JP2002080932A - Cold rolled steel sheet and plated steel sheet having excellent strength increasing heat treatability after forming and method for producing the same - Google Patents

Cold rolled steel sheet and plated steel sheet having excellent strength increasing heat treatability after forming and method for producing the same

Info

Publication number
JP2002080932A
JP2002080932A JP2001057153A JP2001057153A JP2002080932A JP 2002080932 A JP2002080932 A JP 2002080932A JP 2001057153 A JP2001057153 A JP 2001057153A JP 2001057153 A JP2001057153 A JP 2001057153A JP 2002080932 A JP2002080932 A JP 2002080932A
Authority
JP
Japan
Prior art keywords
steel sheet
less
temperature
heat treatment
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001057153A
Other languages
Japanese (ja)
Other versions
JP4501290B2 (en
Inventor
Tsutomu Kami
力 上
Takuya Yamazaki
琢也 山▲崎▼
Akio Tosaka
章男 登坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2001057153A priority Critical patent/JP4501290B2/en
Publication of JP2002080932A publication Critical patent/JP2002080932A/en
Application granted granted Critical
Publication of JP4501290B2 publication Critical patent/JP4501290B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a cold rolled steel sheet and a plated steel sheet in which tensile strength effectively increases by press forming-heat treatment while maintaining excellent deep drawability in press forming. SOLUTION: The steel composition is controlled so as to contain <0.0050% C, 0.005 to 1.0% Si, 0.01 to 1.5% Mn, 0.005 to 0.050% Nb, 0.005 to 0.030% Al, 0.005 to 0.040% N, 0.0005 to 0.0015% B, <=0.1% P and <=0.01% S in the ranges satisfying the inequalities (1) and (2): N%>=0.0015+14/93.Nb%+14/27.Al%+14/11.B%...(l) and C%<=12/93.Nb%...(2) or further to contain one or more kinds selected from Cu, Ni and Mo, and the balance substantially Fe.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、建設部材、機械
構造用部品および自動車の構造用部品等、構造上の強度
とくに変形時の強度および/または剛性が必要とされる
箇所に用いられ、プレスなどによる加工成形後に強度上
昇熱処理が施される成形体の素材鋼板として好適な、成
形後強度上昇熱処理能に優れた冷延鋼板およびめっき鋼
板ならびにそれらの製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used in a place where structural strength, particularly strength and / or rigidity at the time of deformation, is required, such as a construction member, a part for mechanical structure and a part for automobile structure. TECHNICAL FIELD The present invention relates to a cold-rolled steel sheet and a plated steel sheet which are excellent as a material steel sheet of a formed body subjected to a heat treatment for increasing strength after working by forming and the like, and have excellent heat treatment ability for increasing strength after molding, and a method for producing them.

【0002】[0002]

【従来の技術】薄鋼板のプレス成形体の製造に際して
は、プレス成形前は軟質としてプレス成形を容易にして
おき、プレス成形後に硬化させて部品強度を高める方法
として、200 ℃未満で塗装焼付する方法があり、かよう
な塗装焼付用の鋼板としてBH鋼板が開発された。
2. Description of the Related Art In the production of a press-formed body of a thin steel sheet, before press-forming, it is soft and easy to press-form, and as a method of hardening after press-forming to increase the part strength, paint baking is performed at less than 200 ° C. There is a method, and a BH steel sheet has been developed as such a steel sheet for paint baking.

【0003】例えば、特開昭55−141526号公報には、鋼
中のC,N,Al含有量に応じてNbを添加し、at%でNb/
(固溶C+固溶N)を特定範囲内に制限すると共に、焼
鈍後の冷却速度を制御することによって、鋼板中の固溶
C,固溶Nを調整する方法が、また特公昭61−45689 号
公報には、TiとNbの複合添加によって焼付硬化性を向上
させる方法が開示されている。
For example, in Japanese Patent Application Laid-Open No. 55-141526, Nb is added in accordance with the contents of C, N, and Al in steel, and Nb /
A method of controlling the solid solution C and the solid solution N in the steel sheet by limiting (solid solution C + solid solution N) to a specific range and controlling a cooling rate after annealing is disclosed in JP-B-61-45689. Japanese Patent Laid-Open Publication No. H11-146131 discloses a method of improving bake hardenability by adding a combination of Ti and Nb.

【0004】しかしながら、上記の鋼板は、深絞り性に
優れる材質とするため、素材鋼板の強度は低く、構造用
材料としては必ずしも十分ではない。また、特開平5−
25549 号公報には、鋼にW,Cr,Moを単独または複合添
加することによって焼付硬化性を向上させる方法が開示
されている。上記した従来技術において、焼付硬化によ
り強度が上昇するのは、鋼板中の微量な固溶C,固溶N
の働きによるものであり、また良く知られているように
BH鋼板の場合は材料の降伏強さのみを上昇させるもの
で、引張強さを上昇させるものではない。
However, since the above-mentioned steel sheet is made of a material having excellent deep drawability, the strength of the material steel sheet is low, and is not always sufficient as a structural material. Further, Japanese Unexamined Patent Publication No.
No. 25549 discloses a method of improving bake hardenability by adding W, Cr, Mo alone or in combination to steel. In the prior art described above, the increase in strength due to bake hardening is caused by a slight amount of solid solution C and solid solution N in the steel sheet.
As is well known, in the case of a BH steel sheet, only the yield strength of the material is increased, but not the tensile strength.

【0005】従って、部品の変形開始応力を高める効果
しかなく、変形開始から変形終了までの変形全域にわた
る変形に要する応力(成形後引張強さ)を高める効果は
十分とは言えなかった。成形後に引張強度が上昇する冷
延鋼板として、例えば特開平10−310847号公報には、 2
00〜450 ℃の熱処理温度域で引張強さが60 MPa以上上昇
する合金化溶融亜鉛めっき鋼板が開示されている。
[0005] Therefore, the effect of increasing the deformation starting stress of the part is only sufficient, and the effect of increasing the stress (tensile strength after molding) required for deformation over the entire deformation range from the start of deformation to the end of deformation is not sufficient. As a cold-rolled steel sheet whose tensile strength increases after forming, for example, JP-A-10-310847 discloses that
There is disclosed an alloyed hot-dip galvanized steel sheet whose tensile strength increases by 60 MPa or more in a heat treatment temperature range of 00 to 450 ° C.

【0006】この鋼板は、質量百分率で、C:0.01〜0.
08%、Mn:0.01〜3.0 %を含有し、かつW, Cr, Moの1
種または2種以上を合計で0.05〜3.0 %含有し、また必
要に応じてTi:0.005 〜0.1 %, Nb:0.005 〜0.1 %,
V:0.005 〜0.1 %の1種または2種以上を含有する組
成になり、かつ鋼のミクロ組織がフェライトまたはフェ
ライト主体からなるものである。
This steel sheet has a mass percentage of C: 0.01 to 0.2.
08%, Mn: 0.01 to 3.0%, and one of W, Cr and Mo
Species or two or more kinds are contained in a total of 0.05 to 3.0%, and if necessary, Ti: 0.005 to 0.1%, Nb: 0.005 to 0.1%,
V: A composition containing one or more of 0.005 to 0.1% of steel, and the microstructure of the steel is mainly composed of ferrite or ferrite.

【0007】しかしながら、この技術は、成形後の熱処
理により鋼板中で微細な炭化物を形成させ、プレス時に
付与する歪みに対して転位を効果的に増殖させて、歪み
量を増加させるものであるため、 220〜370 ℃の温度範
囲で熱処理を行う必要があり、一般的な焼付硬化処理温
度よりも必要とされる熱処理温度が高いという難点があ
った。
However, this technique increases the amount of strain by forming fine carbides in the steel sheet by heat treatment after forming, effectively growing dislocations with respect to the strain given during pressing, and increasing the amount of strain. However, heat treatment must be performed in the temperature range of 220 to 370 ° C., and the required heat treatment temperature is higher than a general bake hardening treatment temperature.

【0008】プレス成形体の塗装焼付鋼板の中で熱延鋼
板に関しては、例えば特公平8−23048 号公報に、加工
時には軟質で、加工後の焼付塗装処理により疲労特性の
改善に有効な引張強さを大幅に上昇させた熱延鋼板の製
造方法が開示されている。この技術では、C量を0.02〜
0.13mass%とし、Nを0.0080〜0.0250mass%と多量に添
加した上で、仕上圧延温度および巻取り温度を制御して
多量の固溶Nを鋼中に残存させ、金属組織をフェライト
とマルテンサイトを主体とする複合組織とすることで、
成形後熱処理温度:170 ℃にて100MPa以上の引張強さの
増加が達成される旨が開示されている。
Among the painted and baked steel sheets of the press-formed body, hot rolled steel sheets are disclosed, for example, in Japanese Patent Publication No. 8-23048, in which tensile strength which is soft at the time of working and effective for improving fatigue properties by baking coating after working is described. A method for producing a hot-rolled steel sheet whose resilience is greatly increased is disclosed. In this technology, the amount of C is 0.02-
0.13 mass%, N is added in a large amount of 0.0080-0.0250 mass%, and the finish rolling temperature and winding temperature are controlled to allow a large amount of solid solution N to remain in the steel, and the metal structure is changed to ferrite and martensite. By making it a composite organization mainly composed of
It is disclosed that an increase in tensile strength of 100 MPa or more is achieved at a heat treatment temperature of 170 ° C. after molding.

【0009】また、特開平10−183301号公報には、鋼成
分のうち、特にCとNをC:0.01〜0.12mass%、N:0.
0001〜0.01mass%に制限すると共に、平均結晶粒径を8
μm以下に制御することにより、80 MPa以上の高BH量
を確保すると共にAI量を45MPa 以下に抑制することが
可能な焼付硬化性および耐室温時効性に優れた熱延鋼板
が提示されている。
Japanese Patent Application Laid-Open No. 10-183301 discloses that, among the steel components, C and N are particularly 0.01 to 0.12 mass% in C and N: 0.
0001-0.01 mass% and the average grain size is 8
A hot-rolled steel sheet with excellent bake hardenability and room temperature aging resistance capable of securing a high BH amount of 80 MPa or more and controlling an AI amount of 45 MPa or less by controlling the thickness to not more than μm has been proposed. .

【0010】しかしながら、これらの鋼板は、熱延板で
あることから、仕上圧延後のオーステナイト/フェライ
ト変態によりフェライトの集合組織がランダム化するた
め、高r値を得ることが困難であり、十分な深絞り性を
有しているとは言い難い。しかも、これらの技術で得ら
れた熱延鋼板を出発材として冷間圧延および再結晶焼鈍
を行ったとしても、必ずしも熱延鋼板と同様の成形−熱
処理後の引張強さ上昇や80 MPa以上の高BHが得られる
とは限らない。というのは、鋼組織が、冷間圧延および
再結晶焼鈍により熱延時とは異なるミクロ組織となるこ
と、また冷間圧延時に大きな歪蓄積が起こるため、炭化
物、窒化物または炭窒化物が形成され易く、固溶Cおよ
び固溶N状態が変化するからである。
However, since these steel sheets are hot-rolled sheets, the texture of ferrite is randomized by austenite / ferrite transformation after finish rolling, so that it is difficult to obtain a high r value, and it is difficult to obtain a high r value. It is hard to say that it has deep drawability. Moreover, even if cold rolling and recrystallization annealing are performed using the hot-rolled steel sheet obtained by these techniques as a starting material, it is not necessarily the same as the hot-rolled steel sheet, that is, the tensile strength increases after forming and heat-treating, or 80 MPa or more. High BH is not always obtained. This is because the steel structure has a microstructure different from that during hot rolling due to cold rolling and recrystallization annealing, and large strain accumulation occurs during cold rolling, so that carbides, nitrides or carbonitrides are formed. This is because the state of solid solution C and the state of solid solution N change easily.

【0011】[0011]

【発明が解決しようとする課題】この発明は、上記の実
状に鑑み開発されたもので、プレス成形時に優れた深絞
り性を維持しつつ、プレス成形−熱処理によって引張強
さが増加する、具体的には加工歪み:10%程度の条件で
成形加工後、従来行われている 200℃を超える高温での
熱処理はもとより、 120〜200 ℃という低温域で熱処理
を施した場合であっても、60 MPa以上の強度上昇(引張
強さの上昇)を達成できる、成形後強度上昇熱処理能に
優れた冷延鋼板およびめっき鋼板を、それらの有利な製
造方法と共に提案することを目的とする。
SUMMARY OF THE INVENTION The present invention has been developed in view of the above-mentioned circumstances, and the tensile strength is increased by press-forming-heat treatment while maintaining excellent deep drawability during press-forming. Specifically, after processing under the condition of processing strain: about 10%, even if heat treatment is performed in the low temperature range of 120 to 200 ° C, in addition to the conventional heat treatment at a high temperature exceeding 200 ° C, An object of the present invention is to propose a cold-rolled steel sheet and a plated steel sheet which can achieve a strength increase of 60 MPa or more (increase in tensile strength) and are excellent in heat treatment capability after forming, together with their advantageous production methods.

【0012】[0012]

【課題を解決するための手段】さて、発明者らは、上記
の目的を達成すべく鋭意研究を重ねた結果、以下に述べ
る知見を得た。 1) 成形−熱処理後に引張強さを上昇させるためには、
成形により導入された転位と侵入型元素または析出物と
の相互作用により、上降伏応力に達しても予変形により
導入された転位が移動しないことが必要となる。 2) W, Cr, Mo, Ti, Nb, Alなどの炭化物、窒化物また
は炭窒化物を形成することによって、上記の相互作用を
得るためには、成形後の熱処理温度を 200℃以上まで高
める必要がある。従って、侵入型元素の積極的な活用ま
たはFe炭化物あるいはFe窒化物を活用する方が、成形後
の熱処理温度を低下させる点では有利である。 3) 侵入型元素の中では固溶Cよりも固溶Nの方が、成
形後の熱処理温度を低めても、成形により導入された転
位との相互作用が大きく、上降伏応力に達しても予変形
に導入された転位が移動し難い。 4) 鋼中の固溶N存在場所として結晶粒内および結晶粒
界があるが、成形後の熱処理以後の強度の増加量は結晶
粒界面積が広い方が大きい。すなわち結晶粒径が小さい
方が有利である。 5) 結晶粒界面積を広くするという観点では、Nbおよび
Bを複合添加すると共に、熱間圧延終了後直ちに冷却す
ることにより、熱間圧延終了後のフェライト粒の正常粒
成長を抑制し、かつ冷間圧延に引き続く再結晶焼鈍での
粒成長を抑制することが有利である。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to achieve the above object, and have obtained the following findings. 1) Molding-To increase the tensile strength after heat treatment,
Due to the interaction between the dislocations introduced by molding and the interstitial elements or precipitates, it is necessary that the dislocations introduced by pre-deformation do not move even when the upper yield stress is reached. 2) In order to obtain the above-mentioned interaction by forming carbides, nitrides, or carbonitrides such as W, Cr, Mo, Ti, Nb, and Al, the heat treatment temperature after molding is increased to 200 ° C. or more. There is a need. Therefore, active utilization of interstitial elements or utilization of Fe carbide or Fe nitride is more advantageous in lowering the heat treatment temperature after molding. 3) Among the interstitial elements, solid solution N has a larger interaction with dislocations introduced by forming even if the heat treatment temperature after forming is lowered, and solid solution N has higher interaction with solid dissolution C than solid solution C even if the upper yield stress is reached. Dislocations introduced in pre-deformation are difficult to move. 4) The presence of solute N in steel is within the crystal grains and at the crystal grain boundaries. The increase in strength after heat treatment after forming is larger when the crystal grain boundary area is larger. That is, it is advantageous that the crystal grain size is small. 5) From the viewpoint of increasing the grain boundary area, by adding Nb and B in combination, and cooling immediately after the completion of hot rolling, normal grain growth of ferrite grains after the completion of hot rolling is suppressed, and It is advantageous to suppress grain growth during recrystallization annealing following cold rolling.

【0013】この発明は、上記の知見に立脚するもので
ある。すなわち、この発明の要旨構成は次のとおりであ
る。 (1)質量%で、C:0.0050%未満、Si:0.005 〜1.0
%、Mn:0.01〜1.5 %、P:0.1 %以下、S:0.01%以
下、Al:0.005 〜0.030 %、N:0.005 〜0.040%、N
b:0.005 〜0.050 %、B:0.0005〜0.0015%、を、次
(1)、(2)式 N%≧0.0015 + 14/93・Nb% + 14/27・Al% + 14/11・B% …… (1) C%≦ 12/93・Nb% …… (2) (ここに、N%、Nb%、Al%、B%、C%:各元素含有
量 (質量%))を満足する範囲において含有し、残部は
実質的にFeの組成になることを特徴とする、成形後強度
上昇熱処理能に優れた冷延鋼板。 (2)前記組成に加えてさらに、質量%で、Cu、Ni、Mo
のうちから選ばれた1種または2種以上を合計で1%以
下含有することを特徴とする(1)に記載の冷延鋼板。 (3)平均結晶粒径が20μm 以下であることを特徴とす
る(1)または(2)に記載の冷延鋼板。 (4)熱処理温度:120 〜200 ℃の低温域にて、成形後
の引張強さ上昇代ΔTS:60 MPa以上であることを特徴と
する(1)ないし(3)のいずれかに記載の冷延鋼板。 (5)(1)ないし(4)のいずれかに記載の冷延鋼板
の表面に、電気めっき層、溶融めっき層、あるいは合金
化溶融めっき層を備えてなることを特徴とする、成形後
強度上昇熱処理能に優れためっき鋼板。 (6)熱処理温度:120 〜200 ℃の低温域にて、成形後
の引張強さ上昇代ΔTS:60 MPa以上であることを特徴と
する(5)に記載のめっき鋼板。 (7)質量百分率で、C:0.0050%未満、Si:0.005 〜
1.0 %、Mn:0.01〜1.5%、P:0.1 %以下、S:0.01
%以下、Al:0.005 〜0.030 %、N:0.005 〜0.040
%、Nb:0.005 〜0.050 %、B:0.0005〜0.0015%を、
次(1)、(2)式 N%≧0.0015 + 14/93・Nb% + 14/27・Al% + 14/11・B% …… (1) C%≦ 12/93・Nb% …… (2) (ここに、N%、Nb%、Al%、B%、C%:各元素含有
量 (質量%))を満足する範囲において含有し、あるい
はさらに、Cu、Ni、Moのうちから選ばれた1種または2
種以上を合計で1%以下含有し、残部は実質的にFeの組
成になる鋼片を、熱間圧延し、その際、仕上圧延終了後
直ちに冷却を開始して巻取り温度:400 〜800 ℃で巻取
り、その後圧下率:60〜95%の冷間圧延を施したのち、
650〜900 ℃の温度で再結晶焼鈍を施すことを特徴とす
る、成形後強度上昇熱処理能に優れた冷延鋼板の製造方
法。 (8)前記再結晶焼鈍における昇温過程において、500
℃から再結晶温度までの温度域を1〜20℃/sの速度で昇
温することを特徴とする(7)に記載の冷延鋼板の製造
方法。 (9)質量百分率にて、C:0.0050%未満、Si:0.005
〜1.0 %、Mn:0.01〜1.5 %、P:0.1 %以下、S:0.
01%以下、Al:0.005 〜0.030 %、N:0.005 〜0.040
%、Nb:0.005 〜0.050 %、B:0.0005〜0.0015%を、
次(1)、(2)式 N%≧0.0015 + 14/93・Nb% + 14/27・Al% + 14/11・B% …… (1) C%≦ 12/93・Nb% …… (2) (ここに、N%、Nb%、Al%、B%、C%:各元素含有
量 (質量%))を満足する範囲において含有し、あるい
はさらに、Cu、Ni、Moのうちから選ばれた1種または2
種以上を合計で1%以下含有し、残部は実質的にFeの組
成になる鋼片を、熱間圧延し、その際、仕上圧延終了後
直ちに冷却を開始して巻取り温度:400 〜800 ℃で巻取
り、その後圧下率:60〜95%の冷間圧延を施したのち、
650〜900 ℃の温度で再結晶焼鈍を施し、ついで、電気
めっき処理または溶融めっき処理を施し、あるいはさら
に加熱合金化処理を施すことを特徴とする成形後強度上
昇熱処理能に優れためっき鋼板の製造方法。 (10)前記再結晶焼鈍における昇温過程において、50
0 ℃から再結晶温度までの温度域を1〜20℃/sの速度で
昇温することを特徴とする請求項9に記載のめっき鋼板
の製造方法。
The present invention is based on the above findings. That is, the gist configuration of the present invention is as follows. (1) In mass%, C: less than 0.0050%, Si: 0.005 to 1.0
%, Mn: 0.01 to 1.5%, P: 0.1% or less, S: 0.01% or less, Al: 0.005 to 0.030%, N: 0.005 to 0.040%, N
b: 0.005 to 0.050%, B: 0.0005 to 0.0015%, the following formulas (1) and (2): N% ≧ 0.0015 + 14/93 · Nb% + 14/27 · Al% + 14/11 · B% …… (1) C% ≦ 12/93 · Nb% …… (2) (where N%, Nb%, Al%, B%, C%: Content of each element (mass%)) A cold-rolled steel sheet having an excellent heat treatment ability after forming, characterized in that it is contained in the range and the balance substantially comprises Fe. (2) In addition to the above composition, Cu, Ni, Mo
The cold-rolled steel sheet according to (1), wherein one or two or more kinds selected from the above are contained in a total of 1% or less. (3) The cold-rolled steel sheet according to (1) or (2), wherein the average crystal grain size is 20 μm or less. (4) Heat treatment temperature: in a low temperature range of 120 to 200 ° C., the tensile strength increase ΔTS after forming is not less than 60 MPa, and the cold as set forth in any one of (1) to (3). Rolled steel sheet. (5) Strength after forming, characterized in that the surface of the cold-rolled steel sheet according to any of (1) to (4) is provided with an electroplating layer, a hot-dip coating layer, or an alloyed hot-dip layer. Plated steel sheet with excellent ascending heat treatment ability. (6) The plated steel sheet according to (5), wherein the heat treatment temperature: in a low temperature range of 120 to 200 ° C., a tensile strength increase ΔTS after forming: 60 MPa or more. (7) By mass percentage, C: less than 0.0050%, Si: 0.005 to
1.0%, Mn: 0.01 to 1.5%, P: 0.1% or less, S: 0.01
% Or less, Al: 0.005 to 0.030%, N: 0.005 to 0.040
%, Nb: 0.005 to 0.050%, B: 0.0005 to 0.0015%,
The following formulas (1) and (2) N% ≧ 0.0015 + 14/93 · Nb% + 14/27 · Al% + 14/11 · B% …… (1) C% ≦ 12/93 · Nb% …… (2) (here, N%, Nb%, Al%, B%, C%: each element content (mass%)) is contained within the range that satisfies, or further, among Cu, Ni, and Mo One or two selected
A steel slab containing 1% or less in total and the remainder being substantially Fe in composition is hot-rolled. At this time, cooling is started immediately after finishing rolling, and a winding temperature: 400 to 800 C., then cold-rolled at a draft of 60-95%,
A method for producing a cold-rolled steel sheet having an excellent heat treatment ability for increasing strength after forming, wherein recrystallization annealing is performed at a temperature of 650 to 900 ° C. (8) In the heating process in the recrystallization annealing, 500
(7) The method for producing a cold-rolled steel sheet according to (7), wherein the temperature is raised in a temperature range from 1 ° C to a recrystallization temperature at a rate of 1 to 20 ° C / s. (9) In mass percentage, C: less than 0.0050%, Si: 0.005
~ 1.0%, Mn: 0.01 ~ 1.5%, P: 0.1% or less, S: 0.
01% or less, Al: 0.005 to 0.030%, N: 0.005 to 0.040
%, Nb: 0.005 to 0.050%, B: 0.0005 to 0.0015%,
The following formulas (1) and (2) N% ≧ 0.0015 + 14/93 · Nb% + 14/27 · Al% + 14/11 · B% …… (1) C% ≦ 12/93 · Nb% …… (2) (here, N%, Nb%, Al%, B%, C%: each element content (mass%)) is contained within the range that satisfies, or further, among Cu, Ni, and Mo One or two selected
A steel slab containing 1% or less in total and the remainder being substantially Fe in composition is hot-rolled. At this time, cooling is started immediately after finishing rolling, and a winding temperature: 400 to 800 C., then cold-rolled at a draft of 60-95%,
A recrystallization annealing at a temperature of 650 to 900 ° C, followed by electroplating or hot-dip plating, or a further heat alloying treatment. Production method. (10) In the temperature rising process in the recrystallization annealing, 50
The method for producing a plated steel sheet according to claim 9, wherein a temperature range from 0 ° C to a recrystallization temperature is increased at a rate of 1 to 20 ° C / s.

【0014】[0014]

【発明の実施の形態】まず、この発明の基礎となった実
験結果について説明する。 (実験1)質量%で、C:0.0015%, B:0.0010%, S
i:0.01%, Mn:0.5 %, P:0.03%, S:0.008 %お
よびN:0.011 %を含み、かつNbを 0.005〜0.05%およ
びAlを 0.005〜0.03%の範囲で含有し、残部はFeおよび
不可避的不純物の組成になるシートバー(厚み:30mm)
を、1150℃で均一加熱した後、仕上温度がAr3変態点以
上の 900℃となるように3パスで熱間圧延を行い、圧延
終了後、0.1 秒後に水冷した。その後、 500℃で1時間
保持するコイル巻取り相当熱処理を実施した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, experimental results on which the present invention is based will be described. (Experiment 1) In mass%, C: 0.0015%, B: 0.0010%, S
i: 0.01%, Mn: 0.5%, P: 0.03%, S: 0.008% and N: 0.011%, Nb in the range of 0.005 to 0.05% and Al in the range of 0.005 to 0.03%, the balance being Fe And a bar with a composition of unavoidable impurities (thickness: 30mm)
Was uniformly heated at 1150 ° C., hot-rolled in three passes so that the finishing temperature was 900 ° C., which was equal to or higher than the Ar 3 transformation point, and was water-cooled 0.1 seconds after the rolling was completed. Thereafter, a heat treatment equivalent to coil winding maintained at 500 ° C. for 1 hour was performed.

【0015】得られた板厚:4mmの熱延板を、圧下率:
82.5%で冷間圧延後、 800℃で40秒保持する再結晶焼鈍
を施し、ついで圧下率:0.8 %の調質圧延を施した。か
くして得られた冷延板から、圧延方向にJIS 5 号引張試
験片を採取し、通常の引張試験機を用いて、歪み速度:
0.02/sで引張強さを測定した。また、別途、これらの冷
延板から圧延方向に採取したJIS 5 号引張試験片に10%
の引張歪みを付与し、 120℃, 20分の熱処理を施したの
ち、通常の引張試験に供した。これら、冷延板から採取
した試験片の引張強さと10%の引張り歪を付与後 120
℃, 20分の熱処理を行った試験片の引張強さとの差を成
形後強度上昇代(ΔTS)とした。
The obtained hot-rolled sheet having a thickness of 4 mm was subjected to a rolling reduction:
After cold rolling at 82.5%, recrystallization annealing was performed at 800 ° C. for 40 seconds, followed by temper rolling at a reduction of 0.8%. From the cold-rolled sheet thus obtained, a JIS No. 5 tensile test piece was sampled in the rolling direction, and the strain rate was determined using a normal tensile tester:
The tensile strength was measured at 0.02 / s. Separately, a 10% JIS No. 5 tensile test specimen taken in the rolling direction from these cold-rolled sheets
, And subjected to a heat treatment at 120 ° C. for 20 minutes, and then subjected to a normal tensile test. After applying the tensile strength of the test specimen taken from the cold rolled sheet and the tensile strain of 10%,
The difference from the tensile strength of the test piece that had been heat-treated at 20 ° C for 20 minutes was defined as the strength increase after molding (ΔTS).

【0016】図1に、鋼成分(N%− 14/93・Nb%−14
/27 ・Al%−14/11 ・B%)とΔTSとの関係について調
べた結果を示す。同図に示したとおり、(N%− 14/93
・Nb%− 14/27・Al%− 14/11・B%)の値が0.0015質
量%以上を満足する場合に、ΔTSが60 MPa以上になるこ
とが判明した。 (実験2)質量%で、C:0.0010%, Si:0.02%, Mn:
0.6 %, P:0.01%, S:0.009%, N:0.012 %, A
l:0.01%およびNb:0.015 %を含み、かつBを0.00005
〜0.0025%の範囲で含有し、残部はFeおよび不可避的
不純物の組成になるシートバー(厚み:30mm)を、1100
℃で均一加熱したのち、仕上温度がAr3変態点以上の92
0℃となるように3パス圧延を行い、圧延終了後、0.1
秒後に水冷し、450 ℃で1時間保持するコイル巻取り相
当熱処理を実施した。
FIG. 1 shows a steel composition (N% -14 / 93 · Nb% -14).
/ 27 · Al% -14 / 11 · B%) and ΔTS are shown. As shown in the figure, (N% -14 / 93
When the value of (Nb% −14 / 27 · Al% −14 / 11 · B%) satisfied 0.0015% by mass or more, it was found that ΔTS became 60 MPa or more. (Experiment 2) In mass%, C: 0.0010%, Si: 0.02%, Mn:
0.6%, P: 0.01%, S: 0.009%, N: 0.012%, A
l: 0.01% and Nb: 0.015%, and B: 0.00005
The content is within the range of ~ 0.0025%, and the remainder is a sheet bar (thickness: 30 mm) having a composition of Fe and unavoidable impurities.
After uniform heating at ℃, the finishing temperature is higher than the Ar 3 transformation point.
Perform 3 pass rolling at 0 ° C.
After a second, water cooling was performed, and a heat treatment equivalent to coil winding, which was maintained at 450 ° C. for 1 hour, was performed.

【0017】得られた板厚:4mmの熱延板を、圧下率:
82.5%で冷間圧延後、 820℃, 40秒の再結晶焼鈍を施
し、ついで圧下率:0.8 %の調質圧延を施した。かくし
て得られた冷延板から、圧延方向にJIS 5号引張試験片
を採取し、通常の引張試験機を用いて、歪み速度:0.02
/sで引張強さを測定した。また、別途、これらの冷延板
から採取した引張試験片に10%の引張歪みを付与し、 1
20℃, 20分の熱処理を施したのち、通常の引張試験に供
した。
The obtained hot-rolled sheet having a thickness of 4 mm was subjected to a rolling reduction:
After cold rolling at 82.5%, recrystallization annealing was performed at 820 ° C. for 40 seconds, and then temper rolling was performed at a rolling reduction of 0.8%. From the cold-rolled sheet thus obtained, a JIS No. 5 tensile test piece was sampled in the rolling direction, and the strain rate was set to 0.02 using a normal tensile tester.
The tensile strength was measured at / s. Separately, a tensile test of 10% was applied to the tensile test pieces collected from these cold-rolled sheets,
After heat treatment at 20 ° C. for 20 minutes, it was subjected to a normal tensile test.

【0018】図2に、鋼中のB含有量とΔTSとの関係に
ついて調べた結果を示す。同図に示したとおり、Bを0.
0005〜0.0015質量%含有する場合に60 MPa以上の高いΔ
TSが得られることが分かる。また、NbとBを複合添加す
ることによって結晶粒が微細化され、高いΔTSが得られ
ることがミクロ組織観察により判明した。
FIG. 2 shows the results of a study on the relationship between the B content in steel and ΔTS. As shown in FIG.
High Δ of 60 MPa or more when contained in 0005 to 0.0015 mass%
It can be seen that TS is obtained. Further, it was found from microstructure observation that the crystal grain was refined by adding Nb and B in combination, and a high ΔTS was obtained.

【0019】すなわち、B量が0.0005質量%未満ではNb
との複合添加による結晶粒微細化効果が小さい。逆にB
量が0.0015質量%を超える場合には、粒界およびその近
傍に偏析するB量が増加し、かかるB原子はN原子間と
の相互作用が強いことから有効な固溶N量が低下するた
め△TSが低下したものと推察される。 (実験3)質量%で、C:0.0010%, N:0.012 %,
B:0.0010%, Si:0.01%, Mn:0.5 %, P:0.03%,
S:0.008 %, Nb:0.014 %およびAl:0.01%を含有
し、残部はFeおよび不可避的不純物の組成になる鋼A
と、C:0.010%, N:0.0012%, B:0.0010%, Si:
0.01%, Mn:0.5 %, P:0.03%, S:0.008 %, Nb:
0.014 %およびAl:0.01%を含有し、残部はFeおよび不
可避的不純物の組成になる鋼Bの各シートバー(厚み:
30mm)を、1150℃で均一加熱した後、仕上温度がAr3
態点以上の 910℃となるように3パス圧延を行い、圧延
終了後、0.1 秒後にガス冷却を開始し、引き続き 600℃
で1時間保持するコイル巻取り相当熱処理を実施した。
That is, if the B content is less than 0.0005% by mass, Nb
Has a small effect of crystal grain refinement due to the addition of the compound. Conversely, B
If the amount exceeds 0.0015% by mass, the amount of B segregating at and near the grain boundary increases, and the B atoms have a strong interaction with N atoms, so that the effective amount of solute N decreases. △ It is inferred that TS decreased. (Experiment 3) By mass%, C: 0.0010%, N: 0.012%,
B: 0.0010%, Si: 0.01%, Mn: 0.5%, P: 0.03%,
Steel A containing S: 0.008%, Nb: 0.014% and Al: 0.01%, the balance being Fe and unavoidable impurities
And C: 0.010%, N: 0.0012%, B: 0.0010%, Si:
0.01%, Mn: 0.5%, P: 0.03%, S: 0.008%, Nb:
Each sheet bar of steel B containing 0.014% and Al: 0.01%, with the balance being Fe and unavoidable impurities (thickness:
30mm) is uniformly heated at 1150 ° C, and then three-pass rolling is performed so that the finishing temperature is 910 ° C, which is equal to or higher than the Ar 3 transformation point. After rolling is completed, gas cooling is started 0.1 seconds later, and then 600 ° C.
, A heat treatment equivalent to coil winding, which was held for one hour, was performed.

【0020】得られた板厚:4mmの熱延板を、圧下率8
2.5%で冷間圧延したのち、 880℃,40秒の再結晶焼鈍を
施し、ついで圧下率:0.8 %の調質圧延を施した。かく
して得られた冷延板から、圧延方向にJIS 5号引張試験
片を採取し、通常の引張試験機を用いて、歪み速度:0.
02/sで引張強さを測定した。また、別途、これらの冷延
板から採取した引張試験片に10%の引張歪みを付与し、
種々の温度で20分間の熱処理を施したのち、通常の引張
試験に供した。
The obtained hot-rolled sheet having a thickness of 4 mm was subjected to a rolling reduction of 8 mm.
After cold rolling at 2.5%, recrystallization annealing was performed at 880 ° C. for 40 seconds, and then temper rolling was performed at a rolling reduction of 0.8%. From the cold-rolled sheet thus obtained, a JIS No. 5 tensile test piece was sampled in the rolling direction, and the strain rate was set to 0.
The tensile strength was measured at 02 / s. Separately, 10% tensile strain was applied to tensile test specimens collected from these cold-rolled sheets,
After being subjected to heat treatment at various temperatures for 20 minutes, they were subjected to a normal tensile test.

【0021】図3に、ΔTSに及ぼす成形後熱処理温度の
影響について調べた結果を示す。同図に示したとおり、
成形後熱処理温度が 200℃以下と比較的低い領域では極
低炭、高N含有鋼である鋼Aの方が、セミ極低炭・低N
鋼である鋼Bよりも高いΔTSを示し、高温域では同程度
のΔTSを示す。これらの実験結果から、低温域でのΔTS
を確保するには固溶Nを活用することが有効であること
が分かる。
FIG. 3 shows the results of an investigation on the effect of the post-molding heat treatment temperature on ΔTS. As shown in the figure,
In the region where the heat treatment temperature after forming is relatively low at 200 ° C or lower, steel A, which is a steel with very low carbon and high N content, has a semi-low carbon and low nitrogen content.
It shows a higher ΔTS than steel B, which is steel, and shows a similar ΔTS in a high-temperature region. From these experimental results, it was found that ΔTS
It can be seen that it is effective to utilize solid solution N in order to secure the value.

【0022】また、図4に、常温時効による伸びの低下
量(ΔEl)と成形後引張強さ上昇代(ΔTS)に及ぼす、
結晶粒径dと鋼成分(N%− 14/93・Nb%− 14/27・Al
%−14/11・B%)との影響について調べた結果を示
す。なお、伸びの低下量(ΔEl)は、冷延板から圧延方
向に採取したJIS 5 号試験片で測定した全伸びと、別途
採取した試験片を用い常温時効の促進処理である 100℃
で8時間の保持処理を施したのちに測定した全伸びとの
差で評価した。なお、上記した結晶粒径は、平均結晶粒
径を意味し、各鋼板の圧延方向に垂直な断面について、
組織写真から、ASTMに規定される求積法により算出
した値と、同じく切断法により求めた公称粒径(たとえ
ば、梅本ら:熱処理、24(1984)、334 参照)のうち、
いずれか大きい方を採用した。
FIG. 4 shows the effect on the amount of decrease in elongation (ΔEl) and the increase in tensile strength after molding (ΔTS) due to aging at normal temperature.
Grain size d and steel composition (N% -14 / 93 · Nb% -14 / 27 · Al
% -14 / 11 · B%). The decrease in elongation (ΔEl) was determined by measuring the total elongation measured with a JIS No. 5 test piece taken from the cold-rolled sheet in the rolling direction, and using a separately taken test piece at 100 ° C, which is a treatment for accelerating aging at room temperature.
Was evaluated by the difference from the total elongation measured after holding for 8 hours. In addition, the above-mentioned crystal grain size means an average crystal grain size, and for a cross section perpendicular to the rolling direction of each steel sheet,
From the micrograph of the structure, of the value calculated by the quadrature method specified by ASTM and the nominal particle size similarly determined by the cutting method (for example, Umemoto et al .: Heat treatment, 24 (1984), 334),
Whichever is larger was adopted.

【0023】同図に示したとおり、(N%− 14/93・Nb
%− 14/27・Al%− 14/11・B%)の値が0.0015質量%
以上でかつ結晶粒径dが20μm 以下の場合に、高ΔTSと
低ΔElの両立が可能となることが分かる。つぎに、この
発明において鋼板の成分組成を前記の範囲に限定した理
由について説明する。なお、以下、組成における%は質
量%を意味する。
As shown in the figure, (N% −14 / 93 · Nb
% -14 / 27 · Al% -14 / 11 · B%) is 0.0015 mass%
It can be seen that when the crystal grain diameter d is 20 μm or less, it is possible to achieve both high ΔTS and low ΔEl. Next, the reason why the component composition of the steel sheet is limited to the above range in the present invention will be described. Hereinafter,% in the composition means mass%.

【0024】C:0.0050%未満 Cは、できるだけ少量であるほど深絞り性に優れ、プレ
ス成形性の面で有利である。また、冷間圧延後の焼鈍過
程においてNbCの再溶解が進行し結晶粒内の固溶Cが増
加して、耐常温時効性の低下を招き易い。従って、C量
は0.0050%未満に抑制する必要がある。なお、好ましく
は0.0030%以下である。現在の製造技術において、極端
なコスト上昇を伴わずに達し得るC量の下限値は0.0005
%程度と考えられる。
C: less than 0.0050% The smaller the C content, the better the deep drawability and the more advantageous the press formability. Further, in the annealing process after cold rolling, the re-dissolution of NbC progresses, solute C in crystal grains increases, and the normal temperature aging resistance is likely to be lowered. Therefore, the C content needs to be suppressed to less than 0.0050%. In addition, it is preferably 0.0030% or less. In the current manufacturing technology, the lower limit of the amount of C that can be achieved without an extreme increase in cost is 0.0005.
%.

【0025】Si:0.005 〜1.0 % Siは、伸びの低下を抑制し、また強度を向上させる有用
成分であるが、含有量が 0.005%に満たないとその添加
効果に乏しく、一方 1.0%を超えると表面性状を悪化さ
せ、延性の低下を招くので、Siは 0.005〜1.0 %の範囲
に限定した。なお、好ましくは0.01〜0.75%の範囲であ
る。
Si: 0.005 to 1.0% Si is a useful component that suppresses the decrease in elongation and improves the strength. However, if the content is less than 0.005%, the effect of its addition is poor, while the content exceeds 1.0%. Therefore, Si is limited to the range of 0.005 to 1.0% because it deteriorates the surface properties and lowers the ductility. In addition, it is preferably in the range of 0.01 to 0.75%.

【0026】Mn:0.01〜1.5 % Mnは、鋼の強化成分として有用なだけでなく、MnSを形
成してSによる脆化を抑制する作用があるが、含有量が
0.01%に満たないとその添加効果に乏しく、一方1.5 %
を超えると表面性状の悪化や延性の低下を招くので、Mn
は0.01〜1.5 %の範囲で含有させるものとした。なお、
好ましくは0.01〜1.0 %である。より好ましくは0.10〜
0.75%である。
Mn: 0.01 to 1.5% Mn is not only useful as a strengthening component of steel, but also has the effect of forming MnS to suppress embrittlement due to S.
If less than 0.01%, the effect of the addition is poor, while 1.5%
If Mn exceeds Mn, deterioration of the surface properties and decrease in ductility are caused.
Was contained in the range of 0.01 to 1.5%. In addition,
Preferably it is 0.01-1.0%. More preferably 0.10 ~
0.75%.

【0027】P:0.1 %以下 Pは、固溶強化成分として鋼の強化に有効に寄与し、0.
001 %以上含有することが好ましい。一方、0.1 %を超
えて含有すると、(FeNb)xPなどのリン化物を形成するた
め深絞り性が低下する。従って、Pは0.1 %以下に限定
した。なお、好ましくは0.05%以下である。
P: 0.1% or less P effectively contributes to the strengthening of steel as a solid solution strengthening component.
It is preferable to contain 001% or more. On the other hand, if the content exceeds 0.1%, phosphides such as (FeNb) xP are formed, so that the deep drawability decreases. Therefore, P was limited to 0.1% or less. In addition, it is preferably 0.05% or less.

【0028】S:0.01%以下 Sが多量に含有されると介在物量が増大し、延性の低下
を招くので、Sの混入は極力避けることが望ましいが、
0.01%までは許容される。 Al:0.005 〜0.030 % Alは、脱酸剤として、また炭窒化物形成成分の歩留りを
向上するために添加するが、含有量が 0.005%未満では
十分な効果がなく、一方 0.030%を超えると、鋼中に添
加すべきN量の増大を招き、製鋼時のスラブ欠陥が発生
し易くなる。従って、Alは 0.005〜0.030 %の範囲で含
有させるものとした。
S: 0.01% or less If a large amount of S is contained, the amount of inclusions increases and the ductility is reduced. Therefore, it is desirable to avoid the incorporation of S as much as possible.
Up to 0.01% is acceptable. Al: 0.005 to 0.030% Al is added as a deoxidizing agent and to improve the yield of carbonitride forming components. However, if the content is less than 0.005%, there is no sufficient effect, while if it exceeds 0.030%, In addition, an increase in the amount of N to be added to steel is caused, and slab defects are easily generated during steelmaking. Therefore, Al is contained in the range of 0.005 to 0.030%.

【0029】N:0.005 〜0.040 % Nは、本発明において、成形後強度上昇熱処理能を鋼板
に付与する役割を果たす重要な元素である。しかしなが
ら、含有量が 0.005%に満たないと十分な成形後強度上
昇熱処理能が得られず、一方 0.040%を超える多量含有
はプレス成形性の低下を招く。従って、Nは 0.005〜0.
040 %の範囲に限定した。なお、好ましくは 0.008〜0.
015 %である。
N: 0.005 to 0.040% N is an important element in the present invention that plays a role in imparting a post-forming strength increasing heat treatment ability to a steel sheet. However, if the content is less than 0.005%, a sufficient heat treatment capability for increasing the strength after molding cannot be obtained, while a large amount exceeding 0.040% causes a decrease in press formability. Therefore, N is 0.005-0.
Limited to the 040% range. In addition, preferably 0.008-0.
015%.

【0030】Nb:0.005 〜0.050 % Nbは、Bとの複合添加によって熱延組織および冷延再結
晶焼鈍組織の微細化に有効に寄与し、また固溶CをNbC
として固定する作用がある。さらに、NbはNbNといった
窒化物を形成し、冷延再結晶焼鈍組織の微細化に寄与す
る。しかしながら、Nb量が 0.005%に満たないと固溶C
を析出固定することが困難となるばかりでなく、熱延組
織および冷延再結晶焼鈍組織の微細化が不十分となり、
一方0.050 %を超えると延性の低下を招く。従って、Nb
は 0.005〜0.050 %の範囲に限定する。なお、好ましく
は 0.010〜0.030 %の範囲である。
Nb: 0.005 to 0.050% Nb contributes effectively to the refinement of the hot-rolled structure and the cold-rolled recrystallization-annealed structure by the combined addition with B.
Has the effect of fixing. Further, Nb forms a nitride such as NbN, and contributes to refinement of a cold rolled recrystallization annealing structure. However, if the Nb content is less than 0.005%,
Not only becomes difficult to precipitate and fix, but also the hot rolling structure and the cold rolling recrystallization annealing structure become insufficiently fine,
On the other hand, if it exceeds 0.050%, ductility is reduced. Therefore, Nb
Is limited to the range of 0.005 to 0.050%. The content is preferably in the range of 0.010 to 0.030%.

【0031】B:0.0005〜0.0015% Bは、Nbと複合添加することにより、熱延組織および冷
延再結晶組織を効果的に微細化し、また耐二次加工脆性
を改善する作用がある。しかしながら、含有量が0.0005
%未満では十分な微細化効果が得られず、一方0.0015%
を超えるとBN析出量が増大するだけでなく、スラブ加
熱段階での溶体化に支障を来すようになる。従って、B
は0.0005〜0.0015%の範囲に限定した。なお、好ましく
は0.0007〜0.0012%である。
B: 0.0005 to 0.0015% B, when added in combination with Nb, has the effect of effectively refining the hot-rolled structure and the cold-rolled recrystallized structure and improving the resistance to secondary working embrittlement. However, the content is 0.0005
%, A sufficient refining effect cannot be obtained, while 0.0015%
If it exceeds, not only the amount of deposited BN increases, but also hinder solution in the slab heating step. Therefore, B
Was limited to the range of 0.0005 to 0.0015%. In addition, it is preferably 0.0007 to 0.0012%.

【0032】上述したとおり、Nbは、固溶CをNbCとし
て固定する作用がある。また、Nbは、NbNといった窒化
物を形成する。同様に、AlおよびBはそれぞれAlN, B
Nを形成する。従って、固溶N量を十分に確保すると共
に、固溶Cを十分に低減するためには、N、C、Nb、A
l、Bの含有量を上記した範囲内でかつ、次(1) 、(2)式
の関係を満足させることが重要である。
As described above, Nb has an effect of fixing solid solution C as NbC. Nb forms a nitride such as NbN. Similarly, Al and B are AlN, B respectively.
Form N. Therefore, in order to ensure a sufficient amount of solid solution N and sufficiently reduce the solid solution C, it is necessary to use N, C, Nb, A
It is important that the contents of l and B be within the above-mentioned ranges and satisfy the following relations (1) and (2).

【0033】 N%≧0.0015 + 14/93・Nb% + 14/27・Al% + 14/11・B% …… (1) C%≦ 12/93・Nb% …… (2) ここに、N%、Nb%、Al%、B%、C%:各元素含有量
(質量%) また、本発明では、上記した組成に加えてさらに、Cu、
Ni、Moのうちから選ばれた1種または2種以上を合計で
1%以下含有することが好ましい。
N% ≧ 0.0015 + 14/93 · Nb% + 14/27 · Al% + 14/11 · B% (1) C% ≦ 12/93 · Nb% (2) N%, Nb%, Al%, B%, C%: Content of each element
(% By mass) In the present invention, in addition to the above-described composition,
It is preferable that one or two or more selected from Ni and Mo are contained in a total of 1% or less.

【0034】Cu、Ni、Moは、いずれも鋼板の強度を増加
させる元素であり、必要に応じ選択して単独または複合
して含有できる。この効果はおのおのCu:0.05%以上、
Ni:0.05%以上、Mo:0.05%以上の含有で認められる
が、しかし、Cu、Ni、Moのうちから選ばれた1種または
2種以上の合計が1%を超えて含有すると、熱間変形抵
抗の増加、化成処理性の低下、広義の表面処理性の悪
化、溶接部の硬化に起因する溶接部成形性の劣化などを
もたらす。このため、Cu、Ni、Moのうちから選ばれた1
種または2種以上の含有量を合計で1%以下とするのが
好ましい。
Each of Cu, Ni and Mo is an element for increasing the strength of the steel sheet, and can be selectively used alone or in combination as necessary. This effect is more than 0.05% for each Cu,
Ni: 0.05% or more, Mo: 0.05% or more contained. However, if one or more selected from Cu, Ni, and Mo exceeds 1%, hot This results in an increase in deformation resistance, a decrease in chemical conversion property, a deterioration in surface treatment property in a broad sense, and a deterioration in weld formability due to hardening of the weld. Therefore, one selected from Cu, Ni and Mo
It is preferable that the content of the species or two or more species is 1% or less in total.

【0035】また、この発明において、高い歪時効特性
を得ると共に、時効劣化を防止するためには、結晶粒径
を小さくすることが好適である。なお、ここでは、結晶
粒径は、上記したような測定方法で求めた平均結晶粒径
を意味するものとする。すなわち、前掲図4に示したよ
うに、結晶粒径dを20μm 以下まで小さくすることによ
って、(N%− 14/93・Nb%− 14/27・Al%− 14/11・
B%)≧0.0015%と比較的多量の固溶Nを含有する場合
においても、ΔElを 2.0%以下まで抑制することが可能
となる。なお、より好適には、結晶粒径dを15μm 以下
まで小さくすることが好ましい。というのは、図4に示
したように、結晶粒径dを15μm以下まで小さくする
と、ΔElを 1.5%以下まで抑制することが可能となるか
らである。
In the present invention, in order to obtain high strain aging characteristics and prevent aging deterioration, it is preferable to reduce the crystal grain size. Here, the crystal grain size means the average crystal grain size obtained by the above-described measurement method. That is, as shown in FIG. 4 described above, by reducing the crystal grain size d to 20 μm or less, (N% −14 / 93 · Nb% −14 / 27 · Al% −14 / 11 ·
(B%) ≧ 0.0015% Even when a relatively large amount of solute N is contained, ΔEl can be suppressed to 2.0% or less. It is more preferable to reduce the crystal grain size d to 15 μm or less. This is because, as shown in FIG. 4, when the crystal grain size d is reduced to 15 μm or less, ΔEl can be suppressed to 1.5% or less.

【0036】上記した組成、あるいはさらに上記した組
織を有する冷延鋼板およびこれら冷延鋼板の表面に、電
気めっき層、溶融めっき層、あるいは合金化溶融めっき
層を形成してなるめっき鋼板は、優れた深絞り性を有す
るだけでなく、プレス成形−熱処理により引張強さが増
加する、優れた成形後強度上昇熱処理能を有する。以
下、参考のため、この発明鋼板をプレス成形などの成形
加工に供した場合における成形条件およびその後の強度
上昇熱処理条件について説明する。
The cold-rolled steel sheets having the above-mentioned composition or the above-mentioned structure and the plated steel sheets formed by forming an electroplating layer, a hot-dip coating layer, or an alloyed hot-dip layer on the surface of these cold-rolled steel sheets are excellent. In addition to having excellent deep drawability, it has an excellent post-molding strength increasing heat treatment ability in which the tensile strength is increased by press molding-heat treatment. Hereinafter, for reference, the forming conditions when the steel sheet of the present invention is subjected to forming processing such as press forming and the subsequent heat treatment conditions for increasing the strength will be described.

【0037】この発明の鋼板を、例えば絞り加工などの
プレス加工に供する場合、プレス加工により導入される
歪みは数%〜十数%である。成形部品によって歪み量は
変化するが、自動車分野における内板および構造部材は
5〜10%程度の歪みが導入される。これらの成形部品に
は、塗装焼付け処理などの熱処理が施されるが、この発
明鋼板では熱処理後に成形品強度を効果的に高めること
ができる。
When the steel sheet of the present invention is subjected to press working such as drawing, for example, the strain introduced by press working is several percent to several tens of percent. Although the amount of distortion varies depending on the molded part, about 5 to 10% of distortion is introduced into the inner plate and the structural member in the automobile field. These formed parts are subjected to a heat treatment such as a paint baking treatment. However, with the steel sheet of the present invention, the strength of the formed parts can be effectively increased after the heat treatment.

【0038】なお、この発明では、かような成形後強度
上昇熱処理能を実験室にて評価する方法として、JIS 5
号サイズの引張試験片を圧延方向に採取し、引張試験機
により10%の引張歪を付与し、その後、熱処理を加えた
のち、再度引張り試験を実施する。このようにして求め
た10%引張歪付与−熱処理後の引張強さTSHTと、10%引
張歪付与処理前の鋼板の引張強さ(製品板の引張強さ)
TSとの差である成形および熱処理による引張強さ上昇代
ΔTS(=TSHT−TS)を成形後強度上昇熱処理能として定
義する。なお、本発明では、引張歪付与後の熱処理とし
ては、通常、例えば、塗装・焼付け相当処理である170
℃、20分の条件としあるいは、特に低温域での熱処理後
の特性を評価する場合は、熱処理条件を 120℃, 20分と
する。この試験は、プレス成形に引き続き熱処理を行っ
た完成後の部位の特性を評価するものである。
In the present invention, JIS 5 is used as a method for evaluating such a post-molding strength increase heat treatment ability in a laboratory.
A tensile test piece of size No. is sampled in the rolling direction, 10% tensile strain is given by a tensile tester, and after a heat treatment is applied, a tensile test is performed again. The tensile strength TS HT after applying the 10% tensile strain and the heat treatment, and the tensile strength of the steel sheet before applying the 10% tensile strain (the tensile strength of the product sheet) thus obtained.
The difference between TS and the tensile strength increase ΔTS (= TS HT −TS) due to molding and heat treatment is defined as the post-molding strength increase heat treatment ability. Note that, in the present invention, the heat treatment after the tensile strain is applied is, for example, a treatment equivalent to painting and baking.
When the conditions are 20 ° C for 20 minutes, or when the characteristics after the heat treatment in a low temperature range are particularly evaluated, the heat treatment conditions are 120 ° C for 20 minutes. This test evaluates the properties of the completed part after heat treatment following press molding.

【0039】なお、本発明の冷延鋼板は、前記プレス成
形後の熱処理が、 120 〜200 ℃の低温域であっても、60
MPa 以上のΔTS(成形後強度上昇熱処理能:成形後の引
張強さ上昇代)を有する。通常、成形品の強度上昇を高
めるには、成形により導入する歪み量が大きいまたは加
工後の熱処理温度が高い方が好ましい。
It should be noted that the cold-rolled steel sheet of the present invention can be used even if the heat treatment after the press forming is performed in a low temperature range of 120 to 200 ° C.
It has a ΔTS (heat treatment capacity for post-molding strength increase: tensile strength rise after molding) of MPa or more. In general, in order to increase the strength of a molded product, it is preferable that the amount of strain introduced by molding or the heat treatment temperature after processing be higher.

【0040】しかしながら、この発明鋼板は、付与歪み
量が上記した5〜10%程度の場合に、従来よりも成形後
熱処理温度が低くても、すなわち熱処理温度が 200℃以
下であっても、十分な強度の上昇を図ることができる。
とはいえ、熱処理温度が 120℃未満では歪みが低い場合
に十分な強度上昇効果が得られない。一方、成形後の熱
処理温度が 350℃を超える温度になると軟化が進行す
る。従って、成形後の熱処理温度は 120〜350 ℃程度と
するのが好ましい。
However, the steel sheet of the present invention has a sufficient heat treatment temperature after forming, that is, even if the heat treatment temperature is 200 ° C. or lower, when the applied strain is about 5 to 10% as described above. It is possible to achieve a strong increase in strength.
However, if the heat treatment temperature is lower than 120 ° C., a sufficient strength increasing effect cannot be obtained when the strain is low. On the other hand, when the heat treatment temperature after molding exceeds 350 ° C, softening proceeds. Therefore, the heat treatment temperature after the molding is preferably set to about 120 to 350 ° C.

【0041】なお、成形後熱処理の加熱方法としては、
熱風加熱、赤外炉加熱、温浴熱処理、通電加熱、高周波
加熱などの方法が適用でき、特に規定されない。また、
強度を上昇させたい部分のみを選択的に加熱する場合で
もよい。次に、この発明に従う製造条件について述べ
る。上記の好適成分組成になる鋼を、転炉等の公知の溶
製方法で溶製し、造塊法または連続鋳造法で鋼片とす
る。
The heating method of the heat treatment after molding includes:
Methods such as hot air heating, infrared furnace heating, hot bath heat treatment, electric heating, and high frequency heating can be applied, and are not particularly limited. Also,
It is also possible to selectively heat only the portion where the strength is to be increased. Next, the manufacturing conditions according to the present invention will be described. The steel having the above-mentioned preferred component composition is smelted by a known smelting method such as a converter, and is made into a billet by an ingot-making method or a continuous casting method.

【0042】ついで、この鋼片を、加熱、均熱したの
ち、熱間圧延を施して熱延板とする。この発明では、熱
間圧延の加熱温度は特に規定するものではないが、深絞
り性の向上のためには固溶Cを固定し炭化物として析出
させておくのが有利であり、このためには熱間圧延の加
熱温度は1300℃以下にするのが好ましい。また、加工性
のより一層の向上のためには加熱温度は1150℃以下とす
るのがより好ましい。しかしながら、加熱温度が 900℃
未満では、加工性の改善は飽和し、逆に熱間圧延時の圧
延負荷が増大して圧延トラブルが発生する危険性が増大
するので、加熱温度の下限は 900℃とするのが好まし
い。
Next, after heating and soaking the steel slab, it is subjected to hot rolling to obtain a hot rolled sheet. In the present invention, the heating temperature of hot rolling is not particularly specified, but it is advantageous to fix solid solution C and precipitate it as carbide in order to improve deep drawability. The heating temperature of the hot rolling is preferably set to 1300 ° C. or lower. In order to further improve the workability, the heating temperature is more preferably set to 1150 ° C. or lower. However, the heating temperature is 900 ℃
If it is less than 30, the improvement in workability is saturated, and conversely, the rolling load during hot rolling increases, and the risk of occurrence of rolling trouble increases. Therefore, the lower limit of the heating temperature is preferably 900 ° C.

【0043】次に、熱間圧延における全圧下率は70%以
上とすることが好ましい。というのは、全圧下率が70%
未満では熱延板の結晶粒微細化が不十分となりやすいか
らである。また、熱間圧延における仕上圧延は 960〜65
0 ℃の温度域で終了するのが好ましく、熱間圧延仕上温
度は、Ar3変態点以上のγ域であっても、Ar3変態点以
下のα域であってもよい。熱間圧延仕上温度が 960℃超
えると熱延板の結晶粒が粗大化し、冷延・焼鈍後の深絞
り性が劣化しやすい。一方熱間圧延仕上温度が650 ℃未
満では、変形抵抗が増加するため熱延負荷の増大を招き
圧延が困難になりやすい。
Next, it is preferable that the total rolling reduction in the hot rolling be 70% or more. Because the total reduction is 70%
This is because if the amount is less than the above, the grain refinement of the hot-rolled sheet tends to be insufficient. Finish rolling in hot rolling is 960-65.
Is preferably terminated at 0 temperature range of ° C., the hot rolling finishing temperature, even γ region above Ar 3 transformation point, it may be less α region Ar 3 transformation point. If the hot rolling finish temperature exceeds 960 ° C, the crystal grains of the hot rolled sheet become coarse, and the deep drawability after cold rolling and annealing tends to deteriorate. On the other hand, when the hot rolling finish temperature is lower than 650 ° C., the deformation resistance increases, so that the hot rolling load increases, and the rolling tends to be difficult.

【0044】上記の熱間仕上圧延終了後は、直ちに冷却
を開始することによって、正常粒成長を防止することが
望ましい。ここに、上記の冷却処理条件については特に
限定するものではないが、冷却開始時間は、仕上圧延終
了後、好ましくは 1.5秒以内、より好ましくは 1.0秒以
内、さらに好ましくは 0.5秒以内とすることが望まし
い。というのは、圧延終了後直ちに冷却すると、歪が蓄
積した状態での過冷度が大きくなるため、より多くのフ
ェライト核が生成し、フェライト変態が促進され、熱延
板の結晶粒が微細化し、製品板で高いr値を確保しやす
くなるからである。
After completion of the hot finish rolling, it is desirable to start cooling immediately to prevent normal grain growth. Here, the above cooling treatment conditions are not particularly limited, but the cooling start time is preferably 1.5 seconds or less, more preferably 1.0 seconds or less, and still more preferably 0.5 seconds or less after finishing rolling. Is desirable. This is because cooling immediately after the end of rolling increases the degree of supercooling in the state where strain is accumulated, so more ferrite nuclei are generated, ferrite transformation is accelerated, and the crystal grains of the hot-rolled sheet become finer. This is because it is easy to secure a high r value on the product plate.

【0045】また、冷却速度については、固溶Nを確保
するために、10℃/s以上とするのが好ましい。なお、特
に熱延仕上温度がAr3変態点以上の場合には、冷却速度
を50℃/s以上とすることが、固溶Nを確保する上でより
好適である。ついで、熱延板をコイルに巻き取る。この
巻取り温度は高温ほど炭化物の粗大化には有利である
が、 800℃を超えると、仕上熱延後の冷却条件の調整に
より微細化を図ることが困難となるため巻取温度は800
℃以下とする。また、700 ℃を超えると熱延板表面に形
成されるスケールが厚くなってスケール除去作業の負荷
が増大するだけでなく、窒化物形成が進行しコイル長手
方向の固溶N量の変動を招きやすくなるため、700 ℃以
下とすることが好ましい。一方巻取り温度が 400℃未満
では、巻取り作業が困難になるので、熱延板の巻取り温
度は 800〜400 ℃の範囲とする必要があり、好ましくは
700 〜400 ℃である。
The cooling rate is preferably set to 10 ° C./s or more in order to secure solid solution N. In particular, when the hot rolling finish temperature is equal to or higher than the Ar 3 transformation point, it is more preferable to set the cooling rate to 50 ° C./s or higher in order to secure solid solution N. Next, the hot rolled sheet is wound around a coil. The higher the winding temperature, the more advantageous is the coarsening of carbides. However, if it exceeds 800 ° C, it will be difficult to achieve finer particles by adjusting the cooling conditions after finishing hot rolling.
It should be below ° C. If the temperature exceeds 700 ° C., the scale formed on the surface of the hot-rolled sheet becomes thicker, which not only increases the load of the scale removal operation, but also causes the formation of nitrides to fluctuate in the amount of dissolved N in the longitudinal direction of the coil. Preferably, the temperature is set to 700 ° C. or lower because the temperature is easily increased. On the other hand, if the winding temperature is less than 400 ° C., the winding operation becomes difficult. Therefore, the winding temperature of the hot-rolled sheet needs to be in the range of 800 to 400 ° C., and is preferably
700-400 ° C.

【0046】ついで、熱延板に冷間圧延を施すが、かか
る冷間圧延における圧下率は60〜95%とする必要があ
る。というのは、冷間圧延の圧下率が60%未満では高い
r値が期待できず、一方95%を超えるとr値がかえって
低下するからである。上記のような冷間圧延を施された
冷延板は、次に再結晶焼鈍に供される。焼鈍方法は、連
続焼鈍であっても、バッチ焼鈍であっても何れでも良い
が、連続焼鈍の方が有利である。なお、この連続焼鈍
は、通常の連続焼鈍ラインにおける処理あるいは連続溶
融亜鉛めっきラインにおける処理の何れであっても良
い。
Next, the hot-rolled sheet is subjected to cold rolling. The rolling reduction in such cold rolling needs to be 60 to 95%. This is because if the rolling reduction of the cold rolling is less than 60%, a high r-value cannot be expected, while if it exceeds 95%, the r-value rather decreases. The cold rolled sheet that has been subjected to the above cold rolling is then subjected to recrystallization annealing. The annealing method may be either continuous annealing or batch annealing, but continuous annealing is more advantageous. This continuous annealing may be either a normal continuous annealing line or a continuous galvanizing line.

【0047】また、焼鈍条件は 650℃以上、5秒以上と
することが好ましい。というのは、焼鈍温度が 650℃未
満、焼鈍条件が5秒未満では再結晶が完了せず、そのた
め深絞り性が低下するからである。深絞り性をより向上
させるためには、 800℃以上で5秒以上焼鈍し、ある程
度粒成長を図ることがr値を向上させるうえで望まし
い。また、フェライト(α)+オーステナイト(γ)二
相域で焼鈍することにより、部分的にα→γ変態が生じ
ることで、{1 1 1 }集合組織が発達しr値が向上す
る。一方、α→γ変態が完全に進行した場合は、集合組
織がランダム化し、r値が低下し深絞り性が劣化するた
め、α+γ2相域で焼鈍することがさらに好ましい。な
お、焼鈍温度の上限は 900℃とすることが好ましい。と
いうのは、焼鈍温度が 900℃を超えると、炭化物の再溶
解が進行し固溶Cが過度に増加するため、遅時効性が低
下するからである。
The annealing conditions are preferably set to 650 ° C. or more and 5 seconds or more. This is because if the annealing temperature is less than 650 ° C. and the annealing condition is less than 5 seconds, recrystallization is not completed, and the deep drawability is reduced. In order to further improve the deep drawability, annealing at 800 ° C. or more for 5 seconds or more to achieve a certain degree of grain growth is desirable for improving the r-value. Further, annealing in the two-phase region of ferrite (α) + austenite (γ) partially causes α → γ transformation, whereby {111} texture is developed and the r-value is improved. On the other hand, when the α → γ transformation has progressed completely, the texture is randomized, the r value decreases, and the deep drawability deteriorates. Therefore, it is more preferable to perform annealing in the α + γ2 phase region. The upper limit of the annealing temperature is preferably set to 900 ° C. This is because if the annealing temperature exceeds 900 ° C., the re-dissolution of carbides proceeds and the solute C excessively increases, so that the delayed aging property decreases.

【0048】さらに、上記した再結晶焼鈍における昇温
過程において、 500℃から再結晶温度までの温度域を徐
熱とし、AlN等を十分に析出させることによって、鋼板
の結晶粒径を効果的に小さくすることができる。ここ
に、上記したような制御加熱を施すべき温度域は、AlN
等が析出し始める500 ℃から再結晶温度までとする。ま
た、昇温速度は1〜20℃/sの範囲とすることが好まし
い。というのは、昇温速度が20℃/s超では十分な析出量
が得られず、一方1℃/s未満では析出物が粗大化して粒
成長の抑制効果が弱まるからである。
Further, in the temperature rising process in the above-mentioned recrystallization annealing, the temperature range from 500 ° C. to the recrystallization temperature is gradually heated to sufficiently precipitate AlN and the like, thereby effectively reducing the crystal grain size of the steel sheet. Can be smaller. Here, the temperature range in which the above-described controlled heating is to be performed is AlN
The temperature should be between 500 ° C and the recrystallization temperature at which precipitation begins. Further, the heating rate is preferably in the range of 1 to 20 ° C./s. This is because if the heating rate is higher than 20 ° C./s, a sufficient amount of precipitation cannot be obtained, whereas if the heating rate is lower than 1 ° C./s, the precipitates are coarsened and the effect of suppressing grain growth is weakened.

【0049】また、再結晶焼鈍における均熱後の冷却速
度は、例えば連続焼鈍の場合、現在の技術で良好な表面
や形状を有利に確保しやすくするため500 ℃以上の冷却
速度を50℃/s以下とするのが好ましく、より好ましくは
30℃/s以下である。なお、上記のような再結晶焼鈍後
に、さらに形状矯正、表面粗さ調整のため、10%以下の
調質圧延を行ってもよい。
The cooling rate after soaking in the recrystallization annealing is, for example, in the case of continuous annealing, a cooling rate of 500 ° C. or more is set to 50 ° C./50° C. in order to easily secure a favorable surface and shape with the current technology. s or less, more preferably
30 ° C / s or less. After the recrystallization annealing as described above, a temper rolling of 10% or less may be further performed for shape correction and surface roughness adjustment.

【0050】上記の再結晶焼鈍に引き続き、必要に応じ
て、電気めっき処理、または溶融めっき処理、あるいは
さらに加熱合金化処理を行うことにより、冷延鋼板の表
面に電気めっき層、溶融めっき層、合金化溶融めっき層
のいずれかを形成して、 めっき鋼板とするのが好まし
い。かかる電気めっき層、溶融めっき層、合金化溶融め
っき層のいずれかを形成しためっき鋼板は、めっき前の
鋼板と同程度の成形後強度上昇熱処理能を有する。ま
た、めっきの種類としては、電気亜鉛めっき、溶融亜鉛
めっき、合金化溶融亜鉛めっき、電気錫めっき、電気ク
ロムめっき、電気ニッケルめっき等、いずれも好適であ
る。めっき方法は、とくに限定されることはなく、従来
公知の方法に従って行えば良い。
Following the recrystallization annealing, an electroplating process, a hot-dip coating process, or a heat-alloying process is performed as necessary, so that an electroplating layer, a hot-dip coating layer, It is preferable to form one of the alloyed hot-dip coating layers to obtain a plated steel sheet. A plated steel sheet on which any of the electroplating layer, the hot-dip coating layer, and the alloyed hot-dip coating layer is formed has a post-forming strength increase heat treatment ability similar to that of the steel sheet before plating. Further, as the type of plating, any of electrogalvanizing, hot-dip galvanizing, alloyed hot-dip galvanizing, electrotin plating, electrochromic plating, and electronickel plating is suitable. The plating method is not particularly limited, and may be performed according to a conventionally known method.

【0051】なお、上記合金化溶融亜鉛めっき鋼板など
のめっき鋼板としたのち、加工性の向上や加工後の外観
向上のために調質圧延を施した鋼板(ダル仕上鋼板、ブ
ライト仕上鋼板、表面に特定の粗度パターンを形成した
鋼板)、表面に防錆油、潤滑油などの油膜層を有する鋼
板など、通常に薄鋼板として採用する表面処理を施した
鋼板において、この発明の成分範囲であればこの発明の
効果を十分に享受できる。
A steel sheet (dull-finished steel sheet, bright-finished steel sheet, surface-treated steel sheet) which has been subjected to temper rolling in order to improve workability and appearance after processing after forming a coated steel sheet such as the above alloyed hot-dip galvanized steel sheet. A steel sheet having a specific roughness pattern formed thereon), a steel sheet having an oil film layer such as a rust-preventive oil or a lubricating oil on the surface thereof, and a steel sheet which has been subjected to a surface treatment usually adopted as a thin steel sheet. If so, the effects of the present invention can be sufficiently enjoyed.

【0052】かくして、優れた深絞り性を有するだけで
なく、プレス成形−熱処理により引張強度が増加する、
成形後強度上昇熱処理能に優れた冷延鋼板およびめっき
鋼板を得ることができる。
Thus, not only has excellent deep drawability, but also the tensile strength is increased by press molding-heat treatment.
It is possible to obtain a cold-rolled steel sheet and a plated steel sheet which are excellent in the heat treatment ability for increasing the strength after forming.

【0053】[0053]

【実施例】(実施例1)表1に示す成分組成になる鋼ス
ラブを、表2に示す条件で板厚:3.5 mmの熱延板、つい
で板厚:0.7 mmの冷延板としたのち、連続焼鈍ラインま
たは連続焼鈍−合金化溶融亜鉛めっきラインにて再結晶
焼鈍、さらには合金化溶融亜鉛めっき処理を施し、その
後圧下率:1.0 %の調質圧延を施して、冷延鋼板および
片面当たりの目付量:45g/m2で両面めっきした合金化溶
融亜鉛めっき鋼板を製造した。なお、表2のうち鋼板N
o.3, No.8の熱延仕上終了温度はAr3変態点未満であ
り、それ以外はAr3変態点以上である。また、表2の鋼
板の均熱終了後500 ℃までの冷却速度は10〜30℃/sであ
った。
EXAMPLES (Example 1) A steel slab having the composition shown in Table 1 was formed into a hot-rolled sheet having a thickness of 3.5 mm and a cold-rolled sheet having a thickness of 0.7 mm under the conditions shown in Table 2. , A continuous annealing line or a continuous annealing-alloyed hot-dip galvanizing line, recrystallization annealing, and further a galvannealed treatment, followed by temper rolling at a rolling reduction of 1.0% to obtain a cold-rolled steel sheet and one side. An alloyed hot-dip galvanized steel sheet plated on both sides at a basis weight of 45 g / m 2 was produced. In Table 2, steel sheet N
In o.3 and No.8, the hot-rolling finish temperature is lower than the Ar 3 transformation point, and the other temperatures are higher than the Ar 3 transformation point. The cooling rate of the steel sheet shown in Table 2 to 500 ° C. after the completion of soaking was 10 to 30 ° C./s.

【0054】かくして得られた冷延鋼板および合金化溶
融亜鉛めっき鋼板の引張強さおよびr値、ならびに成形
−熱処理後の引張強さの変化(成形後強度上昇熱処理
能:成形後の引張強さ上昇代ΔTS)について調査した
結果を、表3に示す。なお、引張特性は、製品板から圧
延方向にJIS 5号試験片を採取して測定した。
The tensile strength and r value of the cold-rolled steel sheet and the galvannealed steel sheet thus obtained, and changes in the tensile strength after forming and heat treatment (strength increase after forming heat treatment: tensile strength after forming) Table 3 shows the results of investigation on the rise allowance ΔTS). The tensile properties were measured by collecting JIS No. 5 test pieces from the product plate in the rolling direction.

【0055】また、r値は、製品板に15%引張予歪みを
付与したのち、3点法にて測定し、L方向(圧延方
向)、D方向(圧延方向に45°方向)およびC方向(圧
延方向に90°方向)の平均値(r値=(rL +2rD
C )/4)として求めた。さらに、成形−熱処理後の
引張強さは、製品板から圧延方向にJIS 5 号試験片を採
取し、予歪み10%を付与した後、 120℃および従来から
行われている塗装焼付相当熱処理温度である 170℃にて
20分間の熱処理を施し、引張強度を測定して求めた。ま
た、常温時効による全伸びの低下量(ΔEl)は、製品板
から圧延方向にJIS 5 号試験片を採取して測定した全伸
びと、別途、圧延方向に採取したJIS5 号試験片を用い
常温時効の促進処理( 100℃,8時間保持)を施したの
ちに測定した全伸びとの差として求めた。
The r value was measured by a three-point method after 15% tensile prestrain was applied to the product sheet. The r value was measured in the L direction (rolling direction), the D direction (45 ° direction in the rolling direction), and the C direction. (90 ° in rolling direction) average value (r value = (r L + 2r D +
r C ) / 4). Furthermore, the tensile strength after forming and heat treatment was determined by taking a JIS No. 5 test piece from the product plate in the rolling direction, applying a 10% pre-strain, and then applying 120 ° C and the conventional heat treatment temperature equivalent to paint baking. At 170 ° C
Heat treatment was performed for 20 minutes, and the tensile strength was measured and determined. The amount of decrease in total elongation (ΔEl) due to aging at room temperature was calculated using the total elongation measured by taking a JIS No. 5 test piece from the product plate in the rolling direction and the JIS No. 5 test piece separately taken in the rolling direction. It was determined as a difference from the total elongation measured after the aging treatment (holding at 100 ° C. for 8 hours).

【0056】また、得られた各鋼板について、圧延方向
に垂直な断面における結晶粒径を測定した。各鋼板の結
晶粒径は、前記したように、断面組織写真から、AST
Mに規定されるする求積法により算出した値と、同じく
切断法により求めた公称粒径(たとえば、梅本ら:熱処
理、24(1984)、334 参照)のうち、いずれか大きい方
を採用した。
In each of the obtained steel sheets, the crystal grain size in a cross section perpendicular to the rolling direction was measured. As described above, the crystal grain size of each steel sheet was determined from AST
The larger of the value calculated by the quadrature method specified in M and the nominal particle size similarly obtained by the cutting method (for example, Umemoto et al .: Heat treatment, see 24 (1984), 334) was used. .

【0057】[0057]

【表1】 [Table 1]

【0058】[0058]

【表2】 [Table 2]

【0059】[0059]

【表3】 [Table 3]

【0060】表3から明らかなように、この発明に従い
得られた冷延鋼板および合金化溶融亜鉛めっき鋼板はい
ずれも、比較例に比べて、高いr値と優れた成形後強度
上昇熱処理能が得られている。また、特に適合例のう
ち、結晶粒径が20μm 以下のものは、常温時効による伸
びの低下量もΔElで 2.0%以下と小さくなっている。 (実施例2)表1に記載の鋼記号Bのスラブを用い、表
2の鋼板No.2と同じ製造条件であるスラブ加熱温度:11
00℃、仕上熱延温度:900 ℃で熱延したのち、巻取り温
度:550 ℃でコイルに巻き取った。このコイルを、圧下
率:80%で冷間圧延した後、840 ℃で再結晶焼鈍を行っ
た。
As is clear from Table 3, both the cold-rolled steel sheet and the galvannealed steel sheet obtained according to the present invention have a higher r value and an excellent post-forming strength increasing heat treatment ability as compared with the comparative example. Have been obtained. Further, among the suitable examples, those having a crystal grain size of 20 μm or less have a small decrease in elongation due to aging at room temperature of ΔEl of 2.0% or less. (Example 2) A slab heating temperature: 11 under the same manufacturing conditions as steel sheet No. 2 in Table 2 using a slab of steel symbol B shown in Table 1.
After hot rolling at 00 ° C. and a finishing hot rolling temperature of 900 ° C., the film was wound around a coil at a winding temperature of 550 ° C. The coil was cold-rolled at a rolling reduction of 80%, and then recrystallized at 840 ° C.

【0061】得られた冷延鋼板の製品特性は、引張強さ
TS=365 MPa 、r値=1.7 であった。この冷延鋼板から
JIS 5号試験片を圧延方向に採取し、引張試験機により
10%の引張歪みを付与したのち、表4に示す熱処理条件
(温度、時間)で熱処理を実施し、再度引張り試験を行
った。表4に、歪付与前の製品の引張強さ(TS=365 MP
a)からの引張強さの上昇代(成形後強度上昇熱処理能:
ΔTS)を併記する。
The product properties of the obtained cold-rolled steel sheet include tensile strength.
TS = 365 MPa and r value = 1.7. From this cold rolled steel sheet
Take a JIS No. 5 test piece in the rolling direction and use a tensile tester
After imparting a tensile strain of 10%, heat treatment was performed under the heat treatment conditions (temperature, time) shown in Table 4, and a tensile test was performed again. Table 4 shows the tensile strength of the product before applying strain (TS = 365 MP
Increase in tensile strength from a) (strength increase after molding heat treatment:
ΔTS).

【0062】[0062]

【表4】 [Table 4]

【0063】表4に示したとおり、ΔTS(成形後の引張
強さ上昇代)は、熱処理温度が高くなるほど、また熱処
理時間が長くなるほど大きくなるが、本発明鋼板は熱処
理温度が 120℃と低温で、かつ保持時間が2分と短くて
も 82 MPa という十分な引張強さの上昇(20分熱処理時
の85%以上)が得られ、低温・短時間の熱処理でも良好
な成形後強度上昇熱処理能が得られることが分かる。
As shown in Table 4, ΔTS (increase in tensile strength after forming) increases as the heat treatment temperature increases and the heat treatment time increases, but the steel sheet of the present invention has a low heat treatment temperature of 120 ° C. Even if the holding time is as short as 2 minutes, a sufficient increase in tensile strength of 82 MPa (85% or more compared to 20 minutes heat treatment) is obtained, and even after low-temperature and short-time heat treatment, good post-mold strength increase heat treatment It can be seen that the performance can be obtained.

【0064】なお、自動車の構造部材等において、安定
した強度上昇効果を得るために、通常の温度、時間で熱
処理を行うことに何ら問題はない。また、この冷延鋼板
に対して溶融亜鉛めっきおよび加熱合金化処理を施して
得た合金化溶融亜鉛めっき鋼板についても、表4と同様
な結果が得られることが確かめられている。
It should be noted that there is no problem in performing a heat treatment at a normal temperature and time in order to obtain a stable strength increasing effect on structural members of an automobile. It has also been confirmed that the same results as in Table 4 can be obtained for an alloyed hot-dip galvanized steel sheet obtained by subjecting this cold-rolled steel sheet to hot-dip galvanizing and heat alloying treatments.

【0065】[0065]

【発明の効果】かくして、この発明によれば、プレス成
形時に優れた深絞り性を維持しつつ、プレス成形−熱処
理により引張強さが効果的に上昇する冷延鋼板および合
金化溶融亜鉛めっき鋼板を安定して得ることができ、そ
の工業的価値は極めて大きい。
Thus, according to the present invention, a cold-rolled steel sheet and an alloyed hot-dip galvanized steel sheet whose tensile strength is effectively increased by press forming-heat treatment while maintaining excellent deep drawability during press forming. Can be obtained stably, and its industrial value is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】鋼成分(N%− 14/93・Nb%− 14/27・Al%−
14/11・B%)と成形後の引張強さ上昇代(ΔTS)との
関係を示したグラフである。
Fig. 1 Steel composition (N% -14 / 93 Nb% -14 / 27Al%-
14 is a graph showing the relationship between the tensile strength rise (ΔTS) after molding and 14/11 · B%).

【図2】Nb,B複合添加鋼におけるB含有量とΔTSとの
関係を示したグラフである。
FIG. 2 is a graph showing the relationship between the B content and ΔTS in Nb, B composite added steel.

【図3】固溶Cが多い鋼B(従来鋼)と固溶Nが多い鋼
A(発明鋼)において、低温温度域での成形後の引張強
さ上昇代ΔTSの違いを比較して示したグラフである。
FIG. 3 shows a comparison of the difference in tensile strength increase ΔTS after forming in a low temperature range between steel B having a large amount of solid solution C (conventional steel) and steel A having a large amount of solid solution N (invention steel). FIG.

【図4】常温時効による伸びの低下量(ΔEl)と成形後
引張強度上昇代(ΔTS)に及ぼす、結晶粒径dと鋼成分
(N%− 14/93・Nb%− 14/27・Al%− 14/11・B%)
との影響を示したグラフである。
FIG. 4 shows the effect of crystal grain size d and steel composition (N% -14 / 93 · Nb% -14 / 27 · Al) on the decrease in elongation (ΔEl) and the increase in tensile strength after forming (ΔTS) due to normal temperature aging. %-14/11 · B%)
6 is a graph showing the effect of the above.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C21D 6/00 C21D 6/00 S 9/46 9/46 F G C22C 38/12 C22C 38/12 38/16 38/16 (72)発明者 登坂 章男 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 Fターム(参考) 4K037 EA01 EA02 EA04 EA15 EA17 EA18 EA19 EA20 EA27 EB01 EB06 EB08 EB09 FE01 FE02 FE03 FJ01 FJ04 FJ05 FJ06──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (Reference) C21D 6/00 C21D 6/00 S 9/46 9/46 FG C22C 38/12 C22C 38/12 38 / 16 38/16 (72) Inventor Akio Tosaka 1-term Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba F-term (reference) 4K037 EA01 EA02 EA04 EA15 EA17 EA18 EA19 EA20 EA27 EB01 EB06 EB08 EB01 FE01 FE02 FE03 FJ01 FJ04 FJ05 FJ06

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 質量百分率にて、 C:0.0050%未満、 Si:0.005 〜1.0 %、 Mn:0.01〜1.5 %、 P:0.1 %以下、 S:0.01%以下 Al:0.005 〜0.030 %、 N:0.005 〜0.040 %、 Nb:0.005 〜0.050 %、 B:0.0005〜0.0015% を、下記(1)、(2)式を満足する範囲において含有
し、残部は実質的にFeの組成になることを特徴とする、
成形後強度上昇熱処理能に優れた冷延鋼板。 記 N%≧0.0015 + 14/93・Nb% + 14/27・Al% + 14/11・B% …… (1) C%≦ 12/93・Nb% …… (2) ここに、N%、Nb%、Al%、B%、C%:各元素含有量
(質量%)
1. In mass percentage, C: less than 0.0050%, Si: 0.005 to 1.0%, Mn: 0.01 to 1.5%, P: 0.1% or less, S: 0.01% or less Al: 0.005 to 0.030%, N: 0.005 to 0.040%, Nb: 0.005 to 0.050%, B: 0.0005 to 0.0015% in a range satisfying the following formulas (1) and (2), with the balance being substantially Fe. And
Cold-rolled steel sheet with excellent heat treatment ability after forming. Note N% ≧ 0.0015 + 14/93 · Nb% + 14/27 · Al% + 14/11 · B% …… (1) C% ≦ 12/93 · Nb% …… (2) where N% , Nb%, Al%, B%, C%: Content of each element
(mass%)
【請求項2】 前記組成に加えてさらに、質量%で、C
u、Ni、Moのうちから選ばれた1種または2種以上を合
計で1%以下含有することを特徴とする請求項1に記載
の冷延鋼板。
2. The composition according to claim 1, further comprising:
The cold-rolled steel sheet according to claim 1, wherein one or more selected from u, Ni, and Mo are contained in a total of 1% or less.
【請求項3】 平均結晶粒径が20μm 以下であることを
特徴とする請求項1または2に記載の冷延鋼板。
3. The cold-rolled steel sheet according to claim 1, wherein the average grain size is 20 μm or less.
【請求項4】 熱処理温度:120 〜200 ℃の低温域に
て、成形後の引張強さ上昇代ΔTS:60 MPa以上である
ことを特徴とする請求項1ないし3のいずれかに記載の
冷延鋼板。
4. The cooling method according to claim 1, wherein a heat treatment temperature: in a low temperature range of 120 to 200 ° C., a tensile strength increase ΔTS after forming: 60 MPa or more. Rolled steel sheet.
【請求項5】 請求項1ないし4のいずれかに記載の冷
延鋼板の表面に、電気めっき層、溶融めっき層、あるい
は合金化溶融めっき層を備えてなることを特徴とする、
成形後強度上昇熱処理能に優れためっき鋼板。
5. The cold-rolled steel sheet according to any one of claims 1 to 4, further comprising an electroplating layer, a hot-dip coating layer, or an alloyed hot-dip layer.
Plated steel sheet with excellent heat treatment ability to increase strength after forming.
【請求項6】 熱処理温度:120 〜200 ℃の低温域に
て、成形後の引張強さ上昇代ΔTS:60 MPa以上である
ことを特徴とする請求項5に記載のめっき鋼板。
6. The plated steel sheet according to claim 5, wherein the heat treatment temperature: in a low temperature range of 120 to 200 ° C., a tensile strength increase ΔTS after forming: 60 MPa or more.
【請求項7】 質量百分率にて、 C:0.0050%未満、 Si:0.005 〜1.0 %、 Mn:0.01〜1.5 %、 P:0.1 %以下、 S:0.01%以下 Al:0.005 〜0.030 %、 N:0.005 〜0.040 %、 Nb:0.005 〜0.050 %、 B:0.0005〜0.0015% を、下記(1)、(2)式を満足する範囲において含有
し、あるいはさらに、Cu、Ni、Moのうちから選ばれた1
種または2種以上を合計で1%以下含有し、残部は実質
的にFeの組成になる鋼片を、熱間圧延し、その際、仕上
圧延終了後直ちに冷却を開始して巻取り温度:400 〜80
0 ℃で巻取り、その後圧下率:60〜95%の冷間圧延を施
したのち、 650〜900 ℃の温度で再結晶焼鈍を施すこと
を特徴とする、成形後強度上昇熱処理能に優れた冷延鋼
板の製造方法。 記 N%≧0.0015 + 14/93・Nb% + 14/27・Al% + 14/11・B% …… (1) C%≦ 12/93・Nb% …… (2) ここに、N%、Nb%、Al%、B%、C%:各元素含有量
(質量%)
7. In mass percentage, C: less than 0.0050%, Si: 0.005 to 1.0%, Mn: 0.01 to 1.5%, P: 0.1% or less, S: 0.01% or less Al: 0.005 to 0.030%, N: 0.005 to 0.040%, Nb: 0.005 to 0.050%, B: 0.0005 to 0.0015% in a range satisfying the following formulas (1) and (2), or further selected from Cu, Ni, and Mo. One
A steel slab containing 1% or less in total of two or more species, and the remainder having a substantially Fe composition, is hot-rolled. At that time, cooling is started immediately after finishing rolling, and a winding temperature: 400 to 80
Winding at 0 ° C, then cold rolling at a reduction rate of 60 to 95%, and then recrystallization annealing at a temperature of 650 to 900 ° C. Manufacturing method of cold rolled steel sheet. Note N% ≧ 0.0015 + 14/93 · Nb% + 14/27 · Al% + 14/11 · B% …… (1) C% ≦ 12/93 · Nb% …… (2) where N% , Nb%, Al%, B%, C%: Content of each element
(mass%)
【請求項8】 前記再結晶焼鈍における昇温過程におい
て、500 ℃から再結晶温度までの温度域を1〜20℃/sの
速度で昇温することを特徴とする請求項7に記載の冷延
鋼板の製造方法。
8. The cooling method according to claim 7, wherein in the temperature raising step in said recrystallization annealing, a temperature range from 500 ° C. to a recrystallization temperature is raised at a rate of 1 to 20 ° C./s. Manufacturing method of rolled steel sheet.
【請求項9】 質量百分率にて、 C:0.0050%未満、 Si:0.005 〜1.0 %、 Mn:0.01〜1.5 %、 P:0.1 %以下、 S:0.01%以下 Al:0.005 〜0.030 %、 N:0.005 〜0.040 %、 Nb:0.005 〜0.050 %、 B:0.0005〜0.0015% を、下記(1)、(2)式を満足する範囲において含有
し、あるいはさらに、Cu、Ni、Moのうちから選ばれた1
種または2種以上を合計で1%以下含有し、残部は実質
的にFeの組成になる鋼片を、熱間圧延し、その際、仕上
圧延終了後直ちに冷却を開始して巻取り温度:400 〜80
0 ℃で巻取り、その後圧下率:60〜95%の冷間圧延を施
したのち、 650〜900 ℃の温度で再結晶焼鈍を施し、つ
いで、電気めっき処理または溶融めっき処理を施し、あ
るいはさらに加熱合金化処理を施すことを特徴とする成
形後強度上昇熱処理能に優れためっき鋼板の製造方法。 記 N%≧0.0015 + 14/93・Nb% + 14/27・Al% + 14/11・B% …… (1) C%≦ 12/93・Nb% …… (2) ここに、N%、Nb%、Al%、B%、C%:各元素含有量
(質量%)
9. In terms of mass percentage, C: less than 0.0050%, Si: 0.005 to 1.0%, Mn: 0.01 to 1.5%, P: 0.1% or less, S: 0.01% or less Al: 0.005 to 0.030%, N: 0.005 to 0.040%, Nb: 0.005 to 0.050%, B: 0.0005 to 0.0015% in a range satisfying the following formulas (1) and (2), or further selected from Cu, Ni, and Mo. One
A steel slab containing 1% or less in total of two or more species, and the remainder having a substantially Fe composition, is hot-rolled. At that time, cooling is started immediately after finishing rolling, and a winding temperature: 400 to 80
Winding at 0 ° C, then cold rolling at a reduction rate of 60 to 95%, then recrystallization annealing at a temperature of 650 to 900 ° C, and then electroplating or hot dip plating, or A method for producing a plated steel sheet having excellent heat treatment ability after forming, characterized by performing a heat alloying treatment. Note N% ≧ 0.0015 + 14/93 · Nb% + 14/27 · Al% + 14/11 · B% …… (1) C% ≦ 12/93 · Nb% …… (2) where N% , Nb%, Al%, B%, C%: Content of each element
(mass%)
【請求項10】 前記再結晶焼鈍における昇温過程にお
いて、500 ℃から再結晶温度までの温度域を1〜20℃/s
の速度で昇温することを特徴とする請求項9に記載のめ
っき鋼板の製造方法。
10. A temperature range from 500.degree. C. to a recrystallization temperature of 1 to 20.degree.
The method for producing a plated steel sheet according to claim 9, wherein the temperature is raised at a rate of:
JP2001057153A 2000-03-01 2001-03-01 Cold-rolled steel sheet, plated steel sheet excellent in heat-treating ability to increase strength after forming, and manufacturing method thereof Expired - Fee Related JP4501290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001057153A JP4501290B2 (en) 2000-03-01 2001-03-01 Cold-rolled steel sheet, plated steel sheet excellent in heat-treating ability to increase strength after forming, and manufacturing method thereof

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2000055146 2000-03-01
JP2000193717 2000-06-28
JP2000-193717 2000-06-28
JP2000-55146 2000-06-28
JP2001057153A JP4501290B2 (en) 2000-03-01 2001-03-01 Cold-rolled steel sheet, plated steel sheet excellent in heat-treating ability to increase strength after forming, and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002080932A true JP2002080932A (en) 2002-03-22
JP4501290B2 JP4501290B2 (en) 2010-07-14

Family

ID=27342547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001057153A Expired - Fee Related JP4501290B2 (en) 2000-03-01 2001-03-01 Cold-rolled steel sheet, plated steel sheet excellent in heat-treating ability to increase strength after forming, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4501290B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101143139B1 (en) * 2009-07-10 2012-05-08 주식회사 포스코 Cold Rolled Steel Sheet and Hot-dip Zinc Plated Steel Sheet with Superior Press Formability and Bake Hardenability and Method for Manufacturing the Steel Sheets
CN111850395A (en) * 2020-06-30 2020-10-30 江苏省沙钢钢铁研究院有限公司 N-reinforced high-strength anti-seismic reinforcing steel bar and production method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06104862B2 (en) * 1989-03-06 1994-12-21 川崎製鉄株式会社 Manufacturing method of cold-rolled steel sheet for work excellent in bake hardenability and non-aging at room temperature
JPH0826410B2 (en) * 1991-01-07 1996-03-13 日本鋼管株式会社 Method for producing high strength cold rolled steel sheet for deep drawing having age hardening
JPH06179922A (en) * 1992-12-12 1994-06-28 Sumitomo Metal Ind Ltd Production of high tensile strength steel sheet for deep drawing
JP3404798B2 (en) * 1993-05-11 2003-05-12 住友金属工業株式会社 Method for producing high-strength steel sheet having bake hardenability
JPH0726322A (en) * 1993-07-08 1995-01-27 Nippon Steel Corp Production of high strength press formed part
JPH0726320A (en) * 1993-07-08 1995-01-27 Nippon Steel Corp Production of high strength press formed part

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101143139B1 (en) * 2009-07-10 2012-05-08 주식회사 포스코 Cold Rolled Steel Sheet and Hot-dip Zinc Plated Steel Sheet with Superior Press Formability and Bake Hardenability and Method for Manufacturing the Steel Sheets
CN111850395A (en) * 2020-06-30 2020-10-30 江苏省沙钢钢铁研究院有限公司 N-reinforced high-strength anti-seismic reinforcing steel bar and production method thereof

Also Published As

Publication number Publication date
JP4501290B2 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
JP4730056B2 (en) Manufacturing method of high-strength cold-rolled steel sheet with excellent stretch flange formability
KR101218448B1 (en) High-strength hot-dip galvanized steel sheet with excellent processability and process for producing the same
KR100958019B1 (en) Dual phase steel sheet and method for manufacturing the same
JP5310919B2 (en) Method for producing high-strength cold-rolled steel sheets with excellent aging resistance and seizure curability
WO2013114850A1 (en) Hot-dip galvanized steel sheet and production method therefor
JP4507851B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
WO2011118421A1 (en) Method for producing high-strength steel plate having superior deep drawing characteristics
JP2003221623A (en) Method for manufacturing high-strength cold-rolled steel sheet and hot-dip galvanized high-strength steel sheet
KR20160147869A (en) High-strength hot-dip galvanized steel sheet, and method for manufacturing high-strength alloyed hot-dip galvanized steel sheet
JP4608822B2 (en) Highly ductile hot-dip galvanized steel sheet excellent in press formability and strain age hardening characteristics and method for producing the same
JP4752522B2 (en) Manufacturing method of high strength cold-rolled steel sheet for deep drawing
JP5993570B2 (en) Manufacturing method of high-strength cold-rolled steel sheet, hot-dip cold-rolled steel sheet, and cold-rolled steel sheet with excellent bake hardenability
JP5659604B2 (en) High strength steel plate and manufacturing method thereof
JP5151390B2 (en) High-tensile cold-rolled steel sheet, high-tensile galvanized steel sheet, and methods for producing them
JP3840901B2 (en) Cold-rolled steel sheet, plated steel sheet, and method for producing cold-rolled steel sheet having excellent strength increasing ability by heat treatment after forming
JP5310920B2 (en) High strength cold-rolled steel sheet with excellent aging resistance and seizure hardening
JP6947327B2 (en) High-strength steel sheets, high-strength members and their manufacturing methods
JP6780804B1 (en) High-strength steel sheet and its manufacturing method
JP4826694B2 (en) Method for improving fatigue resistance of thin steel sheet
JP4415579B2 (en) Method for producing hot-dip galvanized steel sheet
JP3925064B2 (en) Hot-dip galvanized steel sheet excellent in press formability and strain age hardening characteristics and method for producing the same
JP4501290B2 (en) Cold-rolled steel sheet, plated steel sheet excellent in heat-treating ability to increase strength after forming, and manufacturing method thereof
JP4858232B2 (en) High-tensile cold-rolled steel sheet, high-tensile galvanized steel sheet, and methods for producing them
JP2001335887A (en) Cold rolled steel sheet for deep drawing, excellent in strain aging hardenability, and manufacturing method
CN114945690B (en) Steel sheet and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100412

R150 Certificate of patent or registration of utility model

Ref document number: 4501290

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees