JP3263143B2 - Bake hardening type high strength alloyed hot-dip galvanized steel sheet excellent in workability and method for producing the same - Google Patents

Bake hardening type high strength alloyed hot-dip galvanized steel sheet excellent in workability and method for producing the same

Info

Publication number
JP3263143B2
JP3263143B2 JP25216792A JP25216792A JP3263143B2 JP 3263143 B2 JP3263143 B2 JP 3263143B2 JP 25216792 A JP25216792 A JP 25216792A JP 25216792 A JP25216792 A JP 25216792A JP 3263143 B2 JP3263143 B2 JP 3263143B2
Authority
JP
Japan
Prior art keywords
steel sheet
temperature
less
workability
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25216792A
Other languages
Japanese (ja)
Other versions
JPH0673497A (en
Inventor
田中福輝
大宮良信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP25216792A priority Critical patent/JP3263143B2/en
Publication of JPH0673497A publication Critical patent/JPH0673497A/en
Application granted granted Critical
Publication of JP3263143B2 publication Critical patent/JP3263143B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は引張強度が390〜69
0N/mm2程度の冷延原板合金化溶融亜鉛めっき鋼板に
関し、特に降伏点が低く、伸び及び伸びフランジ性に優
れ、焼付硬化性(BH性)を有する高強度合金化溶融亜鉛
めっき鋼板とその製造方法に関する。
The present invention has a tensile strength of 390-69.
A high-strength galvannealed steel sheet having a low yield point, excellent elongation and stretch flangeability, baking hardening (BH property), and a cold rolled sheet galvannealed steel sheet of about 0 N / mm 2 It relates to a manufacturing method.

【0002】[0002]

【従来の技術】従来より、自動車用外板として、プレス
成形時には降伏点が低く、良好な加工性を示し、その後
の塗装焼付け工程で降伏点が上昇し、耐デント性を高め
る焼付硬化型鋼板が用いられている。現在では、270
〜370N/mm2の引張強度を有する鋼板が、車体防錆
能向上の観点から亜鉛めっき鋼板として広く用いられて
おり、中でも合金化溶融亜鉛めっき鋼板はそれ自体の高
い防錆能に加えて、厚目付け化が可能なため、広く使用
されるに至っている。
2. Description of the Related Art Conventionally, baking hardened steel sheets having a low yield point during press forming and exhibiting good workability as an outer panel for automobiles and exhibiting a higher yield point in a subsequent coating baking step to enhance dent resistance. Is used. Currently, 270
Steel sheets having a tensile strength of up to 370 N / mm 2 are widely used as galvanized steel sheets from the viewpoint of improving the rust prevention ability of a vehicle body. Among them, alloyed hot-dip galvanized steel sheets have a high rust prevention ability. Because it can be thickened, it has been widely used.

【0003】溶融亜鉛めっきラインは、めっき処理の前
設備として、再結晶焼鈍が可能な加熱炉を備えた連続ラ
インであるため、冷延原板の場合は冷間圧延ままの鋼板
を再結晶焼鈍を兼ねて加熱し、めっき処理が施される。
この場合、低炭素鋼ではめっき処理後或いは合金化処理
後、鋼板の冷却速度が速いため鋼中に多量の固溶Cが残
留することにより高いBH性を示すが、同時に常温時効
性の劣化が著しくなるという問題点がある。
[0003] Since the hot-dip galvanizing line is a continuous line equipped with a heating furnace capable of recrystallization annealing as a facility before the plating treatment, in the case of a cold-rolled original sheet, the steel sheet as cold-rolled is subjected to recrystallization annealing. Heating is also performed to perform plating.
In this case, in the low carbon steel, after the plating treatment or the alloying treatment, the cooling rate of the steel sheet is high, so that a large amount of solid solution C remains in the steel, thereby exhibiting a high BH property. There is a problem that it becomes significant.

【0004】一方、原板として、極低炭素鋼を用いる
が、Ti、Nb、B、Alなどの炭窒化物形成元素の添加
で鋼中の固溶C量を適正に制御することによって常温時
効性の劣化なくBH性を確保する方法が提案されてい
る。例えば、特開昭57−70258号公報にはNbを
添加したBH鋼板の製造方法が、特開昭63−6992
3号公報にはTi添加によるBH鋼板の製造方法が、そ
して特開平2−197549号公報にはTiとNbを複合
添加したBH鋼板の製造方法がそれぞれ開示されてい
る。
On the other hand, an ultra-low carbon steel is used as an original sheet, and the aging at room temperature is performed by appropriately controlling the amount of solute C in the steel by adding a carbonitride forming element such as Ti, Nb, B, or Al. There has been proposed a method for ensuring the BH property without deterioration of the BH. For example, Japanese Patent Application Laid-Open No. 57-70258 discloses a method for producing a BH steel sheet to which Nb is added.
No. 3 discloses a method for producing a BH steel sheet by adding Ti, and JP-A-2-197549 discloses a method for producing a BH steel sheet to which Ti and Nb are added in combination.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、これら
極低炭素BH鋼板は、一般に軟質なため、強度を高める
ためにはSi、P、Mnなどの固溶強化元素の添加に頼ら
ざるを得ない。
However, since these ultra-low carbon BH steel sheets are generally soft, they must rely on the addition of solid solution strengthening elements such as Si, P and Mn in order to increase the strength.

【0006】しかし、Siはめっきの密着性を劣化させ
るだけでなく、スケールに起因する表面外観の劣化を招
き易いことから、また、Pは強化能は大きいものの合金
化を著しく遅らせるため、合金化処理温度の高温化、或
いは通板速度の低下を余儀なくされることから、それぞ
れ過度の量の添加が制限される。
However, Si not only deteriorates the adhesion of the plating, but also tends to cause deterioration of the surface appearance due to scale, and P has a large strengthening ability but significantly delays alloying. Since the processing temperature must be increased or the sheet passing speed must be reduced, the addition of an excessive amount is limited.

【0007】一方、Mnは、SiやPのような表面品質の
問題や製造上の問題は少ないものの、固溶強化元素とし
て用いた場合は、結晶粒の微細化を招き降伏点を上昇さ
せるため、プレス成形時には降伏点が低いというBH鋼
板の利点そのものを失うこととなる。
On the other hand, Mn has few surface quality problems and production problems such as Si and P, but when used as a solid solution strengthening element, it causes finer crystal grains and raises the yield point. However, the advantage of the BH steel sheet that the yield point is low during press forming is lost.

【0008】このように、極低炭素BH鋼板の場合は、
現在用いられている270〜370N/mm2の引張強度
程度は可能であっても、これ以上の高強度化は非常に困
難であり、自動車の燃費向上の観点から一層の高強度鋼
板化が要求される今後、大きな問題となることが予想さ
れる。
As described above, in the case of an extremely low carbon BH steel sheet,
Even though a tensile strength of about 270 to 370 N / mm 2 currently used is possible, it is very difficult to further increase the tensile strength. It is expected to be a big problem in the future.

【0009】本発明は、かゝる状況に鑑みて、従来より
も高強度で、降伏比が低く、延性に優れた焼付硬化型合
金化溶融亜鉛めっき鋼板を提供し、またその製造方法を
提供することを目的とするものである。
In view of such circumstances, the present invention provides a bake hardenable alloyed hot-dip galvanized steel sheet having higher strength, a lower yield ratio, and excellent ductility than conventional ones, and a method of manufacturing the same. It is intended to do so.

【0010】[0010]

【課題を解決するための手段】本発明者は、引張強度が
390〜690N/mm2程度の焼付硬化型高強度合金化
溶融亜鉛めっき鋼板の製造において、鋼の高強度化を固
溶強化ではなく変態組織強化により行うべく、成分組成
及び複合組織の状態を最適化することによって加工性を
引張強度340〜370N/mm2程度の極低炭素BH鋼
板と同等程度まで高め得ることを見い出し、ここに本発
明を完成したものである。
SUMMARY OF THE INVENTION In the manufacture of a bake hardening type high-strength galvannealed steel sheet having a tensile strength of about 390-690 N / mm 2 , the present inventors have attempted to increase the strength of steel by solid solution strengthening. It has been found that workability can be increased to the same level as that of an ultra-low carbon BH steel sheet having a tensile strength of about 340 to 370 N / mm 2 by optimizing the composition of the components and the state of the composite structure in order to strengthen the transformation structure. Thus, the present invention has been completed.

【0011】すなわち、本発明は、C:0.04〜0.1
5%、Si:0.20%以下、Mn:1.0%〜2.5%、P:
0.050%以下、S:0.020%以下、Al:0.010
〜0.120%、Cr:0.1〜2.0%を含有し、残部が
鉄及び不可避的不純物よりなる成分組成を有し、70%
以上のフェライト相と、残部がそれぞれ少なくとも4%
以上のベイナイト及びマルテンサイトの3相の複合組織
からなることを特徴とする加工性に優れた焼付硬化型高
強度合金化溶融亜鉛めっき鋼板を要旨としている。
That is, the present invention relates to C: 0.04 to 0.1.
5%, Si: 0.20% or less, Mn: 1.0% to 2.5%, P:
0.050% or less, S: 0.020% or less, Al: 0.010
0.12%, Cr: 0.1-2.0%, with the balance being composed of iron and unavoidable impurities, 70%
The above ferrite phase and the balance at least 4% each
The gist of the present invention is a bake hardening type high strength alloyed hot-dip galvanized steel sheet having excellent workability, characterized by being composed of the above three-phase composite structure of bainite and martensite.

【0012】また、その製造方法は、上記化学成分を有
する鋼を常法により熱間圧延した後、700℃以下の温
度で巻取り、酸洗し、40%以上の冷間圧延後、780
℃以上で10sec以上の均熱処理に引き続いて7℃/sec
以下の冷却速度で700〜600℃の温度範囲まで徐冷
した後、10℃/sec以上で冷却し、420〜520℃
で溶融亜鉛めっきを施し、次いで合金化処理を行い、1
0℃/sec以上で常温まで冷却し、0.3〜0.8%の調
質圧延を行うことを特徴としている。
[0012] Further, the production method is as follows: steel having the above chemical composition is hot-rolled by a conventional method, then wound at a temperature of 700 ° C or less, pickled, and cold-rolled by 40% or more.
7 ° C / sec following soaking at 10 ° C or more for 10sec or more
After slowly cooling to a temperature range of 700 to 600 ° C. at the following cooling rate, cooling at 10 ° C./sec or more, 420 to 520 ° C.
Hot dip galvanizing, then alloying,
It is characterized by cooling to room temperature at a temperature of at least 0 ° C./sec and performing temper rolling of 0.3 to 0.8%.

【0013】[0013]

【作用】[Action]

【0014】以下に本発明を更に具体的に説明する。ま
ず、本発明における化学成分の限定理由は以下のとおり
である。
Hereinafter, the present invention will be described more specifically. First, the reasons for limiting the chemical components in the present invention are as follows.

【0015】C:Cは鋼の強度に大きく作用し、低温変
態生成物の量や形態を変えることで伸びや伸びフランジ
性に影響する。しかし、0.04%未満では390N/m
m2以上の高強度を得ることが困難であるため、これを下
限とする。一方、0.15%を超えて添加すると溶接性
の劣化を招くので、これを上限とする。
C: C has a great effect on the strength of steel, and affects elongation and stretch flangeability by changing the amount and form of low-temperature transformation products. However, if it is less than 0.04%, 390 N / m
Since it is difficult to obtain a high strength of m 2 or more, this is the lower limit. On the other hand, if the content exceeds 0.15%, the weldability deteriorates, so this is made the upper limit.

【0016】Si:Siは多量に添加するとめっき密着性
を著しく劣化させるので、0.20%を上限とする。な
お、0.20%以下であれば、合金化挙動に及ぼす影響
は非常に小さく無視できる。
Si: When Si is added in a large amount, the adhesion of the plating is remarkably deteriorated, so the upper limit is 0.20%. If it is 0.20% or less, the effect on the alloying behavior is very small and can be ignored.

【0017】Mn:Mnはオーステナイトを安定化する元
素で、オーステナイト中の固溶C量を変化させ、冷却過
程で生成する低温変態生成物の特性に大きく影響する元
素であり、本発明ではこの低温変態生成物の生成のため
にMnを適量にて添加する。すなわち、加工性の非常に
優れた高強度鋼板としての特性を得るためには少なくと
も1.0%の添加が必要である。しかし、2.5%を超え
ると溶製が困難になるばかりでなく、亜鉛めっき中のF
e濃度を過度に高くし、亜鉛めっきの防錆能を劣化させ
たりするので、これを上限とする。
Mn: Mn is an element that stabilizes austenite, changes the amount of solid solution C in austenite, and greatly affects the characteristics of a low-temperature transformation product generated in a cooling process. An appropriate amount of Mn is added for the formation of a transformation product. That is, in order to obtain the characteristics of a high-strength steel sheet having extremely excellent workability, it is necessary to add at least 1.0%. However, if the content exceeds 2.5%, not only becomes difficult to melt, but also F
e Since the concentration is excessively high and the rust preventive ability of the galvanization is deteriorated, the upper limit is set.

【0018】P:Pは固溶強化能の高い元素で、フェラ
イトを強化する場合には有効な強化元素として添加でき
る。しかし、0.050%を超えての添加は合金化処理
が困難になったり、場合によってはめっきむらが生じ易
くなるので、これを上限とする。
P: P is an element having a high solid solution strengthening ability, and can be added as an effective strengthening element when strengthening ferrite. However, if the addition exceeds 0.050%, the alloying treatment becomes difficult, and in some cases, plating unevenness tends to occur, so this is set as the upper limit.

【0019】S:Sは鋼中で析出物として固定される
が、その量が増大すると伸びや伸びフランジ性の劣化を
招くので、0.020%を上限とする。
S: S is fixed as a precipitate in steel, but if its amount increases, elongation and stretch flangeability deteriorate, so the upper limit is 0.020%.

【0020】Al:Alは脱酸のため少なくとも0.01
0%以上添加する。しかし、0.120%を超えて添加
してもコストアップになるだけでなく、表面性状を悪く
するので、これを上限とする。
Al: Al is at least 0.01 for deoxidation.
Add 0% or more. However, adding more than 0.120% not only increases the cost, but also deteriorates the surface properties. Therefore, the upper limit is set.

【0021】Cr:Crはオーステナイト中にCを濃化さ
せ、安定度を高めマルテンサイトを生成し易くする。し
かし、0.1%未満ではその効果がなく、低温変態生成
物がベイナイトだけとなり、低降伏点化、高伸び化が図
れない。一方、2.0%を超えて添加するとコストアッ
プになるだけでなく、低温変態生成物としてマルンテサ
イトが多く、ベイナイト量が少なくなり、伸びフランジ
性が劣化するだけでなく、亜鉛めっき性が劣化するの
で、これを上限とする。
Cr: Cr enriches C in austenite, increases the stability and facilitates the formation of martensite. However, if the content is less than 0.1%, the effect is not obtained, and the low-temperature transformation product is only bainite, and it is not possible to achieve a low yield point and a high elongation. On the other hand, if it is added in excess of 2.0%, not only does the cost increase, but also martensite as a low-temperature transformation product, the amount of bainite decreases, the stretch flangeability deteriorates, and the zinc plating property deteriorates. Since this deteriorates, the upper limit is set.

【0022】なお、不可避的不純物は可及的に少ないこ
とが望ましい。例えば、N(窒素)は固溶Nとして鋼中に
存在しても、またAlNの形で析出物として鋼中に存在
しても、延性を劣化させるので、100ppm以下である
のが望ましい。
It is desirable that inevitable impurities be as small as possible. For example, even if N (nitrogen) is present in the steel as solid solution N or as a precipitate in the form of AlN in the steel, the ductility is deteriorated. Therefore, N (nitrogen) is desirably 100 ppm or less.

【0023】上記の成分組成を有する鋼は、溶融亜鉛め
っきラインにて合金化溶融亜鉛めっき鋼板として製造す
るが、再結晶焼鈍、めっき処理、合金化処理と続く熱サ
イクルにより、70%以上のフェライト相と、残部がそ
れぞれ少なくとも4%以上のベイナイト及びマルテンサ
イトの3相の複合組織とすることが、本発明では重要で
ある。
The steel having the above-mentioned composition is manufactured as a galvannealed steel sheet in a hot-dip galvanizing line. It is important in the present invention that the composite has a three-phase composite structure of bainite and martensite, each of which has at least 4% or more of a balance.

【0024】このフェライト相と硬質相との複合組織と
することで、低降伏点、高BH性と常温遅時効性といっ
た焼付硬化型高強度合金化溶融亜鉛めっき鋼板としての
特性が得られる。そして、加工性として伸び及び伸びフ
ランジ性を向上させるために、この硬質な低温変態生成
物の種類と比率を規定する必要があり、少なくともそれ
ぞれ4%以上のベイナイトとマルテンサイトとするので
ある。
By forming a composite structure of the ferrite phase and the hard phase, characteristics as a bake hardening type high-strength alloyed hot-dip galvanized steel sheet such as a low yield point, a high BH property and an ordinary temperature aging property can be obtained. Then, in order to improve elongation and stretch flangeability as workability, it is necessary to define the type and ratio of this hard low-temperature transformation product, and at least 4% or more of each of bainite and martensite.

【0025】すなわち、硬質相が硬いマルテンサイトだ
けでは、均一伸びは優れるものの、母相のフェライト相
との硬度差が大きく、変形を受けた際、容易に界面でボ
イドが生成し、伸びフランジ性において劣る。
That is, although only the hard martensite hard phase has excellent uniform elongation, the hardness difference between the matrix and the ferrite phase is large, so that when deformed, voids are easily generated at the interface, and the stretch flangeability is increased. Inferior in

【0026】一方、ベイナイトだけでは、マルテンサイ
トより軟質なため伸びフランジ性には優れるが、フェラ
イト相との硬度差が小さいため、複合組織としての特徴
が十分でなく、低降伏点比、伸びの向上を達成するのが
困難となる。そこで、両者の特徴を活かすために、それ
ぞれを4%以上存在させる必要がある。
On the other hand, bainite alone is excellent in stretch flangeability because it is softer than martensite, but has a small difference in hardness from the ferrite phase, and thus has insufficient characteristics as a composite structure. It is difficult to achieve improvement. Therefore, in order to make use of the features of both, it is necessary that each of them be present in 4% or more.

【0027】一方、上限としては、引張強度を390〜
690N/mm2程度とするためにフェライト相の比率を
一定以上とすることで、逆に硬質相の上限を規定する。
すなわち、フェライト相の比率を70%以上とする。な
お、ここでいう比率とは、組織観察の際、認められる各
組織の面積率である。
On the other hand, as an upper limit, the tensile strength is set to 390 to 390.
On the other hand, the upper limit of the hard phase is defined by setting the ratio of the ferrite phase to be equal to or more than a certain value so as to be about 690 N / mm 2 .
That is, the ratio of the ferrite phase is set to 70% or more. In addition, the ratio referred to here is an area ratio of each tissue recognized at the time of tissue observation.

【0028】次に、上記の組織を得る製造方法として、
以下の方法が推奨される。
Next, as a manufacturing method for obtaining the above-mentioned structure,
The following method is recommended.

【0029】まず、熱間圧延は、基本的には常法に従っ
て行えば良く、加熱温度1000〜1300℃、仕上温
度800〜950℃、仕上圧延後の冷却速度30〜12
0℃/secの通常の条件範囲で実施すれば、何ら問題は
ない。
First, the hot rolling may be basically carried out according to a conventional method, with a heating temperature of 1000 to 1300 ° C., a finishing temperature of 800 to 950 ° C., and a cooling rate after the finish rolling of 30 to 12 ° C.
There is no problem if it is carried out under the ordinary condition range of 0 ° C./sec.

【0030】但し、巻取温度は700℃以下に規定する
が、この温度より高温で巻取ると表面のスケールが厚く
なり酸洗性が劣化する。なお、下限は特には規定しない
が、あまり低すぎると冷間圧延性を低下させるので、3
00℃以上が望ましい。
However, the winding temperature is specified to be 700 ° C. or lower. However, if the winding is performed at a temperature higher than this temperature, the scale of the surface becomes thick and the pickling property deteriorates. Although the lower limit is not particularly defined, if it is too low, the cold rolling property is reduced.
It is desirably at least 00 ° C.

【0031】熱間圧延後は、常法に従って酸洗、冷間圧
延を行うが、冷間圧延は40%以上で実施するのが好ま
しい。これ以下の冷延率では所望の製品を得るための熱
延板が薄く長くなり、酸洗時の生産性などに影響を及ぼ
すので望ましくない。
After hot rolling, pickling and cold rolling are performed according to a conventional method, but cold rolling is preferably performed at 40% or more. If the cold rolling rate is lower than this, the hot rolled sheet for obtaining a desired product becomes thin and long, which undesirably affects productivity during pickling.

【0032】次いで再結晶焼鈍を行う。この焼鈍は、A
c1変態点以上で加熱すれば良いが、加工性の安定化のた
めに本発明範囲の成分鋼では780℃以上に加熱するの
が良い。上限は特に規定しないが、900℃以下であれ
ば何ら問題はない。均熱は高温で処理するため10sec
以上保持すれば十分で、フェライト+オーステナイト組
織が得られる。
Next, recrystallization annealing is performed. This annealing is A
It may be heated by c 1 transformation point or more, but it is preferable to heat above 780 ° C. is a component steel of the present invention range for stabilization of workability. There is no particular upper limit, but there is no problem if the temperature is 900 ° C. or lower. 10 seconds for soaking at high temperature
It is sufficient to hold the above, and a ferrite + austenite structure can be obtained.

【0033】均熱処理後はめっき浴温度まで冷却し、め
っき処理を施すが、冷却過程でフェライト相の比率を7
0%以上にするため、7℃/sec以下の冷却速度で70
0〜600℃の温度範囲まで徐冷し、以後420〜52
0℃のめっき浴まで10℃/sec以上で冷却し、4%以
上のベイナイト組織を得る。均熱処理後の冷却速度が7
℃/secより速い場合で、700〜600℃の徐冷終了
温度を外れる場合は、ベイナイト或いはパーライトが生
成し、フェライト相の比率が70%以上とならない。ま
た、徐冷後の冷却速度が10℃/sec未満ではパーライ
トの生成が生じ所望の組織が得られない。
After the soaking heat treatment, the temperature is cooled down to the plating bath temperature and plating treatment is performed.
At a cooling rate of 7 ° C / sec or less, 70% or more
Slowly cooled to a temperature range of 0 to 600 ° C, and thereafter 420 to 52
Cool at 10 ° C / sec or more to a plating bath of 0 ° C to obtain a bainite structure of 4% or more. Cooling rate after soaking is 7
When the temperature is higher than ℃ / sec, and the temperature exceeds the slow cooling end temperature of 700 to 600 ° C, bainite or pearlite is formed, and the ratio of the ferrite phase does not become 70% or more. On the other hand, if the cooling rate after the slow cooling is less than 10 ° C./sec, pearlite is formed and a desired structure cannot be obtained.

【0034】なお、めっき浴に浸漬するまでの恒温保持
は何ら問題はない。合金化処理は通常どおり500〜7
50℃程度で実施すればよく、均熱後から合金化終了ま
での過程で4%以上のベイナイト組織を生成させ、残留
するオーステナイト中にCを濃縮し、10℃/sec以上
の冷却速度で常温までの冷却により、4%以上のマルテ
ンサイト組織が得られる。本発明範囲の成分組成及び製
造条件であれば、合金化処理終了時に4%以上のオース
テナイトが残留するので、上述のように10℃/sec以
上の冷却速度で、これがマルテンサイト変態される。
It should be noted that there is no problem in maintaining the temperature at a constant temperature until immersion in the plating bath. Alloying process is 500-7 as usual
It may be carried out at about 50 ° C., in the process from soaking to the end of alloying, a bainite structure of 4% or more is generated, C is concentrated in the remaining austenite, and a room temperature at a cooling rate of 10 ° C./sec or more. By cooling to above, a martensite structure of 4% or more is obtained. With the component composition and the production conditions falling within the range of the present invention, 4% or more of austenite remains at the end of the alloying treatment, so that it is transformed into martensite at a cooling rate of 10 ° C./sec or more as described above.

【0035】次いで、0.3〜0.8%の調質圧延を行
う。伸び率が0.3%未満では粗度が粗く、成形後の鮮
映性を損なう。0.8%超えではYP(降伏点)の上昇が
著しくなるのでこれを上限とする。
Next, temper rolling of 0.3 to 0.8% is performed. If the elongation is less than 0.3%, the roughness is coarse, and the sharpness after molding is impaired. If it exceeds 0.8%, the YP (yield point) rises remarkably, so this is set as the upper limit.

【0036】次に本発明の実施例を示す。Next, examples of the present invention will be described.

【0037】[0037]

【実施例】【Example】

【0038】表1に示す化学成分の鋼を溶製し、スラブ
とした。このスラブを1150℃に加熱し、仕上温度8
70〜900℃で3.2mm厚まで熱間圧延し、50℃/s
ecの平均冷却速度で、それぞれ600℃で巻取った。酸
洗後、1.2mm厚まで冷間圧延し、表2に示す条件で焼
鈍後、引続き440℃の亜鉛浴でめっきを施し、550
℃で合金化処理を実施した。表2に示す伸び率の調質圧
延後、機械的性質を調査した。その結果を表3に示す。
Steels having the chemical components shown in Table 1 were melted to form slabs. The slab is heated to 1150 ° C.,
Hot rolled to 3.2mm thickness at 70-900 ° C, 50 ° C / s
Each was wound at 600 ° C. at an average cooling rate of ec. After pickling, cold-rolled to a thickness of 1.2 mm, annealed under the conditions shown in Table 2, and subsequently plated in a zinc bath at 440 ° C.
The alloying treatment was performed at a temperature of ℃. After the temper rolling at the elongation shown in Table 2, the mechanical properties were investigated. Table 3 shows the results.

【0039】[0039]

【表1】 [Table 1]

【0040】[0040]

【表2】 [Table 2]

【0041】[0041]

【表3】 [Table 3]

【0042】表3より明らかなように、本発明例(No.
1〜No.2、No.5、No.7)は、いずれも高強度で良
好な強度−延性バランスを示し、30N/mm2以上の
BH性を有し、著しく低い降伏比(YR)を示してい
る。
As is clear from Table 3, the examples of the present invention (No.
1 to No. 2, No. 5, and No. 7) show high strength and good strength-ductility balance, have a BH property of 30 N / mm 2 or more, and have an extremely low yield ratio (YR). Is shown.

【0043】これに対し、比較例(No.3〜No.4、N
o.6、No.8、No.9〜No.12)では、化学成分又は
製造条件が本発明範囲外であるために、組織が本発明で
狙いとする最適な複合組織とならず、降伏比が0.66
〜0.80と本発明例に比して高く、強度−延性バラン
スも良好とは言い難い。また、比較例(No.6、No.1
0〜No.11)では、BH性も低く30N/mm2を下
まわっている。
On the other hand, the comparative examples (No. 3 to No. 4, N
In No. 6, No. 8, No. 9 to No. 12), since the chemical composition or the production conditions are out of the range of the present invention, the structure does not become the optimal composite structure aimed at in the present invention, and the yield The ratio is 0.66
-0.80, which is higher than that of the examples of the present invention, and it is difficult to say that the strength-ductility balance is good. In addition, the comparative examples (No. 6, No. 1)
In Nos. 0 to 11), the BH property is also low and is lower than 30 N / mm 2 .

【0044】[0044]

【発明の効果】以上詳述したように、本発明によれば、
引張強度が390〜690N/mm2程度の高強度で、降
伏比が低く、延性に優れた焼付硬化型高強度合金化溶融
亜鉛鋼板が容易に得られる。
As described in detail above, according to the present invention,
A baking-hardened high-strength galvannealed steel sheet having a high tensile strength of about 390 to 690 N / mm 2 , a low yield ratio and excellent ductility can be easily obtained.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C23C 2/28 C23C 2/28 (56)参考文献 特開 昭58−39770(JP,A) 特開 平4−128320(JP,A) 特開 平4−128321(JP,A) 特開 昭56−69359(JP,A) 特開 昭57−123956(JP,A) 特開 昭55−122821(JP,A) 特開 平6−65684(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/60 C23C 2/00 - 2/40 C21D 9/46 ────────────────────────────────────────────────── (5) Continuation of the front page (51) Int.Cl. 7 Identification symbol FI C23C2 / 28 C23C2 / 28 (56) References JP-A-58-39770 (JP, A) JP-A-4-128320 (JP) JP-A-4-128321 (JP, A) JP-A-56-69359 (JP, A) JP-A-57-123956 (JP, A) JP-A-55-122821 (JP, A) 6-65684 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C22C 38/00-38/60 C23C 2/00-2/40 C21D 9/46

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で(以下、同じ)、C:0.04〜
0.15%、Si:0.20%以下、Mn:1.0%〜2.5
%、P:0.050%以下、S:0.020%以下、Al:
0.010〜0.120%、Cr:0.1〜2.0%を含有
し、残部が鉄及び不可避的不純物よりなる成分組成を有
し、70%以上のフェライト相と、残部がそれぞれ少な
くとも4%以上のベイナイト及びマルテンサイトの3相
の複合組織からなることを特徴とする加工性に優れた焼
付硬化型高強度合金化溶融亜鉛めっき鋼板。
1. C: 0.04% by weight (hereinafter the same)
0.15%, Si: 0.20% or less, Mn: 1.0% to 2.5
%, P: 0.050% or less, S: 0.020% or less, Al:
0.010 to 0.120%, Cr: 0.1 to 2.0%, the balance has a composition of iron and unavoidable impurities, 70% or more of a ferrite phase, and the balance is at least A bake hardening type high-strength galvannealed steel sheet having excellent workability, characterized by having a three-phase composite structure of bainite and martensite of 4% or more.
【請求項2】 請求項1に記載の化学成分を有する鋼を
常法により熱間圧延した後、700℃以下の温度で巻取
り、酸洗し、40%以上の冷間圧延後、780℃以上で
10sec以上の均熱処理に引き続いて7℃/sec以下の冷
却速度で700〜600℃の温度範囲まで徐冷した後、
10℃/sec以上で冷却し、420〜520℃で溶融亜
鉛めっきを施し、次いで合金化処理を行い、10℃/se
c以上で常温まで冷却し、0.3〜0.8%の調質圧延を
行うことを特徴とする加工性に優れた焼付硬化型高強度
合金化溶融亜鉛めっき鋼板の製造方法。
2. The steel having the chemical composition according to claim 1, which is hot-rolled by a conventional method, wound up at a temperature of 700 ° C. or less, pickled, and cold-rolled at 40% or more, and then 780 ° C. After the above soaking process for 10 seconds or more, and then gradually cooling to a temperature range of 700 to 600 ° C. at a cooling rate of 7 ° C./sec or less,
Cool at 10 ° C / sec or more, apply hot-dip galvanizing at 420 to 520 ° C, then perform alloying treatment,
A method for producing a bake hardenable high-strength galvannealed steel sheet having excellent workability, characterized in that the steel sheet is cooled to room temperature at a temperature equal to or higher than c and subjected to a temper rolling of 0.3 to 0.8%.
JP25216792A 1992-08-27 1992-08-27 Bake hardening type high strength alloyed hot-dip galvanized steel sheet excellent in workability and method for producing the same Expired - Fee Related JP3263143B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25216792A JP3263143B2 (en) 1992-08-27 1992-08-27 Bake hardening type high strength alloyed hot-dip galvanized steel sheet excellent in workability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25216792A JP3263143B2 (en) 1992-08-27 1992-08-27 Bake hardening type high strength alloyed hot-dip galvanized steel sheet excellent in workability and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0673497A JPH0673497A (en) 1994-03-15
JP3263143B2 true JP3263143B2 (en) 2002-03-04

Family

ID=17233425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25216792A Expired - Fee Related JP3263143B2 (en) 1992-08-27 1992-08-27 Bake hardening type high strength alloyed hot-dip galvanized steel sheet excellent in workability and method for producing the same

Country Status (1)

Country Link
JP (1) JP3263143B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008133062A1 (en) 2007-04-13 2008-11-06 Jfe Steel Corporation High-strength hot-dip galvanized steel sheet and method for producing the same
WO2010126161A1 (en) 2009-04-28 2010-11-04 Jfeスチール株式会社 High-strength hot-dip zinc-coated steel sheet having excellent workability, weldability and fatigue properties, and process for production thereof
WO2011152017A1 (en) 2010-05-31 2011-12-08 Jfeスチール株式会社 High-strength molten-zinc-plated steel sheet having excellent bendability and weldability, and process for production thereof
WO2013114850A1 (en) 2012-01-31 2013-08-08 Jfeスチール株式会社 Hot-dip galvanized steel sheet and production method therefor

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001200352A (en) * 2000-01-20 2001-07-24 Nkk Corp Galvannealed steel sheet excellent in powdering resistance, and its manufacturing method
JP4781577B2 (en) * 2001-02-26 2011-09-28 新日本製鐵株式会社 High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
JP4705381B2 (en) * 2005-02-22 2011-06-22 新日本製鐵株式会社 Manufacturing method of low yield ratio steel
JP4846550B2 (en) * 2006-12-12 2011-12-28 新日本製鐵株式会社 Steel plate for galvannealed alloy and galvannealed steel plate
JP5212056B2 (en) * 2008-12-02 2013-06-19 新日鐵住金株式会社 Method for producing galvannealed steel sheet
CN102597292B (en) * 2009-11-09 2014-09-24 新日铁住金株式会社 High-strength steel sheet having excellent processability and paint bake hardenability, and method for producing same
JP4962594B2 (en) * 2010-04-22 2012-06-27 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008133062A1 (en) 2007-04-13 2008-11-06 Jfe Steel Corporation High-strength hot-dip galvanized steel sheet and method for producing the same
US8389128B2 (en) 2007-04-13 2013-03-05 Jfe Steel Corporation High tensile-strength galvanized steel sheet and process for manufacturing high tensile-strength galvanized steel sheet
WO2010126161A1 (en) 2009-04-28 2010-11-04 Jfeスチール株式会社 High-strength hot-dip zinc-coated steel sheet having excellent workability, weldability and fatigue properties, and process for production thereof
US8828557B2 (en) 2009-04-28 2014-09-09 Jfe Steel Corporation High strength galvanized steel sheet having excellent formability, weldability, and fatigue properties and method for manufacturing the same
WO2011152017A1 (en) 2010-05-31 2011-12-08 Jfeスチール株式会社 High-strength molten-zinc-plated steel sheet having excellent bendability and weldability, and process for production thereof
US10196727B2 (en) 2010-05-31 2019-02-05 Jfe Steel Corporation High strength galvanized steel sheet having excellent bendability and weldability, and method of manufacturing the same
WO2013114850A1 (en) 2012-01-31 2013-08-08 Jfeスチール株式会社 Hot-dip galvanized steel sheet and production method therefor
US9322091B2 (en) 2012-01-31 2016-04-26 Jfe Steel Corporation Galvanized steel sheet

Also Published As

Publication number Publication date
JPH0673497A (en) 1994-03-15

Similar Documents

Publication Publication Date Title
KR930001519B1 (en) Method of manufacturing a steel sheet
JP3002379B2 (en) Manufacturing method of high-strength cold-rolled galvannealed steel sheets for automobiles with excellent formability, paint bake hardenability and little change in paint bake hardenability
JP3263143B2 (en) Bake hardening type high strength alloyed hot-dip galvanized steel sheet excellent in workability and method for producing the same
JP2003105514A (en) High strength galvannealed steel sheet having excellent workability, and production method therefor
JP2761095B2 (en) Method for producing high strength galvanized steel sheet with excellent bending workability
JP2003268491A (en) High-strength steel sheet for working member, production method thereof, and production method for working member having working plane excellent in abrasion resistance
JP3293681B2 (en) Hot-dip galvanized or alloyed hot-dip galvanized high-strength steel sheet and method for producing the same
JP3354610B2 (en) High strength hot-dip galvanized steel sheet and method for producing the same
JPH03253543A (en) Cold rolled steel sheet or galvanized steel sheet for deep drawing having excellent secondary processing brittleness resistance or baking hardenability
JPH10298662A (en) Production of cold rolled steel sheet and galvannealed steel sheet excellent in coating/baking hardenability and its production
JP2001200337A (en) Cold rolled steel sheet excellent in baking hardenability and cold aging resistance and producing method therefor
JP2812770B2 (en) Manufacturing method of alloyed hot-dip galvanized cold-rolled steel sheet for deep drawing with excellent bake hardenability and powdering resistance
JPH05195060A (en) Production of baking hardening type cold rolled steel sheet excellent in ageing resistance and press formability
JPH0559970B2 (en)
JP2000109964A (en) Production of hot dip galvannealed and hot rolled steel sheet
JP3376882B2 (en) Manufacturing method of high tensile alloyed hot-dip galvanized steel sheet with excellent bendability
JP2549539B2 (en) Method for producing hot dip galvanized steel sheet for ultra deep drawing
JP3716439B2 (en) Manufacturing method of high-tensile alloyed hot-dip galvanized steel sheet with excellent plating characteristics
JPH05171351A (en) Cold rolled steel sheet for deep drawing having non-aging characteristic and excellent in baking hardenability and its production
JP2975774B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP2000144261A (en) Production of hot rolled base hot dip galvanized and hot dip galvannealed high tensile strength steel sheet excellent in ductility
JPH0466620A (en) Production of hot-dip galvanized cold rolled steel sheet for deep drawing excellent in baking hardenability
JP2003105516A (en) High strength galvannealed steel sheet having excellent workability, and production method therefor
JPH108201A (en) Steel sheet for deep drawing, and its production
JP2515139B2 (en) Method for manufacturing alloyed hot-dip galvanized steel sheet for ultra deep drawing

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071221

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081221

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091221

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees