been clarified. a) The higher the elongation of temper rolling, the higher the tensile strength after secondary annealing. However, as the elongation percentage of temper rolling increases, the total elongation decreases. b) When the annealing temperature in the secondary annealing is around 680 ° C, 2
The tensile strength after the next annealing becomes maximum. c) When the same strength increase occurs, "when the elongation of temper rolling is reduced and the secondary annealing is performed at high temperature" is "when the elongation of temper rolling is increased and the secondary annealing is performed at low temperature. The degree of deterioration of total elongation is smaller than that of ".

【0014】本発明は、上記知見事項等を基に更なる検
討を重ねて完成されたものであり、 「C:0.0005〜 0.012%(以降、 成分割合を表す%は重
量%とする),Si:1.5 %以下, Mn:0.05〜 3.0%,
P:0.15%以下,S:0.01%以下, 酸可溶Al:0.1 %
以下, N:0.005 %以下,Cu:0.5 〜2%, Ni:1/
3Cu 〜2/3Cu %, Ti:0.01〜 0.2%を含有するか、 或
いは更に Nb:0.003 〜0.1 %, B:0.0003〜0.003 %の1種
又は2種をも含み、 残部がFe及び不可避的不純物から成
る鋼片を、 熱間圧延して550℃以下の温度域で巻取
り、 次いで圧下率65%以上で冷間圧延した後、 連続焼
鈍ラインで一次焼鈍してから延び率0.5 〜5%の調質圧
延を行い、 再び連続焼鈍ライン又は連続溶融亜鉛めっき
ラインで500〜750℃の温度域に5秒〜2分間加熱
保持する2次焼鈍を施すことによって、 強度並びに深絞
り性の優れた高張力薄鋼板を生産性良く安価に製造し得
るようにした点」に大きな特徴を有している。
The present invention has been completed through further studies based on the above-mentioned findings and the like. "C: 0.0005 to 0.012% (hereinafter,% representing the component ratio shall be% by weight), Si : 1.5% or less, Mn: 0.05 to 3.0%,
P: 0.15% or less, S: 0.01% or less, acid-soluble Al: 0.1%
Below, N: 0.005% or less, Cu: 0.5 to 2%, Ni: 1 /
3 Cu ~ 2/3 Cu% , Ti: or containing 0.01 to 0.2 percent, or even Nb: 0.003 ~0.1%, B: also comprise from 0.0003 to 0.003% of one or the balance Fe and incidental Steel slab consisting of mechanical impurities is hot-rolled, wound in a temperature range of 550 ° C or lower, then cold-rolled at a rolling reduction of 65% or more, and then primary-annealed in a continuous annealing line, followed by an elongation of 0.5 to 5 %, And then subjected to secondary annealing by heating and holding again in a continuous annealing line or a continuous hot dip galvanizing line in a temperature range of 500 to 750 ° C. for 5 seconds to 2 minutes to obtain excellent strength and deep drawability. Another feature is that high-strength thin steel sheets can be manufactured with high productivity and at low cost. "

【0015】以下、本発明において、素材鋼の成分組成
並びに製造条件を前記の如くに限定した理由を説明す
る。
In the following, the reason why the composition of the raw material steel and the manufacturing conditions are limited as described above in the present invention will be explained.

【作用】[Action]

A) 素材鋼の成分組成 A) Composition of raw steel

【0016】C含有量 Cは鋼中に不可避的に随伴される成分であり、現状の製
鋼技術では0.0005%未満に低下せしめることはコストが
高くなり過ぎるため実際的ではない。しかし、0.012 %
を超えてCが含有されるとTi及びNbの必要添加量が増加
するのでコスト高を招き、同時に鋼板特性の劣化を来た
すこととなるので、C含有量は0.0005〜0.012 %と定め
た。
The C content C is a component that is unavoidably accompanied in steel, and it is not practical to reduce it to less than 0.0005% in the current steelmaking technology because the cost becomes too high. But 0.012%
If the content of C exceeds the above range, the required addition amounts of Ti and Nb increase, resulting in high cost, and at the same time, deterioration of steel sheet properties. Therefore, the C content is set to 0.0005 to 0.012%.

【0017】Si含有量 Siは、鋼板の強度調整のために固溶強化元素として添加
される成分である。しかし、1.5 %を超えてSiが含有さ
れると本発明対象鋼のような極低炭素鋼ではオ−ステナ
イトが出現しなくなり、結晶粒径を制御することが困難
となる。そのため、Si含有量の上限は 1.5%と定めた。
Si Content Si is a component added as a solid solution strengthening element for adjusting the strength of the steel sheet. However, if Si is contained in excess of 1.5%, austenite does not appear in an ultra low carbon steel such as the steel of the present invention, and it becomes difficult to control the grain size. Therefore, the upper limit of Si content was set at 1.5%.

【0018】Mn含有量 Mnは、SをMnSとして固定することにより鋼の熱間脆性
を防止するために添加されると同時に、鋼板の強度調整
のために固溶強化元素としても添加される成分である。
特に、Pと複合添加することにより深絞り性を阻害する
ことなく強度を高めることができる。しかし、その含有
量が0.05%未満では前記効果が十分でなく、一方、3.0
%を超えて含有されると深絞り性に悪影響が出てくるこ
とから、Mn含有量は0.05〜 3.0%と定めた。
The Mn content Mn is a component that is added to prevent hot embrittlement of steel by fixing S as MnS, and at the same time is added as a solid solution strengthening element to adjust the strength of the steel sheet. Is.
In particular, the combined addition of P makes it possible to increase the strength without impairing the deep drawability. However, if the content is less than 0.05%, the above effect is not sufficient, while 3.0%
%, The deep drawability is adversely affected, so the Mn content was set to 0.05 to 3.0%.

【0019】P含有量 Pは、鋼板の強度調整のために固溶強化元素として添加
される成分である。しかし、その含有量が0.15%を超え
ると鋼板が固くなり過ぎて延性が著しく低下することか
ら、P含有量の上限は0.15%とした。
The P content P is a component added as a solid solution strengthening element for adjusting the strength of the steel sheet. However, if the content exceeds 0.15%, the steel sheet becomes too hard and the ductility decreases significantly, so the upper limit of the P content was made 0.15%.

【0020】S含有量 Sは鋼中に不可避的に随伴される不純物元素であり、そ
の含有量が0.01%を超えると鋼の熱間加工性や鋼板の深
絞り性に悪影響が出てくることから、S含有量の上限は
0.01%と定めた。
The S content S is an impurity element inevitably accompanied in the steel, and if the content exceeds 0.01%, the hot workability of the steel and the deep drawability of the steel sheet are adversely affected. Therefore, the upper limit of S content is
It was set at 0.01%.

【0021】N含有量 Nも鋼中に必然的に含有される不純物元素であり、その
含有量が 0.005%を超えるとAlの添加量が増大して製造
コストが高くなる。従って、N含有量を 0.005%以下に
制限したが、好ましくは0.0030%以下とするのが良い。
The N content N is also an impurity element necessarily contained in steel, and if the content exceeds 0.005%, the amount of Al added increases and the manufacturing cost increases. Therefore, the N content is limited to 0.005% or less, preferably 0.0030% or less.

【0022】酸可溶Al含有量 酸可溶Al(sol.Al)は、溶鋼を真空脱ガスした後のTi,Nb
添加に先立って脱酸のために添加されるもので、痕跡程
度残存していれば脱酸が終了したと見なしても良いが、
一般には最終製品において 0.005%以上含有されていれ
ば十分であると判定される。しかし、 0.1%を超えて含
有されると鋼が硬質化し、延性が劣化することから、so
l.Al含有量は 0.1%以下と定めた。
Acid-soluble Al content Acid-soluble Al (sol. Al) is Ti, Nb after vacuum degassing of molten steel.
It is added for deoxidation prior to addition, and it may be considered that deoxidation is completed if traces remain.
Generally, it is judged to be sufficient if the final product contains 0.005% or more. However, if the content exceeds 0.1%, the steel becomes hard and the ductility deteriorates.
l.Al content was set to 0.1% or less.

【0023】Cu含有量 Cuは本発明対象鋼においては主要な成分の1つであり、
2次焼鈍時にε-Cu として析出させ、鋼板の強度を上げ
るために添加される。しかしながら、その含有量が 0.5
%未満では2次焼鈍時の強度上昇が小さくて所望の強度
を確保することができない。一方、Cu含有量が多くなる
ほど同じ製造条件下での強度上昇は大きくなるが、その
効果は2%でほぼ飽和する上、2%を超えてCuを含有さ
せると熱間圧延後に低温で鋼板を巻き取っても熱延板中
にε-Cu が析出するので、1次焼鈍で深絞り性に好まし
い再結晶集合組織を発達させることが期待できなくな
る。従って、Cu含有量は 0.5〜2%と定めた。
Cu Content Cu is one of the main components in the steel of the present invention,
Precipitated as ε-Cu during secondary annealing and added to increase the strength of the steel sheet. However, its content is 0.5
If it is less than%, the increase in strength during secondary annealing is small and the desired strength cannot be secured. On the other hand, as the Cu content increases, the strength increase under the same manufacturing conditions increases, but the effect is almost saturated at 2%, and when Cu is contained in excess of 2%, the steel sheet is formed at low temperature after hot rolling. Since ε-Cu precipitates in the hot-rolled sheet even after winding, it cannot be expected to develop a recrystallization texture suitable for deep drawability in the primary annealing. Therefore, the Cu content is set to 0.5 to 2%.

【0024】Ni含有量 Cu添加鋼では熱間加工時に特有の“表面亀甲割れ”を起
こしやすいが、Ni成分はこの亀甲割れを防止するために
添加される。Ni添加量はCu添加量に相応して決められる
が、Niの含有量がCu含有量の 1/3未満では亀甲割れを完
全に防止することができず、一方、Cu含有量の 2/3を超
えてNiを含有させると鋼板コストが高くなり過ぎる。従
って、Ni含有量はCu含有量の 1/3 2/3と定めた。
Ni-containing Cu-added steel is liable to cause a unique “surface glaze cracking” during hot working, but the Ni component is added to prevent this glaze cracking. Ni addition amount is determined in correspondence to the Cu content, but is less than 1/3 of the content Cu content of Ni can not be completely prevented tortoise shell cracking, whereas, the Cu content of 2/3 If the content of Ni exceeds Ni, the steel plate cost will be too high. Therefore, Ni content is specified to 1 / 3-1 2/3 of the Cu content.

【0025】Ti含有量 Tiは、鋼中のC,NをTiC,TiNとして固定することに
より固溶C,Nの少ない状況で鋼板を1次焼鈍にて再結
晶させ、良好な深絞り性を付与するために添加される。
しかし、その含有量が0.01%未満では十分な深絞り性が
確保できず、また 0.2%を超えて含有させると、鋼板中
にTiの酸化物が多くなって延性が劣化することから、Ti
含有量は0.01〜 0.2%と定めた。ただ、Ti含有量につい
ては、好ましくは「 Nb/93>C/12 」の時には式 Ti/48 −(N/14 +S/32 )+Nb/93 ≧ C/12 を満足する範囲に、そして「 Nb/93≦C/12 」の時には
式 Ti/48 −(N/14 +S/32 )+Nb/93 ≧ 0 を満足する範囲に調整するのが良い。
Ti content Ti is such that by fixing C and N in the steel as TiC and TiN, the steel sheet is recrystallized by primary annealing in a state where the amount of solid solution C and N is small, and good deep drawability is obtained. It is added to give.
However, if the content is less than 0.01%, sufficient deep drawability cannot be ensured, and if it exceeds 0.2%, the amount of Ti oxide in the steel sheet increases and the ductility deteriorates.
The content was set to 0.01 to 0.2%. However, the Ti content is preferably in the range where the formula Ti / 48- (N / 14 + S / 32) + Nb / 93 ≥ C / 12 is satisfied when "Nb / 93> C / 12", and "Nb When "/ 93≤C / 12", it is better to adjust the range to satisfy the expression Ti / 48- (N / 14 + S / 32) + Nb / 93≥0.

【0026】Nb含有量 Nbは、鋼中のCをNbCとして固定し、かつ熱延板の結晶
粒径を微細にして鋼板の深絞り性を更に改善する作用を
有しているので必要により添加される。なお、NbはTi添
加量との関係で最適添加量が決まるが、その含有量が
0.003%未満では深絞り性改善効果が十分でなく、一方
0.1%を超えて含有させると鋼板の再結晶温度が高くな
り過ぎて十分な延性が得られなくなる。従って、Nb含有
量については 0.003〜 0.1%と定めたが、好ましくは
「 Ti/48−(N/14 +S/32 )>0」の時には式 Ti/48 −(N/14 +S/32 )+Nb/93 ≧ C/12 を満足する範囲に、そして「 Ti/48−(N/14 +S/32
)≦0」の時には式 Nb/93 ≧ C/12 を満足する範囲に調整するのが良い。
The Nb content Nb has an effect of fixing C in the steel as NbC and further improving the deep drawability of the steel sheet by making the crystal grain size of the hot rolled sheet finer, so that it is added if necessary. To be done. The optimum addition amount of Nb is determined in relation to the addition amount of Ti, but its content is
If it is less than 0.003%, the deep drawability improving effect is not sufficient, while
If the content exceeds 0.1%, the recrystallization temperature of the steel sheet becomes too high and sufficient ductility cannot be obtained. Therefore, although the Nb content was set to 0.003 to 0.1%, preferably when Ti / 48- (N / 14 + S / 32)> 0, the formula Ti / 48- (N / 14 + S / 32) + Nb Within the range of / 93 ≥ C / 12, and "Ti / 48- (N / 14 + S / 32
) ≦ 0 ”, it is better to adjust to the range that satisfies the expression Nb / 93 ≧ C / 12.

【0027】B含有量 本発明は所謂“極低C−IF鋼板”の製造をも対象とす
るものであるが、この極低C−IF鋼板を深絞り用途に
適用すると、深絞り加工後に低温での靱性が殆ど認めら
れなくなる“2次加工脆性”と呼ばれる現象が起きる。
これは、鋼板中に固溶C,Nが無くなって粒界強度が低
下することに起因するものである。Bは粒界偏析性の強
い元素であって、鋼の粒界に偏析して粒界を強化する作
用を有しているので、上記2次加工脆性を抑制するため
必要に応じて添加される。しかし、その含有量が0.0003
%未満では2次加工脆性を十分に抑制することができ
ず、一方、0.0030%を超えて含有させてもその効果が飽
和するばかりか、鋼板の深絞り性を低下させるようにな
ることから、B含有量は0.0003〜0.0030%と定めた。
B content The present invention is also directed to the production of so-called "extremely low C-IF steel sheet", but when this extremely low C-IF steel sheet is applied to deep drawing applications, it is possible to obtain low temperature after deep drawing. A phenomenon called "secondary working brittleness" occurs in which almost no toughness is observed.
This is because the solid solution C and N disappear in the steel sheet and the grain boundary strength decreases. B is an element having a strong segregation property at the grain boundaries and has the effect of segregating at the grain boundaries of the steel to strengthen the grain boundaries, so it is added as necessary to suppress the above-mentioned secondary work embrittlement. . However, its content is 0.0003
If it is less than 0.00%, the secondary working brittleness cannot be sufficiently suppressed, while if it exceeds 0.0030%, not only the effect is saturated but also the deep drawability of the steel sheet is deteriorated. The B content was set to 0.0003 to 0.0030%.

【0028】B) 製造条件熱延巻取り温度 熱間圧延の終了後に高い温度で鋼帯を巻き取ると巻取り
後の徐冷過程でε-Cuが析出し、その後の1次再結晶焼
鈍時に“深絞り性を高める再結晶方位”を有する結晶粒
の成長が抑えられて製品の深絞り性が劣化する。従っ
て、熱延巻取り温度は低い方が良いが、実際上は550
℃以下であれば問題を生じないことから、生産性をも考
慮して熱延巻取り温度の上限を550℃と定めた。しか
し、好ましくは500℃以下で巻き取るのが良い。
B) Manufacturing conditions Hot rolling coiling temperature When the steel strip is coiled at a high temperature after completion of hot rolling, ε-Cu precipitates in the slow cooling process after coiling, and during the subsequent primary recrystallization annealing. The growth of crystal grains having a “recrystallization orientation that enhances deep drawability” is suppressed, and the deep drawability of the product deteriorates. Therefore, it is better that the hot rolling temperature is lower, but it is actually 550.
Since no problem will occur if the temperature is ℃ or less, the upper limit of the hot rolling coiling temperature is set to 550 ° C in consideration of productivity. However, it is preferable to wind it at 500 ° C. or lower.

【0029】冷間圧延の圧下率 冷間圧延での圧下率が65%未満では、好ましい結晶方
位の結晶が十分に揃わず、製品鋼板のr値が劣化し良好
な深絞り性を確保することができない。このため、冷間
圧延の圧下率は65%以上と定めた。
Cold Rolling Reduction Ratio If the cold rolling reduction ratio is less than 65%, the crystals having preferred crystal orientations are not sufficiently aligned, and the r value of the product steel sheet deteriorates to ensure good deep drawability. I can't. Therefore, the rolling reduction of cold rolling is set to 65% or more.

【0030】調質圧延の伸び率 前述のように、調質圧延は2次焼鈍時におけるε-Cu の
析出を促進するために行う。調質圧延の伸び率は、Cu添
加量や必要な強度上昇量に応じて選ばれるが、0.5 %未
満であるとε-Cu の析出促進効果が小さくて十分な強度
上昇が得られない。一方、調質圧延の伸び率が高いほど
強度上昇量は大きくなるが、5%近傍で促進効果が飽和
する。従って、調質圧延の伸び率は 0.5〜5%と定めた
が、好ましくは1〜2%の範囲とするのが良い。
Elongation of temper rolling As described above, temper rolling is carried out to promote precipitation of ε-Cu during secondary annealing. The elongation of temper rolling is selected according to the amount of Cu added and the required amount of strength increase, but if it is less than 0.5%, the effect of promoting the precipitation of ε-Cu is small and a sufficient strength increase cannot be obtained. On the other hand, as the elongation percentage of temper rolling increases, the amount of increase in strength increases, but the promoting effect saturates in the vicinity of 5%. Therefore, the elongation of temper rolling is set to 0.5 to 5%, but it is preferable to set it to the range of 1 to 2%.

【0031】2次焼鈍条件 2次焼鈍は、調質圧延で導入された歪による促進作用を
活用してε-Cu を析出させ、鋼板の強度を上昇させるた
めに連続焼鈍ライン又は連続溶融亜鉛めっきラインで実
施されるものである。しかし、この2次焼鈍での最高加
熱温度が500℃未満ではCu原子の拡散が十分に生じて
いないためにε-Cu の析出が進まず、一方、該最高加熱
温度が750℃を超えると鉄中へのCuの固溶限が大きく
なって過飽和状態で固溶しているCuが無くなるためやは
りε-Cu の析出が進まず、何れの場合も十分な強度上昇
が得られない。従って、2次焼鈍温度は500〜750
℃と定めたが、好ましくは650〜720℃に調整する
のが良い。
Secondary Annealing Condition The secondary annealing is a continuous annealing line or continuous hot dip galvanizing in order to precipitate ε-Cu by utilizing the acceleration effect by the strain introduced in the temper rolling to increase the strength of the steel sheet. It is carried out in line. However, if the maximum heating temperature in this secondary annealing is less than 500 ° C, the diffusion of Cu atoms does not occur sufficiently so that the precipitation of ε-Cu does not proceed. On the other hand, if the maximum heating temperature exceeds 750 ° C, the Since the solid solution limit of Cu in the inside becomes large and Cu that is in solid solution in a supersaturated state disappears, precipitation of ε-Cu does not proceed, and a sufficient strength increase cannot be obtained in any case. Therefore, the secondary annealing temperature is 500 to 750.
Although the temperature is set to 0 ° C, it is preferably adjusted to 650 to 720 ° C.

【0032】また、2次焼鈍での加熱保持時間が5秒未
満であるとε-Cu の析出が不十分となって所望の鋼板強
度を確保できず、一方、2分間を超える保持は設備面や
生産性面の不利を招くことから、2次焼鈍における加熱
保持時間は5秒〜2分間と定めた。勿論、1次焼鈍も2
次焼鈍も連続焼鈍ライン又は連続溶融亜鉛めっきライン
で均等に実施されるため、鋼帯長手方向等で部分的な強
度バラツキが生じることもない。
If the heating and holding time in the secondary annealing is less than 5 seconds, the precipitation of ε-Cu will be insufficient and the desired strength of the steel sheet cannot be secured. Therefore, the heating and holding time in the secondary annealing is set to 5 seconds to 2 minutes because it causes a disadvantage in productivity. Of course, the primary annealing is 2
Since the subsequent annealing is also carried out uniformly on the continuous annealing line or the continuous hot dip galvanizing line, there is no partial strength variation in the longitudinal direction of the steel strip.

【0033】次に、本発明を実施例によって更に具体的
に説明する。
Next, the present invention will be described more specifically by way of examples.

【実施例】まず、実験用真空溶解炉により表1に示す化
学組成の鋼を溶製してインゴットとした後、熱間鍛造に
よりこれらを25mm厚の実験用スラブとした。
EXAMPLE First, steel having the chemical composition shown in Table 1 was melted into an ingot in a laboratory vacuum melting furnace, and then hot forging was performed to prepare a 25 mm-thick laboratory slab.

【0034】[0034]

【表1】 [Table 1]

【0035】続いて、このスラブを電気炉で1250℃
に1時間加熱保持した後、1150〜930℃の温度域
で実験用熱間圧延機により3パス圧延し、6mm厚の熱延
板を得た。そして、巻取りのシミュレ−ションとして、
熱延後の鋼板は直ちに強制空冷或いは水スプレ−冷却に
より700〜400℃の温度まで冷却してからその温度
に保持した電気炉の中に挿入し、更にその温度で1時間
保持した後に20℃/hr で炉冷した。
Subsequently, this slab is heated at 1250 ° C. in an electric furnace.
After 1 hour of heating and holding, it was rolled in a temperature range of 1150 to 930 ° C. for 3 passes by an experimental hot rolling mill to obtain a 6 mm-thick hot rolled sheet. And as a simulation of winding,
The steel sheet after hot rolling is immediately cooled to a temperature of 700 to 400 ° C by forced air cooling or water spray cooling, then inserted into an electric furnace maintained at that temperature, and further held at that temperature for 1 hour, and then at 20 ° C. The furnace was cooled at / hr.

【0036】次いで、これら熱延板を表面研磨して 4.2
mm厚の冷延母材とし、これを 1.4mm厚まで冷間圧延し
た。そして、得られた冷延板は、連続焼鈍を模して、赤
外線加熱炉にて10℃/secの加熱速度で820℃まで加
熱してその温度で40秒間保持した後、700℃まで3
℃/secの冷却速度で徐冷し、続いて400℃まで50℃
/secの冷却速度で冷却してその温度に3分間保持してか
ら、最後に10℃/secの冷却速度で室温まで冷却した。
Next, the surface of these hot-rolled sheets was polished to 4.2
A cold-rolled base metal having a thickness of mm was cold-rolled to a thickness of 1.4 mm. Then, the obtained cold-rolled sheet imitates continuous annealing, is heated to 820 ° C. at a heating rate of 10 ° C./sec in an infrared heating furnace, is held at that temperature for 40 seconds, and is then heated to 700 ° C. for 3 seconds.
Gradually cool at a cooling rate of ℃ / sec, then 50 ℃ up to 400 ℃
After cooling at a cooling rate of / sec and holding at that temperature for 3 minutes, it was finally cooled to room temperature at a cooling rate of 10 ° C / sec.

【0037】次に、上記1次焼鈍を経た鋼板に伸び率:
1%の調質圧延を施した後、同様に連続焼鈍又は連続溶
融亜鉛めっきでの熱処理を模して、赤外線加熱炉にて1
0℃/secの加熱速度で680℃まで加熱してその温度で
40秒間保持した後、50℃/secの冷却速度で室温まで
冷却する2次焼鈍を施した。
Next, the elongation percentage of the steel sheet that has undergone the above primary annealing is:
After the temper rolling of 1%, similarly, the heat treatment by continuous annealing or continuous hot dip galvanizing is imitated, and 1
After heating to 680 ° C. at a heating rate of 0 ° C./sec and holding at that temperature for 40 seconds, secondary annealing was performed to cool to room temperature at a cooling rate of 50 ° C./sec.

【0038】なお、一部の鋼板については、調質圧延の
伸び率を0〜8%と変化させ、かつ2次焼鈍での最高加
熱温度を400〜840℃とした。
For some steel sheets, the elongation percentage in temper rolling was changed to 0 to 8%, and the maximum heating temperature in secondary annealing was set to 400 to 840 ° C.

【0039】このようにして製造された各焼鈍板につい
て、引張試験(JIS5号試験片使用)及び2次加工脆
性試験を実施した。なお、2次加工脆性試験では、焼鈍
板を絞り比:1.6でカップに絞り、−60℃で衝撃荷重を
かけてカップ壁の部分が脆性破壊するか否かを判定する
方法を採用した。これらの試験結果を、熱間圧延時の割
れ発生状況の観察結果と共に表2に示した。
A tensile test (using JIS No. 5 test piece) and a secondary work embrittlement test were carried out on each of the annealed plates thus manufactured. In the secondary working brittleness test, a method was adopted in which the annealed plate was drawn into a cup with a drawing ratio of 1.6, and an impact load was applied at -60 ° C to determine whether the cup wall portion was brittlely broken. The results of these tests are shown in Table 2 together with the results of observation of the cracking occurrence state during hot rolling.

【0040】[0040]

【表2】 [Table 2]

【0041】表2に示す結果からも明らかなように、本
発明条件に従った試験番号2,3,6,7により得られ
た鋼板は十分な深絞り性と高い強度を示し、2次加工脆
性の問題も生じないことが分かる。
As is clear from the results shown in Table 2, the steel sheets obtained by the test Nos. 2, 3, 6 and 7 according to the conditions of the present invention show sufficient deep drawability and high strength, and are subjected to secondary working. It can be seen that the problem of brittleness does not occur.

【0042】これに対して、試験番号1では素材鋼のCu
含有量が多過ぎるため、2次焼鈍後により大きな強度上
昇が得られるものの、熱延後500℃で巻き取ってもε
-Cuが析出するために1次焼鈍時に深絞り性に好ましい
再結晶集合組織が発達せず、深絞り性が悪い。しかも、
このように強度上昇が大きく、かつBが添加されていな
い鋼Aを素材とした場合には、2次加工脆化を示すこと
が分かる。
On the other hand, in the test number 1, Cu of the raw steel
Since the content is too large, a larger increase in strength can be obtained after secondary annealing, but even if wound at 500 ° C after hot rolling, ε
-Since Cu precipitates, a recrystallization texture suitable for deep drawability does not develop during the primary annealing, and the deep drawability is poor. Moreover,
It can be seen that when steel A, which has a large increase in strength and does not contain B, is used as a material, secondary work embrittlement is exhibited.

【0043】逆に、Cu含有量が少ない鋼Dを素材とした
場合には、試験番号4の結果から分かるように、2次焼
鈍によって十分な強度上昇を得ることができない。
On the contrary, when steel D having a low Cu content is used as a material, it is not possible to obtain a sufficient strength increase by the secondary annealing, as can be seen from the result of test number 4.

【0044】一方、試験番号9及び12の結果からは、Nb
を添加した鋼G,Jを素材とした場合には深絞り性の向
上が得られることを確認できる。更に、試験番号10及び
11の結果からは、Si,Mn,Pを強化元素として添加した
鋼H,Iを素材としても、深絞り性が良好で2次加工脆
性が問題とならない高張力薄鋼板を製造できるが分か
る。
On the other hand, from the results of test Nos. 9 and 12, Nb
It can be confirmed that the deep drawability can be improved when the steels G and J added with are used as the materials. In addition, test number 10 and
From the results of No. 11, it can be seen that even if the steels H and I to which Si, Mn, and P are added as the strengthening elements are used as raw materials, it is possible to manufacture a high-strength thin steel sheet that has good deep drawability and does not cause a problem of secondary work brittleness.

【0045】しかし、Cu含有量に対してNi含有量が少な
い鋼Eを素材とした場合には、試験番号5からも分かる
ように、熱間圧延後の観察で鋼板表面及びエッジに割れ
が認められた。更に、鋼Fで巻取温度が本発明範囲より
高い場合は、試験番号8のように深絞り性が劣る。
However, when steel E having a lower Ni content relative to the Cu content was used as a raw material, as can be seen from Test No. 5, cracks were observed on the surface and edges of the steel sheet in the observation after hot rolling. Was given. Further, when the winding temperature of Steel F is higher than the range of the present invention, the deep drawability is inferior as in Test No. 8.

【0046】また、図1及び図2には、鋼Fの2次焼鈍
後の引張強度,全伸びに及ぼす“調質圧延伸び率”及び
“2次焼鈍最高加熱温度”の影響を整理して示した。
1 and 2 summarize the effects of "tempered rolling elongation" and "secondary annealing maximum heating temperature" on the tensile strength and total elongation of steel F after secondary annealing. Indicated.

【0047】この図1からは、調質圧延伸び率が小さい
と2次焼鈍により十分な強度上昇が得られず、また、極
端に調質圧延伸び率が大きいと伸びの劣化が大きくなっ
て深絞り加工に耐えられなくなることが明らかである。
更に、図2からは、2次焼鈍最高加熱温度が低すぎても
高すぎても2次焼鈍により十分な強度上昇が得られない
ことを確認できる。
From FIG. 1, it can be seen that when the temper rolling elongation is small, a sufficient increase in strength cannot be obtained due to the secondary annealing, and when the temper rolling elongation is extremely large, the deterioration of the elongation becomes large and the depth becomes deep. It is clear that it cannot withstand drawing.
Furthermore, it can be confirmed from FIG. 2 that a sufficient increase in strength cannot be obtained by the secondary annealing even if the maximum heating temperature of the secondary annealing is too low or too high.

【0048】[0048]

【効果の総括】以上に説明した如く、この発明によれ
ば、短時間の2次焼鈍を施すだけで、優れた深絞り性を
示しかつ強度バラツキの小さい高張力薄鋼板を生産性良
く安価に製造することが可能となるなど、産業上有用な
効果がもたらされる。
[Summary of Effects] As described above, according to the present invention, a high-strength thin steel sheet exhibiting excellent deep drawability and small strength variation can be produced at low cost with high productivity by only performing secondary annealing for a short time. Industrially useful effects such as the ability to manufacture are brought about.

【図面の簡単な説明】[Brief description of drawings]

【図1】2次焼鈍後の引張強度,全伸びに及ぼす調質圧
延伸び率の影響を示したグラフである。
FIG. 1 is a graph showing the effect of temper rolling elongation on tensile strength and total elongation after secondary annealing.

【図2】2次焼鈍後の引張強度,全伸びに及ぼす2次焼
鈍最高加熱温度の影響を示したグラフである。
FIG. 2 is a graph showing the influence of the secondary annealing maximum heating temperature on the tensile strength and total elongation after the secondary annealing.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量割合にて C:0.0005〜 0.012%, Si:1.5 %以下, Mn:0.05
〜 3.0%,P:0.15%以下, S:0.01%以下,
酸可溶Al:0.1 %以下,N:0.005 %以下, C
u:0.5 〜2%, Ni:1/3Cu 〜2/3Cu %,Ti:0.01〜
0.2%を含み残部がFe及び不可避的不純物から成る鋼片
を、熱間圧延して550℃以下の温度域で巻取り、次い
で圧下率65%以上で冷間圧延した後、連続焼鈍ライン
で一次焼鈍してから延び率0.5 〜5%の調質圧延を行
い、再び連続焼鈍ライン又は連続溶融亜鉛めっきライン
で500〜750℃の温度域に5秒〜2分間加熱保持す
る2次焼鈍を施すことを特徴とする、深絞り用高張力薄
鋼板の製造法。
1. A weight ratio of C: 0.0005 to 0.012%, Si: 1.5% or less, Mn: 0.05.
~ 3.0%, P: 0.15% or less, S: 0.01% or less,
Acid-soluble Al: 0.1% or less, N: 0.005% or less, C
u: 0.5 ~2%, Ni: 1/3 Cu ~ 2/3 Cu%, Ti: 0.01~
A steel slab containing 0.2% and the balance consisting of Fe and unavoidable impurities is hot-rolled, wound in a temperature range of 550 ° C. or lower, and then cold-rolled at a rolling reduction of 65% or more, and then primary in a continuous annealing line. After annealing, temper rolling with an elongation of 0.5 to 5%, and then perform secondary annealing again by heating for 5 seconds to 2 minutes in a temperature range of 500 to 750 ° C in a continuous annealing line or a continuous hot dip galvanizing line. A method for producing a high-strength thin steel sheet for deep drawing, characterized by:
【請求項2】 重量割合にて C:0.0005〜 0.012%, Si:1.5 %以下, Mn:0.05
〜 3.0%,P:0.15%以下, S:0.01%以下,
酸可溶Al:0.1 %以下,N:0.005 %以下, C
u:0.5 〜2%, Ni:1/3Cu 〜2/3Cu %,Ti:0.01〜
0.2%を含有すると共に、更に Nb:0.003 〜0.1 %, B:0.0003〜0.003 %の1種
又は2種を含み残部がFe及び不可避的不純物から成る鋼
片を、熱間圧延して550℃以下の温度域で巻取り、次
いで圧下率65%以上で冷間圧延した後、連続焼鈍ライ
ンで一次焼鈍してから延び率0.5 〜5%の調質圧延を行
い、再び連続焼鈍ライン又は連続溶融亜鉛めっきライン
で500〜750℃の温度域に5秒〜2分間加熱保持す
る2次焼鈍を施すことを特徴とする、深絞り用高張力薄
鋼板の製造法。
2. A weight ratio of C: 0.0005 to 0.012%, Si: 1.5% or less, Mn: 0.05.
~ 3.0%, P: 0.15% or less, S: 0.01% or less,
Acid-soluble Al: 0.1% or less, N: 0.005% or less, C
u: 0.5 ~2%, Ni: 1/3 Cu ~ 2/3 Cu%, Ti: 0.01~
A steel slab containing 0.2% and further containing one or two of Nb: 0.003 to 0.1% and B: 0.0003 to 0.003% and the balance being Fe and inevitable impurities is hot-rolled to 550 ° C or less. , Then cold-rolled at a rolling reduction of 65% or more, then primary-annealed in a continuous annealing line, and then temper-rolled with an elongation of 0.5 to 5%, and then again in a continuous annealing line or continuous molten zinc. A method for producing a high-strength thin steel sheet for deep drawing, comprising performing secondary annealing in which a temperature is kept in a temperature range of 500 to 750 ° C. for 5 seconds to 2 minutes in a plating line.
JP35340892A 1992-12-12 1992-12-12 Production of high tensile strength steel sheet for deep drawing Pending JPH06179922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35340892A JPH06179922A (en) 1992-12-12 1992-12-12 Production of high tensile strength steel sheet for deep drawing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35340892A JPH06179922A (en) 1992-12-12 1992-12-12 Production of high tensile strength steel sheet for deep drawing

Publications (1)

Publication Number Publication Date
JPH06179922A true JPH06179922A (en) 1994-06-28

Family

ID=18430641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35340892A Pending JPH06179922A (en) 1992-12-12 1992-12-12 Production of high tensile strength steel sheet for deep drawing

Country Status (1)

Country Link
JP (1) JPH06179922A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003035922A1 (en) * 2001-10-23 2003-05-01 Sumitomo Metal Industries, Ltd. Method for press working, plated steel product for use therein and method for producing the steel product
KR100401979B1 (en) * 1996-12-10 2004-03-20 주식회사 포스코 MANUFACTURING METHOD OF 35 kg/mm¬2 CLASS HIGH TENSILE STRENGTH COLD ROLLED STRIP FOR DEEP DRAWING HAVING SUPERIOR WIRE BENDING PREVENTING CHARACTERISTICS
JP4501290B2 (en) * 2000-03-01 2010-07-14 Jfeスチール株式会社 Cold-rolled steel sheet, plated steel sheet excellent in heat-treating ability to increase strength after forming, and manufacturing method thereof
WO2011118421A1 (en) * 2010-03-26 2011-09-29 Jfeスチール株式会社 Method for producing high-strength steel plate having superior deep drawing characteristics
US9290835B2 (en) * 2005-10-05 2016-03-22 Nippon Steel & Summitomo Metal Corporation Cold-rolled steel sheet excellent in paint bake hardenability and ordinary-temperature non-aging property and method of producing the same
EP3276021A4 (en) * 2015-03-27 2018-03-14 JFE Steel Corporation High-strength steel sheet and production method therefor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100401979B1 (en) * 1996-12-10 2004-03-20 주식회사 포스코 MANUFACTURING METHOD OF 35 kg/mm¬2 CLASS HIGH TENSILE STRENGTH COLD ROLLED STRIP FOR DEEP DRAWING HAVING SUPERIOR WIRE BENDING PREVENTING CHARACTERISTICS
JP4501290B2 (en) * 2000-03-01 2010-07-14 Jfeスチール株式会社 Cold-rolled steel sheet, plated steel sheet excellent in heat-treating ability to increase strength after forming, and manufacturing method thereof
WO2003035922A1 (en) * 2001-10-23 2003-05-01 Sumitomo Metal Industries, Ltd. Method for press working, plated steel product for use therein and method for producing the steel product
US7673485B2 (en) 2001-10-23 2010-03-09 Sumitomo Metal Industries, Ltd. Hot press forming method
US9290835B2 (en) * 2005-10-05 2016-03-22 Nippon Steel & Summitomo Metal Corporation Cold-rolled steel sheet excellent in paint bake hardenability and ordinary-temperature non-aging property and method of producing the same
WO2011118421A1 (en) * 2010-03-26 2011-09-29 Jfeスチール株式会社 Method for producing high-strength steel plate having superior deep drawing characteristics
JP2011202251A (en) * 2010-03-26 2011-10-13 Jfe Steel Corp Method for producing high-strength steel plate having superior deep drawing characteristics
EP3276021A4 (en) * 2015-03-27 2018-03-14 JFE Steel Corporation High-strength steel sheet and production method therefor
US11001906B2 (en) 2015-03-27 2021-05-11 Jfe Steel Corporation High-strength steel sheet and production method therefor

Similar Documents

Publication Publication Date Title
US7959747B2 (en) Method of making cold rolled dual phase steel sheet
US7879160B2 (en) Cold rolled dual-phase steel sheet
US7794552B2 (en) Method of producing austenitic iron/carbon/manganese steel sheets having very high strength and elongation characteristics and excellent homogeneity
US9297052B2 (en) High strength cold rolled steel sheet with excellent deep drawability and material uniformity in coil and method for manufacturing the same
EP1969148B1 (en) Method for manufacturing high strength steel strips with superior formability and excellent coatability
JPH10219394A (en) Cold rolled steel sheet excellent in deep drawability and aging resistance, and hot rolled steel strip for cold rolled steel sheet
JPH05255804A (en) Cold rolled steel sheet excellent in formability and rigidity and its manufacture
JPH0555586B2 (en)
EP0319590A1 (en) HIGH-STRENGTH, COLD-ROLLED STEEL SHEET HAVING HIGH r VALUE AND PROCESS FOR ITS PRODUCTION
JPH03277741A (en) Dual-phase cold roller steel sheet excellent in workability, cold nonaging properties and baking hardenability and its manufacture
JPH06179922A (en) Production of high tensile strength steel sheet for deep drawing
JP3551878B2 (en) High-ductility, high-hole-expansion high-tensile steel sheet and method for producing the same
JP3466298B2 (en) Manufacturing method of cold rolled steel sheet with excellent workability
JP3593728B2 (en) Manufacturing method of ultra low carbon cold rolled steel sheet with excellent formability
JP4930393B2 (en) Cold rolled steel sheet manufacturing method
JP3023014B2 (en) Cold rolled mild steel sheet for ultra deep drawing
JPH0681045A (en) Production of cold rolled steel sheet excellent in workability and baking hardenability
JPH06256901A (en) High tensile strength cold rolled steel sheet for deep drawing and its production
JP3471407B2 (en) Manufacturing method of hot rolled steel sheet with excellent workability
JP3142975B2 (en) Manufacturing method of high strength cold rolled steel sheet with excellent deep drawability
JPH0559490A (en) High tensile strength thin steel sheet for press working and its manufacture
JPH1161332A (en) Coating/baking hardened type cold rolled steel sheet superior in press formability and aging resistance characteristic
JP2003013176A (en) High-ductility cold-rolled steel sheet superior in press formability and strain aging hardening characterisitics, and manufacturing method therefor
JPH10265845A (en) Production of hot rolled alloy steel sheet excellent in cold workability
JPH08104926A (en) Production of high strength cold rolled steel sheet for deep drawing excellent in dent resistance and free from generation of stretcher strain