JPH06104862B2 - Manufacturing method of cold-rolled steel sheet for work excellent in bake hardenability and non-aging at room temperature - Google Patents

Manufacturing method of cold-rolled steel sheet for work excellent in bake hardenability and non-aging at room temperature

Info

Publication number
JPH06104862B2
JPH06104862B2 JP1052151A JP5215189A JPH06104862B2 JP H06104862 B2 JPH06104862 B2 JP H06104862B2 JP 1052151 A JP1052151 A JP 1052151A JP 5215189 A JP5215189 A JP 5215189A JP H06104862 B2 JPH06104862 B2 JP H06104862B2
Authority
JP
Japan
Prior art keywords
transformation point
less
rolling
temperature
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1052151A
Other languages
Japanese (ja)
Other versions
JPH02232316A (en
Inventor
岡田  進
佐藤  進
俊之 加藤
英夫 阿部
Original Assignee
川崎製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎製鉄株式会社 filed Critical 川崎製鉄株式会社
Priority to JP1052151A priority Critical patent/JPH06104862B2/en
Publication of JPH02232316A publication Critical patent/JPH02232316A/en
Publication of JPH06104862B2 publication Critical patent/JPH06104862B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、自動車用外板などのごとく優れた深絞り性
をそなえるとともに加工後を終えた成品について高い塑
性変形抵抗が求められる、冷延鋼材の製造方法に関し、
特に高い焼付け硬化性(BH性)及び常温保存における耐
時効性を兼ね備えた加工用冷延鋼板の製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention provides a cold rolled product that is required to have a high plastic deformation resistance for a finished product that has excellent deep drawability such as an automobile outer plate. Regarding the manufacturing method of steel materials,
In particular, the present invention relates to a method for producing a cold rolled steel sheet for working, which has both high bake hardenability (BH property) and aging resistance during storage at room temperature.

(従来の技術) 外板に用いるプレス成形品においては、物理的力による
外傷は大適であり、このような製品の製造業者はできれ
ば外傷の生じにくい鋼板の使用を望むものである。
(Prior Art) In a press-formed product used for an outer plate, external damage due to physical force is most suitable, and the manufacturer of such a product desires to use a steel plate that is less likely to cause external damage, if possible.

衝突によるへこみ傷のつきにくさは耐デント性と呼ばれ
ているが、このような特性は一般に鋼板の降伏応力を上
げることによって得ることができる。
The resistance to dent damage due to collision is called dent resistance, and such characteristics can be generally obtained by increasing the yield stress of the steel sheet.

しかし一方加工に際しては加工時に要するエネルギー及
び形状の正確さの観点から、低降伏応力化が望まれてい
る。
On the other hand, at the time of working, a lower yield stress is desired from the viewpoint of energy required for working and accuracy of shape.

このように相反する要求を解決する鋼板として、通常10
0〜200℃程度の高温保持を含む塗装処理を、加工後に施
すと降伏応力が上昇するBH(Bake Hardening)鋼板があ
る。この鋼板は通常固溶C又は固溶N、特に固溶Cを鋼
中に存在させることにより、塗装焼付け中の高温で固溶
C等が、加工で生じた可動転位に拡散して可動転位のモ
ビリティを低下させることを利用して硬化させるもので
ある。
As a steel plate that solves these conflicting requirements, 10
There is a BH (Bake Hardening) steel sheet in which the yield stress increases when a coating process including holding at a high temperature of about 0 to 200 ° C is applied after processing. In this steel sheet, solid solution C or solid solution N, especially solid solution C, is present in the steel, so that the solid solution C or the like diffuses into the mobile dislocations generated by the working at a high temperature during coating baking, and It cures by taking advantage of the reduced mobility.

上記の硬化機構の問題点は、加工前に既に一部の転位が
固溶成分により固定されることから、加工に際して降伏
点伸びによるストレッチャーストレインと呼ばれる波状
の表面欠陥を生じることである。現在では、焼鈍後の調
質圧延と呼ばれる形状矯正のための極軽圧下冷間圧延を
利用して、可動転位を固溶成分から引き離しかつ表面に
歪集中部を生ぜしめ固溶C等をトラップして可動転位へ
の拡散を防ぐことにより、このような不都合の防止を図
っている。
The problem with the above-mentioned hardening mechanism is that some dislocations are already fixed by the solid solution component before processing, and during processing, wavy surface defects called stretcher strains due to elongation at the yield point occur. At present, by using ultra-light reduction cold rolling for shape correction called temper rolling after annealing, movable dislocations are separated from solid solution components and strain concentrated parts are generated on the surface to trap solid solution C and the like. Therefore, such inconvenience is prevented by preventing the diffusion into mobile dislocations.

この手段は短期的には有効であるが、時効硬化現象の進
行自体を完全に抑えるものではなく、特にBH量が下降伏
点で3kgf/mm以上の高BH鋼板の場合に顕著であるが、
加工前でも長期間の室温保存又は表面処理ライン等にお
ける最高550℃程度の高温処理などで再び固溶C等が容
易に可動転位に拡散してしまう。したがってこれらの鋼
板の使用条件は限られたものになってしまうのが現状で
ある。
Although this method is effective in the short term, it does not completely suppress the progress of the age hardening phenomenon itself, and it is remarkable especially in the case of high BH steel plate with a BH amount of 3 kgf / mm 2 or more at the falling yield point. ,
Even before processing, solid solution C or the like easily diffuses again to the mobile dislocations by long-term storage at room temperature or high-temperature treatment at a maximum of about 550 ° C. in a surface treatment line. Therefore, at present, the usage conditions of these steel sheets are limited.

これに対し本出願人らは既に特公昭61−12008号公報な
どで全く新しい方式の高BH−非時効型鋼板を提案してい
る。
On the other hand, the applicants have already proposed a completely new type of high BH-non-aging type steel sheet in Japanese Patent Publication No. 61-12008.

すなわち、Nb,Bを共同添加させた極低炭素鋼板をAc
態点以上のα相−γ相共存温度域まで加熱し急冷する
と、アシキュラ−フェライト+フェライトの2相組織と
なる。この組織は固溶Cを含み高いBH性を有するが、歪
の大きい、言い換えれば転移の密集したアシキュラ−フ
ェライトにほとんどの固溶Cがトラップされているた
め、焼鈍後も降伏点伸びをほとんど有しない。
That is, when an ultra-low carbon steel sheet to which Nb and B are jointly added is heated to the α phase-γ phase coexistence temperature region of Ac 1 transformation point or higher and rapidly cooled, a two-phase structure of acicular-ferrite + ferrite is formed. This structure has a high BH property containing solid solution C, but since most of the solid solution C is trapped in acicular-ferrite having a large strain, that is, a dense transition, there is almost no yield point elongation even after annealing. do not do.

しかしながら本発明者らの知見によれば、かかる鋼板と
ても常温における長期の時効を受けると降伏点伸びを生
じてしまうという欠点があった。
However, according to the knowledge of the present inventors, there is a drawback that such a steel sheet causes a yield point elongation when it is aged at room temperature for a long period of time.

また上掲特公昭61−12008号公報などに示された鋼板
は、r値、伸び値などの加工性においても優れたもので
あったが、焼鈍温度の上昇とともにこれらの加工特性が
急激に劣化するため、事実上最適焼鈍温度がAc変態点
直上の10℃程度に限定され、安定した材質を工場生産で
得るのが困難であった。
The steel sheets disclosed in Japanese Patent Publication No. 61-12008, etc., were excellent in workability such as r value and elongation value, but their workability deteriorated sharply as the annealing temperature increased. Therefore, the optimum annealing temperature is practically limited to about 10 ° C. just above the Ac 1 transformation point, and it is difficult to obtain a stable material in factory production.

(発明が解決しようとする課題) この発明の目的とするところは、自動車用外板用などの
冷延鋼板の製造において、加工性に優れかつ高い焼付け
硬化性(BH性)を有しながら、加工前の常温長期間保存
並びに加工を含まない再結晶温度以下の昇温などに対す
る耐時効性(この明細書で常温耐時効性という)を兼ね
備えた加工用冷延鋼板の安定した製造方法を提案するこ
とである。
(Problems to be solved by the invention) The object of the present invention is to produce a cold-rolled steel sheet for automobile outer plates, etc., while having excellent workability and high bake hardenability (BH property), Proposal of a stable manufacturing method for cold-rolled steel sheet for working that has long-term storage at room temperature before working and aging resistance to temperature rise below recrystallization temperature without processing (this room temperature aging resistance) It is to be.

(課題を解決するための手段) この発明は、C:0.01wt%(以下単に%で示す)以下、S
i:0.1%以下、Mn:0.2〜2.0%、Nb:0.005〜0.1%、B:0.0
005〜0.01%、Al:0.5%以下及びN:0.02%以下を含有
し、かつ B−(11/14N−11/27 Al)≧0.0005(%) …(1) を満足し、残部はFe及び不可避的不純物からなる組成の
鋼を素材として熱間圧延を行い、熱延仕上温度をAr
態点〜900℃の範囲とし、この熱間圧延で得られた熱延
板に冷間圧延を施し、この冷間圧延に引き続きAc変態
点〜Ac変態点+90℃の温度域まで加熱して少なくとも
Ar変態点+100℃〜Ar変態点−100℃の温度範囲は冷
却速度7℃/s以上で冷却する熱処理を行った後、圧下率
0.2〜5%の調質圧延を施すことを特徴とする焼付け硬
化性及び常温非時効性に優れた加工用冷延鋼板の製造方
法(第1発明)、及び C:0.01%以下、Si:0.1%以下、Mn:0.2〜2.0%、Nb:0.00
5〜0.1%、B:0.0005〜0.01%、P:0.03〜0.15%、Al:0.5
%以下及びN:0.02%以下を含有し、かつ B−(11/14N−11/27 Al)≧0.0005(%) …(1) を満足し、残部はFe及び不可避的不純物からなる組成の
鋼を素材として熱間圧延を行い、熱延仕上温度をAr
態点〜900℃の範囲とし、この熱間圧延で得られた熱延
板に冷間圧延を施し、この冷間圧延に引き続きAc変態
点〜Ac変態点+90℃の温度域まで加熱して少なくとも
Ar変態点+100℃〜Ar変態点−100℃の温度範囲は冷
却速度7℃/s以上で冷却する熱処理を行った後、圧下率
0.2〜5%の調質圧延を施すことを特徴とする焼付け硬
化性及び常温非時効性に優れた加工用冷延鋼板の製造方
法(第2発明)、及び C:0.0005〜0.01%、Si:0.1%以下、Mn:0.2〜2.0%、Ti:
0.005〜0.05%、Nb:0.005〜0.1%、B:0.0005〜0.01%、
Al:0.5%以下S:0.05%以下及びN:0.02%以下を含有し、
かつ B−(11/14N−11/27 Al−11/48Ti)≧0.0005(%) …
(1)′ C−(12/48Ti−12/32S−12/14N)≧0.0005(%) …
(2) を満足し、残部はFe及び不可避的不純物からなる組成の
鋼を素材として熱間圧延を行い、熱延仕上温度をAr
態点〜900℃の範囲とし、この熱間圧延で得られた熱延
板に冷間圧延を施し、この冷間圧延に引き続きAc変態
点〜Ac変態点+90℃の温度域まで加熱して少なくとも
Ar変態点+100℃〜Ar変態点−100℃の温度範囲は冷
却速度7℃/s以上で冷却する熱処理を行った後、圧下率
0.2〜5%の調質圧延を施すことを特徴とする焼付け硬
化性及び常温非時効性に優れた加工用冷延鋼板の製造方
法(第3発明)及び、 C:0.0005〜0.01%、Si:0.1%以下、Mn:0.2〜2.0%、Ti:
0.005〜0.05%、Nb:0.005〜0.1%、B:0.0005〜0.01%、
P:0.03〜0.15%、Al:0.5%以下、S:0.05%以下及びN:0.
02%以下を含有し、かつ B−(11/14N−11/27Al−11/48Ti)≧0.0005(%) …
(1)′ C−(12/48Ti−12/32S−12/14N)≧0.0005(%) …
(2) を満足し、残部はFe及び不可避的不純物からなる組成の
鋼を素材として熱間圧延を行い、熱延仕上温度をAr
態点〜900℃の範囲とし、この熱間圧延で得られた熱延
板に冷間圧延を施し、この冷間圧延に引き続きAc変態
点〜Ac変態点+90℃の温度域まで加熱して少なくとも
Ar変態点+100℃〜Ar1変態点−100℃の温度範囲は冷
却速度7℃/s以上で冷却する熱処理を行った後、圧下率
0.2〜5%の調質圧延を施すことを特徴とする焼付け硬
化性及び常温非時効性に優れた加工用冷延鋼板の製造方
法(第4発明)である。
(Means for Solving the Problems) The present invention is C: 0.01 wt% (hereinafter simply referred to as%), S
i: 0.1% or less, Mn: 0.2 to 2.0%, Nb: 0.005 to 0.1%, B: 0.0
005 to 0.01%, Al: 0.5% or less and N: 0.02% or less, and B- (11 / 14N-11 / 27 Al) ≧ 0.0005 (%) (1) is satisfied, and the balance is Fe and Hot rolling is performed using steel with a composition of unavoidable impurities as the raw material, the hot rolling finishing temperature is set to the range of Ar 3 transformation point to 900 ° C, and the hot rolled sheet obtained by this hot rolling is cold rolled. Following this cold rolling, heating to a temperature range of Ac 1 transformation point to Ac 1 transformation point + 90 ° C at least
In the temperature range of Ar 1 transformation point + 100 ° C to Ar 1 transformation point -100 ° C, the rolling reduction is performed after heat treatment for cooling at a cooling rate of 7 ° C / s or more.
Method for producing cold-rolled steel sheet for processing excellent in bake hardenability and non-aging at room temperature (first invention) characterized by subjecting to 0.2-5% temper rolling, and C: 0.01% or less, Si: 0.1 % Or less, Mn: 0.2 to 2.0%, Nb: 0.00
5 to 0.1%, B: 0.0005 to 0.01%, P: 0.03 to 0.15%, Al: 0.5
% Or less and N: 0.02% or less, and satisfying B- (11 / 14N-11 / 27 Al) ≥ 0.0005 (%) (1) with the balance being Fe and inevitable impurities. Is used as a raw material, the hot rolling finishing temperature is set to the range of Ar 3 transformation point to 900 ° C., the hot rolled sheet obtained by this hot rolling is subjected to cold rolling, and this cold rolling is followed by Ac At least 1 transformation point-Ac 1 transformation point + 90 ℃
In the temperature range of Ar 1 transformation point + 100 ° C to Ar 1 transformation point -100 ° C, the rolling reduction is performed after heat treatment for cooling at a cooling rate of 7 ° C / s or more.
Method for producing cold rolled steel sheet for working excellent in bake hardenability and non-aging at room temperature (second invention), characterized by performing temper rolling of 0.2 to 5%, and C: 0.0005 to 0.01%, Si: 0.1% or less, Mn: 0.2 to 2.0%, Ti:
0.005-0.05%, Nb: 0.005-0.1%, B: 0.0005-0.01%,
Al: 0.5% or less S: 0.05% or less and N: 0.02% or less,
And B- (11 / 14N-11 / 27 Al-11 / 48Ti) ≧ 0.0005 (%)…
(1) 'C- (12 / 48Ti-12 / 32S-12 / 14N) ≧ 0.0005 (%)
(2) is satisfied, and the balance is made of steel having a composition consisting of Fe and inevitable impurities, hot-rolled, and the hot-rolling finishing temperature is set in the range of Ar 3 transformation point to 900 ° C. Cold rolling is performed on the hot-rolled sheet thus obtained, and subsequently to this cold rolling, at least the temperature range of Ac 1 transformation point to Ac 1 transformation point + 90 ° C. is heated to at least
In the temperature range of Ar 1 transformation point + 100 ° C to Ar 1 transformation point -100 ° C, the rolling reduction is performed after heat treatment for cooling at a cooling rate of 7 ° C / s or more.
Method for producing cold-rolled steel sheet for working excellent in bake hardenability and non-aging at room temperature (third invention) characterized by subjecting to 0.2-5% temper rolling, and C: 0.0005-0.01%, Si: 0.1% or less, Mn: 0.2 to 2.0%, Ti:
0.005-0.05%, Nb: 0.005-0.1%, B: 0.0005-0.01%,
P: 0.03-0.15%, Al: 0.5% or less, S: 0.05% or less and N: 0.
02% or less and B- (11 / 14N-11 / 27Al-11 / 48Ti) ≧ 0.0005 (%) ...
(1) 'C- (12 / 48Ti-12 / 32S-12 / 14N) ≧ 0.0005 (%)
(2) is satisfied, and the balance is made of steel having a composition consisting of Fe and inevitable impurities, hot-rolled, and the hot-rolling finishing temperature is set in the range of Ar 3 transformation point to 900 ° C. Cold rolling is performed on the hot-rolled sheet thus obtained, and subsequently to this cold rolling, at least the temperature range of Ac 1 transformation point to Ac 1 transformation point + 90 ° C. is heated to at least
In the temperature range of Ar 1 transformation point + 100 ° C to Ar 1 transformation point -100 ° C, the rolling reduction is performed after heat treatment for cooling at a cooling rate of 7 ° C / s or more.
A method for producing a cold-rolled steel sheet for working excellent in bake hardenability and non-aging at room temperature (fourth invention), characterized by performing temper rolling of 0.2 to 5%.

ここに上記の熱処理は、工業的生産に当たっては連続焼
鈍工程として行われる。
The above heat treatment is performed as a continuous annealing step in industrial production.

(作用) この発明において重要な点は、結晶組織の改善と調質圧
延の組み合わせにより、従来に勝る高BH性及び常温非時
効性の両立を実現した点である。
(Function) An important point in the present invention is that by combining the improvement of the crystal structure and the temper rolling, it is possible to realize both high BH property and non-aging at room temperature which are superior to the conventional ones.

この効果について以下の実験結果により示す。This effect will be shown by the following experimental results.

鋼A(重量%(以下同様)でC:0.0029%、Si:0.01%、M
n:0.55%、Nb:0.010%、B:0.0015%、P:0.024%、Al:0.
056%、S:0.008%、N:0.0031%)及び鋼B(C:0.0040
%、Si:0.01%、Mn:0.22%、Nb:0.020%、P:0.045%、A
l:0.050%、S:0.012%、N:0.0027%)の2種の成分にな
る鋼をそれぞれ連続鋳造−熱間圧延−冷間圧延−連続焼
鈍の工程を経て板厚0.8mmの冷延鋼板とした。
Steel A (% by weight (same below) C: 0.0029%, Si: 0.01%, M
n: 0.55%, Nb: 0.010%, B: 0.0015%, P: 0.024%, Al: 0.
056%, S: 0.008%, N: 0.0031%) and Steel B (C: 0.0040)
%, Si: 0.01%, Mn: 0.22%, Nb: 0.020%, P: 0.045%, A
(L: 0.050%, S: 0.012%, N: 0.0027%), each of which is composed of two components: continuous casting-hot rolling-cold rolling-continuous annealing. And

鋼Aはこの発明の成分範囲の鋼であり、スラブ加熱温度
は1200℃、Ar変態点830℃に対して熱延終了温度は860
℃、熱延板板厚は3.5mm、熱延板巻取り温度は550℃、ま
たAc変態点910℃に対して焼鈍温度は940℃、Ar変態
点820℃に対して920℃から720℃までの平均冷却速度は2
5℃/sであった。
Steel A is a steel in the composition range of the present invention, the slab heating temperature is 1200 ° C, the Ar 3 transformation point is 830 ° C, and the hot rolling end temperature is 860.
℃, hot-rolled sheet thickness 3.5mm, hot-rolled sheet winding temperature 550 ℃, Ac 1 transformation point 910 ℃, annealing temperature 940 ℃, Ar 1 transformation point 820 ℃ 920 ℃ to 720 ℃ Average cooling rate up to ℃ 2
It was 5 ° C / s.

一方鋼Bは従来型のBH鋼板において高BH性となるように
製造条件及び成分を選んだもので、スラブ加熱温度は12
00℃、Ar変態点840℃に対して熱延終了温度900℃、熱
延板板厚3.5mm、熱延板巻取り温度700℃、またAc変態
点900℃に対して焼鈍温度は860℃、焼鈍温度(830℃)
から600℃までの平均冷却速度は25℃/sであった。
On the other hand, Steel B is a conventional BH steel sheet with the manufacturing conditions and components selected to have high BH properties, and the slab heating temperature is 12
00 ℃, Ar 3 transformation point 840 ℃, hot rolling end temperature 900 ℃, hot rolled sheet thickness 3.5mm, hot rolled sheet winding temperature 700 ℃, Ac 1 transformation point 900 ℃ annealing temperature 860 ℃, annealing temperature (830 ℃)
The average cooling rate from 1 to 600 ℃ was 25 ℃ / s.

次いでA鋼板、B鋼板共に調質圧延(スキンパス)を0
(無し)〜1.5%施した。
Next, temper rolling (skin pass) for both A and B steel sheets is 0
(None) -1.5% applied.

これらの鋼板につきBH性を調べたところ調質圧延の有無
にかかわらずA鋼のBH量は5.5kgf/mm、B鋼のBH量は
3.5kgf/mmであった。なおBH量については第4図に示
すごとく公称歪2%予歪時の公称応力と、予歪後170℃
×20分の時効処理を施した後の下降伏点応力(公称)の
差をとった。
When the BH properties of these steel sheets were examined, the BH content of A steel was 5.5 kgf / mm 2 , and the BH content of B steel was
It was 3.5 kgf / mm 2 . As for BH content, as shown in Fig. 4, nominal stress at 2% prestrain and 170 ° C after prestrain
The difference of the yield stress (nominal) after the aging treatment for 20 minutes was taken.

第1図にこれらの鋼板の時効性に及ぼす調質圧延の効果
を示す。
Figure 1 shows the effect of temper rolling on the aging properties of these steel sheets.

同図から明らかなようにアシキュラ−フェライト+フェ
ライトの2相組織となったA鋼の、0.2%以上調質圧延
材は30℃、6ヶ月相当の時効処理を施してもほとんど降
伏点伸びを生じず、0.5%以上の調質圧延材に至っては
時効処理を施しても全く降伏点伸びを生じない。しかし
従来の製法である調質圧延なしでは、時効処理で降伏点
伸びを有するようになる。一方フェライト単相の従来型
高BH鋼板Bは、調質圧延の有無にかかわらず、常温時効
性を示し降伏点伸びが生じてしまう。
As can be seen from the figure, 0.2% or more temper-rolled material of A steel, which has a two-phase structure of acicular-ferrite + ferrite, shows almost all yield point elongation even after aging treatment at 30 ° C for 6 months. In the case of 0.5% or more temper-rolled material, yield point elongation does not occur at all even after aging treatment. However, without temper rolling, which is a conventional manufacturing method, aging treatment results in elongation at yield. On the other hand, the conventional high BH steel plate B having a single ferrite phase exhibits normal temperature aging regardless of presence or absence of temper rolling, and yield point elongation occurs.

A,B両鋼について調質圧延なし、及び1%調質圧延(ス
キンパス)の各2種類の鋼板を用意し、100℃時効処理
による時効性、すなわち降伏点伸びの発生状況を調べ
た。これらの結果を第2図に示す。
Two types of steel sheets were prepared for each of the A and B steels, one without temper rolling and the other with 1% temper rolling (skin pass), and the aging by 100 ° C. aging treatment, that is, the occurrence of yield point elongation was investigated. These results are shown in FIG.

同図から明らかなようにA鋼調質圧延材は30℃、6ヶ月
相当の時効処理を施しても降伏点伸びを生じない。しか
し調質圧延なしでは焼鈍直後こそ降伏点伸びはないもの
の、時間とともに降伏点伸びを生じるようになることが
わかる。一方B鋼は、調質圧延なしではもとから降伏点
伸びが高く外板向け加工用鋼板としては使い物にならな
い。また調質圧延を施して降伏点伸びを一時的に抑えて
も、すぐに時効してしまうことがわかる。
As is clear from the figure, the temper-rolled material of steel A does not cause elongation at yield even if it is aged at 30 ° C for 6 months. However, it is understood that without temper rolling, the yield point elongation does not occur immediately after annealing, but the yield point elongation begins to occur with time. On the other hand, B steel has a high yield point elongation without temper rolling and cannot be used as a steel sheet for forming outer panels. In addition, it can be seen that even if temper rolling is applied to temporarily suppress the elongation at yield point, it is aged immediately.

このようにこの発明の方法による鋼板は、高いBH性を有
しながら常温非時効性に優れている。この理由は次のよ
うに推定される。
As described above, the steel sheet produced by the method of the present invention has a high BH property and an excellent non-aging property at room temperature. The reason for this is presumed as follows.

前述のようにNb,Bを共同添加した極低炭素鋼板は、Ac
変態点以上のα相−γ相共存温度域まで加熱し急冷する
とアシキュラーフェライト+フェライトの2相組織とな
る。この組織は固溶Cを含み高いBH性を有するが、歪の
大きい、言い換えれば転位の密集したアシキュラーフェ
ライトにほとんどの固溶Cがトラップされているため、
焼鈍後も降伏点伸びをほとんど有しない。
As mentioned above, the ultra-low carbon steel sheet in which Nb and B are jointly added is Ac 1
When heated to the α phase-γ phase coexisting temperature range above the transformation point and rapidly cooled, a two-phase structure of acicular ferrite + ferrite is formed. This structure contains solid C and has a high BH property, but most of the solid C is trapped in acicular ferrite having a large strain, that is, dense dislocations.
After annealing, it has almost no yield point elongation.

このような鋼板には調質圧延による降伏点伸び防止は不
要であると思われていたが、発明者らはこのような組織
であっても固溶Cが軟質であったフェライト相中の可動
転位にも時間とともに拡散し、やがては降伏点伸びを生
じることを防ぎ得ないこと、そしてこのような組織にな
る鋼板に限り予想外にも調質圧延が時効性の顕著な抑止
効果を付与することをつきとめたのである。アシキュラ
ーフェライト+フェライトの2相組織への調質圧延は、
表面に歪を導入するだけでなく、アシキュラーフェライ
ト粒内部又はアシキュラーフェライトとフェライトとの
粒界に付加的な歪集中を生じさせて、軟質なフェライト
相中の可動転位への固溶Cの拡散を事実上問題に成らな
い程度に抑制し、加工により多量の転位が新たにフェラ
イト相中に導入されない限り時効しなくしているものと
考えられる。
It was thought that such a steel sheet did not require the elongation at yield point prevention by temper rolling, but the inventors have found that even with such a structure, the solute C is soft in the movable ferrite phase. Unable to prevent dislocations from diffusing with time and yielding elongation at yield, and only for steel sheets with such a structure, temper rolling unexpectedly gives a remarkable effect of suppressing aging. He found out. Temper rolling of acicular ferrite + ferrite into a two-phase structure
Not only does it introduce strain into the surface, but it also causes additional strain concentration inside the acicular ferrite grains or at the grain boundaries between acicular ferrite and ferrite, so that the solid solution C in the mobile dislocations in the soft ferrite phase is dissolved. It is considered that the diffusion is suppressed to such an extent that it does not become a problem, and the aging does not occur unless a large amount of dislocations are newly introduced into the ferrite phase by working.

この発明においてもう1つの重要な点は、Ac変態点を
はるかに超える温度の焼鈍においてもr値、伸び値など
の加工特性が劣化しない製造条件の知見である。これに
は熱延仕上温度が顕著な改善効果を有することが明らか
になった。以下に、その効果を実験事実に沿って説明す
る。
Another important point in the present invention is the knowledge of manufacturing conditions in which the working characteristics such as the r value and the elongation value do not deteriorate even when annealed at a temperature far exceeding the Ac 1 transformation point. It was revealed that the hot rolling finishing temperature had a remarkable improvement effect on this. The effect will be described below along with experimental facts.

C:0.0025%、Si:0.01%、Mn:0.51%、Nb:0.010%、B:0.
0015%、P:0.012%、Al:0.060%、S:0.008%、N:0.0027
%の鋼を研究室で真空鋳造−熱間圧延−冷間圧延−連続
焼鈍(熱サイクルシミュレート)の工程を経て板厚0.8m
mの冷延鋼板とした。ここで工程条件は、スラブ加熱温
度は1250℃とし、熱延終了温度は800〜910℃の間で変化
させた。なお熱延仕上温度は910℃とし、熱延鋼板の空
冷過程の測定によりAr変態点(空冷曲線の平坦部)は
約850℃であった。熱延板板厚は3.5mm、熱延板巻取り温
度は500℃相当である。また焼鈍温度はAc変態点910℃
に対して約860℃〜1010℃程度まで変化させ(均熱5
秒)、またAr変態点(熱膨張測定による)810℃に対
して910℃から710℃までの平均冷却速度は20℃/sであっ
た。
C: 0.0025%, Si: 0.01%, Mn: 0.51%, Nb: 0.010%, B: 0.
0015%, P: 0.012%, Al: 0.060%, S: 0.008%, N: 0.0027
% Steel in the laboratory through vacuum casting-hot rolling-cold rolling-continuous annealing (heat cycle simulation)
m cold rolled steel sheet. As for the process conditions, the slab heating temperature was 1250 ° C, and the hot rolling end temperature was changed between 800 and 910 ° C. The hot rolling finishing temperature was 910 ° C., and the Ar 3 transformation point (flat part of the air cooling curve) was about 850 ° C. in the measurement of the air cooling process of the hot rolled steel sheet. The hot-rolled sheet thickness is 3.5 mm, and the hot-rolled sheet winding temperature is equivalent to 500 ° C. The annealing temperature is Ac 1 transformation point 910 ° C.
To about 860 ℃ to 1010 ℃.
Sec), and the average cooling rate from 910 ° C to 710 ° C was 20 ° C / s with respect to Ar 1 transformation point (according to thermal expansion measurement) of 810 ° C.

焼鈍直後、調質圧延なしでの機械的性質を測定した。な
お機械的性質の測定は、JIS 5号試験片を用い、BHの測
定は第1図の場合と同様の方法をとった。
Immediately after annealing, mechanical properties were measured without temper rolling. The mechanical properties were measured using JIS No. 5 test pieces, and the BH was measured in the same manner as in the case of FIG.

焼付け硬化性(BH性)は、4.0〜5.5kgf/mm、降伏強度
(TS)は18〜20kgf/mm、破断強度(TS)は、32〜33kg
f/mmであった。
Bake hardenability (BH property) is 4.0 to 5.5 kgf / mm 2 , yield strength (TS) is 18 to 20 kgf / mm 2 , breaking strength (TS) is 32 to 33 kg.
It was f / mm 2 .

焼鈍直後、調質圧延なしでのr値、伸び及び降伏点伸び
特性を第3図に示す。
Immediately after annealing, r value, elongation and yield point elongation characteristics without temper rolling are shown in FIG.

第3図からわかるように、910℃熱延仕上材はAc変態
点直上では優れた加工性を示すが、焼鈍温度が上がるに
つれて急速に加工性が劣化した。これは従来の常識どお
りであったが、この発明のごとく、熱延仕上温度を840
℃とAr変態点直上に近い値まで下げると、焼鈍温度が
上がってもほとんど加工性は劣化せず良好である。更に
熱延仕上温度を下げてAr変態点より下の800℃とする
と、伸び値は高温熱延仕上材より劣化しないものの、r
値が極端に低い。
As can be seen from FIG. 3, the 910 ° C. hot-rolled finished material exhibited excellent workability just above the Ac 1 transformation point, but the workability deteriorated rapidly as the annealing temperature increased. This was in line with conventional wisdom, but as in the present invention, the hot rolling finishing temperature was set to 840
When the temperature is lowered to a value close to just above the Ar 3 transformation point, the workability is hardly deteriorated even if the annealing temperature rises, which is good. When the hot rolling finish temperature is further lowered to 800 ° C below the Ar 3 transformation point, the elongation value does not deteriorate as compared with the hot rolling finish material, but r
The value is extremely low.

なおいずれの熱延条件においても焼鈍温度がAc変態点
以下では降伏点伸びが大きく、加工時にストレッチャー
ストレインが顕著に現れるので加工には向かない。また
950℃程度以上の高温焼鈍ではいったん消えた降伏点伸
びがわずかながら再び現れるが、これは後述の調質圧延
により抑えることができる。
Under all hot rolling conditions, when the annealing temperature is below the Ac 1 transformation point, the yield point elongation is large and the stretcher strain remarkably appears during processing, which is not suitable for processing. Also
In high-temperature annealing at about 950 ° C or higher, the yield point elongation, which has disappeared, reappears slightly, but this can be suppressed by temper rolling described later.

さて第3図より明らかな如く、この発明による鋼板は従
来より広い温度範囲で良好な材質を安定して保つ。この
理由については明確ではないが、以下の如く推察され
る。
As is clear from FIG. 3, the steel sheet according to the present invention stably maintains a good material in a wider temperature range than the conventional one. The reason for this is not clear, but it is presumed as follows.

Ac変態点以上の高温で焼鈍した鋼板が高いr値及び伸
び特性を示す機構はもともと明らかでないが、高温焼鈍
中にもα相が一部残留していて、この残留α相の分布及
び集合組織がこのような効果を及ぼしているものと考え
られる。ここで焼鈍温度が通常Ac変態点を10℃程度以
上超えると残留α相の量は著しく減少し、このため加工
性は劣化するものと思われる。一方Ar変態点直上で熱
延仕上げされた熱延板は、微細な結晶粒径を有する。こ
のためこの発明では、残留α相の量が減少しても粒径が
微細なために結晶粒の個数としては高温でもかなり残留
していて、冷却時のα相成長核としての機能がさして低
下しないために加工性を保つのではないかと考えられ
る。
The mechanism by which a steel sheet annealed at a high temperature above the Ac 1 transformation point exhibits high r-value and elongation characteristics is not clear from the beginning, but some α phase remains during high temperature annealing, and the distribution and aggregation of this residual α phase It is considered that the organization exerts such an effect. Here, when the annealing temperature usually exceeds the Ac 1 transformation point by about 10 ° C. or more, the amount of residual α phase is remarkably reduced, and it is considered that the workability is deteriorated. On the other hand, the hot-rolled sheet hot-rolled and finished just above the Ar 3 transformation point has a fine crystal grain size. Therefore, in the present invention, even if the amount of residual α phase is reduced, the number of crystal grains remains considerably even at high temperature because the grain size is fine, and the function as α phase growth nuclei during cooling deteriorates significantly. It is thought that the processability is maintained because it does not.

無論このような機構による加工性の保持には限界温度が
あるはずであり、事実第3図においても1000℃を超える
焼鈍温度ではAr変態点直上で熱延仕上げした鋼板にお
いても加工性の劣化がみられる。すなわち残留α相がほ
とんど消失したためと考えられるが、この現象はこの発
明の成分系ではほぼAc変態点+90℃を超えると現れ
る。
Needless to say, there is a limit temperature for maintaining workability by such a mechanism, and in fact, even in Fig. 3, at annealing temperatures exceeding 1000 ° C, workability deteriorates even in the steel sheet hot-rolled immediately above the Ar 3 transformation point. Can be seen. That is, it is considered that the residual α phase has almost disappeared, but this phenomenon appears when the component system of the present invention exceeds approximately the Ac 1 transformation point + 90 ° C.

以下各成分組成範囲の限定理由を述べる。The reasons for limiting the composition range of each component will be described below.

C:Cは、BH性を付与するうえで重要な成分であるが、0.0
1%を超えるとこの発明の方法をもってしても常温非時
効性の維持は困難になる。また、C量は低いほど材質に
有利であり、0.01%を超えると良好な加工性が得られな
くなる。したがってC量は0.01%以下とする。なお、高
いBH性を得るためにはC量は0.0005%以上あることが望
ましく、特に後述のように強力な炭化物形成成分である
Tiを添加する第3及び第4発明では、固溶C量が0.0005
%以上は必須である。
C: C is an important component for imparting BH property, but 0.0
If it exceeds 1%, it becomes difficult to maintain non-aging at room temperature even with the method of the present invention. Further, the lower the amount of C, the more advantageous the material is, and if it exceeds 0.01%, good workability cannot be obtained. Therefore, the C content is 0.01% or less. In order to obtain a high BH property, it is desirable that the C content be 0.0005% or more, which is a strong carbide forming component, as described later.
In the third and fourth inventions in which Ti is added, the solid solution C content is 0.0005.
% Or more is mandatory.

Si:Siは、鋼板強度増のために若干の添加を妨げるもの
ではないが、0.1%より多く存在すると、鋼板の伸びお
よび絞り性を劣化させるので0.1%以下とする。
Si: Si does not hinder some addition for increasing the strength of the steel sheet, but if it is present in excess of 0.1%, the elongation and drawability of the steel sheet deteriorate, so it is made 0.1% or less.

Mn:Mnは、深絞り性を劣化させずに鋼板の変態温度をさ
げることのできる成分であり、また鋼板強度を上げるの
にも有効である。Mn量が0.2%に満たないとα相−γ相
共存温度域が高くなり不経済な高温焼鈍を余儀なくされ
るのみならず、2相組織化のためには焼鈍の際に冷却速
度は50℃/s以上が必要となる。一方Mn量の2.0%を超え
る過剰な添加は、鋼板の伸び及び絞り性と強度とのバラ
ンスを劣化させるうえ、Mnは溶鋼中で吸熱反応を起こす
ために溶鋼温度の低下によって真空脱ガス処理が不可能
となる。したがってMn添加量は0.2〜2.0%の範囲とす
る。
Mn: Mn is a component that can lower the transformation temperature of the steel sheet without deteriorating the deep drawability, and is also effective for increasing the strength of the steel sheet. If the amount of Mn is less than 0.2%, the α-γ phase coexisting temperature range becomes high and uneconomical high temperature annealing is unavoidable, and the cooling rate during annealing is 50 ° C for two-phase structure. / s or more is required. On the other hand, excessive addition of more than 2.0% of Mn amount deteriorates the balance between elongation and drawability of the steel sheet and strength, and Mn causes an endothermic reaction in the molten steel, so that vacuum degassing treatment is performed due to a decrease in molten steel temperature. It will be impossible. Therefore, the amount of Mn added is in the range of 0.2 to 2.0%.

Nb:Nbは、Bと共存することにより冷却時のγ→α変態
を低温側に下げ、アシキュラーフェライト+フェライト
2相組織化を促進させる。また集合組織においてもBの
共存下で顕著な(111)方位の集積が生じさせ、加工性
(特にr値)を上げる。これらの効果は0.005〜0.1%の
間で最も有効である。Nb量が0.005%に満たないと2相
組織化及び集合組織改善効果が不十分であり、また0.1
%を超える添加は添加効果が飽和するのみならず伸びの
著しい劣化を招き、強度−加工性バランスを低下させ
る。したがってNb添加量は0.005〜0.1%とする。
Nb: Nb, when coexisting with B, lowers the γ → α transformation during cooling to the low temperature side and promotes acicular ferrite + ferrite two-phase organization. Also in the texture, coexistence of B causes remarkable accumulation of (111) orientation, which improves workability (especially r value). These effects are most effective between 0.005 and 0.1%. If the amount of Nb is less than 0.005%, the effect of two-phase organization and texture improvement is insufficient, and 0.1
If the addition amount exceeds%, not only the effect of addition is saturated but also the elongation is remarkably deteriorated and the strength-workability balance is lowered. Therefore, the amount of Nb added is 0.005 to 0.1%.

B:Bは、前述のようにNbと共存することにより冷却時の
γ→α変態を低温側に下げ、アシキュラーフェライト+
フェライトの2相組織化を促進させる。また集合組織に
おいてもNbの共存下で顕著な(111)方位の集積を生じ
させ、加工性(特にr値)を上げる。更に加工用鋼板に
必要とされる耐2次加工ぜい性の改善にもBの添加は有
効である。これらの効果は0.0005〜0.01%の間で最も有
効である。B量が0.0005%に満たないと2相組織化及び
集合組織改善効果が不十分であり、また0.01%を超える
添加は添加効果が飽和するのみならず、伸びの著しい劣
化を招き、強度−加工性バランスを低下させる。したが
ってB添加量は0.0005〜0.01%とする。
B: B reduces the γ → α transformation during cooling to the low temperature side by coexisting with Nb, as described above, and causes acicular ferrite +
Promotes the two-phase organization of ferrite. Also, in the texture, coexistence of Nb causes remarkable accumulation of (111) orientation, and improves workability (especially r value). Further, the addition of B is also effective for improving the secondary working brittleness resistance required for the working steel sheet. These effects are most effective between 0.0005 and 0.01%. When the amount of B is less than 0.0005%, the effect of forming a two-phase structure and texture is insufficient, and the addition of more than 0.01% not only saturates the effect of addition, but also causes remarkable deterioration of elongation, resulting in strength-working. Reduce sexual balance. Therefore, the B addition amount is 0.0005 to 0.01%.

Al:この発明ではAlは、主に脱酸及びNをAlNとして固定
しBN形成によるB歩留まりの低下を防ぐことを目的とし
て添加する。Nと結合していない固溶Bを前述の理由に
より0.0005%以上確保するためにはB及びNとの関係で B−(11/14N−11/27 Al)≧0.0005(%) 更に第3発明、第4発明のTi添加の場合には、TiにもN
固定の働きがあるので、 B−(11/14N−11/27 Al−11/48Ti)≧0.0005(%) を満たす量のAl添加が必要である。一方0.5%を超えるA
l添加は表面性状に悪影響を及ぼすので0.5%以下に抑え
なければならず、好ましくは0.1%以下が良い。したが
ってAlに関しては0.5%以下、 かつ B−(11/14N−11/27 Al)≧0.0005(%)又は B−(11/14N−11/27 Al−11/48Ti)≧0.0005(%) を満たす量とする。
Al: In the present invention, Al is added mainly for the purpose of deoxidizing and fixing N as AlN to prevent a decrease in B yield due to BN formation. In order to secure 0.0005% or more of solid solution B that is not bonded to N for the above-mentioned reason, the relationship between B and N is B- (11 / 14N-11 / 27 Al) ≧ 0.0005 (%) Furthermore, the third invention In the case of adding Ti of the fourth invention, N is added to Ti as well.
Since it has a fixing function, it is necessary to add Al in an amount satisfying B- (11 / 14N-11 / 27 Al-11 / 48Ti) ≧ 0.0005 (%). On the other hand, A exceeding 0.5%
Since the addition of 1 adversely affects the surface properties, it should be kept to 0.5% or less, preferably 0.1% or less. Therefore, Al is 0.5% or less, and satisfies B- (11 / 14N-11 / 27 Al) ≧ 0.0005 (%) or B- (11 / 14N-11 / 27 Al-11 / 48Ti) ≧ 0.0005 (%). The amount.

N:Nは、深絞り性を劣化させるうえ、Alで固定しないと
Bと結合し、Bの添加効果を大幅に低下させるのでその
量が多いほどAlの必要量が増加して不経済である。また
固溶Nは常温時効性が元々高いので、この発明では焼付
け硬化成分には用いない。したがってN量はできる限り
低めに抑えるのが望ましいが、工程の経済性から許容量
を0.02%以下とする。好ましくはN量は0.006%以下に
抑えるのがよい。
N: N deteriorates the deep drawability and, if not fixed with Al, binds with B and significantly reduces the effect of adding B. Therefore, the larger the amount, the more the amount of Al required is uneconomical. . Also, since solid solution N originally has a high aging property at room temperature, it is not used as a bake hardening component in the present invention. Therefore, it is desirable to keep the amount of N as low as possible, but the allowable amount is 0.02% or less from the economical aspect of the process. Preferably, the N content is 0.006% or less.

P:第2発明、第4発明では鋼板強化を目的としてPを添
加する。Pについて鋼板強化成分として0.15%以下の添
加ならばこの発明の効果を損なうものではない。一方P
の鋼板強化の効果は0.03%以上添加しないとほとんど表
れないので、Pを添加する第2発明、第4発明ではP量
を0.03〜0.15%とする必要がある。
P: In the second and fourth inventions, P is added for the purpose of strengthening the steel sheet. If 0.15% or less of P is added as a steel plate reinforcing component, the effect of the present invention is not impaired. Meanwhile P
Since the effect of strengthening the steel sheet hardly appears unless 0.03% or more is added, the P amount needs to be 0.03 to 0.15% in the second and fourth inventions in which P is added.

Ti:第3発明、第4発明においては加工性の改善、B歩
留まりの向上のために若干量のTiを添加する。Tiの効果
を出すために0.005%以上の添加が必要であるが、0.05
%を超える添加は添加効果の点で不経済であるばかりで
無く、変態点の上昇による生産性のコスト増も招く。ま
たBH性の確保のためには固溶C量を0.0005%以上確保す
ることが必要であり、有効Ti(TiN,TiS形成分を除いたT
i)に関して C−(12/48Ti−12/32S−12/14N)≧0.0005(%) を満たさなければならないことになる。またN固定効果
については、前述の有効B量:0.0005%以上という条件
から B−(11/14N−11/27 Al−11/48Ti)≧0.0005(%) を満たせばいいことがわかる。したがってTiの最適添加
量は、0.005〜0.05%でかつ C−(12/48Ti−12/32S−12/14N)≧0.0005(%) および B−(11/14N−11/27 Al−11/48Ti)≧0.0005(%) を満たす量である。
Ti: In the third and fourth inventions, a small amount of Ti is added to improve workability and B yield. It is necessary to add 0.005% or more to obtain the effect of Ti, but 0.05
Addition in excess of 5% not only is uneconomical in terms of the effect of addition, but also leads to an increase in productivity cost due to an increase in the transformation point. In addition, in order to secure BH property, it is necessary to secure a solid solution C content of 0.0005% or more, and the effective Ti (T excluding TiN and TiS formation components)
Regarding i), C- (12 / 48Ti-12 / 32S-12 / 14N) ≧ 0.0005 (%) must be satisfied. Regarding the N fixing effect, it is understood that it is sufficient to satisfy B- (11 / 14N-11 / 27 Al-11 / 48Ti) ≧ 0.0005 (%) from the above-mentioned condition that the effective B amount is 0.0005% or more. Therefore, the optimum addition amount of Ti is 0.005 to 0.05% and C- (12 / 48Ti-12 / 32S-12 / 14N) ≧ 0.0005 (%) and B- (11 / 14N-11 / 27 Al-11 / 48Ti). ) ≧ 0.0005 (%).

なおこの発明においては鋼中一般成分としてのSについ
ては特に規定する必要がない。しかしながらSについて
加工用鋼板としてのコストに見合った範囲で低減するこ
とが望ましく、0.05%以下にすることが好ましい。また
前述のTi添加の場合には有効Ti量を考慮するうえでS添
加量は重要な意味を持つ。
In the present invention, it is not necessary to specify S as a general component in steel. However, it is desirable to reduce S within a range commensurate with the cost of the steel sheet for working, and it is preferably 0.05% or less. Further, in the case of the above Ti addition, the S addition amount has an important meaning in considering the effective Ti amount.

次にこの発明の鋼板製造条件の限定理由を以下に述べ
る。
Next, the reasons for limiting the steel sheet manufacturing conditions of the present invention will be described below.

まず製鋼については常法に従って行えばよく、特にこの
発明ではそれらの条件の限定は必要としないが、コスト
及び品質の点で連続鋳造法を用いることが望ましい。
First, steelmaking may be carried out according to a conventional method. In particular, the present invention does not require the limitation of the conditions, but it is preferable to use the continuous casting method in terms of cost and quality.

熱間圧延については、前述のようにAc変態点をはるか
に超える温度の焼鈍においても加工性を劣化させないた
めには熱延仕上温度の限定が有効なことから熱延仕上温
度はAr変態点直上付近とする必要がある。具体的には
Ar変態点〜900℃でこの発明の目的の一つである良好
な加工性は得られるが、高温焼鈍において安定した材質
を得ようとするならば望ましくはAr変態点〜Ar変態
点+50℃の範囲で仕上げることとする。その他の条件に
ついては特に規定するものではなく、常法に従って行え
ばよい。巻取り温度は、通常の550〜700℃程度で充分に
優れた材質が得られる。
Regarding hot rolling, as described above, the hot rolling finishing temperature is limited to Ar 3 transformation because it is effective to limit the hot rolling finishing temperature in order to prevent the workability from being deteriorated even by annealing at a temperature far exceeding the Ac 1 transformation point. It should be near the point. In particular
Ar 3 object one good workability is of the present invention in transformation point to 900 ° C. is obtained, preferably if is to be obtained a stable material at high-temperature annealing is Ar 3 transformation point to Ar 3 transformation point Finish at + 50 ° C. Other conditions are not particularly specified, and may be performed according to a conventional method. The winding temperature is usually around 550 to 700 ° C, and a sufficiently excellent material can be obtained.

冷間圧延についても常法に従って行えばよく、特にこの
発明ではそれらの条件の限定は必要としないが、再結晶
及びα−γ変態の迅速な進行のためには50%以上の冷延
圧下率が望ましい。
Cold rolling may be carried out according to a conventional method, and in particular, it is not necessary to limit the conditions in the present invention, but for rapid progress of recrystallization and α-γ transformation, a cold rolling reduction of 50% or more. Is desirable.

この発明において熱処理は、箱焼鈍法では2相組織化に
不十分なので、連続焼鈍法が望ましい。また2相組織化
するためには当然のことながら連続焼鈍の焼鈍温度を少
なくともAc変態点以上のα相−γ相共存温度域まで加
熱することが重要である。一方前述のようにAc変態点
+90℃を超えると残留α相の消失によると思われる加工
性劣化が機構的に避けがたいので、焼鈍温度はAc変態
点〜Ac変態点+90℃とする必要がある。なおAc変態
点直上の焼鈍では材質値の変動がやや大きく、また工場
生産につきものの成分、均熱、測定設備のばらつきなど
を考慮すると、Ac変態点+10℃以上の焼鈍温度を確保
することが望ましい。
In this invention, the heat treatment is preferably a continuous annealing method because the box annealing method is insufficient for forming a two-phase structure. Further, in order to form a two-phase structure, it is naturally important to heat the annealing temperature of continuous annealing to at least the α phase-γ phase coexisting temperature range of the Ac 1 transformation point or higher. Meanwhile workability deterioration seems to be due to loss of residual α phase exceeds Ac 1 transformation point + 90 ° C. as described above because inevitable Mechanistically, the annealing temperature Ac 1 transformation point to Ac 1 transformation point + 90 ° C. and There is a need to. It should be noted that in the case of annealing just above the Ac 1 transformation point, the fluctuation of the material value is rather large, and considering the composition, soaking, and variations in measuring equipment that are inherent in factory production, an annealing temperature of Ac 1 transformation point + 10 ° C or higher should be secured. Is desirable.

また焼鈍後の冷却時にγ相の少なくとも一部がアシキュ
ラーフェライトとなるためには焼鈍後の冷却速度を大き
くとる必要があるが、この急冷を要するのはAr変態点
付近だけであるので、この急冷温度範囲はAr変態点+
100℃〜Ar変態点−100℃の温度域に限るものとする。
かかる温度域の冷却速度が7℃/sに満たないとγ相から
アシキュラーフェライトが生じず、したがってAr変態
点+100℃〜Ar変態点−100℃の温度域の冷却速度は7
℃/s以上とするが、この温度域の冷却速度が50℃/sを超
えるとr値、伸びとも劣化が若干目立つようになるので
Ar変態点+100℃〜Ar変態点−100℃の温度域の冷却
速度は7℃/s〜50℃/sの範囲が望ましい。
Further, in order to turn at least a part of the γ phase into acicular ferrite during cooling after annealing, it is necessary to increase the cooling rate after annealing, but this rapid cooling is required only near the Ar 1 transformation point. This quenching temperature range is Ar 1 transformation point +
It shall be limited to the temperature range of 100 ° C to Ar 1 transformation point -100 ° C.
If the cooling rate in this temperature range is less than 7 ° C./s, acicular ferrite is not generated from the γ phase, and therefore the cooling rate in the temperature range of Ar 1 transformation point + 100 ° C. to Ar 1 transformation point −100 ° C. is 7
℃ / s or more, but if the cooling rate in this temperature range exceeds 50 ℃ / s, the deterioration of both r value and elongation becomes a little noticeable.
The cooling rate in the temperature range of Ar 1 transformation point + 100 ° C to Ar 1 transformation point -100 ° C is preferably in the range of 7 ° C / s to 50 ° C / s.

かくして得られたアシキュラ−フェライト+フェライト
2相組織鋼板に0.2〜5%の圧下率にて調質圧延を施す
ことで、この発明の目的とする焼付け硬化性及び常温非
時効性に優れた加工用冷延鋼板を得ることができる。こ
の発明の方法で製造した鋼板は本来降伏伸びはほとんど
生じないが、0.2%に満たない圧下率では常温時効を充
分抑制することができない。また、5%を超える圧下率
では調質圧延を施すと加工歪による可動転位の増加によ
ってかえって歪時効を促進する結果となる。したがって
調質圧延の圧下率は0.2〜5%の範囲とする。なお優れ
た加工性を重視するならば、〔板厚(mm)×1.5〕%を
超える圧下率は若干鋼板が硬質化するので避けることが
望ましい。すなわちこのような目的においては調質圧延
の圧下率は0.2%〜〔板厚(mm)×1.5〕%とすることが
望ましい。一方常温非時効性を重視するならば〔板厚
(mm)×0.7〕%に満たない圧下率では極長時間の常温
保持によりわずかながら時効を生じるので〔板厚(mm)
×0.7〕%以上の圧下が望ましい。すなわちこのような
目的においては調質圧延の圧下率は〔板厚(mm)×0.
7〕%〜5%とすることが望ましい。
By subjecting the thus obtained acicular-ferrite + ferrite dual-phase steel sheet to temper rolling at a rolling reduction of 0.2 to 5%, the object of the present invention is to obtain excellent bake hardenability and normal temperature non-aging A cold rolled steel plate can be obtained. The steel sheet produced by the method of the present invention originally has almost no yield elongation, but the rolling ratio cannot be sufficiently suppressed at a rolling reduction of less than 0.2%. Further, if the rolling reduction exceeds 5%, temper rolling causes the increase of movable dislocations due to processing strain, which results in the promotion of strain aging. Therefore, the rolling reduction of the temper rolling is set in the range of 0.2 to 5%. If excellent workability is important, it is desirable to avoid a reduction ratio exceeding [plate thickness (mm) x 1.5]% because the steel plate will be slightly hardened. That is, for such a purpose, it is desirable that the reduction ratio of the temper rolling is 0.2% to [sheet thickness (mm) × 1.5]%. On the other hand, if non-aging at room temperature is important, a reduction of less than [plate thickness (mm) x 0.7]% causes slight aging by holding at room temperature for an extremely long time, so [plate thickness (mm)]
A reduction of × 0.7]% or more is desirable. That is, for such purpose, the reduction ratio of temper rolling is [plate thickness (mm) x 0.
7]% to 5% is desirable.

(実施例) 実施例1 表1に示す種々の成分組成になる鋼を準備した。(Example) Example 1 Steels having various compositional compositions shown in Table 1 were prepared.

これらの供試鋼スラブを連続鋳造にて製造し、1200℃に
加熱したのち粗圧延(圧下率88%)、仕上げ圧延(圧下
率88%、熱延仕上温度:表2に示す)を経て板厚3.5mm
のホットコイルとし、その後0.8mmまで冷間圧延を行っ
た。その後表2に示す条件で連続焼鈍及び調質圧延を行
った。
These test steel slabs were manufactured by continuous casting, heated to 1200 ° C, then rough rolled (reduction rate 88%), finish rolling (reduction rate 88%, hot rolling finish temperature: shown in Table 2). Thickness 3.5mm
Hot coil, and then cold rolled to 0.8 mm. After that, continuous annealing and temper rolling were performed under the conditions shown in Table 2.

このようにして得られた冷延鋼板の材質調査結果を表3
に示す。なおBH量は、第4図に示すごとく下降伏点をと
った。
The results of the material investigation of the cold rolled steel sheet thus obtained are shown in Table 3.
Shown in. The BH amount was taken to be the yield yield point as shown in FIG.

表3から明らかなように本発明例であるNo.1A,2,3,4,1
0,及び11は、いずれも優れた加工性を示すのみならず、
高いBH性と優れた常温非時効性を有することがわかる。
As is clear from Table 3, No. 1A, 2, 3, 4, 1 which is an example of the present invention
0 and 11 not only show excellent workability,
It can be seen that it has a high BH property and an excellent non-aging property at room temperature.

一方、成分がこの発明に適合しない比較例No.5,6,7,8,
9,12また工程条件がこの発明に適合しない比較例No.1B,
1C,1D,1E,1Fはいずれも本発明例に比してBH性又は常温
非時効性に劣る上、加工性及び強度で劣るものが多く、
この発明の方法が優れていることが明白である。
On the other hand, Comparative Examples No. 5,6,7,8, whose components do not fit this invention
Comparative example No. 1B whose process conditions do not conform to this invention,
1C, 1D, 1E, 1F are both inferior in BH property or room temperature non-aging property, many inferior in workability and strength, compared with the examples of the present invention,
It is clear that the method of the invention is excellent.

すなわち比較例No.5はNbを含有しないため、または比較
例No.6はBを含有しないために、いずれも加工性、特に
r値の劣化を招き、さらに常温時効が容易に進行してし
まう。また比較例No.9もA1が少なくB−(11/14N−11/2
7 Al)≧0.0005%を満たさないので有効な固溶B量が
確保されていないためB無添加の比較例No.6同様に加工
性及び常温非時効性の劣化が生じている。
That is, since Comparative Example No. 5 does not contain Nb, or Comparative Example No. 6 does not contain B, the workability, especially the r value, is deteriorated, and the room temperature aging easily proceeds. . Comparative Example No. 9 also has less A1 and B- (11 / 14N-11 / 2
7 Al) ≧ 0.0005% is not satisfied, so that the effective amount of solid solution B is not secured, so that the workability and the non-aging at room temperature deteriorate as in Comparative Example No. 6 in which B is not added.

比較例No.7は、Cを0.0150%と多量に含有しているた
め、BH性は高いものの加工性は悪く、又常温非時効性に
きわめて劣り時効前からかなりの降伏点伸びを示す。逆
に過剰添加のTiによりC−(12/48Ti−12/32S−12/14
N)≧0.0005%を満たさず固溶Cが不足している比較例N
o.12は、BH性を有しないうえ、熱延板結晶粒径が微細に
成りにくいためか加工性も劣化している。
Since Comparative Example No. 7 contains a large amount of C as 0.0150%, it has a high BH property but is poor in workability, and is extremely inferior in non-aging at room temperature and shows a considerable elongation at yield before aging. On the contrary, due to the excessive addition of Ti, C- (12 / 48Ti-12 / 32S-12 / 14
N) ≧ 0.0005% is not satisfied and the solid solution C is insufficient. Comparative Example N
O.12 has no BH property, and the workability is deteriorated because the grain size of the hot-rolled sheet is difficult to be fine.

比較例No.8は、Mnの含有量が0.12%と低いため、高温焼
鈍を要するのみならず十分な2相組織が得られず中途半
端な加工性、BH性及び常温非時効性となっている。
Comparative Example No. 8 has a low Mn content of 0.12%, so that not only high-temperature annealing is required, but also a sufficient two-phase structure cannot be obtained, resulting in a half-finished workability, BH property, and non-aging at room temperature. There is.

比較例No.1Bは、Ac変態点より低温で焼鈍しているた
めにフェライト単相組織であり、BH量、常温非時効性と
も不十分であり加工性もやや劣る。
Comparative Example No. 1B has a ferrite single-phase structure because it is annealed at a temperature lower than the Ac 1 transformation point, and the BH content and non-aging at room temperature are insufficient, and the workability is slightly inferior.

比較例No.1Cは、焼鈍後の冷却速度が小さいため、十分
に2相組織化せず加工性、常温非時効性とも悪い。
Since Comparative Example No. 1C has a low cooling rate after annealing, it does not form a two-phase structure sufficiently and is poor in workability and non-aging at room temperature.

比較例No.1Dは、調質圧延なし、また比較例No.1Eは、調
質圧延圧下率0.1%と低い。これらはいずれも常温非時
効性に劣る。
Comparative Example No. 1D has no temper rolling, and Comparative Example No. 1E has a low rolling reduction of 0.1%. All of these are inferior in non-aging at room temperature.

また比較例No.1Fのように熱延仕上温度がAr変態点を
下回るとr値が著しく悪い。
Further, when the hot rolling finishing temperature is below the Ar 3 transformation point as in Comparative Example No. 1F, the r value is remarkably poor.

実施例2 実施例1の本発明法1A及び比較法1Dで製造した冷延鋼板
を焼鈍−調質圧延後、溶融亜鉛めっきラインに通板し
た。めっきラインの均熱サイクルは550℃×15秒であっ
た。
Example 2 The cold-rolled steel sheets produced by the method 1A of the present invention and the comparative method 1D of Example 1 were annealed and temper-rolled, and then passed through a hot dip galvanizing line. The soaking cycle of the plating line was 550 ° C x 15 seconds.

めっき後の鋼板1Aの材質はYS:18.8kgf/mm、TS:31.9kg
f/mm、伸び値49.8%、r値2.38で加工性はめっき前と
ほとんど変わらず、またBH量5.5kgf/mm、降伏伸び0.0
%と優れたBH性及び常温非時効性もそのままである。
Material of plated steel plate 1A is YS: 18.8kgf / mm 2 , TS: 31.9kg
F / mm 2 , elongation value 49.8%, r value 2.38, workability is almost the same as before plating, BH amount 5.5 kgf / mm 2 , yield elongation 0.0
%, Excellent BH property and normal temperature non-aging property.

一方鋼板1Dは、めっき後のBH5.0kgf/mm、降伏点伸び
1.2%となり、これに伴い材質もYS:21.3kgf/mm、TS:3
2.0kgf/mm、伸び値45.6%、r値1.96で加工性も若干
劣化していた。
On the other hand, steel plate 1D has a BH of 5.0 kgf / mm 2 and a yield point elongation after plating.
1.2%, and the material is YS: 21.3kgf / mm 2 , TS: 3
The workability was slightly deteriorated at 2.0 kgf / mm 2 , elongation value 45.6%, and r value 1.96.

(発明の効果) この発明によって、加工性、高BH性及び常温非時効性を
兼ね備えた冷延鋼板の工業的な安定生産が可能となり、
特に外板加工用鋼板として容易な加工と優れた強度をも
たらすこととなった。これは、従来の加工用BH鋼板が時
効性ゆえに使用できなかった条件下での用途、例えば常
に在庫を確保するために必要な長期の保存向け、長期の
船旅を要する輸出向け、500℃程度の高温をくぐらす合
金化めっきの原板向け等の適用の道を開くものである。
(Effects of the Invention) This invention enables industrial stable production of cold-rolled steel sheet having both workability, high BH property, and non-aging at room temperature.
In particular, it has brought about easy processing and excellent strength as a steel plate for outer plate processing. This is for applications under conditions where conventional BH steel sheets for processing could not be used due to aging, such as long-term storage necessary to always maintain inventory, exports that require long-term cruises, and temperatures of around 500 ° C. It opens the way for applications such as alloy-plated original plates that pass high temperatures.

【図面の簡単な説明】[Brief description of drawings]

第1図は、常温非時効性に及ぼす調質圧延の効果を示し
たグラフ、 第2図は、常温時効性に関して本発明鋼と従来鋼とを比
較して示したグラフ、 第3図は、焼鈍直後、調質圧延なしでのr値、伸び及び
降伏点伸び特性を示すグラフ、 第4図は、焼付け硬化性(BH性)の測定方法を示す図で
ある。
FIG. 1 is a graph showing the effect of temper rolling on non-aging at room temperature, FIG. 2 is a graph showing comparison between the steel of the present invention and conventional steel with respect to room temperature aging, and FIG. Immediately after annealing, a graph showing r value, elongation and yield point elongation characteristics without temper rolling, and FIG. 4 is a diagram showing a method for measuring bake hardenability (BH property).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 阿部 英夫 千葉県千葉市川崎町1番地 川崎製鉄株式 会社技術研究本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hideo Abe 1 Kawasaki-cho, Chiba-shi, Chiba Kawasaki Steel Co., Ltd. Technical Research Division

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】C :0.01wt%以下、 Si:0.1wt%以下、 Mn:0.2〜2.0wt%、 Nb:0.005〜0.1wt%、 B :0.0005〜0.01wt%、 Al:0.5wt%以下及び N :0.02wt%以下 を含有し、かつ B−(11/14N−11/27 Al)≧0.0005(wt%) を満足し、残部はFe及び不可避的不純物からなる組成の
鋼を素材として 熱間圧延を行い、熱延仕上温度をAr変態点〜900℃の
範囲とし、 この熱間圧延で得られた熱延板に冷間圧延を施し、 この冷間圧延に引き続きAc変態点〜Ac変態点+90℃
の温度域まで加熱して少なくともAr変態点+100℃〜A
r変態点−100℃の温度範囲は冷却速度7℃/s以上で冷
却する熱処理を行った後、 圧下率0.2〜5%の調質圧延を施すこと を特徴とする焼付け硬化性及び常温非時効性に優れた加
工用冷延鋼板の製造方法。
1. C: 0.01 wt% or less, Si: 0.1 wt% or less, Mn: 0.2 to 2.0 wt%, Nb: 0.005 to 0.1 wt%, B: 0.0005 to 0.01 wt%, Al: 0.5 wt% or less, and N: containing 0.02wt% or less, and satisfying B- (11 / 14N-11 / 27Al) ≥ 0.0005 (wt%), the balance being steel and a composition consisting of inevitable impurities. Rolling is performed, the hot rolling finishing temperature is set in the range of Ar 3 transformation point to 900 ° C., the hot rolled sheet obtained by this hot rolling is subjected to cold rolling, and following this cold rolling, Ac 1 transformation point to Ac 1 transformation point + 90 ℃
Heating up to the temperature range of at least Ar 1 transformation point + 100 ℃ ~ A
r 1 transformation point -100 ° C temperature range: bake hardenability and tempering at room temperature, which is characterized by performing heat treatment of cooling at a cooling rate of 7 ° C / s or more and then temper rolling with a reduction rate of 0.2 to 5%. A method for producing a cold-rolled steel sheet for processing having excellent aging properties.
【請求項2】C :0.01wt%以下、 Si:0.1wt%以下、 Mn:0.2〜2.0wt%、 Nb:0.005〜0.1wt%、 B :0.0005〜0.01wt%、 P :0.03〜0.15wt%、 Al:0.5wt%以下及び N :0.02wt%以下 を含有し、かつ B−(11/14N−11/27 Al)≧0.0005(wt%) を満足し、残部はFe及び不可避的不純物からなる組成の
鋼を素材として 熱間圧延を行い、熱延仕上温度をAr変態点〜900℃の
範囲とし、 この熱間圧延で得られた熱延板に冷間圧延を施し、 この冷間圧延に引き続きAc変態点〜Ac変態点+90℃
の温度域まで加熱して少なくともAr変態点+100℃〜A
r変態点−100℃の温度範囲は冷却速度7℃/s以上で冷
却する熱処理を行った後、 圧下率0.2〜5%の調質圧延を施すこと を特徴とする焼付け硬化性及び常温非時効性に優れた加
工用冷延鋼板の製造方法。
2. C: 0.01 wt% or less, Si: 0.1 wt% or less, Mn: 0.2 to 2.0 wt%, Nb: 0.005 to 0.1 wt%, B: 0.0005 to 0.01 wt%, P: 0.03 to 0.15 wt% , Al: 0.5 wt% or less and N: 0.02 wt% or less, and B- (11 / 14N-11 / 27 Al) ≧ 0.0005 (wt%) are satisfied, and the balance is Fe and inevitable impurities. Hot rolling is performed using steel of the composition as the raw material, the hot rolling finishing temperature is set to the range of Ar 3 transformation point to 900 ° C., the hot rolled sheet obtained by this hot rolling is cold rolled, and this cold rolling is performed. continue to Ac 1 transformation point ~Ac 1 transformation point to + 90 ℃
Heating up to the temperature range of at least Ar 1 transformation point + 100 ℃ ~ A
r 1 transformation point -100 ° C temperature range: bake hardenability and tempering at room temperature, which is characterized by performing heat treatment of cooling at a cooling rate of 7 ° C / s or more and then temper rolling with a reduction rate of 0.2 to 5%. A method for producing a cold-rolled steel sheet for processing having excellent aging properties.
【請求項3】C :0.0005〜0.01wt%、 Si:0.1wt%以下、 Mn:0.2〜2.0wt%、 Ti:0.005〜0.05wt%、 Nb:0.005〜0.1wt%、 B :0.0005〜0.01wt%、 Al:0.5wt%以下 S :0.05wt%以下及び N :0.02wt%以下 を含有し、かつ B−(11/14N−11/27 Al−11/48Ti)≧0.0005(wt%) C−(12/48Ti−12/32 S−12/14N)≧0.0005(wt%) を満足し、残部はFe及び不可避的不純物からなる組成の
鋼を素材として 熱間圧延を行い、熱延仕上温度をAr変態点〜900℃の
範囲とし、 この熱間圧延で得られた熱延板に冷間圧延を施し、 この冷間圧延に引き続きAc変態点〜Ac変態点+90℃
の温度域まで加熱して少なくともAr変態点+100℃〜A
r変態点−100℃の温度範囲は冷却速度7℃/s以上で冷
却する熱処理を行った後、 圧下率0.2〜5%の調質圧延を施すこと を特徴とする焼付け硬化性及び常温非時効性に優れた加
工用冷延鋼板の製造方法。
3. C: 0.0005 to 0.01 wt%, Si: 0.1 wt% or less, Mn: 0.2 to 2.0 wt%, Ti: 0.005 to 0.05 wt%, Nb: 0.005 to 0.1 wt%, B: 0.0005 to 0.01 wt. %, Al: 0.5 wt% or less S: 0.05 wt% or less and N: 0.02 wt% or less, and B- (11 / 14N-11 / 27 Al-11 / 48Ti) ≥ 0.0005 (wt%) C- (12 / 48Ti-12 / 32 S-12 / 14N) ≥ 0.0005 (wt%) is satisfied, and the balance is steel with a composition of Fe and unavoidable impurities. Ar 3 transformation point to 900 ° C. is set, and the hot-rolled sheet obtained by this hot rolling is subjected to cold rolling. Following this cold rolling, Ac 1 transformation point to Ac 1 transformation point + 90 ° C.
Heating up to the temperature range of at least Ar 1 transformation point + 100 ℃ ~ A
r 1 transformation point -100 ° C temperature range: bake hardenability and tempering at room temperature, which is characterized by performing heat treatment of cooling at a cooling rate of 7 ° C / s or more and then temper rolling with a reduction rate of 0.2 to 5%. A method for producing a cold-rolled steel sheet for processing having excellent aging properties.
【請求項4】C :0.0005〜0.01wt%、 Si:0.1wt%以下、 Mn:0.2〜2.0wt%、 Ti:0.005〜0.05wt%、 Nb:0.005〜0.1wt%、 B :0.0005〜0.01wt%、 P :0.03〜0.15wt%、 Al:0.5wt%以下 S :0.05wt%以下及び N :0.02wt%以下 を含有し、かつ B−(11/14N−11/27 Al−11/48Ti)≧0.0005(wt%) C−(12/48Ti−12/32 S−12/14N)≧0.0005(wt%) を満足し、残部はFe及び不可避的不純物からなる組成の
鋼を素材として 熱間圧延を行い、熱延仕上温度をAr変態点〜900℃の
範囲とし、 この熱間圧延で得られた熱延板に冷間圧延を施し、 この冷間圧延に引き続きAc変態点〜Ac変態点+90℃
の温度域まで加熱して少なくともAr変態点+100℃〜A
r変態点−100℃の温度範囲は冷却速度7℃/s以上で冷
却する熱処理を行った後、 圧下率0.2〜5%の調質圧延を施すこと を特徴とする焼付け硬化性及び常温非時効性に優れた加
工用冷延鋼板の製造方法。
4. C: 0.0005 to 0.01 wt%, Si: 0.1 wt% or less, Mn: 0.2 to 2.0 wt%, Ti: 0.005 to 0.05 wt%, Nb: 0.005 to 0.1 wt%, B: 0.0005 to 0.01 wt. %, P: 0.03 to 0.15 wt%, Al: 0.5 wt% or less S: 0.05 wt% or less and N: 0.02 wt% or less, and B- (11 / 14N-11 / 27 Al-11 / 48Ti) ≥0.0005 (wt%) C- (12 / 48Ti-12 / 32 S-12 / 14N) ≥0.0005 (wt%), with the balance being Fe and inevitable impurities Then, the hot rolling finishing temperature is set in the range of Ar 3 transformation point to 900 ° C., the hot rolled sheet obtained by this hot rolling is subjected to cold rolling, and following this cold rolling, Ac 1 transformation point to Ac 1 Transformation point + 90 ° C
Heating up to the temperature range of at least Ar 1 transformation point + 100 ℃ ~ A
r 1 transformation point -100 ° C temperature range: bake hardenability and tempering at room temperature, which is characterized by performing heat treatment of cooling at a cooling rate of 7 ° C / s or more and then temper rolling with a reduction rate of 0.2 to 5%. A method for producing a cold-rolled steel sheet for processing having excellent aging properties.
JP1052151A 1989-03-06 1989-03-06 Manufacturing method of cold-rolled steel sheet for work excellent in bake hardenability and non-aging at room temperature Expired - Fee Related JPH06104862B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1052151A JPH06104862B2 (en) 1989-03-06 1989-03-06 Manufacturing method of cold-rolled steel sheet for work excellent in bake hardenability and non-aging at room temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1052151A JPH06104862B2 (en) 1989-03-06 1989-03-06 Manufacturing method of cold-rolled steel sheet for work excellent in bake hardenability and non-aging at room temperature

Publications (2)

Publication Number Publication Date
JPH02232316A JPH02232316A (en) 1990-09-14
JPH06104862B2 true JPH06104862B2 (en) 1994-12-21

Family

ID=12906864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1052151A Expired - Fee Related JPH06104862B2 (en) 1989-03-06 1989-03-06 Manufacturing method of cold-rolled steel sheet for work excellent in bake hardenability and non-aging at room temperature

Country Status (1)

Country Link
JP (1) JPH06104862B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940702231A (en) * 1992-06-22 1994-07-28 미노루 다나까 COLD ROLLED STEEL SHEET AND HOT DIP AINC-COATED COLD ROLLED STEEL SHEET HAVING EXCELLENT BAKE HARDENABILITY, NON-AGING PROPERTIES AND FORMABILITY, AND PROCESS FOR PRODUCING SAME)
US5690755A (en) * 1992-08-31 1997-11-25 Nippon Steel Corporation Cold-rolled steel sheet and hot-dip galvanized cold-rolled steel sheet having excellent bake hardenability, non-aging properties at room temperature and good formability and process for producing the same
JP4501290B2 (en) * 2000-03-01 2010-07-14 Jfeスチール株式会社 Cold-rolled steel sheet, plated steel sheet excellent in heat-treating ability to increase strength after forming, and manufacturing method thereof
JP4519373B2 (en) * 2000-10-27 2010-08-04 Jfeスチール株式会社 High-tensile cold-rolled steel sheet excellent in formability, strain age hardening characteristics and room temperature aging resistance, and method for producing the same
JP5104413B2 (en) * 2008-03-07 2012-12-19 Jfeスチール株式会社 Manufacturing method of steel plate for cans
JP6606905B2 (en) * 2015-07-30 2019-11-20 日本製鉄株式会社 Alloyed hot-dip galvanized steel sheet for outer panel of automobile and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5938337A (en) * 1982-08-28 1984-03-02 Nippon Steel Corp Manufacture of steel plate with burning hardenability for extremely deep drawing
JPS60103128A (en) * 1983-11-11 1985-06-07 Kawasaki Steel Corp Production of cold rolled steel sheet having composite structure
JPS60174852A (en) * 1984-02-18 1985-09-09 Kawasaki Steel Corp Cold rolled steel sheet having composite structure and superior deep drawability

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5938337A (en) * 1982-08-28 1984-03-02 Nippon Steel Corp Manufacture of steel plate with burning hardenability for extremely deep drawing
JPS60103128A (en) * 1983-11-11 1985-06-07 Kawasaki Steel Corp Production of cold rolled steel sheet having composite structure
JPS60174852A (en) * 1984-02-18 1985-09-09 Kawasaki Steel Corp Cold rolled steel sheet having composite structure and superior deep drawability

Also Published As

Publication number Publication date
JPH02232316A (en) 1990-09-14

Similar Documents

Publication Publication Date Title
EP2415893B1 (en) Steel sheet excellent in workability and method for producing the same
JPH0823048B2 (en) Method for producing hot rolled steel sheet with excellent bake hardenability and workability
EP0319590B1 (en) High-strength, cold-rolled steel sheet having high r value and process for its production
JP3263143B2 (en) Bake hardening type high strength alloyed hot-dip galvanized steel sheet excellent in workability and method for producing the same
JPH03277741A (en) Dual-phase cold roller steel sheet excellent in workability, cold nonaging properties and baking hardenability and its manufacture
JPH06104862B2 (en) Manufacturing method of cold-rolled steel sheet for work excellent in bake hardenability and non-aging at room temperature
JPH11310827A (en) Manufacture of cold rolled steel sheet excellent in aging resistance at normal temperature and panel characteristic and hot dip galvanized steel sheet
JPH02163318A (en) Production of high-tension cold rolled steel sheet having excellent press formability
JP2621744B2 (en) Ultra-high tensile cold rolled steel sheet and method for producing the same
JPH0559970B2 (en)
JPS6369923A (en) Production of cold rolled steel sheet for deep drawing having excellent baking hardenability
JPH07188856A (en) Cold rolled steel sheet excellent in delayed aging characteristic at ordinary temperature and baking hardenability
CN112400033B (en) Hot-rolled plated steel sheet having high strength, high formability, and excellent bake hardenability, and method for producing same
JPH07188771A (en) Production of cold rolled steel sheet excellent in formability, having hardenability in coating/baking and small in change of hardenability in coating/baking in width direction
JP3718987B2 (en) Paint bake-hardening cold-rolled steel sheet excellent in aging resistance and method for producing the same
JP3419000B2 (en) High-strength cold-rolled steel sheet excellent in deep drawability and secondary work brittle resistance, and method for producing the same
JPH0762487A (en) High strength and high workability steel sheet for can producing excellent in baking hardenability, aging resistance and non-earing
JPS61264136A (en) Manufacture of al killed steel sheet for deep drawing with very low carbon content having reduced in-plane anisotropy
JPH02145747A (en) Hot rolled steel sheet for deep drawing and its manufacture
KR100285649B1 (en) Method of manufacturing thin hot coil for deep drawing
KR100544539B1 (en) High Strength Cold-Rolled Steel Sheet with Good Toughness for Coil Packaging Band and A Method for Manufacturing Thereof
JP2705437B2 (en) High-strength cold-rolled steel sheet for deep drawing with bake hardenability and its manufacturing method
JP2023504791A (en) Steel material for hot forming, hot formed member, and method for producing the same
US20240018620A1 (en) Cold-rolled steel sheet having excellent processability and manufacturing method thereof
JPH07242948A (en) Production of cold rolled steel sheet for deep drawing excellent in baking hardenability

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071221

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081221

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees