JP4501290B2 - Cold-rolled steel sheet, plated steel sheet excellent in heat-treating ability to increase strength after forming, and manufacturing method thereof - Google Patents

Cold-rolled steel sheet, plated steel sheet excellent in heat-treating ability to increase strength after forming, and manufacturing method thereof Download PDF

Info

Publication number
JP4501290B2
JP4501290B2 JP2001057153A JP2001057153A JP4501290B2 JP 4501290 B2 JP4501290 B2 JP 4501290B2 JP 2001057153 A JP2001057153 A JP 2001057153A JP 2001057153 A JP2001057153 A JP 2001057153A JP 4501290 B2 JP4501290 B2 JP 4501290B2
Authority
JP
Japan
Prior art keywords
steel sheet
less
temperature
cold
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001057153A
Other languages
Japanese (ja)
Other versions
JP2002080932A (en
Inventor
力 上
琢也 山▲崎▼
章男 登坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2001057153A priority Critical patent/JP4501290B2/en
Publication of JP2002080932A publication Critical patent/JP2002080932A/en
Application granted granted Critical
Publication of JP4501290B2 publication Critical patent/JP4501290B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、建設部材、機械構造用部品および自動車の構造用部品等、構造上の強度とくに変形時の強度および/または剛性が必要とされる箇所に用いられ、プレスなどによる加工成形後に強度上昇熱処理が施される成形体の素材鋼板として好適な、成形後強度上昇熱処理能に優れた冷延鋼板およびめっき鋼板ならびにそれらの製造方法に関するものである。
【0002】
【従来の技術】
薄鋼板のプレス成形体の製造に際しては、プレス成形前は軟質としてプレス成形を容易にしておき、プレス成形後に硬化させて部品強度を高める方法として、200 ℃未満で塗装焼付する方法があり、かような塗装焼付用の鋼板としてBH鋼板が開発された。
【0003】
例えば、特開昭55−141526号公報には、鋼中のC,N,Al含有量に応じてNbを添加し、at%でNb/(固溶C+固溶N)を特定範囲内に制限すると共に、焼鈍後の冷却速度を制御することによって、鋼板中の固溶C,固溶Nを調整する方法が、また特公昭61−45689 号公報には、TiとNbの複合添加によって焼付硬化性を向上させる方法が開示されている。
【0004】
しかしながら、上記の鋼板は、深絞り性に優れる材質とするため、素材鋼板の強度は低く、構造用材料としては必ずしも十分ではない。
また、特開平5−25549 号公報には、鋼にW,Cr,Moを単独または複合添加することによって焼付硬化性を向上させる方法が開示されている。
上記した従来技術において、焼付硬化により強度が上昇するのは、鋼板中の微量な固溶C,固溶Nの働きによるものであり、また良く知られているようにBH鋼板の場合は材料の降伏強さのみを上昇させるもので、引張強さを上昇させるものではない。
【0005】
従って、部品の変形開始応力を高める効果しかなく、変形開始から変形終了までの変形全域にわたる変形に要する応力(成形後引張強さ)を高める効果は十分とは言えなかった。
成形後に引張強度が上昇する冷延鋼板として、例えば特開平10−310847号公報には、 200〜450 ℃の熱処理温度域で引張強さが60 MPa以上上昇する合金化溶融亜鉛めっき鋼板が開示されている。
【0006】
この鋼板は、質量百分率で、C:0.01〜0.08%、Mn:0.01〜3.0 %を含有し、かつW, Cr, Moの1種または2種以上を合計で0.05〜3.0 %含有し、また必要に応じてTi:0.005 〜0.1 %, Nb:0.005 〜0.1 %, V:0.005 〜0.1 %の1種または2種以上を含有する組成になり、かつ鋼のミクロ組織がフェライトまたはフェライト主体からなるものである。
【0007】
しかしながら、この技術は、成形後の熱処理により鋼板中で微細な炭化物を形成させ、プレス時に付与する歪みに対して転位を効果的に増殖させて、歪み量を増加させるものであるため、 220〜370 ℃の温度範囲で熱処理を行う必要があり、一般的な焼付硬化処理温度よりも必要とされる熱処理温度が高いという難点があった。
【0008】
プレス成形体の塗装焼付鋼板の中で熱延鋼板に関しては、例えば特公平8−23048 号公報に、加工時には軟質で、加工後の焼付塗装処理により疲労特性の改善に有効な引張強さを大幅に上昇させた熱延鋼板の製造方法が開示されている。
この技術では、C量を0.02〜0.13mass%とし、Nを0.0080〜0.0250mass%と多量に添加した上で、仕上圧延温度および巻取り温度を制御して多量の固溶Nを鋼中に残存させ、金属組織をフェライトとマルテンサイトを主体とする複合組織とすることで、成形後熱処理温度:170 ℃にて100MPa以上の引張強さの増加が達成される旨が開示されている。
【0009】
また、特開平10−183301号公報には、鋼成分のうち、特にCとNをC:0.01〜0.12mass%、N:0.0001〜0.01mass%に制限すると共に、平均結晶粒径を8μm 以下に制御することにより、80 MPa以上の高BH量を確保すると共にAI量を45MPa 以下に抑制することが可能な焼付硬化性および耐室温時効性に優れた熱延鋼板が提示されている。
【0010】
しかしながら、これらの鋼板は、熱延板であることから、仕上圧延後のオーステナイト/フェライト変態によりフェライトの集合組織がランダム化するため、高r値を得ることが困難であり、十分な深絞り性を有しているとは言い難い。
しかも、これらの技術で得られた熱延鋼板を出発材として冷間圧延および再結晶焼鈍を行ったとしても、必ずしも熱延鋼板と同様の成形−熱処理後の引張強さ上昇や80 MPa以上の高BHが得られるとは限らない。というのは、鋼組織が、冷間圧延および再結晶焼鈍により熱延時とは異なるミクロ組織となること、また冷間圧延時に大きな歪蓄積が起こるため、炭化物、窒化物または炭窒化物が形成され易く、固溶Cおよび固溶N状態が変化するからである。
【0011】
【発明が解決しようとする課題】
この発明は、上記の実状に鑑み開発されたもので、プレス成形時に優れた深絞り性を維持しつつ、プレス成形−熱処理によって引張強さが増加する、具体的には加工歪み:10%程度の条件で成形加工後、従来行われている 200℃を超える高温での熱処理はもとより、 120〜200 ℃という低温域で熱処理を施した場合であっても、60 MPa以上の強度上昇(引張強さの上昇)を達成できる、成形後強度上昇熱処理能に優れた冷延鋼板およびめっき鋼板を、それらの有利な製造方法と共に提案することを目的とする。
【0012】
【課題を解決するための手段】
さて、発明者らは、上記の目的を達成すべく鋭意研究を重ねた結果、以下に述べる知見を得た。
1) 成形−熱処理後に引張強さを上昇させるためには、成形により導入された転位と侵入型元素または析出物との相互作用により、上降伏応力に達しても予変形により導入された転位が移動しないことが必要となる。
2) W, Cr, Mo, Ti, Nb, Alなどの炭化物、窒化物または炭窒化物を形成することによって、上記の相互作用を得るためには、成形後の熱処理温度を 200℃以上まで高める必要がある。従って、侵入型元素の積極的な活用またはFe炭化物あるいはFe窒化物を活用する方が、成形後の熱処理温度を低下させる点では有利である。
3) 侵入型元素の中では固溶Cよりも固溶Nの方が、成形後の熱処理温度を低めても、成形により導入された転位との相互作用が大きく、上降伏応力に達しても予変形に導入された転位が移動し難い。
4) 鋼中の固溶N存在場所として結晶粒内および結晶粒界があるが、成形後の熱処理以後の強度の増加量は結晶粒界面積が広い方が大きい。すなわち結晶粒径が小さい方が有利である。
5) 結晶粒界面積を広くするという観点では、NbおよびBを複合添加すると共に、熱間圧延終了後直ちに冷却することにより、熱間圧延終了後のフェライト粒の正常粒成長を抑制し、かつ冷間圧延に引き続く再結晶焼鈍での粒成長を抑制することが有利である。
【0013】
この発明は、上記の知見に立脚するものである。
すなわち、この発明の要旨構成は次のとおりである。
(1)質量%で、C:0.0050%未満、Si:0.005 〜1.0 %、Mn:0.01〜1.5 %、P:0.1 %以下、S:0.01%以下、Al:0.005 〜0.030 %、N:0.005 〜0.040 %、Nb:0.005 〜0.050 %、B:0.0005〜0.0015%、を、次(1)、(2)式
N%≧0.0015 + 14/93・Nb% + 14/27・Al% + 14/11・B% …… (1)
C%≦ 12/93・Nb% …… (2)
(ここに、N%、Nb%、Al%、B%、C%:各元素含有量 (質量%))
を満足する範囲において含有し、残部はFeおよび不可避的不純物の組成になることを特徴とする、成形後強度上昇熱処理能に優れた冷延鋼板。
(2)前記組成に加えてさらに、質量%で、Cu、Ni、Moのうちから選ばれた1種または2種以上を合計で1%以下含有することを特徴とする(1)に記載の冷延鋼板。
(3)平均結晶粒径が20μm 以下であることを特徴とする(1)または(2)に記載の冷延鋼板。
(4)10%引張歪を付与し、熱処理温度:120 ℃で20分間の熱処理を行なった後の引張強さと10%引張歪付与処理前の引張強さとの差である、成形後の引張強さ上昇代ΔTS60 MPa以上であることを特徴とする(1)ないし(3)のいずれかに記載の冷延鋼板。
(5)(1)ないし(4)のいずれかに記載の冷延鋼板の表面に、電気めっき層、溶融めっき層、あるいは合金化溶融めっき層を備えてなることを特徴とする、成形後強度上昇熱処理能に優れためっき鋼板。
(6)10%引張歪を付与し、熱処理温度:120 ℃で20分間の熱処理を行なった後の引張強さと10%引張歪付与処理前の引張強さとの差である、成形後の引張強さ上昇代ΔTS60 MPa以上であることを特徴とする(5)に記載のめっき鋼板。
(7)質量で、C:0.0050%未満、Si:0.005 〜1.0 %、Mn:0.01〜1.5 %、P:0.1 %以下、S:0.01%以下、Al:0.005 〜0.030 %、N:0.005 〜0.040 %、Nb:0.005 〜0.050 %、B:0.0005〜0.0015%を、次(1)、(2)式
N%≧0.0015 + 14/93・Nb% + 14/27・Al% + 14/11・B% …… (1)
C%≦ 12/93・Nb% …… (2)
(ここに、N%、Nb%、Al%、B%、C%:各元素含有量 (質量%))
を満足する範囲において含有し、あるいはさらに、Cu、Ni、Moのうちから選ばれた1種または2種以上を合計で1%以下含有し、残部はFeおよび不可避的不純物の組成になる鋼片を、熱間圧延し、その際、仕上圧延終了後直ちに冷却を開始して巻取り温度:400 〜800 ℃で巻取り、その後圧下率:60〜95%の冷間圧延を施したのち、 650〜900 ℃の温度で再結晶焼鈍を施すことを特徴とする、成形後強度上昇熱処理能に優れた冷延鋼板の製造方法。
(8)前記再結晶焼鈍における昇温過程において、500 ℃から再結晶温度までの温度域を1〜20℃/sの速度で昇温することを特徴とする(7)に記載の冷延鋼板の製造方法。
(9)質量にて、C:0.0050%未満、Si:0.005 〜1.0 %、Mn:0.01〜1.5 %、P:0.1 %以下、S:0.01%以下、Al:0.005 〜0.030 %、N:0.005 〜0.040 %、Nb:0.005 〜0.050 %、B:0.0005〜0.0015%を、次(1)、(2)式
N%≧0.0015 + 14/93・Nb% + 14/27・Al% + 14/11・B% …… (1)
C%≦ 12/93・Nb% …… (2)
(ここに、N%、Nb%、Al%、B%、C%:各元素含有量 (質量%))
を満足する範囲において含有し、あるいはさらに、Cu、Ni、Moのうちから選ばれた1種または2種以上を合計で1%以下含有し、残部はFeおよび不可避的不純物の組成になる鋼片を、熱間圧延し、その際、仕上圧延終了後直ちに冷却を開始して巻取り温度:400 〜800 ℃で巻取り、その後圧下率:60〜95%の冷間圧延を施したのち、 650〜900 ℃の温度で再結晶焼鈍を施し、ついで、電気めっき処理または溶融めっき処理を施し、あるいはさらに加熱合金化処理を施すことを特徴とする成形後強度上昇熱処理能に優れためっき鋼板の製造方法。
(10)前記再結晶焼鈍における昇温過程において、500 ℃から再結晶温度までの温度域を1〜20℃/sの速度で昇温することを特徴とする(9)に記載のめっき鋼板の製造方法。
【0014】
【発明の実施の形態】
まず、この発明の基礎となった実験結果について説明する。
(実験1)
質量%で、C:0.0015%, B:0.0010%, Si:0.01%, Mn:0.5 %, P:0.03%, S:0.008 %およびN:0.011 %を含み、かつNbを 0.005〜0.05%およびAlを 0.005〜0.03%の範囲で含有し、残部はFeおよび不可避的不純物の組成になるシートバー(厚み:30mm)を、1150℃で均一加熱した後、仕上温度がAr3変態点以上の 900℃となるように3パスで熱間圧延を行い、圧延終了後、0.1 秒後に水冷した。その後、 500℃で1時間保持するコイル巻取り相当熱処理を実施した。
【0015】
得られた板厚:4mmの熱延板を、圧下率:82.5%で冷間圧延後、 800℃で40秒保持する再結晶焼鈍を施し、ついで圧下率:0.8 %の調質圧延を施した。
かくして得られた冷延板から、圧延方向にJIS 5 号引張試験片を採取し、通常の引張試験機を用いて、歪み速度:0.02/sで引張強さを測定した。また、別途、これらの冷延板から圧延方向に採取したJIS 5 号引張試験片に10%の引張歪みを付与し、 120℃, 20分の熱処理を施したのち、通常の引張試験に供した。これら、冷延板から採取した試験片の引張強さと10%の引張り歪を付与後 120℃, 20分の熱処理を行った試験片の引張強さとの差を成形後強度上昇代(ΔTS)とした。
【0016】
図1に、鋼成分(N%− 14/93・Nb%−14/27 ・Al%−14/11 ・B%)とΔTSとの関係について調べた結果を示す。
同図に示したとおり、(N%− 14/93・Nb%− 14/27・Al%− 14/11・B%)の値が0.0015質量%以上を満足する場合に、ΔTSが60 MPa以上になることが判明した。
(実験2)
質量%で、C:0.0010%, Si:0.02%, Mn:0.6 %, P:0.01%, S:0.009 %, N:0.012 %, Al:0.01%およびNb:0.015 %を含み、かつBを0.00005 〜0.0025%の範囲で含有し、残部はFeおよび不可避的不純物の組成になるシートバー(厚み:30mm)を、1100℃で均一加熱したのち、仕上温度がAr3変態点以上の 920℃となるように3パス圧延を行い、圧延終了後、0.1 秒後に水冷し、450 ℃で1時間保持するコイル巻取り相当熱処理を実施した。
【0017】
得られた板厚:4mmの熱延板を、圧下率:82.5%で冷間圧延後、 820℃, 40秒の再結晶焼鈍を施し、ついで圧下率:0.8 %の調質圧延を施した。
かくして得られた冷延板から、圧延方向にJIS 5号引張試験片を採取し、通常の引張試験機を用いて、歪み速度:0.02/sで引張強さを測定した。また、別途、これらの冷延板から採取した引張試験片に10%の引張歪みを付与し、 120℃, 20分の熱処理を施したのち、通常の引張試験に供した。
【0018】
図2に、鋼中のB含有量とΔTSとの関係について調べた結果を示す。
同図に示したとおり、Bを0.0005〜0.0015質量%含有する場合に60 MPa以上の高いΔTSが得られることが分かる。
また、NbとBを複合添加することによって結晶粒が微細化され、高いΔTSが得られることがミクロ組織観察により判明した。
【0019】
すなわち、B量が0.0005質量%未満ではNbとの複合添加による結晶粒微細化効果が小さい。逆にB量が0.0015質量%を超える場合には、粒界およびその近傍に偏析するB量が増加し、かかるB原子はN原子間との相互作用が強いことから有効な固溶N量が低下するため△TSが低下したものと推察される。
(実験3)
質量%で、C:0.0010%, N:0.012 %, B:0.0010%, Si:0.01%, Mn:0.5 %, P:0.03%, S:0.008 %, Nb:0.014 %およびAl:0.01%を含有し、残部はFeおよび不可避的不純物の組成になる鋼Aと、C:0.010%, N:0.0012%, B:0.0010%, Si:0.01%, Mn:0.5 %, P:0.03%, S:0.008 %, Nb:0.014 %およびAl:0.01%を含有し、残部はFeおよび不可避的不純物の組成になる鋼Bの各シートバー(厚み:30mm)を、1150℃で均一加熱した後、仕上温度がAr3変態点以上の 910℃となるように3パス圧延を行い、圧延終了後、0.1 秒後にガス冷却を開始し、引き続き 600℃で1時間保持するコイル巻取り相当熱処理を実施した。
【0020】
得られた板厚:4mmの熱延板を、圧下率82.5%で冷間圧延したのち、 880℃, 40秒の再結晶焼鈍を施し、ついで圧下率:0.8 %の調質圧延を施した。
かくして得られた冷延板から、圧延方向にJIS 5号引張試験片を採取し、通常の引張試験機を用いて、歪み速度:0.02/sで引張強さを測定した。また、別途、これらの冷延板から採取した引張試験片に10%の引張歪みを付与し、種々の温度で20分間の熱処理を施したのち、通常の引張試験に供した。
【0021】
図3に、ΔTSに及ぼす成形後熱処理温度の影響について調べた結果を示す。
同図に示したとおり、成形後熱処理温度が 200℃以下と比較的低い領域では極低炭、高N含有鋼である鋼Aの方が、セミ極低炭・低N鋼である鋼Bよりも高いΔTSを示し、高温域では同程度のΔTSを示す。
これらの実験結果から、低温域でのΔTSを確保するには固溶Nを活用することが有効であることが分かる。
【0022】
また、図4に、常温時効による伸びの低下量(ΔEl)と成形後引張強さ上昇代(ΔTS)に及ぼす、結晶粒径dと鋼成分(N%− 14/93・Nb%− 14/27・Al%− 14/11・B%)との影響について調べた結果を示す。なお、伸びの低下量(ΔEl)は、冷延板から圧延方向に採取したJIS 5 号試験片で測定した全伸びと、別途採取した試験片を用い常温時効の促進処理である 100℃で8時間の保持処理を施したのちに測定した全伸びとの差で評価した。なお、上記した結晶粒径は、平均結晶粒径を意味し、各鋼板の圧延方向に垂直な断面について、組織写真から、ASTMに規定される求積法により算出した値と、同じく切断法により求めた公称粒径(たとえば、梅本ら:熱処理、24(1984)、334 参照)のうち、いずれか大きい方を採用した。
【0023】
同図に示したとおり、(N%− 14/93・Nb%− 14/27・Al%− 14/11・B%)の値が0.0015質量%以上でかつ結晶粒径dが20μm 以下の場合に、高ΔTSと低ΔElの両立が可能となることが分かる。
つぎに、この発明において鋼板の成分組成を前記の範囲に限定した理由について説明する。なお、以下、組成における%は質量%を意味する。
【0024】
C:0.0050%未満
Cは、できるだけ少量であるほど深絞り性に優れ、プレス成形性の面で有利である。また、冷間圧延後の焼鈍過程においてNbCの再溶解が進行し結晶粒内の固溶Cが増加して、耐常温時効性の低下を招き易い。従って、C量は0.0050%未満に抑制する必要がある。なお、好ましくは0.0030%以下である。現在の製造技術において、極端なコスト上昇を伴わずに達し得るC量の下限値は0.0005%程度と考えられる。
【0025】
Si:0.005 〜1.0 %
Siは、伸びの低下を抑制し、また強度を向上させる有用成分であるが、含有量が 0.005%に満たないとその添加効果に乏しく、一方 1.0%を超えると表面性状を悪化させ、延性の低下を招くので、Siは 0.005〜1.0 %の範囲に限定した。なお、好ましくは0.01〜0.75%の範囲である。
【0026】
Mn:0.01〜1.5 %
Mnは、鋼の強化成分として有用なだけでなく、MnSを形成してSによる脆化を抑制する作用があるが、含有量が0.01%に満たないとその添加効果に乏しく、一方1.5 %を超えると表面性状の悪化や延性の低下を招くので、Mnは0.01〜1.5 %の範囲で含有させるものとした。なお、好ましくは0.01〜1.0 %である。より好ましくは0.10〜0.75%である。
【0027】
P:0.1 %以下
Pは、固溶強化成分として鋼の強化に有効に寄与し、0.001 %以上含有することが好ましい。一方、0.1 %を超えて含有すると、(FeNb)xPなどのリン化物を形成するため深絞り性が低下する。従って、Pは0.1 %以下に限定した。なお、好ましくは0.05%以下である。
【0028】
S:0.01%以下
Sが多量に含有されると介在物量が増大し、延性の低下を招くので、Sの混入は極力避けることが望ましいが、0.01%までは許容される。
Al:0.005 〜0.030 %
Alは、脱酸剤として、また炭窒化物形成成分の歩留りを向上するために添加するが、含有量が 0.005%未満では十分な効果がなく、一方 0.030%を超えると、鋼中に添加すべきN量の増大を招き、製鋼時のスラブ欠陥が発生し易くなる。従って、Alは 0.005〜0.030 %の範囲で含有させるものとした。
【0029】
N:0.005 〜0.040 %
Nは、本発明において、成形後強度上昇熱処理能を鋼板に付与する役割を果たす重要な元素である。しかしながら、含有量が 0.005%に満たないと十分な成形後強度上昇熱処理能が得られず、一方 0.040%を超える多量含有はプレス成形性の低下を招く。従って、Nは 0.005〜0.040 %の範囲に限定した。なお、好ましくは 0.008〜0.015 %である。
【0030】
Nb:0.005 〜0.050 %
Nbは、Bとの複合添加によって熱延組織および冷延再結晶焼鈍組織の微細化に有効に寄与し、また固溶CをNbCとして固定する作用がある。さらに、NbはNbNといった窒化物を形成し、冷延再結晶焼鈍組織の微細化に寄与する。しかしながら、Nb量が 0.005%に満たないと固溶Cを析出固定することが困難となるばかりでなく、熱延組織および冷延再結晶焼鈍組織の微細化が不十分となり、一方0.050 %を超えると延性の低下を招く。従って、Nbは 0.005〜0.050 %の範囲に限定する。なお、好ましくは 0.010〜0.030 %の範囲である。
【0031】
B:0.0005〜0.0015%
Bは、Nbと複合添加することにより、熱延組織および冷延再結晶組織を効果的に微細化し、また耐二次加工脆性を改善する作用がある。しかしながら、含有量が0.0005%未満では十分な微細化効果が得られず、一方0.0015%を超えるとBN析出量が増大するだけでなく、スラブ加熱段階での溶体化に支障を来すようになる。従って、Bは0.0005〜0.0015%の範囲に限定した。なお、好ましくは0.0007〜0.0012%である。
【0032】
上述したとおり、Nbは、固溶CをNbCとして固定する作用がある。また、Nbは、NbNといった窒化物を形成する。同様に、AlおよびBはそれぞれAlN, BNを形成する。従って、固溶N量を十分に確保すると共に、固溶Cを十分に低減するためには、N、C、Nb、Al、Bの含有量を上記した範囲内でかつ、次(1) 、(2) 式の関係を満足させることが重要である。
【0033】
N%≧0.0015 + 14/93・Nb% + 14/27・Al% + 14/11・B% …… (1)
C%≦ 12/93・Nb% …… (2)
ここに、N%、Nb%、Al%、B%、C%:各元素含有量 (質量%)
また、本発明では、上記した組成に加えてさらに、Cu、Ni、Moのうちから選ばれた1種または2種以上を合計で1%以下含有することが好ましい。
【0034】
Cu、Ni、Moは、いずれも鋼板の強度を増加させる元素であり、必要に応じ選択して単独または複合して含有できる。この効果はおのおのCu:0.05%以上、Ni:0.05%以上、Mo:0.05%以上の含有で認められるが、しかし、Cu、Ni、Moのうちから選ばれた1種または2種以上の合計が1%を超えて含有すると、熱間変形抵抗の増加、化成処理性の低下、広義の表面処理性の悪化、溶接部の硬化に起因する溶接部成形性の劣化などをもたらす。このため、Cu、Ni、Moのうちから選ばれた1種または2種以上の含有量を合計で1%以下とするのが好ましい。
【0035】
また、この発明において、高い歪時効特性を得ると共に、時効劣化を防止するためには、結晶粒径を小さくすることが好適である。なお、ここでは、結晶粒径は、上記したような測定方法で求めた平均結晶粒径を意味するものとする。
すなわち、前掲図4に示したように、結晶粒径dを20μm 以下まで小さくすることによって、(N%− 14/93・Nb%− 14/27・Al%− 14/11・B%)≧0.0015%と比較的多量の固溶Nを含有する場合においても、ΔElを 2.0%以下まで抑制することが可能となる。なお、より好適には、結晶粒径dを15μm 以下まで小さくすることが好ましい。というのは、図4に示したように、結晶粒径dを15μm 以下まで小さくすると、ΔElを 1.5%以下まで抑制することが可能となるからである。
【0036】
上記した組成、あるいはさらに上記した組織を有する冷延鋼板およびこれら冷延鋼板の表面に、電気めっき層、溶融めっき層、あるいは合金化溶融めっき層を形成してなるめっき鋼板は、優れた深絞り性を有するだけでなく、プレス成形−熱処理により引張強さが増加する、優れた成形後強度上昇熱処理能を有する。
以下、参考のため、この発明鋼板をプレス成形などの成形加工に供した場合における成形条件およびその後の強度上昇熱処理条件について説明する。
【0037】
この発明の鋼板を、例えば絞り加工などのプレス加工に供する場合、プレス加工により導入される歪みは数%〜十数%である。成形部品によって歪み量は変化するが、自動車分野における内板および構造部材は5〜10%程度の歪みが導入される。これらの成形部品には、塗装焼付け処理などの熱処理が施されるが、この発明鋼板では熱処理後に成形品強度を効果的に高めることができる。
【0038】
なお、この発明では、かような成形後強度上昇熱処理能を実験室にて評価する方法として、JIS 5号サイズの引張試験片を圧延方向に採取し、引張試験機により10%の引張歪を付与し、その後、熱処理を加えたのち、再度引張り試験を実施する。このようにして求めた10%引張歪付与−熱処理後の引張強さTSHTと、10%引張歪付与処理前の鋼板の引張強さ(製品板の引張強さ)TSとの差である成形および熱処理による引張強さ上昇代ΔTS(=TSHT−TS)を成形後強度上昇熱処理能として定義する。なお、本発明では、引張歪付与後の熱処理としては、通常、例えば、塗装・焼付け相当処理である170 ℃、20分の条件としあるいは、特に低温域での熱処理後の特性を評価する場合は、熱処理条件を 120℃, 20分とする。この試験は、プレス成形に引き続き熱処理を行った完成後の部位の特性を評価するものである。
【0039】
なお、本発明の冷延鋼板は、前記プレス成形後の熱処理が、 120 〜200 ℃の低温域であっても、60MPa 以上のΔTS(成形後強度上昇熱処理能:成形後の引張強さ上昇代)を有する。
通常、成形品の強度上昇を高めるには、成形により導入する歪み量が大きいまたは加工後の熱処理温度が高い方が好ましい。
【0040】
しかしながら、この発明鋼板は、付与歪み量が上記した5〜10%程度の場合に、従来よりも成形後熱処理温度が低くても、すなわち熱処理温度が 200℃以下であっても、十分な強度の上昇を図ることができる。とはいえ、熱処理温度が 120℃未満では歪みが低い場合に十分な強度上昇効果が得られない。一方、成形後の熱処理温度が 350℃を超える温度になると軟化が進行する。従って、成形後の熱処理温度は 120〜350 ℃程度とするのが好ましい。
【0041】
なお、成形後熱処理の加熱方法としては、熱風加熱、赤外炉加熱、温浴熱処理、通電加熱、高周波加熱などの方法が適用でき、特に規定されない。また、強度を上昇させたい部分のみを選択的に加熱する場合でもよい。
次に、この発明に従う製造条件について述べる。
上記の好適成分組成になる鋼を、転炉等の公知の溶製方法で溶製し、造塊法または連続鋳造法で鋼片とする。
【0042】
ついで、この鋼片を、加熱、均熱したのち、熱間圧延を施して熱延板とする。この発明では、熱間圧延の加熱温度は特に規定するものではないが、深絞り性の向上のためには固溶Cを固定し炭化物として析出させておくのが有利であり、このためには熱間圧延の加熱温度は1300℃以下にするのが好ましい。また、加工性のより一層の向上のためには加熱温度は1150℃以下とするのがより好ましい。しかしながら、加熱温度が 900℃未満では、加工性の改善は飽和し、逆に熱間圧延時の圧延負荷が増大して圧延トラブルが発生する危険性が増大するので、加熱温度の下限は 900℃とするのが好ましい。
【0043】
次に、熱間圧延における全圧下率は70%以上とすることが好ましい。というのは、全圧下率が70%未満では熱延板の結晶粒微細化が不十分となりやすいからである。また、熱間圧延における仕上圧延は 960〜650 ℃の温度域で終了するのが好ましく、熱間圧延仕上温度は、Ar3変態点以上のγ域であっても、Ar3変態点以下のα域であってもよい。熱間圧延仕上温度が 960℃超えると熱延板の結晶粒が粗大化し、冷延・焼鈍後の深絞り性が劣化しやすい。一方熱間圧延仕上温度が650 ℃未満では、変形抵抗が増加するため熱延負荷の増大を招き圧延が困難になりやすい。
【0044】
上記の熱間仕上圧延終了後は、直ちに冷却を開始することによって、正常粒成長を防止することが望ましい。
ここに、上記の冷却処理条件については特に限定するものではないが、冷却開始時間は、仕上圧延終了後、好ましくは 1.5秒以内、より好ましくは 1.0秒以内、さらに好ましくは 0.5秒以内とすることが望ましい。というのは、圧延終了後直ちに冷却すると、歪が蓄積した状態での過冷度が大きくなるため、より多くのフェライト核が生成し、フェライト変態が促進され、熱延板の結晶粒が微細化し、製品板で高いr値を確保しやすくなるからである。
【0045】
また、冷却速度については、固溶Nを確保するために、10℃/s以上とするのが好ましい。なお、特に熱延仕上温度がAr3変態点以上の場合には、冷却速度を50℃/s以上とすることが、固溶Nを確保する上でより好適である。
ついで、熱延板をコイルに巻き取る。この巻取り温度は高温ほど炭化物の粗大化には有利であるが、 800℃を超えると、仕上熱延後の冷却条件の調整により微細化を図ることが困難となるため巻取温度は800 ℃以下とする。また、700 ℃を超えると熱延板表面に形成されるスケールが厚くなってスケール除去作業の負荷が増大するだけでなく、窒化物形成が進行しコイル長手方向の固溶N量の変動を招きやすくなるため、700 ℃以下とすることが好ましい。一方巻取り温度が 400℃未満では、巻取り作業が困難になるので、熱延板の巻取り温度は 800〜400 ℃の範囲とする必要があり、好ましくは700 〜400 ℃である。
【0046】
ついで、熱延板に冷間圧延を施すが、かかる冷間圧延における圧下率は60〜95%とする必要がある。というのは、冷間圧延の圧下率が60%未満では高いr値が期待できず、一方95%を超えるとr値がかえって低下するからである。
上記のような冷間圧延を施された冷延板は、次に再結晶焼鈍に供される。焼鈍方法は、連続焼鈍であっても、バッチ焼鈍であっても何れでも良いが、連続焼鈍の方が有利である。なお、この連続焼鈍は、通常の連続焼鈍ラインにおける処理あるいは連続溶融亜鉛めっきラインにおける処理の何れであっても良い。
【0047】
また、焼鈍条件は 650℃以上、5秒以上とすることが好ましい。というのは、焼鈍温度が 650℃未満、焼鈍条件が5秒未満では再結晶が完了せず、そのため深絞り性が低下するからである。深絞り性をより向上させるためには、 800℃以上で5秒以上焼鈍し、ある程度粒成長を図ることがr値を向上させるうえで望ましい。また、フェライト(α)+オーステナイト(γ)二相域で焼鈍することにより、部分的にα→γ変態が生じることで、{1 1 1 }集合組織が発達しr値が向上する。一方、α→γ変態が完全に進行した場合は、集合組織がランダム化し、r値が低下し深絞り性が劣化するため、α+γ2相域で焼鈍することがさらに好ましい。なお、焼鈍温度の上限は 900℃とすることが好ましい。というのは、焼鈍温度が 900℃を超えると、炭化物の再溶解が進行し固溶Cが過度に増加するため、遅時効性が低下するからである。
【0048】
さらに、上記した再結晶焼鈍における昇温過程において、 500℃から再結晶温度までの温度域を徐熱とし、AlN等を十分に析出させることによって、鋼板の結晶粒径を効果的に小さくすることができる。ここに、上記したような制御加熱を施すべき温度域は、AlN等が析出し始める500 ℃から再結晶温度までとする。
また、昇温速度は1〜20℃/sの範囲とすることが好ましい。というのは、昇温速度が20℃/s超では十分な析出量が得られず、一方1℃/s未満では析出物が粗大化して粒成長の抑制効果が弱まるからである。
【0049】
また、再結晶焼鈍における均熱後の冷却速度は、例えば連続焼鈍の場合、現在の技術で良好な表面や形状を有利に確保しやすくするため500 ℃以上の冷却速度を50℃/s以下とするのが好ましく、より好ましくは30℃/s以下である。
なお、上記のような再結晶焼鈍後に、さらに形状矯正、表面粗さ調整のため、10%以下の調質圧延を行ってもよい。
【0050】
上記の再結晶焼鈍に引き続き、必要に応じて、電気めっき処理、または溶融めっき処理、あるいはさらに加熱合金化処理を行うことにより、冷延鋼板の表面に電気めっき層、溶融めっき層、合金化溶融めっき層のいずれかを形成して、 めっき鋼板とするのが好ましい。
かかる電気めっき層、溶融めっき層、合金化溶融めっき層のいずれかを形成しためっき鋼板は、めっき前の鋼板と同程度の成形後強度上昇熱処理能を有する。また、めっきの種類としては、電気亜鉛めっき、溶融亜鉛めっき、合金化溶融亜鉛めっき、電気錫めっき、電気クロムめっき、電気ニッケルめっき等、いずれも好適である。めっき方法は、とくに限定されることはなく、従来公知の方法に従って行えば良い。
【0051】
なお、上記合金化溶融亜鉛めっき鋼板などのめっき鋼板としたのち、加工性の向上や加工後の外観向上のために調質圧延を施した鋼板(ダル仕上鋼板、ブライト仕上鋼板、表面に特定の粗度パターンを形成した鋼板)、表面に防錆油、潤滑油などの油膜層を有する鋼板など、通常に薄鋼板として採用する表面処理を施した鋼板において、この発明の成分範囲であればこの発明の効果を十分に享受できる。
【0052】
かくして、優れた深絞り性を有するだけでなく、プレス成形−熱処理により引張強度が増加する、成形後強度上昇熱処理能に優れた冷延鋼板およびめっき鋼板を得ることができる。
【0053】
【実施例】
(実施例1)
表1に示す成分組成になる鋼スラブを、表2に示す条件で板厚:3.5 mmの熱延板、ついで板厚:0.7 mmの冷延板としたのち、連続焼鈍ラインまたは連続焼鈍−合金化溶融亜鉛めっきラインにて再結晶焼鈍、さらには合金化溶融亜鉛めっき処理を施し、その後圧下率:1.0 %の調質圧延を施して、冷延鋼板および片面当たりの目付量:45g/m2で両面めっきした合金化溶融亜鉛めっき鋼板を製造した。なお、表2のうち鋼板No.3, No.8の熱延仕上終了温度はAr3変態点未満であり、それ以外はAr3変態点以上である。また、表2の鋼板の均熱終了後500 ℃までの冷却速度は10〜30℃/sであった。
【0054】
かくして得られた冷延鋼板および合金化溶融亜鉛めっき鋼板の引張強さおよびr値、ならびに成形−熱処理後の引張強さの変化(成形後強度上昇熱処理能:成形後の引張強さ上昇代ΔTS)について調査した結果を、表3に示す。
なお、引張特性は、製品板から圧延方向にJIS 5号試験片を採取して測定した。
【0055】
また、r値は、製品板に15%引張予歪みを付与したのち、3点法にて測定し、L方向(圧延方向)、D方向(圧延方向に45°方向)およびC方向(圧延方向に90°方向)の平均値(r値=(rL +2rD +rC )/4)として求めた。
さらに、成形−熱処理後の引張強さは、製品板から圧延方向にJIS 5 号試験片を採取し、予歪み10%を付与した後、 120℃および従来から行われている塗装焼付相当熱処理温度である 170℃にて20分間の熱処理を施し、引張強度を測定して求めた。また、常温時効による全伸びの低下量(ΔEl)は、製品板から圧延方向にJIS 5 号試験片を採取して測定した全伸びと、別途、圧延方向に採取したJIS 5 号試験片を用い常温時効の促進処理( 100℃,8時間保持)を施したのちに測定した全伸びとの差として求めた。
【0056】
また、得られた各鋼板について、圧延方向に垂直な断面における結晶粒径を測定した。各鋼板の結晶粒径は、前記したように、断面組織写真から、ASTMに規定されるする求積法により算出した値と、同じく切断法により求めた公称粒径(たとえば、梅本ら:熱処理、24(1984)、334 参照)のうち、いずれか大きい方を採用した。
【0057】
【表1】

Figure 0004501290
【0058】
【表2】
Figure 0004501290
【0059】
【表3】
Figure 0004501290
【0060】
表3から明らかなように、この発明に従い得られた冷延鋼板および合金化溶融亜鉛めっき鋼板はいずれも、比較例に比べて、高いr値と優れた成形後強度上昇熱処理能が得られている。また、特に適合例のうち、結晶粒径が20μm 以下のものは、常温時効による伸びの低下量もΔElで 2.0%以下と小さくなっている。
(実施例2)
表1に記載の鋼記号Bのスラブを用い、表2の鋼板No.2と同じ製造条件であるスラブ加熱温度:1100℃、仕上熱延温度:900 ℃で熱延したのち、巻取り温度:550 ℃でコイルに巻き取った。このコイルを、圧下率:80%で冷間圧延した後、840 ℃で再結晶焼鈍を行った。
【0061】
得られた冷延鋼板の製品特性は、引張強さTS=365 MPa 、r値=1.7 であった。この冷延鋼板からJIS 5号試験片を圧延方向に採取し、引張試験機により10%の引張歪みを付与したのち、表4に示す熱処理条件(温度、時間)で熱処理を実施し、再度引張り試験を行った。
表4に、歪付与前の製品の引張強さ(TS=365 MPa)からの引張強さの上昇代(成形後強度上昇熱処理能:ΔTS)を併記する。
【0062】
【表4】
Figure 0004501290
【0063】
表4に示したとおり、ΔTS(成形後の引張強さ上昇代)は、熱処理温度が高くなるほど、また熱処理時間が長くなるほど大きくなるが、本発明鋼板は熱処理温度が 120℃と低温で、かつ保持時間が2分と短くても 82 MPa という十分な引張強さの上昇(20分熱処理時の85%以上)が得られ、低温・短時間の熱処理でも良好な成形後強度上昇熱処理能が得られることが分かる。
【0064】
なお、自動車の構造部材等において、安定した強度上昇効果を得るために、通常の温度、時間で熱処理を行うことに何ら問題はない。
また、この冷延鋼板に対して溶融亜鉛めっきおよび加熱合金化処理を施して得た合金化溶融亜鉛めっき鋼板についても、表4と同様な結果が得られることが確かめられている。
【0065】
【発明の効果】
かくして、この発明によれば、プレス成形時に優れた深絞り性を維持しつつ、プレス成形−熱処理により引張強さが効果的に上昇する冷延鋼板および合金化溶融亜鉛めっき鋼板を安定して得ることができ、その工業的価値は極めて大きい。
【図面の簡単な説明】
【図1】鋼成分(N%− 14/93・Nb%− 14/27・Al%− 14/11・B%)と成形後の引張強さ上昇代(ΔTS)との関係を示したグラフである。
【図2】 Nb,B複合添加鋼におけるB含有量とΔTSとの関係を示したグラフである。
【図3】固溶Cが多い鋼B(従来鋼)と固溶Nが多い鋼A(発明鋼)において、低温温度域での成形後の引張強さ上昇代ΔTSの違いを比較して示したグラフである。
【図4】常温時効による伸びの低下量(ΔEl)と成形後引張強度上昇代(ΔTS)に及ぼす、結晶粒径dと鋼成分(N%− 14/93・Nb%− 14/27・Al%− 14/11・B%)との影響を示したグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention is used in places where structural strength, especially deformation strength and / or rigidity is required, such as construction members, machine structural parts, and automobile structural parts. The present invention relates to a cold-rolled steel sheet and a plated steel sheet, which are suitable as a raw material steel sheet for a molded body to be heat-treated and excellent in heat-treating ability to increase strength after forming, and methods for producing them.
[0002]
[Prior art]
In the production of thin steel sheet press-formed bodies, there is a method of baking before 200 ° C as a method of increasing the strength of the parts by making the press forming easy before press forming and hardening after press forming. BH steel sheet has been developed as a steel sheet for paint baking.
[0003]
For example, in Japanese Patent Laid-Open No. 55-141526, Nb is added according to the C, N, and Al contents in steel, and Nb / (Solution C + Solution N) is limited to a specific range at at%. At the same time, there is a method for adjusting the solid solution C and solid solution N in the steel sheet by controlling the cooling rate after annealing, and Japanese Patent Publication No. 61-45689 discloses a bake hardening by combined addition of Ti and Nb. A method for improving the performance is disclosed.
[0004]
However, since the above steel plate is made of a material having excellent deep drawability, the strength of the raw steel plate is low and is not necessarily sufficient as a structural material.
Japanese Patent Application Laid-Open No. 5-25549 discloses a method for improving bake hardenability by adding W, Cr, or Mo alone or in combination to steel.
In the above-described prior art, the strength is increased by bake hardening due to the action of a small amount of solute C and solute N in the steel sheet, and as is well known, in the case of a BH steel sheet, It only increases the yield strength, not the tensile strength.
[0005]
Therefore, it has only the effect of increasing the deformation start stress of the component, and it cannot be said that the effect of increasing the stress required for deformation over the entire deformation area from the start of deformation to the end of deformation (post-molding tensile strength) is sufficient.
As a cold-rolled steel sheet whose tensile strength increases after forming, for example, JP-A-10-310847 discloses an alloyed hot-dip galvanized steel sheet whose tensile strength increases by 60 MPa or more in a heat treatment temperature range of 200 to 450 ° C. ing.
[0006]
This steel sheet contains, by mass percentage, C: 0.01 to 0.08%, Mn: 0.01 to 3.0%, and a total of 0.05 to 3.0% of one or more of W, Cr and Mo, and is necessary. Depending on the composition of Ti: 0.005 to 0.1%, Nb: 0.005 to 0.1%, V: 0.005 to 0.1%, or a composition containing one or more, and the microstructure of the steel is mainly composed of ferrite or ferrite It is.
[0007]
However, this technique is to form fine carbides in the steel sheet by heat treatment after forming, effectively increase the amount of strain by increasing the dislocations effectively against the strain applied during pressing. Heat treatment needs to be performed in a temperature range of 370 ° C., and the heat treatment temperature required is higher than a general baking hardening temperature.
[0008]
Regarding hot-rolled steel sheets among the press-baked painted steel sheets, for example, in Japanese Patent Publication No. 8-23048, the tensile strength that is soft at the time of processing and effective in improving the fatigue characteristics by baking processing after processing is greatly increased. A method for producing a hot-rolled steel sheet that has been raised is disclosed.
In this technique, the amount of C is set to 0.02 to 0.13 mass%, N is added in a large amount of 0.0080 to 0.0250 mass%, and the finishing rolling temperature and the winding temperature are controlled to leave a large amount of solute N in the steel. It is disclosed that an increase in tensile strength of 100 MPa or more can be achieved at a post-molding heat treatment temperature of 170 ° C. by making the metal structure a composite structure mainly composed of ferrite and martensite.
[0009]
JP-A-10-183301 discloses that, among steel components, C and N are particularly limited to C: 0.01 to 0.12 mass% and N: 0.0001 to 0.01 mass%, and the average grain size is set to 8 μm or less. A hot-rolled steel sheet excellent in bake hardenability and room temperature aging resistance capable of ensuring a high BH amount of 80 MPa or more and controlling the AI amount to 45 MPa or less by controlling is proposed.
[0010]
However, since these steel sheets are hot-rolled sheets, the texture of ferrite is randomized by the austenite / ferrite transformation after finish rolling, so it is difficult to obtain a high r value and sufficient deep drawability. It is hard to say that it has.
Moreover, even if cold rolling and recrystallization annealing are performed using the hot-rolled steel sheet obtained by these techniques as a starting material, it is not necessarily the same as the hot-rolled steel sheet that increases the tensile strength after forming-heat treatment, and is 80 MPa or more. High BH is not always obtained. This is because the steel structure becomes a microstructure different from that during hot rolling due to cold rolling and recrystallization annealing, and large strain accumulation occurs during cold rolling, so that carbide, nitride or carbonitride is formed. This is because the solute C and solute N states change easily.
[0011]
[Problems to be solved by the invention]
The present invention has been developed in view of the above-mentioned actual situation, and while maintaining excellent deep drawability at the time of press molding, the tensile strength is increased by press molding-heat treatment. Specifically, the processing strain is about 10%. Even after heat treatment at a high temperature exceeding 200 ° C, which is conventionally performed after molding under the above conditions, even when the heat treatment is performed at a low temperature range of 120 to 200 ° C, the strength increases by 60 MPa or more (tensile strength It is an object of the present invention to propose a cold-rolled steel sheet and a plated steel sheet that can achieve an increase in strength) and have an excellent heat-treating ability after forming, together with their advantageous production methods.
[0012]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the inventors have obtained the following knowledge.
1) In order to increase the tensile strength after forming-heat treatment, dislocations introduced by pre-deformation can be achieved even if the upper yield stress is reached by the interaction between dislocations introduced by forming and interstitial elements or precipitates. It is necessary not to move.
2) In order to obtain the above interaction by forming carbides, nitrides or carbonitrides such as W, Cr, Mo, Ti, Nb, and Al, the heat treatment temperature after molding is increased to 200 ° C. or higher. There is a need. Therefore, active utilization of interstitial elements or utilization of Fe carbide or Fe nitride is advantageous in terms of lowering the heat treatment temperature after molding.
3) Among the interstitial elements, solute N is higher than solute C, even if the heat treatment temperature after molding is lowered, even if the interaction with dislocations introduced by molding is large and the upper yield stress is reached. Dislocations introduced in pre-deformation are difficult to move.
4) Although the solid solution N exists in the steel in the crystal grains and the crystal grain boundaries, the increase in strength after the heat treatment after forming is larger when the crystal grain interface area is wider. That is, a smaller crystal grain size is advantageous.
5) From the viewpoint of increasing the crystal grain interface area, Nb and B are added together, and cooling immediately after the end of hot rolling suppresses the normal grain growth of ferrite grains after the end of hot rolling, and It is advantageous to suppress grain growth during recrystallization annealing following cold rolling.
[0013]
The present invention is based on the above findings.
That is, the gist configuration of the present invention is as follows.
(1) By mass%, C: less than 0.0050%, Si: 0.005 to 1.0%, Mn: 0.01 to 1.5%, P: 0.1% or less, S: 0.01% or less, Al: 0.005 to 0.030%, N: 0.005 to 0.040%, Nb: 0.005 to 0.050%, B: 0.0005 to 0.0015%, the following formulas (1) and (2)
N% ≧ 0.0015 + 14/93 ・ Nb% + 14/27 ・ Al% + 14/11 ・ B% …… (1)
C% ≦ 12/93 ・ Nb% …… (2)
(Here, N%, Nb%, Al%, B%, C%: element content (mass%))
In the range that satisfies Fe and inevitable impurities A cold-rolled steel sheet excellent in heat-treating ability to increase strength after forming.
(2) In addition to the above composition, the composition further contains 1% or less selected from Cu, Ni, and Mo in 1% by mass in total of 1% or less. Cold rolled steel sheet.
(3) The cold rolled steel sheet according to (1) or (2), wherein the average crystal grain size is 20 μm or less.
(4) Apply 10% tensile strain, Heat treatment temperature: 12 Tensile strength after heat treatment at 0 ° C for 20 minutes , It is the difference from the tensile strength before 10% tensile straining treatment. Amount of increase in tensile strength after molding ΔTS But The cold-rolled steel sheet according to any one of (1) to (3), which is 60 MPa or more.
(5) Strength after forming, characterized in that the surface of the cold-rolled steel sheet according to any one of (1) to (4) is provided with an electroplating layer, a hot dipping layer, or an alloying hot dipping layer. Plated steel sheet with excellent ascending heat treatment ability.
(6) Apply 10% tensile strain, Heat treatment temperature: 12 Tensile strength after heat treatment at 0 ° C for 20 minutes , It is the difference from the tensile strength before 10% tensile straining treatment. Amount of increase in tensile strength after molding ΔTS But The plated steel sheet according to (5), which is 60 MPa or more.
(7) Mass % C: less than 0.0050%, Si: 0.005 to 1.0%, Mn: 0.01 to 1.5%, P: 0.1% or less, S: 0.01% or less, Al: 0.005 to 0.030%, N: 0.005 to 0.040%, Nb: 0.005 to 0.050%, B: 0.0005 to 0.0015%, the following formulas (1) and (2)
N% ≧ 0.0015 + 14/93 ・ Nb% + 14/27 ・ Al% + 14/11 ・ B% …… (1)
C% ≦ 12/93 ・ Nb% …… (2)
(Here, N%, Nb%, Al%, B%, C%: element content (mass%))
In a range that satisfies the requirements, or further containing 1% or less of one or more selected from Cu, Ni, and Mo in total, and the balance Fe and inevitable impurities A steel slab having the following composition is hot-rolled, and at the same time, cooling is started immediately after finishing rolling, winding is performed at a winding temperature of 400 to 800 ° C., and then cold rolling is performed at a reduction ratio of 60 to 95%. A method for producing a cold-rolled steel sheet having excellent heat-treating ability to increase strength after forming, characterized by performing recrystallization annealing at a temperature of 650 to 900 ° C.
(8) In the temperature raising process in the recrystallization annealing, the temperature range from 500 ° C. to the recrystallization temperature is raised at a rate of 1 to 20 ° C./s, and the cold rolled steel sheet according to (7) Manufacturing method.
(9) Mass % C: less than 0.0050%, Si: 0.005 to 1.0%, Mn: 0.01 to 1.5%, P: 0.1% or less, S: 0.01% or less, Al: 0.005 to 0.030%, N: 0.005 to 0.040%, Nb : 0.005 to 0.050%, B: 0.0005 to 0.0015%, the following formulas (1) and (2)
N% ≧ 0.0015 + 14/93 ・ Nb% + 14/27 ・ Al% + 14/11 ・ B% …… (1)
C% ≦ 12/93 ・ Nb% …… (2)
(Here, N%, Nb%, Al%, B%, C%: element content (mass%))
In a range that satisfies the requirements, or further containing 1% or less of one or more selected from Cu, Ni, and Mo in total, and the balance Fe and inevitable impurities A steel slab having the following composition is hot-rolled, and at the same time, cooling is started immediately after finishing rolling, winding is performed at a winding temperature of 400 to 800 ° C., and then cold rolling is performed at a reduction ratio of 60 to 95%. After performing recrystallization annealing at a temperature of 650 to 900 ° C., followed by electroplating treatment or hot dipping treatment, or further by heat alloying treatment An excellent method for producing plated steel sheets.
(10) In the temperature raising process in the recrystallization annealing, the temperature range from 500 ° C. to the recrystallization temperature is raised at a rate of 1 to 20 ° C./s. (9) The manufacturing method of the plated steel plate as described in any one of.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
First, the experimental results on which the present invention is based will be described.
(Experiment 1)
In mass%, C: 0.0015%, B: 0.0010%, Si: 0.01%, Mn: 0.5%, P: 0.03%, S: 0.008% and N: 0.011%, and Nb 0.005-0.05% and Al In a range of 0.005 to 0.03%, and the balance is Fe and inevitable impurities in the composition of the sheet bar (thickness: 30mm), uniformly heated at 1150 ° C, then the finishing temperature is Ar Three Hot rolling was performed in three passes so that the temperature was 900 ° C. above the transformation point, and water cooling was performed 0.1 seconds after the completion of rolling. Thereafter, a coil winding equivalent heat treatment was performed at 500 ° C. for 1 hour.
[0015]
The obtained hot-rolled sheet with a thickness of 4 mm was cold-rolled at a reduction ratio of 82.5%, then subjected to recrystallization annealing held at 800 ° C. for 40 seconds, and then subjected to temper rolling at a reduction ratio of 0.8%. .
From the cold-rolled sheet thus obtained, JIS No. 5 tensile test specimens were collected in the rolling direction, and the tensile strength was measured at a strain rate of 0.02 / s using an ordinary tensile tester. Separately, 10% tensile strain was applied to these JIS No. 5 tensile specimens taken in the rolling direction from these cold-rolled sheets, subjected to heat treatment at 120 ° C for 20 minutes, and then subjected to normal tensile tests. . The difference between the tensile strength of the specimen taken from the cold-rolled sheet and the tensile strength of the specimen subjected to heat treatment at 120 ° C for 20 minutes after applying 10% tensile strain is the post-molding strength increase (ΔTS). did.
[0016]
FIG. 1 shows the results of examining the relationship between the steel component (N% -14 / 93 · Nb% -14 / 27 · Al% -14 / 11 · B%) and ΔTS.
As shown in the figure, ΔTS is 60 MPa or more when the value of (N%-14/93 · Nb%-14/27 · Al%-14/11 · B%) satisfies 0.0015 mass% or more. Turned out to be.
(Experiment 2)
In mass%, C: 0.0010%, Si: 0.02%, Mn: 0.6%, P: 0.01%, S: 0.009%, N: 0.012%, Al: 0.01% and Nb: 0.015%, and B is 0.00005 The sheet bar (thickness: 30mm) containing Fe and unavoidable impurities is uniformly heated at 1100 ° C, and the finishing temperature is Ar. Three Three-pass rolling was performed so that the temperature was 920 ° C. above the transformation point, and after the end of rolling, water cooling was performed 0.1 seconds later, and a coil winding equivalent heat treatment was performed at 450 ° C. for 1 hour.
[0017]
The obtained hot-rolled sheet having a thickness of 4 mm was cold-rolled at a reduction ratio of 82.5%, subjected to recrystallization annealing at 820 ° C. for 40 seconds, and then subjected to temper rolling at a reduction ratio of 0.8%.
From the cold-rolled sheet thus obtained, JIS No. 5 tensile test specimens were collected in the rolling direction, and the tensile strength was measured at a strain rate of 0.02 / s using a normal tensile tester. Separately, 10% tensile strain was applied to the tensile test pieces collected from these cold-rolled plates, and after heat treatment at 120 ° C. for 20 minutes, they were subjected to a normal tensile test.
[0018]
FIG. 2 shows the results of examining the relationship between the B content in steel and ΔTS.
As shown in the figure, it can be seen that a high ΔTS of 60 MPa or more can be obtained when B is contained in an amount of 0.0005 to 0.0015 mass%.
Further, it was found by microstructural observation that the combined addition of Nb and B refines the crystal grains and provides a high ΔTS.
[0019]
That is, when the amount of B is less than 0.0005% by mass, the effect of refining crystal grains due to the combined addition with Nb is small. On the other hand, when the amount of B exceeds 0.0015% by mass, the amount of B segregated at the grain boundary and in the vicinity thereof increases, and since such B atoms have a strong interaction with N atoms, an effective amount of dissolved N is present. It is inferred that △ TS has decreased due to the decrease.
(Experiment 3)
In mass%, C: 0.0010%, N: 0.012%, B: 0.0010%, Si: 0.01%, Mn: 0.5%, P: 0.03%, S: 0.008%, Nb: 0.014% and Al: 0.01% And the balance is steel A having a composition of Fe and inevitable impurities, C: 0.010%, N: 0.0012%, B: 0.0010%, Si: 0.01%, Mn: 0.5%, P: 0.03%, S: Each sheet bar (thickness: 30 mm) of steel B containing 0.008%, Nb: 0.014% and Al: 0.01%, the balance being Fe and inevitable impurities, is heated uniformly at 1150 ° C, then the finishing temperature Is Ar Three Three-pass rolling was performed so that the temperature was 910 ° C. above the transformation point, and after the end of rolling, gas cooling was started 0.1 seconds later, followed by coil winding equivalent heat treatment that was held at 600 ° C. for 1 hour.
[0020]
The obtained hot-rolled sheet having a thickness of 4 mm was cold-rolled at a reduction rate of 82.5%, subjected to recrystallization annealing at 880 ° C. for 40 seconds, and then subjected to temper rolling at a reduction rate of 0.8%.
From the cold-rolled sheet thus obtained, JIS No. 5 tensile test specimens were collected in the rolling direction, and the tensile strength was measured at a strain rate of 0.02 / s using a normal tensile tester. Separately, 10% tensile strain was applied to tensile specimens collected from these cold-rolled sheets, and after heat treatment at various temperatures for 20 minutes, they were subjected to a normal tensile test.
[0021]
FIG. 3 shows the results of examining the influence of the post-molding heat treatment temperature on ΔTS.
As shown in the figure, in a relatively low region where the heat treatment temperature after forming is 200 ° C. or lower, steel A, which is an ultra-low-carbon, high-N content steel, is more steel than steel B, which is a semi-very low-carbon, low-N steel. Also shows a high ΔTS, and a similar ΔTS at high temperatures.
From these experimental results, it can be seen that the use of solute N is effective in securing ΔTS in a low temperature region.
[0022]
Further, FIG. 4 shows that the grain size d and the steel component (N% −14 / 93 · Nb% −14 /) affect the amount of decrease in elongation due to normal temperature aging (ΔEl) and the amount of increase in tensile strength after forming (ΔTS). 27 ・ Al% -14 / 11 ・ B%) and the results of the investigation. The amount of decrease in elongation (ΔEl) is 8% at 100 ° C., which is an acceleration treatment of normal temperature aging using the total elongation measured with a JIS No. 5 test piece taken in the rolling direction from a cold-rolled sheet, and a test piece taken separately. It evaluated by the difference with the total elongation measured after performing the holding | maintenance process of time. In addition, the above-mentioned crystal grain size means an average crystal grain size, and the value calculated by the quadrature method prescribed in ASTM from the structure photograph for the cross section perpendicular to the rolling direction of each steel plate, and also by the cutting method. Of the determined nominal particle sizes (for example, Umemoto et al .: Heat treatment, see 24 (1984), 334), the larger one was adopted.
[0023]
As shown in the figure, when the value of (N%-14/93 · Nb%-14/27 · Al%-14/11 · B%) is 0.0015 mass% or more and the crystal grain size d is 20 µm or less In addition, it can be seen that both high ΔTS and low ΔEl can be achieved.
Next, the reason why the component composition of the steel sheet is limited to the above range in the present invention will be described. Hereinafter,% in the composition means mass%.
[0024]
C: Less than 0.0050%
The smaller the amount of C, the better the deep drawability and the more advantageous the press formability. Further, in the annealing process after cold rolling, the remelting of NbC proceeds, so that the solid solution C in the crystal grains is increased, and the normal temperature aging resistance is likely to be lowered. Therefore, the amount of C needs to be suppressed to less than 0.0050%. In addition, Preferably it is 0.0030% or less. In the current manufacturing technology, the lower limit of the amount of C that can be reached without an extreme increase in cost is considered to be about 0.0005%.
[0025]
Si: 0.005 to 1.0%
Si is a useful component that suppresses the decrease in elongation and improves strength. However, when the content is less than 0.005%, the effect of addition is poor. On the other hand, when the content exceeds 1.0%, the surface properties deteriorate, Since this causes a decrease, Si is limited to the range of 0.005 to 1.0%. In addition, Preferably it is 0.01 to 0.75% of range.
[0026]
Mn: 0.01-1.5%
Mn is not only useful as a strengthening component of steel, but also has the effect of suppressing the embrittlement due to S by forming MnS. However, if the content is less than 0.01%, its addition effect is poor, while 1.5% is added. If it exceeds, the surface properties are deteriorated and the ductility is lowered. Therefore, Mn is contained in the range of 0.01 to 1.5%. In addition, Preferably it is 0.01 to 1.0%. More preferably, it is 0.10 to 0.75%.
[0027]
P: 0.1% or less
P effectively contributes to strengthening of steel as a solid solution strengthening component, and is preferably contained in an amount of 0.001% or more. On the other hand, if the content exceeds 0.1%, phosphides such as (FeNb) xP are formed, and the deep drawability is lowered. Therefore, P is limited to 0.1% or less. In addition, Preferably it is 0.05% or less.
[0028]
S: 0.01% or less
If S is contained in a large amount, the amount of inclusions increases and the ductility is lowered. Therefore, it is desirable to avoid the incorporation of S as much as possible, but up to 0.01% is allowed.
Al: 0.005 to 0.030%
Al is added as a deoxidizer and to improve the yield of carbonitride-forming components. However, if the content is less than 0.005%, there is no sufficient effect, while if it exceeds 0.030%, it is added to the steel. The amount of N to be increased is increased, and slab defects are easily generated during steelmaking. Therefore, Al is contained in the range of 0.005 to 0.030%.
[0029]
N: 0.005 to 0.040%
In the present invention, N is an important element that plays a role of imparting post-forming strength increasing heat treatment ability to the steel sheet. However, if the content is less than 0.005%, sufficient post-molding strength increasing heat treatment ability cannot be obtained. On the other hand, if the content exceeds 0.040%, press formability is deteriorated. Therefore, N is limited to the range of 0.005 to 0.040%. In addition, Preferably it is 0.008 to 0.015%.
[0030]
Nb: 0.005 to 0.050%
Nb contributes effectively to refinement of a hot-rolled structure and a cold-rolled recrystallized annealed structure by combined addition with B, and has an action of fixing solute C as NbC. Furthermore, Nb forms a nitride such as NbN and contributes to the refinement of the cold-rolled recrystallization annealing structure. However, if the amount of Nb is less than 0.005%, not only is it difficult to precipitate and fix solute C, but the refinement of the hot-rolled structure and the cold-rolled recrystallization annealed structure is insufficient, while it exceeds 0.050%. And it causes a decrease in ductility. Therefore, Nb is limited to the range of 0.005 to 0.050%. In addition, Preferably it is 0.010 to 0.030% of range.
[0031]
B: 0.0005-0.0015%
B, when added in combination with Nb, effectively refines the hot-rolled structure and the cold-rolled recrystallized structure and improves the secondary work brittleness resistance. However, if the content is less than 0.0005%, a sufficient refinement effect cannot be obtained. On the other hand, if the content exceeds 0.0015%, not only the amount of BN precipitation increases, but also the solutionization at the slab heating stage is hindered. . Therefore, B is limited to the range of 0.0005 to 0.0015%. In addition, Preferably it is 0.0007 to 0.0012%.
[0032]
As described above, Nb has an action of fixing solute C as NbC. Nb forms a nitride such as NbN. Similarly, Al and B form AlN and BN, respectively. Therefore, in order to ensure a sufficient amount of solid solution N and to sufficiently reduce solid solution C, the contents of N, C, Nb, Al, and B are within the above-described ranges, and the following (1), It is important to satisfy the relationship of equation (2).
[0033]
N% ≧ 0.0015 + 14/93 ・ Nb% + 14/27 ・ Al% + 14/11 ・ B% …… (1)
C% ≦ 12/93 ・ Nb% …… (2)
Here, N%, Nb%, Al%, B%, C%: content of each element (mass%)
Moreover, in this invention, it is preferable to contain 1% or less in total of 1 type, or 2 or more types chosen from Cu, Ni, and Mo in addition to the above-mentioned composition.
[0034]
Cu, Ni, and Mo are all elements that increase the strength of the steel sheet, and can be selected alone or in combination as required. This effect is recognized when Cu: 0.05% or more, Ni: 0.05% or more, and Mo: 0.05% or more, but the total of one or more selected from Cu, Ni, and Mo If the content exceeds 1%, an increase in hot deformation resistance, a decrease in chemical conversion treatment property, a deterioration in surface treatment property in a broad sense, a deterioration in weld formability due to hardening of the welded portion, and the like are brought about. For this reason, it is preferable that the content of one or more selected from Cu, Ni, and Mo is 1% or less in total.
[0035]
In the present invention, it is preferable to reduce the crystal grain size in order to obtain high strain aging characteristics and prevent aging deterioration. Here, the crystal grain size means the average crystal grain size obtained by the measurement method as described above.
That is, as shown in FIG. 4, by reducing the crystal grain size d to 20 μm or less, (N% −14 / 93 · Nb% −14 / 27 · Al% −14 / 11 · B%) ≧ Even when a relatively large amount of solute N is 0.0015%, ΔEl can be suppressed to 2.0% or less. More preferably, the crystal grain size d is preferably reduced to 15 μm or less. This is because, as shown in FIG. 4, when the crystal grain size d is reduced to 15 μm or less, ΔEl can be suppressed to 1.5% or less.
[0036]
A cold-rolled steel sheet having the above-described composition or the above-described structure and a plated steel sheet formed by forming an electroplated layer, a hot-dip plated layer, or an alloyed hot-dip plated layer on the surface of these cold-rolled steel sheets are excellent deep drawing. In addition to the properties, it has excellent post-molding strength-increasing heat treatment ability in which tensile strength is increased by press molding-heat treatment.
Hereinafter, for reference, the forming conditions when the steel sheet of the present invention is subjected to a forming process such as press forming and the subsequent heat treatment conditions for increasing the strength will be described.
[0037]
When the steel plate of the present invention is subjected to press work such as drawing, for example, the strain introduced by the press work is several% to several tens%. Although the amount of distortion varies depending on the molded part, the inner plate and the structural member in the automobile field introduce a strain of about 5 to 10%. These molded parts are subjected to a heat treatment such as a paint baking process, but the steel sheet of the present invention can effectively increase the strength of the molded product after the heat treatment.
[0038]
In the present invention, as a method for evaluating the strength-increasing heat treatment ability after molding in the laboratory, a tensile test piece of JIS No. 5 size was taken in the rolling direction, and a tensile strain of 10% was obtained by a tensile tester. Then, after applying heat treatment, the tensile test is performed again. 10% tensile strain applied in this way-Tensile strength after heat treatment TS HT Is the difference between the tensile strength of the steel plate before the 10% tensile strain treatment (tensile strength of the product plate) TS HT -TS) is defined as the heat-treating ability to increase strength after molding. In the present invention, the heat treatment after imparting the tensile strain is usually, for example, a condition equivalent to 170 ° C. for 20 minutes, which is a coating / baking equivalent process, or particularly when evaluating the characteristics after the heat treatment in a low temperature range. The heat treatment conditions are 120 ° C. and 20 minutes. This test evaluates the characteristics of a completed part after heat treatment following press molding.
[0039]
The cold-rolled steel sheet of the present invention has a ΔTS of 60 MPa or more (strength increasing heat treatment capacity after forming: the allowance for increasing tensile strength after forming) even when the heat treatment after press forming is in a low temperature range of 120 to 200 ° C. ).
Usually, in order to increase the strength increase of a molded product, it is preferable that the amount of strain introduced by molding is large or the heat treatment temperature after processing is high.
[0040]
However, when the applied strain is about 5 to 10% as described above, the steel sheet of the present invention has sufficient strength even if the heat treatment temperature after forming is lower than the conventional heat treatment temperature, that is, the heat treatment temperature is 200 ° C. or less. A rise can be aimed at. However, if the heat treatment temperature is less than 120 ° C., a sufficient strength increasing effect cannot be obtained when the strain is low. On the other hand, softening proceeds when the heat treatment temperature after molding exceeds 350 ° C. Therefore, the heat treatment temperature after molding is preferably about 120 to 350 ° C.
[0041]
In addition, as a heating method of the post-molding heat treatment, methods such as hot air heating, infrared furnace heating, warm bath heat treatment, energizing heating, high frequency heating and the like can be applied, and are not particularly defined. Further, it may be possible to selectively heat only the portion whose strength is to be increased.
Next, manufacturing conditions according to the present invention will be described.
The steel having the above preferred component composition is melted by a known melting method such as a converter and is made into a steel piece by an ingot forming method or a continuous casting method.
[0042]
Next, this steel slab is heated and soaked, and then hot-rolled to obtain a hot-rolled sheet. In the present invention, the heating temperature of hot rolling is not particularly specified, but it is advantageous to fix solid solution C and precipitate as carbide in order to improve deep drawability. The heating temperature for hot rolling is preferably 1300 ° C. or lower. In order to further improve the workability, the heating temperature is more preferably 1150 ° C. or lower. However, if the heating temperature is less than 900 ° C, the improvement in workability is saturated, and conversely, the rolling load during hot rolling increases and the risk of rolling trouble increases, so the lower limit of the heating temperature is 900 ° C. Is preferable.
[0043]
Next, the total rolling reduction in hot rolling is preferably 70% or more. This is because if the total rolling reduction is less than 70%, the grain refinement of the hot-rolled sheet tends to be insufficient. The finish rolling in the hot rolling is preferably finished in the temperature range of 960 to 650 ° C., and the hot rolling finishing temperature is Ar Three Even in the γ region above the transformation point, Ar Three The α region below the transformation point may be used. When the hot rolling finishing temperature exceeds 960 ° C, the crystal grain of the hot-rolled sheet becomes coarse, and the deep drawability after cold rolling and annealing tends to deteriorate. On the other hand, if the hot rolling finishing temperature is less than 650 ° C., the deformation resistance increases, so that the hot rolling load increases and rolling tends to be difficult.
[0044]
After completion of the above hot finish rolling, it is desirable to prevent normal grain growth by starting cooling immediately.
Here, the cooling treatment conditions are not particularly limited, but the cooling start time is preferably within 1.5 seconds, more preferably within 1.0 seconds, and even more preferably within 0.5 seconds after finishing rolling. Is desirable. This is because if the steel sheet is cooled immediately after the end of rolling, the degree of supercooling in a state where strain has accumulated increases, so more ferrite nuclei are generated, ferrite transformation is promoted, and the hot rolled sheet crystal grains become finer. This is because it is easy to secure a high r value on the product plate.
[0045]
The cooling rate is preferably 10 ° C./s or more in order to ensure solid solution N. In particular, the hot rolling finishing temperature is Ar Three When the temperature is equal to or higher than the transformation point, it is more preferable to set the cooling rate to 50 ° C./s or higher in order to secure the solid solution N.
Next, the hot rolled sheet is wound around a coil. The higher the coiling temperature is, the more advantageous it is for the coarsening of the carbide. However, if it exceeds 800 ° C, it is difficult to make finer by adjusting the cooling conditions after finishing hot rolling. The following. In addition, when the temperature exceeds 700 ° C., the scale formed on the surface of the hot-rolled sheet becomes thick and the load of the scale removal work increases. In addition, the formation of nitride progresses and the amount of solute N in the coil longitudinal direction fluctuates. Since it becomes easy, it is preferable to set it as 700 degrees C or less. On the other hand, if the winding temperature is less than 400 ° C, the winding operation becomes difficult. Therefore, the winding temperature of the hot-rolled sheet needs to be in the range of 800 to 400 ° C, and preferably 700 to 400 ° C.
[0046]
Next, cold rolling is performed on the hot-rolled sheet, and the reduction ratio in the cold rolling needs to be 60 to 95%. This is because a high r value cannot be expected if the rolling reduction of the cold rolling is less than 60%, while the r value decreases on the other hand if it exceeds 95%.
The cold-rolled sheet subjected to the cold rolling as described above is then subjected to recrystallization annealing. The annealing method may be continuous annealing or batch annealing, but continuous annealing is more advantageous. In addition, this continuous annealing may be either a treatment in a normal continuous annealing line or a treatment in a continuous hot dip galvanizing line.
[0047]
The annealing conditions are preferably 650 ° C. or more and 5 seconds or more. This is because if the annealing temperature is less than 650 ° C. and the annealing condition is less than 5 seconds, the recrystallization is not completed, so that the deep drawability is lowered. In order to further improve the deep drawability, it is desirable to increase the r value by annealing at 800 ° C. or higher for 5 seconds or longer to achieve grain growth to some extent. Further, by annealing in the ferrite (α) + austenite (γ) two-phase region, the α → γ transformation is partially generated, and the {1 1 1} texture is developed and the r value is improved. On the other hand, when the α → γ transformation is completely advanced, the texture is randomized, the r value is lowered, and the deep drawability is deteriorated. Therefore, annealing in the α + γ2 phase region is more preferable. The upper limit of the annealing temperature is preferably 900 ° C. This is because if the annealing temperature exceeds 900 ° C., the re-dissolution of the carbide proceeds and the solid solution C increases excessively, so that the delayed aging property is lowered.
[0048]
Furthermore, in the temperature raising process in the recrystallization annealing described above, the temperature range from 500 ° C. to the recrystallization temperature is gradually heated, and the grain size of the steel sheet is effectively reduced by sufficiently precipitating AlN and the like. Can do. Here, the temperature range to be subjected to the controlled heating as described above is from 500 ° C. at which AlN or the like begins to precipitate to the recrystallization temperature.
Moreover, it is preferable to make the temperature increase rate into the range of 1-20 degrees C / s. This is because when the heating rate exceeds 20 ° C./s, a sufficient amount of precipitation cannot be obtained, while when it is less than 1 ° C./s, the precipitates become coarse and the effect of suppressing grain growth is weakened.
[0049]
In addition, the cooling rate after soaking in recrystallization annealing is, for example, in the case of continuous annealing, a cooling rate of 500 ° C or higher is set to 50 ° C / s or lower in order to easily secure a favorable surface and shape with the current technology. Preferably, it is 30 ° C./s or less.
In addition, after recrystallization annealing as described above, temper rolling of 10% or less may be performed for further shape correction and surface roughness adjustment.
[0050]
Subsequent to the above recrystallization annealing, if necessary, electroplating, hot dipping, or further heat alloying is performed, so that the surface of the cold rolled steel sheet is electroplated, hot dipped, alloyed and melted. It is preferable to form a plated steel sheet by forming one of the plated layers.
A plated steel sheet on which any one of the electroplating layer, the hot-dip plating layer, and the alloyed hot-dip plating layer is formed has a post-molding strength-increasing heat treatment ability comparable to that of the steel sheet before plating. Moreover, as a kind of plating, all are suitable, such as electrogalvanization, hot dip galvanization, alloying hot dip galvanization, electrotin plating, electrochrome plating, and electronickel plating. The plating method is not particularly limited, and may be performed according to a conventionally known method.
[0051]
In addition, after making plated steel sheets such as the above-mentioned alloyed hot-dip galvanized steel sheets, steel sheets that have been subjected to temper rolling to improve workability and appearance after processing (dull finish steel sheets, bright finish steel sheets, specific surfaces) Steel sheets with a roughness pattern), steel sheets having an oil film layer such as rust preventive oil and lubricating oil on the surface, etc. In steel sheets that have been subjected to surface treatment that is usually employed as thin steel sheets, this is within the component range of this invention. The effects of the invention can be fully enjoyed.
[0052]
Thus, it is possible to obtain a cold-rolled steel sheet and a plated steel sheet having not only excellent deep drawability but also excellent tensile strength-increasing heat-treating ability after forming, in which tensile strength is increased by press forming-heat treatment.
[0053]
【Example】
Example 1
A steel slab having the composition shown in Table 1 is formed into a hot rolled sheet having a thickness of 3.5 mm and then a cold rolled sheet having a thickness of 0.7 mm under the conditions shown in Table 2, and then a continuous annealing line or a continuous annealing alloy. Recrystallization annealing in the hot dip galvanizing line and further alloying hot dip galvanizing treatment, followed by temper rolling with a rolling reduction of 1.0%, cold rolled steel sheet and basis weight per side: 45g / m 2 An alloyed hot-dip galvanized steel sheet plated on both sides was manufactured. In Table 2, the hot rolling finish temperature for steel plates No. 3 and No. 8 is Ar. Three Below the transformation point, otherwise Ar Three Above the transformation point. Moreover, the cooling rate to 500 degreeC after completion | finish of soaking of the steel plate of Table 2 was 10-30 degreeC / s.
[0054]
Tensile strength and r value of the cold-rolled steel sheet and alloyed hot-dip galvanized steel sheet thus obtained, and change in tensile strength after forming-heat treatment (heat-treating ability to increase strength after forming: allowance for increasing tensile strength after forming ΔTS) Table 3 shows the results of the investigation on the above.
The tensile properties were measured by collecting JIS No. 5 test pieces from the product plate in the rolling direction.
[0055]
The r value was measured by a three-point method after applying 15% tensile pre-strain to the product plate, and was measured in the L direction (rolling direction), D direction (45 ° direction in the rolling direction), and C direction (rolling direction). In 90 ° direction) (r value = (r L + 2r D + R C ) / 4).
Furthermore, the tensile strength after molding and heat treatment is as follows: JIS No. 5 test piece is taken from the product plate in the rolling direction, pre-strained to 10%, and then 120 ° C and the heat treatment temperature equivalent to conventional coating baking. A heat treatment was performed at 170 ° C. for 20 minutes, and the tensile strength was measured to obtain. In addition, the amount of decrease in total elongation due to aging at room temperature (ΔEl) was measured using the total elongation measured by collecting JIS No. 5 test pieces from the product plate in the rolling direction and the JIS No. 5 test pieces separately taken in the rolling direction. It calculated | required as a difference with the total elongation measured after performing the normal temperature aging acceleration | stimulation process (100 degreeC, 8-hour holding | maintenance).
[0056]
Moreover, about each obtained steel plate, the crystal grain diameter in the cross section perpendicular | vertical to a rolling direction was measured. As described above, the crystal grain size of each steel sheet is the value calculated by the quadrature method prescribed in ASTM, and the nominal grain size obtained by the same cutting method (for example, Umemoto et al .: heat treatment, as described above). 24 (1984), see 334), whichever is greater.
[0057]
[Table 1]
Figure 0004501290
[0058]
[Table 2]
Figure 0004501290
[0059]
[Table 3]
Figure 0004501290
[0060]
As is clear from Table 3, both the cold-rolled steel sheet and the galvannealed steel sheet obtained according to the present invention have a higher r value and excellent post-forming strength-increasing heat treatment ability than the comparative example. Yes. In particular, among the conforming examples, those having a crystal grain size of 20 μm or less have a decrease in elongation due to normal temperature aging as small as 2.0% in ΔEl.
(Example 2)
Using the slab of steel symbol B listed in Table 1, slab heating temperature: 1100 ° C, finishing hot rolling temperature: 900 ° C, which is the same production condition as steel plate No. 2 in Table 2, winding temperature: The coil was wound up at 550 ° C. The coil was cold-rolled at a reduction ratio of 80%, and then recrystallized and annealed at 840 ° C.
[0061]
The product characteristics of the obtained cold-rolled steel sheet were tensile strength TS = 365 MPa, r value = 1.7. A JIS No. 5 specimen was taken from this cold-rolled steel sheet in the rolling direction, 10% tensile strain was applied by a tensile tester, heat treatment was performed under the heat treatment conditions (temperature, time) shown in Table 4, and the sample was pulled again. A test was conducted.
Table 4 also shows the amount of increase in tensile strength from the tensile strength (TS = 365 MPa) of the product before imparting strain (TSTS heat treatment ability after forming: ΔTS).
[0062]
[Table 4]
Figure 0004501290
[0063]
As shown in Table 4, ΔTS (the amount of increase in tensile strength after forming) increases as the heat treatment temperature increases and the heat treatment time increases, but the steel sheet of the present invention has a heat treatment temperature as low as 120 ° C., and Even when the holding time is as short as 2 minutes, a sufficient increase in tensile strength of 82 MPa (85% or more of heat treatment for 20 minutes) can be obtained, and good post-molding strength increase heat treatment ability can be obtained even at low temperature and short time heat treatment. You can see that
[0064]
In order to obtain a stable strength increasing effect in structural members of automobiles, etc., there is no problem in performing heat treatment at normal temperature and time.
Further, it has been confirmed that the same results as in Table 4 can be obtained for the galvannealed steel sheet obtained by subjecting this cold-rolled steel sheet to hot dip galvanizing and heat alloying treatment.
[0065]
【The invention's effect】
Thus, according to the present invention, a cold-rolled steel sheet and an alloyed hot-dip galvanized steel sheet in which tensile strength is effectively increased by press forming-heat treatment are stably obtained while maintaining excellent deep drawability during press forming. And its industrial value is extremely high.
[Brief description of the drawings]
[Fig. 1] A graph showing the relationship between steel components (N% -14 / 93 / Nb% -14 / 27 / Al% -14 / 11 / B%) and the increase in tensile strength after forming (ΔTS) It is.
FIG. 2 is a graph showing the relationship between B content and ΔTS in Nb, B composite added steel.
FIG. 3 shows a comparison of the difference in tensile strength increase ΔTS after forming in a low temperature range between steel B (conventional steel) with a high amount of solute C and steel A (invented steel) with a high amount of solute N. It is a graph.
[Fig.4] Effect of crystal grain size d and steel composition (N% -14 / 93 ・ Nb% -14 / 27 ・ Al) on the amount of decrease in elongation due to aging at normal temperature (ΔEl) and the increase in tensile strength after forming (ΔTS) % -14 / 11 · B%).

Claims (10)

質量にて、
C:0.0050%未満、 Si:0.005 〜1.0 %、
Mn:0.01〜1.5 %、 P:0.1 %以下、
S:0.01%以下 Al:0.005 〜0.030 %、
N:0.005 〜0.040 %、 Nb:0.005 〜0.050 %、
B:0.0005〜0.0015%
を、下記(1)、(2)式を満足する範囲において含有し、残部はFeおよび不可避的不純物の組成になることを特徴とする、成形後強度上昇熱処理能に優れた冷延鋼板。

N%≧0.0015 + 14/93・Nb% + 14/27・Al% + 14/11・B% …… (1)
C%≦ 12/93・Nb% …… (2)
ここに、N%、Nb%、Al%、B%、C%:各元素含有量 (質量%)
In mass %
C: less than 0.0050%, Si: 0.005 to 1.0%,
Mn: 0.01 to 1.5%, P: 0.1% or less,
S: 0.01% or less Al: 0.005 to 0.030%,
N: 0.005 to 0.040%, Nb: 0.005 to 0.050%,
B: 0.0005-0.0015%
In a range satisfying the following formulas (1) and (2), the balance being a composition of Fe and inevitable impurities , a cold-rolled steel sheet excellent in heat-treating ability to increase strength after forming.
N% ≧ 0.0015 + 14/93 ・ Nb% + 14/27 ・ Al% + 14/11 ・ B% …… (1)
C% ≦ 12/93 ・ Nb% …… (2)
Here, N%, Nb%, Al%, B%, C%: content of each element (mass%)
前記組成に加えてさらに、質量%で、Cu、Ni、Moのうちから選ばれた1種または2種以上を合計で1%以下含有することを特徴とする請求項1に記載の冷延鋼板。  The cold-rolled steel sheet according to claim 1, further comprising 1% or less in total of one or more selected from Cu, Ni, and Mo by mass% in addition to the composition. . 平均結晶粒径が20μm 以下であることを特徴とする請求項1または2に記載の冷延鋼板。  The cold rolled steel sheet according to claim 1 or 2, wherein an average crystal grain size is 20 µm or less. 10%引張歪を付与し、熱処理温度:120 ℃で20分間の熱処理を行なった後の引張強さと10%引張歪付与処理前の引張強さとの差である、成形後の引張強さ上昇代ΔTS60 MPa以上であることを特徴とする請求項1ないし3のいずれかに記載の冷延鋼板。Tensile strength after molding , which is the difference between the tensile strength after 20 % heat treatment at a heat treatment temperature of 120 ° C. with 10% tensile strain and the tensile strength before 10% tensile strain treatment The cold rolled steel sheet according to any one of claims 1 to 3, wherein the ascending margin ΔTS is 60 MPa or more. 請求項1ないし4のいずれかに記載の冷延鋼板の表面に、電気めっき層、溶融めっき層、あるいは合金化溶融めっき層を備えてなることを特徴とする、成形後強度上昇熱処理能に優れためっき鋼板。  The surface of the cold-rolled steel sheet according to any one of claims 1 to 4 is provided with an electroplating layer, a hot dipping layer, or an alloyed hot dipping layer, and has excellent post-strength strength increasing heat treatment ability Plated steel sheet. 10%引張歪を付与し、熱処理温度:120 ℃で20分間の熱処理を行なった後の引張強さと10%引張歪付与処理前の引張強さとの差である、成形後の引張強さ上昇代ΔTS60 MPa以上であることを特徴とする請求項5に記載のめっき鋼板。Tensile strength after molding , which is the difference between the tensile strength after 20 % heat treatment at a heat treatment temperature of 120 ° C. with 10% tensile strain and the tensile strength before 10% tensile strain treatment 6. The plated steel sheet according to claim 5, wherein the ascending margin ΔTS is 60 MPa or more. 質量にて、
C:0.0050%未満、 Si:0.005 〜1.0 %、
Mn:0.01〜1.5 %、 P:0.1 %以下、
S:0.01%以下 Al:0.005 〜0.030 %、
N:0.005 〜0.040 %、 Nb:0.005 〜0.050 %、
B:0.0005〜0.0015%
を、下記(1)、(2)式を満足する範囲において含有し、あるいはさらに、Cu、Ni、Moのうちから選ばれた1種または2種以上を合計で1%以下含有し、残部はFeおよび不可避的不純物の組成になる鋼片を、熱間圧延し、その際、仕上圧延終了後直ちに冷却を開始して巻取り温度:400 〜800 ℃で巻取り、その後圧下率:60〜95%の冷間圧延を施したのち、 650〜900 ℃の温度で再結晶焼鈍を施すことを特徴とする、成形後強度上昇熱処理能に優れた冷延鋼板の製造方法。

N%≧0.0015 + 14/93・Nb% + 14/27・Al% + 14/11・B% …… (1)
C%≦ 12/93・Nb% …… (2)
ここに、N%、Nb%、Al%、B%、C%:各元素含有量 (質量%)
In mass %
C: less than 0.0050%, Si: 0.005 to 1.0%,
Mn: 0.01 to 1.5%, P: 0.1% or less,
S: 0.01% or less Al: 0.005 to 0.030%,
N: 0.005 to 0.040%, Nb: 0.005 to 0.050%,
B: 0.0005-0.0015%
In a range satisfying the following formulas (1) and (2), or further containing one or more selected from Cu, Ni and Mo in a total of 1% or less, the balance being A steel slab having a composition of Fe and inevitable impurities is hot-rolled. At that time, cooling is started immediately after finishing rolling and winding is performed at a coiling temperature of 400 to 800 ° C., and then a reduction ratio of 60 to 95 is achieved. % Cold rolling followed by recrystallization annealing at a temperature of 650 to 900 ° C. A method for producing a cold-rolled steel sheet having excellent post-forming strength increasing heat treatment ability.
N% ≧ 0.0015 + 14/93 ・ Nb% + 14/27 ・ Al% + 14/11 ・ B% …… (1)
C% ≦ 12/93 ・ Nb% …… (2)
Here, N%, Nb%, Al%, B%, C%: content of each element (mass%)
前記再結晶焼鈍における昇温過程において、500 ℃から再結晶温度までの温度域を1〜20℃/sの速度で昇温することを特徴とする請求項7に記載の冷延鋼板の製造方法。  The method for producing a cold-rolled steel sheet according to claim 7, wherein the temperature range from 500 ° C to the recrystallization temperature is raised at a rate of 1 to 20 ° C / s in the temperature raising process in the recrystallization annealing. . 質量にて、
C:0.0050%未満、 Si:0.005 〜1.0 %、
Mn:0.01〜1.5 %、 P:0.1 %以下、
S:0.01%以下 Al:0.005 〜0.030 %、
N:0.005 〜0.040 %、 Nb:0.005 〜0.050 %、
B:0.0005〜0.0015%
を、下記(1)、(2)式を満足する範囲において含有し、あるいはさらに、Cu、Ni、Moのうちから選ばれた1種または2種以上を合計で1%以下含有し、残部はFeおよび不可避的不純物の組成になる鋼片を、熱間圧延し、その際、仕上圧延終了後直ちに冷却を開始して巻取り温度:400 〜800 ℃で巻取り、その後圧下率:60〜95%の冷間圧延を施したのち、 650〜900 ℃の温度で再結晶焼鈍を施し、ついで、電気めっき処理または溶融めっき処理を施し、あるいはさらに加熱合金化処理を施すことを特徴とする成形後強度上昇熱処理能に優れためっき鋼板の製造方法。

N%≧0.0015 + 14/93・Nb% + 14/27・Al% + 14/11・B% …… (1)
C%≦ 12/93・Nb% …… (2)
ここに、N%、Nb%、Al%、B%、C%:各元素含有量 (質量%)
In mass %
C: less than 0.0050%, Si: 0.005 to 1.0%,
Mn: 0.01 to 1.5%, P: 0.1% or less,
S: 0.01% or less Al: 0.005 to 0.030%,
N: 0.005 to 0.040%, Nb: 0.005 to 0.050%,
B: 0.0005-0.0015%
In a range satisfying the following formulas (1) and (2), or further containing one or more selected from Cu, Ni and Mo in a total of 1% or less, the balance being A steel slab having a composition of Fe and inevitable impurities is hot-rolled. At that time, cooling is started immediately after finishing rolling and winding is performed at a coiling temperature of 400 to 800 ° C., and then a reduction ratio of 60 to 95 is achieved. % After cold rolling, followed by recrystallization annealing at a temperature of 650-900 ° C, followed by electroplating or hot dipping, or further heat alloying A method for producing a plated steel sheet having excellent strength-increasing heat treatment ability.
N% ≧ 0.0015 + 14/93 ・ Nb% + 14/27 ・ Al% + 14/11 ・ B% …… (1)
C% ≦ 12/93 ・ Nb% …… (2)
Here, N%, Nb%, Al%, B%, C%: content of each element (mass%)
前記再結晶焼鈍における昇温過程において、500 ℃から再結晶温度までの温度域を1〜20℃/sの速度で昇温することを特徴とする請求項9に記載のめっき鋼板の製造方法。  10. The method for producing a plated steel sheet according to claim 9, wherein the temperature range from 500 ° C. to the recrystallization temperature is raised at a rate of 1 to 20 ° C./s in the temperature raising process in the recrystallization annealing.
JP2001057153A 2000-03-01 2001-03-01 Cold-rolled steel sheet, plated steel sheet excellent in heat-treating ability to increase strength after forming, and manufacturing method thereof Expired - Fee Related JP4501290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001057153A JP4501290B2 (en) 2000-03-01 2001-03-01 Cold-rolled steel sheet, plated steel sheet excellent in heat-treating ability to increase strength after forming, and manufacturing method thereof

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2000055146 2000-03-01
JP2000193717 2000-06-28
JP2000-55146 2000-06-28
JP2000-193717 2000-06-28
JP2001057153A JP4501290B2 (en) 2000-03-01 2001-03-01 Cold-rolled steel sheet, plated steel sheet excellent in heat-treating ability to increase strength after forming, and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002080932A JP2002080932A (en) 2002-03-22
JP4501290B2 true JP4501290B2 (en) 2010-07-14

Family

ID=27342547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001057153A Expired - Fee Related JP4501290B2 (en) 2000-03-01 2001-03-01 Cold-rolled steel sheet, plated steel sheet excellent in heat-treating ability to increase strength after forming, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4501290B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101143139B1 (en) * 2009-07-10 2012-05-08 주식회사 포스코 Cold Rolled Steel Sheet and Hot-dip Zinc Plated Steel Sheet with Superior Press Formability and Bake Hardenability and Method for Manufacturing the Steel Sheets
CN111850395B (en) * 2020-06-30 2021-10-22 江苏省沙钢钢铁研究院有限公司 N-reinforced high-strength anti-seismic reinforcing steel bar and production method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02232316A (en) * 1989-03-06 1990-09-14 Kawasaki Steel Corp Production of cold rolled steel sheet for working having good baking hardenability and cold non-aging property
JPH04236723A (en) * 1991-01-07 1992-08-25 Nkk Corp Production of high-strength cold-rolled steel sheet to be deep-drawn having age-hardening property
JPH06179922A (en) * 1992-12-12 1994-06-28 Sumitomo Metal Ind Ltd Production of high tensile strength steel sheet for deep drawing
JPH06322441A (en) * 1993-05-11 1994-11-22 Sumitomo Metal Ind Ltd Production of high strength steel plate having baking hardenability
JPH0726322A (en) * 1993-07-08 1995-01-27 Nippon Steel Corp Production of high strength press formed part
JPH0726320A (en) * 1993-07-08 1995-01-27 Nippon Steel Corp Production of high strength press formed part

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02232316A (en) * 1989-03-06 1990-09-14 Kawasaki Steel Corp Production of cold rolled steel sheet for working having good baking hardenability and cold non-aging property
JPH04236723A (en) * 1991-01-07 1992-08-25 Nkk Corp Production of high-strength cold-rolled steel sheet to be deep-drawn having age-hardening property
JPH06179922A (en) * 1992-12-12 1994-06-28 Sumitomo Metal Ind Ltd Production of high tensile strength steel sheet for deep drawing
JPH06322441A (en) * 1993-05-11 1994-11-22 Sumitomo Metal Ind Ltd Production of high strength steel plate having baking hardenability
JPH0726322A (en) * 1993-07-08 1995-01-27 Nippon Steel Corp Production of high strength press formed part
JPH0726320A (en) * 1993-07-08 1995-01-27 Nippon Steel Corp Production of high strength press formed part

Also Published As

Publication number Publication date
JP2002080932A (en) 2002-03-22

Similar Documents

Publication Publication Date Title
KR101218448B1 (en) High-strength hot-dip galvanized steel sheet with excellent processability and process for producing the same
CA2742671C (en) High-strength cold-rolled steel sheet having excellent formability, high-strength galvanized steel sheet, and methods for manufacturing the same
JP5151246B2 (en) High-strength cold-rolled steel sheet and high-strength hot-dip galvanized steel sheet excellent in deep drawability and strength-ductility balance and manufacturing method thereof
JP5194878B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and weldability and method for producing the same
JP4730056B2 (en) Manufacturing method of high-strength cold-rolled steel sheet with excellent stretch flange formability
WO2018151322A1 (en) High strength steel sheet
JP5310919B2 (en) Method for producing high-strength cold-rolled steel sheets with excellent aging resistance and seizure curability
JP4998757B2 (en) Manufacturing method of high strength steel sheet with excellent deep drawability
KR101893512B1 (en) Method for producing high-strength galvanized steel sheet and high-strength galvannealed steel sheet
WO2013046476A1 (en) High strength steel plate and manufacturing method thereof
WO2010011790A2 (en) Cold rolled dual phase steel sheet having high formability and method of making the same
EP1568791A1 (en) High strength cold rolled steel sheet and method for manufacturing the same
JP4608822B2 (en) Highly ductile hot-dip galvanized steel sheet excellent in press formability and strain age hardening characteristics and method for producing the same
KR20120099517A (en) High-strength hot-dip galvanized steel sheet with excellent processability and spot weldability and process for producing same
JP4752522B2 (en) Manufacturing method of high strength cold-rolled steel sheet for deep drawing
CN113272465A (en) High-strength cold-rolled steel sheet and method for producing same
JP5034364B2 (en) Manufacturing method of high-strength cold-rolled steel sheet
JP5993570B2 (en) Manufacturing method of high-strength cold-rolled steel sheet, hot-dip cold-rolled steel sheet, and cold-rolled steel sheet with excellent bake hardenability
JP5659604B2 (en) High strength steel plate and manufacturing method thereof
WO2017203341A1 (en) Method for the manufacture of twip steel sheet having an austenitic matrix
JP3840901B2 (en) Cold-rolled steel sheet, plated steel sheet, and method for producing cold-rolled steel sheet having excellent strength increasing ability by heat treatment after forming
JP5310920B2 (en) High strength cold-rolled steel sheet with excellent aging resistance and seizure hardening
JP4826694B2 (en) Method for improving fatigue resistance of thin steel sheet
JP4501290B2 (en) Cold-rolled steel sheet, plated steel sheet excellent in heat-treating ability to increase strength after forming, and manufacturing method thereof
JP2004002909A (en) Complex metallographic structure type high tensile strength hot-dip galvanized cold rolled steel sheet with excellent deep drawability and stretch-flange formability, and manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100412

R150 Certificate of patent or registration of utility model

Ref document number: 4501290

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees