JPH06256901A - High tensile strength cold rolled steel sheet for deep drawing and its production - Google Patents

High tensile strength cold rolled steel sheet for deep drawing and its production

Info

Publication number
JPH06256901A
JPH06256901A JP6934993A JP6934993A JPH06256901A JP H06256901 A JPH06256901 A JP H06256901A JP 6934993 A JP6934993 A JP 6934993A JP 6934993 A JP6934993 A JP 6934993A JP H06256901 A JPH06256901 A JP H06256901A
Authority
JP
Japan
Prior art keywords
steel sheet
less
strength
balance
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6934993A
Other languages
Japanese (ja)
Inventor
Naomitsu Mizui
直光 水井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP6934993A priority Critical patent/JPH06256901A/en
Publication of JPH06256901A publication Critical patent/JPH06256901A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stably provide a high tensile strength cold rolled steel sheet for deep drawing, excellent in balance between strength and ductility and also having advantages in productivity and cost. CONSTITUTION:The high tensile strength cold rolled steel sheet for deep drawing, excellent in balance between strength and ductility, has a composition consisting of 0.0005-0.0100% C, <=2.5% Si, >0.15-3.0% Mn, <=0.15% P, 0.0005-0.01% N, <=0.1% acid soluble Al, <=0.010% S, and the balance Fe with inevitable impurities, containing Ti or further containing 0.003-0.1% Nb and/or 0.0003-0.003% B, and satisfying the relations represented by three inequalities '-0.5%<=Mn-(Si+10P)<=0.5%', '-0.01%<=Ti*=0.01%', and 'Ti*X<=P0.0005%' [where Ti*=Ti-48(N/14+C/12)]. This steel sheet can be produced by subjecting the steel to hot rolling, to coiling at 600-750 deg.C, to cold rolling at 50-90% draft, and to recrystallization annealing or further to hot dip galvanizing under the condition of temp. not exceeding 550 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、種々の形状にプレス
加工して利用される強度−延性バランスの良好な深絞り
用高張力冷延鋼板並びにその製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength cold-rolled steel sheet for deep drawing, which has a good strength-ductility balance and is used by being pressed into various shapes, and a method for producing the same.

【0002】[0002]

【従来技術とその課題】従来、製鋼段階で十分に脱炭処
理を施してからTi或いはNbを添加した極低炭素鋼をベ−
スとし、これにSi,Mn,Cr,Pを添加して強度を上げた
深絞り用高張力鋼板については多くの提案がなされてい
る。
2. Description of the Related Art Conventionally, ultra-low carbon steel to which Ti or Nb has been added after being sufficiently decarburized at the steelmaking stage has been used.
Many proposals have been made for deep-drawing high-strength steel sheets in which Si, Mn, Cr, and P are added to increase the strength.

【0003】例えば、特公昭57−57945号公報に
は、極低炭素Ti添加鋼に多量のPを添加して強度を確保
した高張力冷延鋼板が開示されている。しかし、この冷
延鋼板は最高引張強度が50kgf/mm2 程度でしかなく、
しかもその場合の平均ランクフォ−ド値(平均のr値)
は 1.7を切るなど、深絞り性の点でもそれほど優れてい
るとは言い難かった。
For example, Japanese Examined Patent Publication No. 57-57945 discloses a high-strength cold-rolled steel sheet in which a large amount of P is added to ultra-low carbon Ti-added steel to secure the strength. However, the maximum tensile strength of this cold-rolled steel sheet is only about 50 kgf / mm 2 ,
Moreover, in that case, the average rank forward value (average r value)
It was hard to say that it was not so excellent in terms of deep drawability, such as below 1.7.

【0004】また、特公昭59−42742号公報に
も、極低炭素Ti添加鋼にP並びにMn,Si,Mo,Crの強化
元素を添加し、更にIF(Interstitial Free) 鋼特有の
2次加工脆性を防止するためにBを添加してなる高張力
冷延鋼板が開示されているが、この冷延鋼板も強度レベ
ルが引張強さで最高50kgf/mm2 前後であり、その強度
レベルでの平均r値も 1.6程度と低いものであった。
Further, Japanese Patent Publication No. 59-42742 also discloses that ultra-low carbon Ti-added steel is supplemented with strengthening elements of P, Mn, Si, Mo and Cr, and is further subjected to secondary processing peculiar to IF (Interstitial Free) steel. A high-strength cold-rolled steel sheet obtained by adding B to prevent brittleness is disclosed, but the strength level of this cold-rolled steel sheet is about 50 kgf / mm 2 at the maximum in tensile strength. The average r value was as low as about 1.6.

【0005】一方、本発明者等は先に、PとMnを複合添
加した極低炭素Ti添加鋼に熱間圧延と冷間圧延を施した
後、特定条件の再結晶焼鈍を施すことからなる“強度−
深絞り性バランス”の良好な高張力鋼板の製造法を提案
した(特開平2-149624号)。しかしながら、その後も続
けられた検討の結果、この方法の実施に当り熱延鋼帯を
高温巻取りした場合には、その後に冷延・再結晶焼鈍し
て得られる鋼板の延性及び深絞り性が共に著しく劣化す
る恐れのあることが明らかとなった。
On the other hand, the inventors of the present invention firstly perform hot rolling and cold rolling on an ultra-low carbon Ti-added steel to which P and Mn are added in combination, and then subject them to recrystallization annealing under specific conditions. "Strength-
We proposed a method for producing high-strength steel sheets with a good "deep drawability balance" (Japanese Patent Laid-Open No. 2-149624). It was clarified that when taken, both the ductility and the deep drawability of the steel sheet obtained by subsequent cold rolling / recrystallization annealing may be significantly deteriorated.

【0006】即ち、極低炭素Ti添加IF冷延鋼板にP,
Mn等の置換型固溶元素を添加して鋼板を高強度化する
と、それに伴って鋼板中にFeTiPが形成され、これが鋼
板の延性,深絞り性を劣化する原因となった訳である。
特に、熱延工程において鋼帯を高温で巻取ると多量のFe
TiPが析出し、延性,深絞り性が共に著しく劣化する。
従って、FeTiPの析出を抑制してその弊害を防ぐために
は低温で巻取ることが必要であると考えられた。
That is, P is added to an ultra-low carbon Ti-added IF cold-rolled steel sheet.
When a steel sheet is strengthened by adding a substitutional solid solution element such as Mn, FeTiP is formed in the steel sheet, which causes the ductility and deep drawability of the steel sheet to deteriorate.
In particular, when the steel strip is wound at a high temperature in the hot rolling process, a large amount of Fe
TiP precipitates, and ductility and deep drawability both deteriorate significantly.
Therefore, it was considered necessary to wind at low temperature in order to suppress precipitation of FeTiP and prevent its adverse effect.

【0007】ところが、逆に、Ti添加IF冷延鋼板で
は、それを製造する際の熱延工程において鋼帯を低温で
巻取ると微細TiCの析出が生じがちであり、今度はこれ
が延性に悪影響を及ぼすという不都合が認められた。
On the contrary, in the Ti-added IF cold-rolled steel sheet, if the steel strip is wound at a low temperature in the hot-rolling process for producing it, precipitation of fine TiC tends to occur, which in turn adversely affects the ductility. The inconvenience of causing

【0008】この微細TiCの析出を抑えるには、熱延工
程で高温巻取りを行って熱延板中でTiCを粗大析出させ
るか、或いは鋼板中のC濃度を極力低減する手立てが有
効である。しかるに、高温巻取りは前述した理由によっ
て好ましくはなく、一方、C濃度を低減する手立てにも
次のような問題があった。つまり、高強度化のため鋼板
中にSi,P,Mn等の置換型固溶元素を多量に含有させる
“極低炭素鋼がベ−スの高張力鋼板”では、素材鋼を溶
製する際に真空脱ガス処理を行った溶鋼中へ副原料とし
てフェロシリコン,フェロりん,金属Mn等を添加する必
要があるが、この副原料中にも微量ではあるもののCが
含まれているので溶鋼中のC濃度を高めてしまう結果と
なる。そのため、副原料の添加に先立って溶鋼中のC濃
度をより一層低下させることが必要となり、製鋼過程で
のコスト上昇が著しくなると共に、吹錬時間が長くなっ
て生産性も阻害される。
In order to suppress the precipitation of this fine TiC, it is effective to carry out high temperature winding in the hot rolling process to coarsely precipitate TiC in the hot rolled sheet, or to reduce the C concentration in the steel sheet as much as possible. . However, the high temperature winding is not preferable for the above-mentioned reason, and on the other hand, there are the following problems in the means for reducing the C concentration. In other words, in the case of "high-strength steel sheet based on ultra-low carbon steel" in which a large amount of substitutional solid solution elements such as Si, P, and Mn are contained in the steel sheet for higher strength, It is necessary to add ferrosilicon, ferrophosphorus, metal Mn, etc. as auxiliary raw materials to the molten steel that has been subjected to vacuum degassing, but this auxiliary raw material also contains a small amount of C. This results in increasing the C concentration of Therefore, it is necessary to further reduce the C concentration in the molten steel prior to the addition of the auxiliary raw material, which significantly increases the cost in the steelmaking process and prolongs the blowing time and hinders the productivity.

【0009】[0009]

【目的】そこで、本発明が目的としたのは、優れた“強
度−延性バランス”を備え、しかも生産性面やコスト面
で格別な不利を伴うことのない深絞り用高張力冷延鋼板
を安定提供する手段を確立することであった。
[Purpose] Therefore, an object of the present invention is to provide a high-strength cold-rolled steel sheet for deep drawing, which has an excellent "strength-ductility balance" and which does not have a particular disadvantage in terms of productivity and cost. It was to establish means to provide stable supply.

【0010】[0010]

【課題を解決するための手段】本発明者は、上記目的を
達成すべく、特に“極低炭素Ti添加IF冷延鋼板をベ−
スとした高張力冷延鋼板”の機械的性質に及ぼす添加元
素量及び熱延巻取り温度の影響に着目し、その詳細な調
査を行った結果、次のような知見を得ることができた。
In order to achieve the above-mentioned object, the present inventor has made a special effort to obtain an ultra low carbon Ti-added IF cold rolled steel sheet.
As a result of a detailed investigation focusing on the effect of the amount of additional elements and the hot rolling coiling temperature on the mechanical properties of "high-strength cold-rolled steel sheet", the following findings were obtained. .

【0011】a) 鋼板の強化成分として有効なSi及びP
の含有量に留意しつつMn量を調整し、それら割合が特定
の条件を満たすようにMn,Si,Pを複合で含有させた場
合には、所要強度の確保は勿論、深絞り性をも向上させ
ることが可能となる。
A) Si and P which are effective as reinforcing components of steel sheet
If the Mn content is adjusted while paying attention to the content of Mn, and if Mn, Si, and P are compounded so that their proportion meets a specific condition, not only the required strength is secured, but also deep drawability is obtained. It is possible to improve.

【0012】b) また、Ti添加に際し「Ti− 48(N/14
+C/12)」で表される値が特定の範囲を超えないように
調整して過剰なTiを抑制すると、熱延後の巻取り温度を
比較的高くしてもFeTiPが生成しなくなり、析出物によ
る製品冷延鋼板の延性,深絞り性の劣化を抑えることが
できる。
B) Further, when Ti is added, "Ti-48 (N / 14
+ C / 12) ”does not exceed a specific range and suppresses excessive Ti, FeTiP does not form even if the coiling temperature after hot rolling is relatively high, and precipitation occurs. It is possible to suppress the deterioration of the ductility and deep drawability of the product cold rolled steel sheet due to the material.

【0013】c) この場合、熱延後の巻取り温度が高い
と、TiCが粗大化して焼鈍後の延性が向上するだけでな
く、再結晶焼鈍過程において深絞り性に好ましい再結晶
集合組織が発達するのを促進することにもなって極めて
好ましい。
C) In this case, if the coiling temperature after hot rolling is high, not only TiC becomes coarse and the ductility after annealing is improved, but also a recrystallized texture which is preferable for deep drawability in the recrystallization annealing process is obtained. It is also very preferable because it promotes development.

【0014】d) なお、必要によりNbやBを添加するこ
とは冷延鋼板の加工性向上に好ましい結果をもたらす
が、特にNbを複合添加する場合には過剰なTiを少なくし
ないと深絞り性向上は望めない。
D) Addition of Nb or B, if necessary, gives favorable results for improving the workability of the cold-rolled steel sheet. However, especially in the case of adding Nb in combination, it is necessary to reduce excessive Ti so that deep drawability is improved. I cannot hope for improvement.

【0015】本発明は、上記知見事項等を基に完成され
たもので、「母材組成を、C:0.0005〜0.0100%(以降、
成分割合を表す%は重量%とする),Si: 2.5%以下,
Mn:0.15超〜 3.0%, P:0.15%以下,N:0.
0005〜0.01%, 酸可溶Al: 0.1%以下, S:
0.010%以下を含むと共にTiも含有するか、 或いは更にN
b: 0.003〜 0.1%, B:0.0003〜 0.003%のうち
の1種以上をも含み、 かつ −0.5 % ≦ Mn−(Si+10P)≦ 0.5%, −0.01% ≦ Ti* ≦ 0.01%, Ti* ×P≦ 0.0005% 〔但し、 Ti* =Ti− 48(N/14 +C/12 )〕なる3つの
式で表される関係を満足していて、 残部がFe及び不可避
的不純物からなる如くに構成することにより、 強度−延
性バランスの良好な深絞り用高張力冷延鋼板を実現でき
るようにした点」に大きな特徴を有し、更には「上記組
成の鋼を溶製して鋼片となした後、 Ar3変態点以上の温
度で熱間圧延して600〜750℃で巻取り、 次いで圧
下率50〜90%で冷間圧延し、 更に再結晶焼鈍を行う
か、 或いはこれに続いて更に最高加熱温度が550℃を
上回らない条件で溶融亜鉛めっきを施すことによって、
強度−延性バランスの良好な深絞り用高張力冷延鋼板を
安定に製造し得るようにした点」をも特徴としている。
The present invention has been completed on the basis of the above findings and the like. "The base material composition is C: 0.0005 to 0.0100% (hereinafter,
%, Which represents the component ratio, is weight%), Si: 2.5% or less,
Mn: over 0.15 to 3.0%, P: 0.15% or less, N: 0.
0005-0.01%, Acid-soluble Al: 0.1% or less, S:
Contains 0.010% or less and also contains Ti, or N
b: 0.003 to 0.1%, B: 0.0003 to 0.003%, including at least one of -0.5% ≤ Mn- (Si + 10P) ≤ 0.5%, -0.01% ≤ Ti * ≤ 0.01%, Ti * × P ≦ 0.0005% [however, Ti * = Ti−48 (N / 14 + C / 12)], and the balance is composed of Fe and unavoidable impurities. By doing so, it is possible to realize a high-strength cold-rolled steel sheet for deep drawing that has a good strength-ductility balance. ”Furthermore,“ steel of the above composition was melted into a billet. After that, hot rolling is performed at a temperature not lower than the Ar 3 transformation point, winding is performed at 600 to 750 ° C., then cold rolling is performed at a reduction rate of 50 to 90%, and further recrystallization annealing is performed. By applying hot dip galvanizing under the condition that the maximum heating temperature does not exceed 550 ° C,
It is also characterized in that it is possible to stably manufacture a high-strength cold-rolled steel sheet for deep drawing having a good strength-ductility balance ".

【0016】なお、本発明に係る深絞り用高張力冷延鋼
板は、母材の成分組成が前記条件を満足してさえおれ
ば、母材そのまま(裸鋼板)であれ、これに表面処理が
施されたものであれ所要の特性を十分に発揮することは
言うまでもない。以下、本発明において、鋼板の成分組
成並びにその製造条件を前記のように限定した理由をそ
の作用と共に説明する。
The deep-drawing high-tensile cold-rolled steel sheet according to the present invention may be surface-treated as it is (bare steel sheet) as long as the composition of the base material satisfies the above conditions. It goes without saying that even if it is applied, it can sufficiently exhibit the required characteristics. Hereinafter, in the present invention, the reason why the component composition of the steel sheet and the manufacturing conditions thereof are limited as described above will be explained together with its action.

【0017】[0017]

【作用】[Action]

A) 成分割合 〈C〉Cは鋼中へ必然的に随伴される元素であるが、そ
の含有量は少ないほど好ましい。しかし、C含有量を0.
0005%未満とすることは、現在の製鋼技術では容易かつ
安定に行うことができない。ただ、C含有量が0.0100%
を超えると、Tiの必要添加量が増してコスト上昇につな
がるばかりでなく、TiCの析出量が多くなって延性が阻
害される。従って、C含有量は0.0005〜0.0100%と定め
た。
A) Component ratio <C> C is an element that is inevitably accompanied in steel, but the smaller the content, the better. However, if the C content is 0.
It is not possible to easily and stably set the content to be less than 0005% by the current steelmaking technology. However, the C content is 0.0100%
If it exceeds, not only the required addition amount of Ti increases and the cost rises, but also the precipitation amount of TiC increases and the ductility is impaired. Therefore, the C content is set to 0.0005 to 0.0100%.

【0018】〈Si〉Siも鋼中に必然的に含有される元素
であるが、固溶強化元素として最高 2.5%まで含有させ
るのが望ましい。しかし、その含有量が 2.5%を超える
と鋼板中にSiN,SiO2 等の析出物が多くなり、延性が
劣化する。また、Siを単独で添加した場合には熱延板を
粗粒にし冷延・焼鈍後の深絞り性を劣化させるが、Mnと
複合で添加することでその弊害を抑制することができ
る。ただ、Mnを複合添加した場合の前記効果は、式 −0.5 %≦Mn−(Si+10P)≦ 0.5% で表される条件を満たしていないと十分でない。
<Si> Si is also an element necessarily contained in steel, but it is desirable to contain up to 2.5% as a solid solution strengthening element. However, if the content exceeds 2.5%, precipitates such as SiN and SiO 2 increase in the steel sheet, and ductility deteriorates. Further, when Si alone is added, the hot-rolled sheet is coarsened and the deep drawability after cold rolling / annealing is deteriorated, but by adding it in combination with Mn, the adverse effect can be suppressed. However, the above effect in the case of adding Mn in combination is not sufficient unless the condition represented by the formula −0.5% ≦ Mn− (Si + 10P) ≦ 0.5% is satisfied.

【0019】〈Mn〉Mnは、不可避的不純物であるSと結
合してMnSを形成し、Sの弊害を抑制するほか、固溶強
化元素であるSi及びPと複合添加することで固溶強化元
素が深絞り性に悪影響を及ぼすのを防止する作用を有し
ているため、0.15%を超える含有量を確保する必要があ
る。即ち、Mn含有量が0.15%以下であるとSを十分に捕
捉できずにTiSが析出し、そのためTiによって固定する
ことのできない固溶Cが鋼中に残り、またP,Siと複合
添加する効果が無くなって冷延・焼鈍後に深絞り性に好
ましい再結晶集合組織が得られない。一方、 3.0%を超
えてMnを含有させると鋼板が硬くなり過ぎ、逆に深絞り
性を害するようになる。従って、Mn含有量については0.
15超〜 3.0%と定めた。更に、Mnは単独で添加しても冷
延・焼鈍後に深絞り性に好ましい再結晶集合組織が得ら
れず、常にSi,Pと複合添加する必要がある。そして、
Si,Pと複合添加した場合に良好な深絞り性を安定して
実現できるのは、前述した式 −0.5 %≦Mn−(Si+10P)≦ 0.5% で表される条件を満たしている時である。
<Mn> Mn forms MnS by combining with S, which is an unavoidable impurity, and suppresses the adverse effects of S. In addition, solid addition strengthens by adding Si and P that are solid solution strengthening elements. Since the element has the effect of preventing the deep drawability from being adversely affected, it is necessary to secure a content exceeding 0.15%. That is, when the Mn content is 0.15% or less, S cannot be sufficiently captured and TiS precipitates, so that solid solution C that cannot be fixed by Ti remains in the steel and is also added together with P and Si. The effect is lost and a recrystallization texture suitable for deep drawability cannot be obtained after cold rolling and annealing. On the other hand, when Mn is contained in excess of 3.0%, the steel sheet becomes too hard, which adversely affects the deep drawability. Therefore, the Mn content is 0.
Determined to be over 15 to 3.0%. Further, even if Mn is added alone, a recrystallization texture preferable for deep drawability cannot be obtained after cold rolling / annealing, and it is always necessary to add Mn in combination with Si. And
The good deep drawability can be stably realized in the case of compound addition with Si and P when the condition expressed by the above-mentioned formula −0.5% ≦ Mn− (Si + 10P) ≦ 0.5% is satisfied. .

【0020】〈P〉Pも鋼中に必然的に含有される元素
であり、固溶強化元素として最高0.15%まで含有させる
のが望ましい。しかし、0.15%を超えて含有させると鋼
板が脆くなり、プレス等の塑性加工に適さなくなる。更
に、Pを単独で添加した場合も熱延板が粗粒となって冷
延・焼鈍後の深絞り性を劣化させるので、これを防止す
るためには常にMnと複合で添加する必要があるが、その
複合添加の効果は、前記式 −0.5 %≦Mn−(Si+10P)≦ 0.5% で表される条件を満たしていないと十分でない。
<P> P is also an element necessarily contained in steel, and it is desirable to contain up to 0.15% as a solid solution strengthening element. However, if the content exceeds 0.15%, the steel sheet becomes brittle and is not suitable for plastic working such as pressing. Further, even if P is added alone, the hot-rolled sheet becomes coarse grains and deteriorates the deep drawability after cold rolling / annealing, so in order to prevent this, it is necessary to always add it in combination with Mn. However, the effect of the composite addition is not sufficient unless the condition represented by the formula −0.5% ≦ Mn− (Si + 10P) ≦ 0.5% is satisfied.

【0021】〈S〉Sは鋼中に必然的に随伴される不可
避的不純物元素であり、その含有量は低いほど好まし
い。そして、S含有量が多いとその分だけMnの必要添加
量が多くなってコストが嵩むので、S含有量は 0.010%
以下と定めた。
<S> S is an unavoidable impurity element that is necessarily accompanied in the steel, and the lower the content, the better. And, if the S content is high, the required amount of Mn is increased correspondingly and the cost increases, so the S content is 0.010%.
The following was set.

【0022】〈酸可溶Al〉鋼板中に含有される酸可溶Al
は、製鋼段階において脱酸剤として添加されたAlの一部
である。そして、通常は、十分な脱酸を確認する上で
0.001%以上含有されていることが目安となる。しかし
ながら、酸可溶Alの含有量が 0.1%を超えると Al23
が多くなって延性を損なうようになることから、その含
有量を 0.1%以下と定めた。
<Acid-soluble Al> Acid-soluble Al contained in the steel sheet
Is a part of Al added as a deoxidizer in the steelmaking stage. And usually, to ensure sufficient deoxidation
A guideline is to contain 0.001% or more. However, if the content of acid-soluble Al exceeds 0.1%, Al 2 O 3
Therefore, the content is determined to be 0.1% or less.

【0023】〈N〉Nも、Cと同様、鋼中に必然的に含
有される不可避的不純物元素であって、その含有量は低
いほど好ましいが、やはり現在の製鋼技術では0.0005%
未満にまで容易かつ安定に低減することはできない。そ
して、N含有量が0.01%を超えるとTiの必要添加量が多
くなってコストアップを招くだけでなく、TiNの析出量
が増えて延性の劣化を招くことから、N含有量は0.0005
〜0.01%と定めた。
<N> N, like C, is an unavoidable impurity element necessarily contained in steel, and the lower the content, the better. However, in the current steelmaking technology, N is 0.0005%.
It cannot be easily and stably reduced to less than 1. When the N content exceeds 0.01%, not only the required addition amount of Ti increases and the cost increases, but also the precipitation amount of TiN increases and the ductility deteriorates. Therefore, the N content is 0.0005.
~ 0.01%.

【0024】〈Ti〉Tiは鋼板中のC,NをそれぞれTi
C,TiNとして固定し深絞り性に好ましい再結晶集合組
織の発達を促進する作用を有しており、本発明に係る鋼
板の重要な構成成分である。そして、Ti含有量が不足し
て「Ti* =Ti− 48(N/14 +C/12)」で表されるTi*
値が−0.01%よりも低くなると前記作用による所望の効
果を確保できず、一方、過剰なTiが多くなるとFeTiPが
生成して冷延・焼鈍後の延性の劣化を招くだけでなく、
深絞り性に好ましい再結晶集合組織の発達を阻害するよ
うになることから、Ti含有量は式「Ti* =Ti− 48(N/1
4 +C/12)」で表されるTi* の値で「−0.01%≦Ti*
0.01%」かつ「Ti* ×P≦0.0005%」の範囲と限定し
た。
<Ti> Ti means C and N in the steel sheet respectively
It has an action of fixing as C and TiN and promoting the development of a recrystallization texture preferable for deep drawability, and is an important constituent component of the steel sheet according to the present invention. When the Ti content is insufficient and the value of Ti * represented by “Ti * = Ti−48 (N / 14 + C / 12)” is lower than −0.01%, the desired effect due to the above action can be secured. On the other hand, if the amount of excess Ti increases, FeTiP is generated and the ductility deteriorates after cold rolling and annealing.
Since it comes to inhibit the development of recrystallization texture which is preferable for deep drawability, the Ti content is expressed by the formula "Ti * = Ti-48 (N / 1
4 + C / 12) ", the value of Ti * is" -0.01% ≤ Ti *
It was limited to the range of "0.01%" and "Ti * x P ≤ 0.0005%".

【0025】〈Nb,及びB〉これらの成分には何れも冷
延鋼板の加工性を改善する作用があるので、必要により
単独又は2種の複合添加がなされる。ただ、それぞれの
含有量は次の理由によって定められた。 Nb:熱延板の結晶粒径を細かくし、かつTiと同様に炭化
物を形成して深絞り性に好ましい再結晶集合組織の発達
を促進する。しかし、その含有量が 0.003%未満ではこ
のような効果が現れず、一方、 0.1%を超えて含有させ
ると固溶Nbによる再結晶抑制効果が大き過ぎ、かえって
深絞り性を劣化させる。 B:過剰なTi(即ちTi* )の少ない極低炭素鋼にSi,M
n,Pを多量に添加すると、TiCの析出が抑制されて固
溶Cが鋼板中に残存するので耐2次加工脆性は良くな
る。しかし、高P添加鋼板では、今度は固溶Pによる耐
2次加工脆性阻害作用を無視できなくなる場合も生じる
が、このようなときに微量のBを添加することで前記弊
害を緩和できる。ただ、B含有量が0.0003%未満ではこ
の効果を期待できず、一方、 0.003%超えてBを含有さ
せると前記効果が飽和するばかりか、深絞り性に好まし
い再結晶集合組織の発達が阻害されるようになる。
<Nb and B> Since all of these components have the effect of improving the workability of the cold rolled steel sheet, they may be added alone or in combination of two kinds if necessary. However, the content of each was determined for the following reasons. Nb: The crystal grain size of the hot-rolled sheet is made fine, and carbide is formed similarly to Ti to promote the development of a recrystallization texture preferable for deep drawability. However, if the content is less than 0.003%, such an effect does not appear. On the other hand, if the content exceeds 0.1%, the recrystallization suppressing effect by the solid solution Nb is too large and the deep drawability is rather deteriorated. B: Si, M in ultra-low carbon steel with little excess Ti (that is, Ti * )
When a large amount of n and P are added, precipitation of TiC is suppressed and solid solution C remains in the steel sheet, so that the secondary work embrittlement resistance is improved. However, in a high P-added steel sheet, the effect of inhibiting the secondary work embrittlement resistance due to solid solution P may not be negligible this time, but the adverse effect can be mitigated by adding a small amount of B in such a case. However, if the B content is less than 0.0003%, this effect cannot be expected. On the other hand, if the B content exceeds 0.003%, the above effect is saturated and the development of a recrystallization texture preferable for deep drawability is inhibited. Become so.

【0026】B) 製造条件 本発明法では、まず所定の成分組成に溶製された鋼を連
続鋳造等により鋼片とし、これをAr3変態点以上の温度
で熱間圧延する。この場合、圧延温度がAr3変態点を下
回ると熱延板の表層に“ゴス方位”と呼ばれる圧延集合
組織が発達し、冷延,焼鈍後も消失せず最終製品の深絞
り性を阻害するために好ましくない。なお、熱間圧延
は、望ましくは鋳造後の熱鋼片を“Ar3変態点を下回る
温度”に冷却することなく圧延する“直接圧延”による
のが良い。勿論、この場合であっても、熱鋼片は必要に
応じて加熱炉或いは端部加熱装置で加熱され得る。
B) Manufacturing Conditions In the method of the present invention, steel ingot having a predetermined composition is first made into a slab by continuous casting or the like, and this is hot-rolled at a temperature not lower than the Ar 3 transformation point. In this case, when the rolling temperature is lower than the Ar 3 transformation point, a rolling texture called “goss orientation” develops on the surface layer of the hot rolled sheet and does not disappear even after cold rolling and annealing, which impairs the deep drawability of the final product. Not preferred because of Incidentally, the hot rolling is preferably rolling to without cooling to "temperature below the Ar 3 transformation point" to heat billet after casting is good by "direct rolling". Of course, even in this case, the hot steel billet can be heated in a heating furnace or an end heating device as required.

【0027】熱間圧延工程での巻取り温度は600〜7
50℃と定めたが、この巻取り温度が600℃を下回る
とTiCの粗大化が不十分で製品鋼板に良好な延性を付与
できないばかりか、冷延後の再結晶焼鈍において深絞り
性に好ましい再結晶集合組織が十分に発達しない。一
方、750℃を超える温度で巻取った場合には粗大結晶
粒が生じやすく、これが冷延・焼鈍板の深絞り性の低下
につながる。なお、巻取り温度の上限はできれば700
℃に抑えるのが好ましい。
The coiling temperature in the hot rolling process is 600 to 7
Although it was set to 50 ° C., if the coiling temperature is lower than 600 ° C., not only is TiC coarsened insufficiently to give good ductility to the product steel sheet, but also it is preferable for deep drawability in recrystallization annealing after cold rolling. Recrystallized texture is not fully developed. On the other hand, when wound at a temperature higher than 750 ° C., coarse crystal grains are likely to be formed, which leads to a reduction in the deep drawability of the cold rolled / annealed sheet. The upper limit of the winding temperature is 700 if possible.
It is preferable to keep the temperature at ℃.

【0028】冷間圧延は常法に従い酸洗等により脱スケ
−ルした後に行われるが、冷間圧延の圧下率は50〜9
0%とする。圧下率の下限を50%としたのは、これよ
りも低い圧下率であると再結晶焼鈍によって深絞り性に
好ましい再結晶集合組織を十分に形成させることができ
ないためである。そして、基本的には圧下率は高いほど
望ましいが、90%以上では連続圧延機での圧延が困難
てあることから、圧下率の上限は90%と定めた。
Cold rolling is carried out after descaling by pickling or the like according to a conventional method, and the reduction ratio of cold rolling is 50-9.
0% The lower limit of the rolling reduction is set to 50% because if the rolling reduction is lower than this, the recrystallization texture that is preferable for deep drawability cannot be sufficiently formed by the recrystallization annealing. Basically, the higher the rolling reduction is, the more preferable it is, but if the rolling reduction is 90% or more, it is difficult to perform rolling in a continuous rolling mill, so the upper limit of the rolling reduction is set to 90%.

【0029】再結晶焼鈍は、箱焼鈍,連続焼鈍,連続溶
融亜鉛めっき工程におけるめっき前の焼鈍処理の何れに
よっても差支えはない。但し、焼鈍温度は再結晶温度以
上であることは言うまでもなく、また焼鈍板に良好な深
絞り性を得るためにはAc3変態点を超えない温度としな
ければならない。焼鈍板は、必要に応じて調質圧延さ
れ、更に電気めっき等の表面処理を施された後、出荷さ
れる。
Recrystallization annealing may be performed by any of box annealing, continuous annealing, and annealing treatment before plating in the continuous hot dip galvanizing process. However, needless to say, the annealing temperature is higher than the recrystallization temperature, and in order to obtain a good deep drawability in the annealed sheet, the temperature must not exceed the Ac 3 transformation point. The annealed plate is temper-rolled if necessary, further subjected to surface treatment such as electroplating, and then shipped.

【0030】ところで、焼鈍後の鋼板に溶融亜鉛めっき
や合金化溶融亜鉛めっきを施す場合には、鋼板の最高加
熱温度を550℃に抑える必要がある。なぜなら、めっ
き時に550℃を超える温度に加熱されると深絞り性が
低下してしまうためである。
When hot-dip galvanizing or alloying hot-dip galvanizing is applied to the annealed steel sheet, the maximum heating temperature of the steel sheet must be suppressed to 550 ° C. This is because the deep drawability deteriorates when heated to a temperature higher than 550 ° C. during plating.

【0031】また、前述した組成の鋼板は酸化傾向の強
いSi,Mnを高いレベルで含有しているので溶融亜鉛めっ
き層や合金化溶融亜鉛めっき層を安定に形成することが
難しいが、この場合、次の方法が有効である。即ち、め
っき工程に先立って水素焼鈍炉のような“露点の低い焼
鈍炉”あるいは“気水冷却又は水焼入れ型冷却と酸洗装
置とを有する連続焼鈍炉”で再結晶焼鈍した後、連続溶
融亜鉛めっきラインにおいて最高加熱温度550℃以下
でめっきし、必要に応じて合金化処理する方法である。
Further, since the steel sheet having the above-mentioned composition contains Si and Mn having a strong oxidation tendency at a high level, it is difficult to stably form a hot-dip galvanized layer or an alloyed hot-dip galvanized layer. , The following methods are effective. That is, prior to the plating process, after recrystallization annealing in a "low dew point annealing furnace" such as a hydrogen annealing furnace or a "continuous annealing furnace having steam cooling or water quenching type cooling and a pickling device", continuous melting This is a method in which plating is performed at a maximum heating temperature of 550 ° C. or less in a galvanizing line, and alloying treatment is performed if necessary.

【0032】続いて、本発明を実施例によって説明す
る。
Next, the present invention will be described with reference to examples.

【実施例】まず、実験用真空溶解炉によって表1に示し
た組成の鋼(Ar3変態点は何れも930℃以下)を溶製
し、これらを、熱間鍛造により25mm厚の実験用スラブ
とした。
EXAMPLE First, a steel having the composition shown in Table 1 (all Ar 3 transformation points are 930 ° C. or lower) was melted in an experimental vacuum melting furnace, and these were hot forged to form a 25 mm thick experimental slab. And

【0033】[0033]

【表1】 [Table 1]

【0034】次いで、得られたスラブを電気炉で125
0℃に1時間加熱した後、1150℃から930℃の温
度範囲で実験用熱間圧延機により3パス圧延し、5mm厚
の熱延板を得た。そして、巻取りのシュミレ−ションと
して、鋼板を熱延後直ちに強制空冷或いは水スプレ−冷
却により450〜800℃の温度まで冷却し、次にその
温度に保持した電気炉の中に挿入し、更にその温度で1
時間保持した後に冷却速度20℃/hr で炉冷した。
Then, the obtained slab is heated to 125 in an electric furnace.
After heating at 0 ° C. for 1 hour, it was rolled for 3 passes in a temperature range of 1150 ° C. to 930 ° C. by an experimental hot rolling mill to obtain a hot rolled sheet having a thickness of 5 mm. Then, as a simulation of winding, the steel sheet is cooled to a temperature of 450 to 800 ° C. by forced air cooling or water spray cooling immediately after hot rolling, and then inserted into an electric furnace maintained at that temperature, and 1 at that temperature
After holding for a time, the furnace was cooled at a cooling rate of 20 ° C./hr.

【0035】次に、炉冷後の各熱延板を表面研削して
3.2mm厚の冷延母材とし、これを 0.8mm厚まで冷間圧延
した(圧下率:75%)。更に、得られた各冷延板を、
再結晶焼鈍処理を模して赤外線加熱炉で加熱速度10℃
/sにて820℃まで加熱した後、その温度で40秒保持
してから700℃まで冷却速度3℃/sで徐冷し、その後
は冷却速度50℃/sで室温まで冷却した。
Next, the hot-rolled sheets after furnace cooling were surface-ground
A cold rolled base material having a thickness of 3.2 mm was cold-rolled to a thickness of 0.8 mm (reduction ratio: 75%). Furthermore, the obtained cold-rolled sheet,
Imitation of recrystallization annealing process, heating rate 10 ℃ in infrared heating furnace
After heating to 820 ° C. at / s, the temperature was maintained for 40 seconds, then gradually cooled to 700 ° C. at a cooling rate of 3 ° C./s, and then cooled to room temperature at a cooling rate of 50 ° C./s.

【0036】上記再結晶焼鈍が施された各冷延板は、続
いて伸び率 1.2%の調質圧延が施されてJIS5号引張
試験片に成形され、引張試験に供された。また、一部に
ついては、再結晶焼鈍に続いて530℃の溶融亜鉛浴中
で溶融亜鉛めっきを施してから引張試験を行った。これ
らの結果を表2に示すと共に、熱延巻取り温度で整理し
た“平均r値”及び“強度−延性バランス”を図1に示
す。なお、この表2及び図1中には“強度−延性バラン
ス”を表す指標として「引張強度と全伸びの積」を示し
た。
Each of the cold-rolled sheets that had been subjected to the recrystallization annealing was subsequently subjected to temper rolling with an elongation rate of 1.2%, formed into JIS No. 5 tensile test pieces, and subjected to a tensile test. In addition, for some, a tensile test was performed after performing recrystallization annealing and performing hot dip galvanizing in a hot dip zinc bath at 530 ° C. These results are shown in Table 2, and "average r value" and "strength-ductility balance" arranged by hot rolling temperature are shown in FIG. In Table 2 and FIG. 1, “product of tensile strength and total elongation” is shown as an index showing “strength-ductility balance”.

【0037】[0037]

【表2】 [Table 2]

【0038】これらに示される結果からも明らかなよう
に、試験番号2及び3にて得られた本発明鋼板の“強度
−延性バランス”並びに“平均r値”は非常に高い値と
なっているが、熱延巻取り温度が本発明で規定する条件
から外れると上記特性に劣ることが分かる。一方、成分
組成が本発明で規定する条件を満たしていない比較鋼板
(試験番号5〜8により得られた鋼板)でも、熱延巻取
り温度が低いほど“強度−延性バランス”並びに“平均
r値”が高くなるが、それでも本発明法に従って製造さ
れた鋼板には及ばない。
As is clear from the results shown in these, the "strength-ductility balance" and "average r value" of the steel sheets of the present invention obtained in Test Nos. 2 and 3 are very high values. However, when the hot rolling coiling temperature deviates from the conditions specified in the present invention, it is understood that the above properties are inferior. On the other hand, even in the comparative steel sheets whose component compositions do not satisfy the conditions specified in the present invention (steel sheets obtained by test numbers 5 to 8), the lower the hot rolling coiling temperature is, the "strength-ductility balance" and the "average r value". , ”But still falls short of the steel sheet produced according to the method of the present invention.

【0039】また、試験番号9の結果からも明らかなよ
うに、鋼板がSiを多量に含有していても本発明で規定す
る範囲であるならば、700℃巻取りで“強度−延性バ
ランス”及び“平均r値”の高い製品を得られることが
分かる。更に、試験番号10及び11の結果からは、Nbを複
合含有させると深絞り性が更に高くなることが分かる。
そして、試験番号11及び12の結果からは、微量のBを含
有させることは深絞り性を阻害しないことも確認でき
る。
Further, as is clear from the result of test No. 9, even if the steel sheet contains a large amount of Si, if it is within the range specified by the present invention, "strength-ductility balance" is obtained by winding at 700 ° C. It can be seen that a product having a high “average r value” can be obtained. Further, from the results of Test Nos. 10 and 11, it can be seen that the deep drawability is further enhanced by the combined inclusion of Nb.
From the results of Test Nos. 11 and 12, it can be confirmed that the inclusion of a trace amount of B does not hinder the deep drawability.

【0040】しかし、試験番号13及び14の結果が示すよ
うに、Mn,Pを含む関係式が本発明の規定範囲を外れる
と深絞り性が著しく低下し、これに伴って延性も劣化す
ることが明らかである。
However, as shown by the results of Test Nos. 13 and 14, when the relational expression containing Mn and P is out of the specified range of the present invention, the deep drawability is remarkably lowered, and the ductility is also deteriorated. Is clear.

【0041】一方、試験番号15及び16からは溶融亜鉛め
っきを施した本発明鋼板の特性を確認できるが、何れも
“強度−延性バランス”及び“平均r値”の高い表面処
理鋼板が得られることを示している。
On the other hand, from the test Nos. 15 and 16, the characteristics of the hot-dip galvanized steel sheet of the present invention can be confirmed. In both cases, a surface-treated steel sheet having high "strength-ductility balance" and "average r value" can be obtained. It is shown that.

【0042】[0042]

【効果の総括】以上に説明した如く、この発明によれ
ば、強度−延性バランスが良好で深絞り用途として非常
に優れた高張力鋼板をコスト安く実現することができ、
例えば地球環境問題から自動車の燃費改善への社会的要
求が高まっている昨今では本発明は車体の軽量化等にも
大きく寄与できるなど、産業上極めて有用な効果がもた
らされる。
[Summary of Effects] As described above, according to the present invention, a high-strength steel sheet having a good strength-ductility balance and being extremely excellent for deep drawing can be realized at low cost,
For example, in recent years, social demands for improving fuel economy of automobiles have increased due to global environmental problems, and the present invention can bring about great industrial advantages, such as being able to greatly contribute to weight reduction of vehicle bodies.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の結果を整理したところの、鋼種別の
“熱延巻取り温度”と“強度−延性バランス", "深絞り
性”との関係を示したグラフである。
FIG. 1 is a graph showing the relationship between “hot rolling coiling temperature”, “strength-ductility balance”, and “deep drawability” for each steel type when the results of Examples are arranged.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 母材組成が、重量割合にてC:0.0005〜
0.0100%, Si: 2.5%以下, Mn:0.15超〜 3.0
%,P:0.15%以下, N:0.0005〜0.01%, 酸
可溶Al: 0.1%以下,S: 0.010%以下を含むと共に、
更にTiをも含有し、かつ −0.5 % ≦ Mn−(Si+10P)≦ 0.5%, −0.01% ≦ Ti* ≦ 0.01%, Ti* ×P≦ 0.0005% 〔但し、 Ti* =Ti− 48(N/14 +C/12 )〕なる3つの
式で表される関係を満足していて、残部がFe及び不可避
的不純物より成ることを特徴とする、強度−延性バラン
スの良好な深絞り用高張力冷延鋼板。
1. A base material composition having a weight ratio of C: 0.0005 to.
0.0100%, Si: 2.5% or less, Mn: over 0.15 to 3.0
%, P: 0.15% or less, N: 0.0005 to 0.01%, acid-soluble Al: 0.1% or less, S: 0.010% or less, and
It also contains Ti and -0.5% ≤ Mn- (Si + 10P) ≤ 0.5%, -0.01% ≤ Ti * ≤ 0.01%, Ti * × P ≤ 0.0005% [where Ti * = Ti-48 (N / 14 + C / 12)], and the balance is Fe and unavoidable impurities, and the balance is strength and ductility. steel sheet.
【請求項2】 母材組成が、重量割合にてC:0.0005〜
0.0100%, Si: 2.5%以下, Mn:0.15超〜 3.0
%,P:0.15%以下, N:0.0005〜0.01%, 酸
可溶Al: 0.1%以下,S: 0.010%以下を含むと共に、
更にTi並びにNb: 0.003〜 0.1%, B:0.0003〜
0.003%のうちの1種以上をも含有し、かつ −0.5 % ≦ Mn−(Si+10P)≦ 0.5%, −0.01% ≦ Ti* ≦ 0.01%, Ti* ×P≦ 0.0005% 〔但し、 Ti* =Ti− 48(N/14 +C/12 )〕なる3つの
式で表される関係を満足していて、残部がFe及び不可避
的不純物より成ることを特徴とする、強度−延性バラン
スの良好な深絞り用高張力冷延鋼板。
2. A base material composition having a weight ratio of C: 0.0005 to.
0.0100%, Si: 2.5% or less, Mn: over 0.15 to 3.0
%, P: 0.15% or less, N: 0.0005 to 0.01%, acid-soluble Al: 0.1% or less, S: 0.010% or less, and
Furthermore, Ti and Nb: 0.003-0.1%, B: 0.0003-
It also contains at least one of 0.003%, and -0.5% ≤ Mn- (Si + 10P) ≤ 0.5%, -0.01% ≤ Ti * ≤ 0.01%, Ti * × P ≤ 0.0005% [where Ti * = Ti−48 (N / 14 + C / 12)] satisfying the relations represented by the three formulas, the balance being Fe and unavoidable impurities, and having a good strength-ductility balance. High tensile cold rolled steel sheet for drawing.
【請求項3】 請求項1又は2に記載された組成の鋼を
溶製して鋼片とした後、Ar3変態点以上の温度で熱間圧
延して600〜750℃で巻取り、次いで圧下率50〜
90%で冷間圧延し、更に再結晶焼鈍を行うことを特徴
とする、強度−延性バランスの良好な深絞り用高張力冷
延鋼板の製造法。
3. A steel having the composition described in claim 1 or 2 is melted to form a billet, which is hot-rolled at a temperature not lower than the Ar 3 transformation point and wound at 600 to 750 ° C. Reduction rate 50-
A method for producing a high-strength cold-rolled steel sheet for deep drawing having good strength-ductility balance, which comprises cold rolling at 90% and further performing recrystallization annealing.
【請求項4】 請求項1又は2に記載された組成の鋼を
溶製して鋼片とした後、Ar3変態点以上の温度で熱間圧
延して600〜750℃で巻取り、次いで圧下率50〜
90%で冷間圧延し、更に再結晶焼鈍を行ってから、最
高加熱温度が550℃を上回らない条件で溶融亜鉛めっ
きを施すことを特徴とする、強度−延性バランスの良好
な深絞り用高張力冷延鋼板の製造法。
4. A steel having the composition as set forth in claim 1 or 2 is melted into a slab, which is hot-rolled at a temperature not lower than the Ar 3 transformation point and wound at 600 to 750 ° C. Reduction rate 50-
Cold rolling at 90%, recrystallization annealing, and then hot dip galvanizing under the condition that the maximum heating temperature does not exceed 550 ° C. Manufacturing method of tension cold-rolled steel sheet.
JP6934993A 1993-03-04 1993-03-04 High tensile strength cold rolled steel sheet for deep drawing and its production Pending JPH06256901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6934993A JPH06256901A (en) 1993-03-04 1993-03-04 High tensile strength cold rolled steel sheet for deep drawing and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6934993A JPH06256901A (en) 1993-03-04 1993-03-04 High tensile strength cold rolled steel sheet for deep drawing and its production

Publications (1)

Publication Number Publication Date
JPH06256901A true JPH06256901A (en) 1994-09-13

Family

ID=13399993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6934993A Pending JPH06256901A (en) 1993-03-04 1993-03-04 High tensile strength cold rolled steel sheet for deep drawing and its production

Country Status (1)

Country Link
JP (1) JPH06256901A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104213026A (en) * 2014-09-22 2014-12-17 武汉钢铁(集团)公司 Hot galvanizing high-strength steel with tensile strength of 370 MPa for car outer covering piece and production method thereof
KR20190112298A (en) * 2017-02-17 2019-10-04 뵈스트알파인 스탈 게엠베하 Method for manufacturing steel sheet, steel sheet, and uses thereof
KR20190120772A (en) * 2017-02-17 2019-10-24 뵈스트알파인 스탈 게엠베하 Method for manufacturing steel sheet, steel sheet, and uses thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104213026A (en) * 2014-09-22 2014-12-17 武汉钢铁(集团)公司 Hot galvanizing high-strength steel with tensile strength of 370 MPa for car outer covering piece and production method thereof
KR20190112298A (en) * 2017-02-17 2019-10-04 뵈스트알파인 스탈 게엠베하 Method for manufacturing steel sheet, steel sheet, and uses thereof
KR20190120772A (en) * 2017-02-17 2019-10-24 뵈스트알파인 스탈 게엠베하 Method for manufacturing steel sheet, steel sheet, and uses thereof

Similar Documents

Publication Publication Date Title
US7959747B2 (en) Method of making cold rolled dual phase steel sheet
JP3292671B2 (en) Hot-rolled steel strip for cold-rolled steel sheet with good deep drawability and aging resistance
JP2521553B2 (en) Method for producing cold-rolled steel sheet for deep drawing having bake hardenability
JP3528716B2 (en) High-strength cold-rolled steel sheet, high-strength galvanized steel sheet excellent in surface properties and press formability, and manufacturing method thereof
JP2530338B2 (en) High strength cold rolled steel sheet with good formability and its manufacturing method
JP2621744B2 (en) Ultra-high tensile cold rolled steel sheet and method for producing the same
JPH0559491A (en) High tensile thin steel sheet for press working and its manufacture
JPH0570836A (en) Manufacture of high strength cold rolled steel sheet for deep drawing
JPH06256901A (en) High tensile strength cold rolled steel sheet for deep drawing and its production
JPH06179922A (en) Production of high tensile strength steel sheet for deep drawing
JP3466298B2 (en) Manufacturing method of cold rolled steel sheet with excellent workability
JP2001207234A (en) High tensile strength steel sheet having high ductility and high hole expansibility, and its producing method
JP3288514B2 (en) Manufacturing method of high-strength cold-rolled steel sheet for deep drawing
JP3023014B2 (en) Cold rolled mild steel sheet for ultra deep drawing
JPH0559490A (en) High tensile strength thin steel sheet for press working and its manufacture
JP2504219B2 (en) Method for manufacturing alloyed galvanized steel sheet for drawing
JP3593728B2 (en) Manufacturing method of ultra low carbon cold rolled steel sheet with excellent formability
JP3266317B2 (en) High tensile cold rolled steel sheet excellent in deep drawability and method for producing the same
JP3261043B2 (en) Cold-rolled steel sheet for deep drawing and method for producing the same
JP2669188B2 (en) Manufacturing method of high strength cold rolled steel sheet for deep drawing
JP3471407B2 (en) Manufacturing method of hot rolled steel sheet with excellent workability
JPH08225854A (en) Production of high strength cold rolled steel sheet excellent in deep drawability
JP3363930B2 (en) Thin steel sheet with excellent strength-ductility balance
JP3425296B2 (en) Manufacturing method of thin hot rolled steel sheet with excellent workability
JPH0657373A (en) High r value high tensile strength cold rolled steel sheet excellent in secondary working brittleness resistance and its production