JP3716439B2 - Manufacturing method of high-tensile alloyed hot-dip galvanized steel sheet with excellent plating characteristics - Google Patents

Manufacturing method of high-tensile alloyed hot-dip galvanized steel sheet with excellent plating characteristics Download PDF

Info

Publication number
JP3716439B2
JP3716439B2 JP02650195A JP2650195A JP3716439B2 JP 3716439 B2 JP3716439 B2 JP 3716439B2 JP 02650195 A JP02650195 A JP 02650195A JP 2650195 A JP2650195 A JP 2650195A JP 3716439 B2 JP3716439 B2 JP 3716439B2
Authority
JP
Japan
Prior art keywords
mass
less
plating
steel sheet
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02650195A
Other languages
Japanese (ja)
Other versions
JPH07278745A (en
Inventor
一洋 瀬戸
敬 坂田
俊之 加藤
茂 海野
千昭 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP02650195A priority Critical patent/JP3716439B2/en
Publication of JPH07278745A publication Critical patent/JPH07278745A/en
Application granted granted Critical
Publication of JP3716439B2 publication Critical patent/JP3716439B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【産業上の利用分野】
この発明は、主自動車の車体用として、曲げ加工、プレス成形加工、絞り加工などの用途に供して好適な高張力合金化溶融亜鉛めっき鋼板の製造方法に関するものである。
【0002】
【従来の技術】
近年、環境問題による自動車の排気ガス規制などから燃費向上のために車体軽量化の要請が高まって来ている。また、自動車の安全性向上も重要な課題となっている。そこでこれらの問題の対応策の一つとして、引張強さが 400MPa程度以上で、かつ優れたプレス成形性を有する高張力合金化溶融亜鉛めっき鋼板が要求されている。
しかし、一般に冷延鋼板は高張力化にともないプレス成形性すなわち平均r値やTS−Elバランスが劣化し、めっき特性などの表面特性も劣化する傾向にある。したがって自動車用として供するためには、高張力化とともに、めっき特性およびプレス成形性を向上させることが重要になる。
これまで、高張力化にともなうプレス成形性改善のために、各種の方法が提案されている。
例えば、特開昭63−100158号公報の成形性にすぐれる高強度冷延鋼板のように、Cを低減した極低炭素鋼をベースとして、加工性、時効性の改善のために炭窒化物形成成分であるTi, Nbなどを添加し、さらに加工性を害さないSi, Mn, Pでおもに高張力化をはかる手段が開示されている。特にSiは平均r値や伸びなどで示される加工性を劣化させることなく高張力化する有利な成分であるが、一方で多量のSiを含有させると表面特性の劣化が避けがたく、めっき特性が著しく劣化するという問題があった。
【0003】
このため、合金化溶融亜鉛めっき用の鋼板を高張力化する場合には、特開平5−255807号公報(成形性に優れた高強度冷延鋼板と溶融亜鉛めっき高強度冷延鋼板およびそれらの製造方法)に開示されているようにSiを0.03%以下に制限し、強化成分として主にP,Mnを用いる方法が一般的であった。しかし、多量のPの添加は溶融亜鉛めっきの合金化を遅延させるほか、特に極低炭素鋼において2次加工脆性を引き起こしやすいという問題があった。またMnもめっき特性への影響は少ないとはいえ、Siが 0.1%以下に制限された状態では1%以上のMn含有量からめっき特性が劣化しはじめるほか、多量に含有させると変態点が低下して熱延板が硬質化したり焼鈍時に再結晶しないなどの材質劣化につながる不具合が発生するという問題があった。
このようにP,Mnだけで加工性とめっき特性を維持しつつ高張力化を図るには限界があった。
【0004】
【発明が解決しようとする課題】
この発明は、前記した問題点を有利に解決しようとするもので、自動車用に供して好適なプレス成形などの加工性に優れ、かつめっき特性にも優れる高張力合金化溶融亜鉛めっき鋼板の有利な製造方法を提案することを目的とする。
【0005】
【課題を解決するための手段】
さて、発明者らは、上記の課題を解決すべく鋭意研究を重ねた結果、強化成分としてSiを有効し、かつSiとMnとの相互関係を特定することにより、良好なめっき特性とプレス成形性とを兼ね備えた引張強さ 400 MPa以上の高張力合金化溶融亜鉛めっき鋼板が得られることの新規知見を得た。
この発明は、上記の知見に立脚するものである。
【0007】
すなわち、この発明の要旨構成は次のとおりである。
C:0.0005mass% 以上、 0.0050mass%以下、
Si:0.3 mass% 以上、 2.5 mass%以下(但し、0.3 mass% を除く)、
Mn:0.1 mass% 以上、 2.5 mass%以下、
Ti:0.003 mass% 以上、 0.10mass%以下、
Nb:0.003 mass% 以上、 0.10mass%以下、
B:0.0005mass% 以上、 0.0080mass%以下、
P:0.040 mass% 以上、 0.18mass%以下、
S:0.015 mass% 以下、
Al:0.005 mass% 以上、 0.10mass%以下および
N:0.0060mass% 以下
で、かつ、SiおよびMnを下記式(1) の関係のもとで含有し、残部はFeおよび不可避的不純物の組成よりなる鋼スラブを素材として、熱間圧延して 750℃以上、1000℃以下の温度範囲にて仕上圧延を終了し、酸洗後圧下率60%以上、95%以下の範囲の冷間圧延を行って冷延板とし、その冷延板を連続式溶融亜鉛めっき設備で 700℃以上、 950℃以下の温度範囲にて再結晶焼鈍後 380〜530 ℃の温度域まで急冷し、Alを0.12〜0.145 mass%の範囲で含有する 450〜490 ℃の温度範囲の溶融亜鉛めっき浴に浴温以上、浴温+10℃以下の温度域で浸漬してめっきしたのち、 450〜550 ℃の温度範囲にて14秒間以上、28秒間以下の加熱をして合金化することを特徴とするめっき特性に優れる高張力合金化溶融亜鉛めっき鋼板の製造方法。

1.5 (maas% Mn)−2≦(mass% Si)≦2(mass% Mn) ----(1)
【0008】
【作用】
まず、この発明の基礎となった実験結果についてのべる。
C:0.002 mass%、Ti : 0.04mass %、Nb : 0.03mass %、B:0.002 mass%、P:0.10mass%、S:0.006 mass%、Al : 0.04mass %およびN:0.002 mass%を含有し、かつSiおよびMnの含有量の異なる板厚0.75mmの冷延鋼板のSiおよびMn含有量とめっき特性の関係について調査した。
なお、これらの鋼板は上記組成になるシートバーを、820 〜910 ℃の範囲の仕上げ圧延温度で熱間圧延を行い、続いて酸洗後圧下率75〜85%の範囲で冷間圧延を行ったのち、さらに溶融亜鉛めっきラインにおいて 780〜890 ℃の温度範囲で焼鈍を施した後 450〜500 ℃の温度域まで急冷し、Alを0.13mass%含有する溶融亜鉛めっき浴に浸漬してめっきしたのち、 450〜550 ℃の温度範囲の合金化処理(めっき層中のFe含有率約10%)を施すことにより製造したものである。また、めっき特性は目視による外観(不めっき)の判定と90°曲げ試験による耐パウダリング性の判定とで評価した。
【0009】
これらの鋼板につき、SiおよびMn含有量とめっき特性の関係について調査した結果を表1にまとめて示す。
【表1】

Figure 0003716439
【0010】
この結果、表1から明らかなように、SiとMnとの相互関係が1.5(mass% Mn) −2≦ (mass% Si) ≦2 (mass% Mn) の範囲にあるときめっき外観、耐パウダリング性ともに良好であることが判明した。上記範囲をはずれてSiあるいはMnのうち少なくともどちらか一方が多い場合にはめっき特性が劣化する。この理由は必ずしも明らかではないが、鋼板表面に生成される酸化膜が、Si単独添加の場合SiO2、Mn単独添加の場合MnO となりともに溶融亜鉛との濡れ性が悪いのに対し、Si, Mnを上記関係式を満たして含有させた場合にはMnSiO3主体の酸化膜となり、溶融亜鉛との濡れ性が向上するためと考えられる。
【0011】
次にこの発明における各成分組成範囲の限定理由について述べる。
【0012】
C:0.0005mass%以上、0.0050mass%以下
Cは、良好な加工性、とくに良好なTS−Elバランスを有する鋼板を得るために、その含有量は0.0050mass%以下とすることが必要であり、好ましくは0.0040mass%以下、より好ましくは0.0030mass%以下の極低炭素鋼であることが望ましい。しかし、同時に多量のPを含有させる場合には、Cが0.0005mass%よりも少なくなると耐2次加工脆性が劣化する。従ってC含有量は、0.0005mass%以上、0.0050mass%以下に限定するが、好ましくは0.0005mass%以上、0.0040mass%以下、より好ましくは0.0005mass%以上、0.0030mass%以下である。
【0013】
Si : 0.3 mass%以上、2.5 mass% 以下(但し、 0.3 mass% を除く)
Siは、加工性の劣化を少なくし鋼を強化する作用があり、Si を活用して加工性を維持しつつ鋼を強化するというこの発明の主旨から引張強度を 400 MPa 級以上とする場合の Si含有量は0.3 mass%以上必要とする。しかし2.5 mass%を超えると耐2次加工脆性の劣化を招く。従ってSi含有量は、0.3 mass%以上、2.5 mass%以下(但し、 0.3 mass% を除く)に限定する。
【0014】
Mn : 0.1 mass %以上、2.5 mass%以下
Mn含有量は、加工性・耐2次加工脆性の観点からは低減させることが望ましいが、0.1 mass%よりも少ない場合は自動車用材料として充分な強化効果が得られない。また、熱延時の変態点を上げるSiを多量に含有させた場合にはオーステナイト域での正常な熱延を実施することが困難になるため、変態点を下げるMnを好ましくは0.2 mass%以上、より好ましくは0.4 mass%以上添加して変態点を適当な温度域に調整することが望ましい。一方、含有量が2.5 mass%を超えると耐2次加工脆性の改善が困難になるほか、鋼が著しく硬化して冷間圧延が困難となる。従ってMn含有量は、0.1 mass%以上、2.5 mass%以下に限定するが、好ましくは0.2 mass%以上、2.5 mass%以下、より好ましくは0.4 mass%以上、2.5 mass%以下である。
【0015】
Ti : 0.003 mass %以上、0.10mass%以下
Nb : 0.003 mass %以上、0.10mass%以下
Tiは、N,C,Sの一部あるいは全部を、またNbは、Cの一部あるいは全部を固定することにより、極低炭素鋼の加工性と非時効性を確保するのに有効である。しかし、いずれも含有量が0.003 mass%未満ではその効果がないためこの値を下限とする。一方、いずれも0.1 mass%超となると逆に加工性を劣化させるためこの値を上限とする。ただし、加工性のさらなる向上の観点からはC量が0.0020mass% 以下程度に低減されている場合にはTi, Nbの合計で好ましくは0.03mass%以上、0.10mass%以下、より好ましくは0.03mass%以上、0.08mass%以下である。
【0016】
B:0.0005mass%以上、0.0080mass%以下
Bは、粒界に偏析し、2次加工脆性の防止に顕著な効果を示すが、含有量が0.0005mass%未満ではその効果が小さく、一方0.0080mass%を超えて含有させてもその効果が飽和するばかりでなく降伏強度の上昇、伸びの低下などあって加工性を劣化させる。従ってその含有量は、0.0005mass%以上、0.0080mass%以下に限定する。ただし、Bの添加によってわずかであるが加工性が劣化するため、0.15mass% を超えるPを含有するような場合を除いて好ましくは0.0005mass%以上、0.0050mass%以下、より好ましくは0.0005mass%以上、0.0030mass%以下である。
【0017】
P:0.040 mass%以上、0.18mass%以下
Pは、鋼を強化するとともに、加工性、とくに平均r値を向上させる効果があり、所望の強度に応じて含有させる。その効果は含有量が0.040 mass%以上で顕著になるが、一方、0.18mass%を超えて含有させた場合にはめっきの合金化を著しく遅延させるほか、鋳造時の凝固偏析により材質も劣化させる。また材質改善を目的にC量を低減した場合には、含有量が0.12mass%以上で耐2次加工脆性が劣化しはじめ、0.15mass%以上では多量のBの添加が必要になる。
従ってP含有量は、0.040 mass%以上、0.18mass%以下に規定するが、好ましくは0.040 mass%以上、0.15mass%以下、より好ましくは 0.040mass%以上、0.12mass%以下である。
【0018】
S:0.015 mass%以下
Sは、含有量が0.015 mass%超えになるとMnSが多量に析出し加工性が劣化するのでこれを上限とする。ただし、加工性のさらなる向上の観点からは好ましくは0.010 mass%以下、より好ましくは0.008 mass%以下である。なお、含有量は少ない方が望ましいが、0.0005mass%未満になると現状技術では著しく製造コストが上昇するので実用的でない。
【0019】
Al : 0.005 mass %以上、0.10mass%以下
Alは、脱酸および鋼中Nの析出固定のため必要に応じて添加されるが、その含有量が0.005 mass%未満では介在物が増加してしまい良好な加工性が得られない。一方、含有量が多すぎると加工性を劣化させるだけでなく、表面性状をも劣化させるため、Al含有量は0.005 mass%以上、0.10mass%以下に限定する。ただし上記メカニズムによる加工性の適正化の観点からは好ましくは0.005 mass%以上、0.06mass%以下、より好ましくは0.01mass%以上、0.06mass%以下である。
【0020】
N:0.0060mass%以下
Nは、歪時効の主因の1つとなる有害な成分であり、含有量があまり多いと多量のTiやAlの添加が必要になるため0.0060mass%を上限とする。ただし、加工性のさらなる向上の観点からは好ましくは0.0040mass%以下、より好ましくは0.0030mass%以下である。なお、含有量は少ない方が望ましいが、0.0003mass%未満になると現状技術では著しく製造コストが上昇するので実用的でない。
【0021】
ついで、工程条件の限定理由について述べる。
製鋼・鋳造条件は常法にしたがって行うことで良い。
熱間圧延仕上温度は冷延、焼鈍後の加工性を良好にするため最低でも 750℃を必要とする。これ未満の温度では、熱延板中の圧延組織の残存が顕著となり、プレス成形性に有利な集合組織の形成に不利となる。一方、1000℃を超えて圧延を終了すると熱延板組織の粗大化が生じ、やはりプレス成形性に有利な集合組織が得られない。従って熱間圧延仕上温度は 750℃以上、1000℃以下とする。
冷間圧延においては、冷延圧下率を60%以上にしないと十分な加工性が得られないので60%以上とする。好ましくは70%以上の冷延圧下率とすることが有利である。一方、冷延圧下率を95%以上とすると加工性が劣化するのでその上限を95%とする。
【0022】
めっきは連続式溶融亜鉛めっき設備で行う。冷間圧延後の再結晶焼鈍温度は、700 ℃以上 950℃以下であればよいが、望ましくは 800℃以上で焼鈍するのがよい。焼鈍後は 380〜530 ℃の温度域に急冷する。急冷停止温度が 380℃未満では不めっきが発生し、一方 530℃超えではめっき表面にムラが発生するため好ましくない。急冷後は引き続いてAlを0.12〜0.145 mass%含有する溶融亜鉛めっき浴に浸漬してめっきする。浴中のAl含有量が0.12mass%未満では合金化が進み過ぎてめっき密着性(耐パウダリング性)が劣化する。一方、0.145 mass%超えでは不めっきが発生する。めっきに続く加熱による合金化をめっき層中のFe含有率が9〜12%となるように実施する。すなわち、 450〜550 ℃の温度範囲にて、14秒間以上、28秒間以下の加熱を行って合金化する。加熱温度が 450℃未満あるいは加熱時間が14秒間未満では合金化が十分行われず、Fe含有率が9%未満となって耐フレーキング性が劣化する。一方加熱温度が 550℃超えあるいは加熱時間が28秒間超えでは合金化が過度に進み、耐パウダリング性が劣化する。
【0023】
亜鉛めっき浴の浴温は 450〜490 ℃の範囲とし、浴に侵入させる板の温度は浴温以上、(浴温+10℃)以下とする。浴温が 450℃未満あるいは侵入板温が浴温未満であると、亜鉛の凝固が促進されてめっき付着量の調整が困難となる。一方、浴温が 490℃超えあるいは侵入板温が(浴温+10℃)超えであると鋼板から浴中への鉄の溶出が促進されてドロスを作り表面欠陥を生じやすくなる。
なお、この発明によって得られる鋼板は、表面に潤滑剤を塗布するなどの特殊な処理を施してさらにプレス成形性、熔接性、あるいは耐食性の改善を行ってもこの発明の特性には変わりない。またこの発明の鋼板(あるいはこの発明の鋼板の表面に特殊な処理を施した鋼板)に、形状矯正などの目的で調質圧延を行ってもこの発明の特性に変わりはない。
【0024】
【実施例】
転炉にて溶製した表2に示す成分組成の鋼スラブを素材として熱間圧延を行い、続いて酸洗後冷間圧延により板圧0.8mm に圧延した後、連続溶融亜鉛めっきラインでめっきを施し、得られた鋼板について引張特性およびめっき特性を調査した。なお、めっき浴温は460 〜480 ℃の範囲、侵入板温はめっき浴温以上、浴温+10℃以下、金合化の条件は480 〜540 ℃の温度範囲で15〜28秒間の範囲の加熱保持とした。
【0025】
【表2】
Figure 0003716439
【0026】
上記製造条件として、熱間圧延仕上温度(FDT)、冷間圧延圧下率、焼鈍温度、急冷停止温度、めっき浴中のAl含有量および合金化後のめっき層中Fe含有率などの調査結果を表3にまとめて示す。
【0027】
【表3】
Figure 0003716439
【0028】
ここで、引張り特性はJIS5号試験片を使用して測定し、めっき特性は前記の実験の場合と同様の方法で試験・評価した。
表2および3から、この発明の適合例はいずれもTS×Elで示されるTS−Elバランスに優れると同時に、優れためっき特性を有していることがわかる。
【0029】
【発明の効果】
この発明は、極低炭素鋼においてSiを強化成分として活用し、SiとMnとの含有量の相互関係を特定することにより、めっき特性に優れ、かつプレス成形用としても好適な特性を有する高張力合金化溶融亜鉛めっき鋼板を得るもので、この発明による鋼板は自動車の軽量化、安全性の向上に大きく寄与することができる。[0001]
[Industrial application fields]
The present invention, mainly for automobile body, bending, press forming, a process for producing a suitably subjected to applications such as drawing a high tensile galvannealed steel plate.
[0002]
[Prior art]
In recent years, there has been an increasing demand for weight reduction of vehicle bodies in order to improve fuel efficiency due to automobile exhaust gas regulations due to environmental problems. In addition, improving the safety of automobiles is also an important issue. Therefore, as one of countermeasures against these problems, a high-tensile alloyed hot-dip galvanized steel sheet having a tensile strength of about 400 MPa or more and excellent press formability is required.
However, in general, cold-rolled steel sheets tend to deteriorate in press formability, that is, average r value and TS-E1 balance, and surface characteristics such as plating characteristics as the tensile strength is increased. Therefore, in order to be used for automobiles, it is important to improve plating characteristics and press formability as well as increasing tension.
Up to now, various methods have been proposed for improving press formability with increasing tension.
For example, based on ultra-low carbon steel with reduced C, such as a high-strength cold-rolled steel sheet having excellent formability as disclosed in JP-A-63-100158, carbonitride is used for improving workability and aging properties. A means is disclosed in which Ti, Nb, etc., which are forming components, are added and Si, Mn, P, which does not impair workability, mainly increase the tension. In particular, Si is an advantageous component that increases the tensile strength without degrading the workability indicated by the average r value and elongation. On the other hand, if a large amount of Si is contained, it is difficult to avoid the deterioration of the surface characteristics, and the plating characteristics. There has been a problem that the material deteriorates significantly.
[0003]
For this reason, when increasing the tensile strength of a steel sheet for alloying hot dip galvanizing, JP-A-5-255807 (high strength cold-rolled steel sheet excellent in formability and hot-dip galvanized high-strength cold-rolled steel sheet and their As disclosed in (Manufacturing method), a method is generally used in which Si is limited to 0.03% or less and P and Mn are mainly used as reinforcing components. However, the addition of a large amount of P has a problem that it delays the alloying of hot dip galvanizing and tends to cause secondary work embrittlement particularly in extremely low carbon steel. Mn also has little effect on plating properties, but when Si is limited to 0.1% or less, the plating properties begin to deteriorate from 1% or more of Mn content. As a result, there has been a problem in that the hot-rolled sheet becomes hard or does not recrystallize during annealing, leading to material deterioration.
As described above, there is a limit to increase the tension while maintaining workability and plating characteristics using only P and Mn.
[0004]
[Problems to be solved by the invention]
The present invention seeks to advantageously solve the problems above-mentioned, and subjected to automotive excellent workability such as a suitable press molding, and advantageously of high tensile galvannealed steel sheet superior in plating properties It aims to propose a simple manufacturing method.
[0005]
[Means for Solving the Problems]
Now, as a result of intensive research to solve the above problems, the inventors have made effective use of Si as a reinforcing component, and by specifying the mutual relationship between Si and Mn , good plating characteristics and press molding New knowledge that high tensile alloyed hot-dip galvanized steel sheet with tensile strength of 400 MPa or more is obtained .
The present invention is based on the above findings.
[0007]
That is, the gist configuration of the present invention is as follows.
C: 0.0005 mass% or more, 0.0050 mass% or less,
Si: 0.3 mass% or more, 2.5 mass% or less (except 0.3 mass%),
Mn: 0.1 mass% or more, 2.5 mass% or less,
Ti: 0.003 mass% or more, 0.10 mass% or less,
Nb: 0.003 mass% or more, 0.10 mass% or less,
B: 0.0005 mass% or more, 0.0080 mass% or less,
P: 0.040 mass% or more, 0.18 mass% or less,
S: 0.015 mass% or less,
Al: 0.005 mass% or more, 0.10 mass% or less and N: 0.0060 mass% or less, and Si and Mn are contained in the relationship of the following formula (1), and the balance is based on the composition of Fe and inevitable impurities The steel slab to be used as a raw material is hot-rolled and finish-rolled in a temperature range of 750 ° C or higher and 1000 ° C or lower, and then cold-rolled in the range of 60% or higher and 95% or lower after the pickling. The cold-rolled sheet is rapidly cooled to a temperature range of 380-530 ° C after recrystallization annealing in a temperature range of 700 ° C or higher and 950 ° C or lower with a continuous hot-dip galvanizing facility, and Al is 0.12-0.145. After dipping in a hot dip galvanizing bath with a temperature range of 450 to 490 ° C, contained in the range of mass%, in a temperature range of bath temperature + 10 ° C or less, plating is performed at a temperature range of 450 to 550 ° C. High tensile alloyed hot dip galvanized steel sheet with excellent plating characteristics, characterized by being alloyed by heating for at least 28 seconds and at most 28 seconds Manufacturing method.
Record
1.5 (maas% Mn) -2 ≤ (mass% Si) ≤ 2 (mass% Mn) ---- (1)
[0008]
[Action]
First, the experimental results that are the basis of the present invention will be described.
C: 0.002 mass%, Ti: 0.04 mass%, Nb: 0.03 mass%, B: 0.002 mass%, P: 0.10 mass%, S: 0.006 mass%, Al: 0.04 mass%, and N: 0.002 mass% The relationship between the Si and Mn contents and the plating characteristics of cold-rolled steel sheets with a thickness of 0.75 mm and different Si and Mn contents was investigated.
These steel plates are hot rolled at a finish rolling temperature in the range of 820 to 910 ° C., followed by cold rolling in the range of 75 to 85% reduction after pickling. After that, after annealing at a temperature range of 780 to 890 ℃ in the hot dip galvanizing line, it was quenched to a temperature range of 450 to 500 ℃ and immersed in a hot dip galvanizing bath containing 0.13 mass% of Al and plated. After that, it is manufactured by applying an alloying treatment in a temperature range of 450 to 550 ° C. (Fe content in the plating layer is about 10%). The plating characteristics were evaluated by visual appearance (non-plating) judgment and powdering resistance judgment by 90 ° bending test.
[0009]
Table 1 summarizes the results of investigations on the relationship between the Si and Mn contents and the plating characteristics of these steel sheets.
[Table 1]
Figure 0003716439
[0010]
As a result, as apparent from Table 1, when the interrelationship between Si and Mn is in the range of 1.5 (mass% Mn) -2 ≤ (mass% Si) ≤ 2 (mass% Mn), the appearance of plating and powder resistance It was found that the ring property was good. If at least one of Si and Mn is large outside the above range, the plating characteristics deteriorate. The reason for this is not necessarily clear, but the oxide film formed on the steel sheet surface is SiO 2 when Si alone is added, and MnO when Mn alone is added, while the wettability with molten zinc is poor, while Si, Mn This is considered to be due to the fact that an oxide film mainly composed of MnSiO 3 is formed and the wettability with molten zinc is improved.
[0011]
Next, the reasons for limiting each component composition range in the present invention will be described.
[0012]
C: 0.0005 mass% or more and 0.0050 mass% or less C is required to have a content of 0.0050 mass% or less in order to obtain a steel sheet having good workability, particularly a good TS-El balance, Preferably, it is an extremely low carbon steel of 0.0040 mass% or less, more preferably 0.0030 mass% or less. However, when a large amount of P is contained at the same time, when C is less than 0.0005 mass%, the secondary work brittleness resistance deteriorates. Therefore, although C content is limited to 0.0005 mass% or more and 0.0050 mass% or less, Preferably it is 0.0005 mass% or more and 0.0040 mass% or less, More preferably, it is 0.0005 mass% or more and 0.0030 mass% or less.
[0013]
Si: 0.3 m ass% or more, 2.5 mass% or less ( excluding 0.3 mass% )
Si has the effect of reducing the deterioration of workability and strengthening the steel. From the gist of the present invention that the steel is strengthened while maintaining the workability using Si , the tensile strength is set to 400 MPa class or higher. Si content require more than 0.3 mass%. However, when it exceeds 2.5 mass%, secondary work brittleness resistance is deteriorated. Accordingly, the Si content is limited to 0.3 mass% or more and 2.5 mass% or less ( excluding 0.3 mass% ) .
[0014]
Mn: 0.1 mass% or more, 2.5 mass% or less
The Mn content is desirably reduced from the viewpoint of workability and secondary work brittleness resistance, but if it is less than 0.1 mass%, a sufficient reinforcing effect as an automobile material cannot be obtained. In addition, when a large amount of Si that raises the transformation point at the time of hot rolling is contained, it becomes difficult to perform normal hot rolling in the austenite region, so Mn for lowering the transformation point is preferably 0.2 mass% or more, More preferably, 0.4 mass% or more is added to adjust the transformation point to an appropriate temperature range. On the other hand, if the content exceeds 2.5 mass%, it becomes difficult to improve the secondary work brittleness resistance, and the steel is markedly hardened and cold rolling becomes difficult. Accordingly, the Mn content is limited to 0.1 mass% or more and 2.5 mass% or less, preferably 0.2 mass% or more and 2.5 mass% or less, more preferably 0.4 mass% or more and 2.5 mass% or less.
[0015]
Ti: 0.003 mass% or more, 0.10 mass% or less
Nb: 0.003 mass% or more, 0.10 mass% or less
Ti secures part or all of N, C, and S, and Nb secures part or all of C, thereby ensuring workability and non-aging of ultra-low carbon steel. . However, if the content is less than 0.003 mass%, there is no effect, so this value is the lower limit. On the other hand, if it exceeds 0.1 mass%, the workability is adversely deteriorated, so this value is made the upper limit. However, from the viewpoint of further improving workability, when the C content is reduced to about 0.0020 mass% or less, the total of Ti and Nb is preferably 0.03 mass% or more and 0.10 mass% or less, more preferably 0.03 mass%. % Or more and 0.08 mass% or less.
[0016]
B: 0.0005 mass% or more and 0.0080 mass% or less B segregates at the grain boundary and shows a remarkable effect in preventing secondary work embrittlement, but if the content is less than 0.0005 mass%, the effect is small, whereas 0.0080 mass Even if the content exceeds 50%, not only the effect is saturated, but also the yield strength is increased and the elongation is decreased, so that the workability is deteriorated. Therefore, the content is limited to 0.0005 mass% or more and 0.0080 mass% or less. However, since the workability deteriorates slightly due to the addition of B, it is preferably 0.0005 mass% or more and 0.0050 mass% or less, more preferably 0.0005 mass%, except in the case of containing P exceeding 0.15 mass%. As mentioned above, it is 0.0030 mass% or less.
[0017]
P: 0.040 mass% or more and 0.18 mass% or less P has the effect of strengthening the steel and improving workability, particularly the average r value, and is contained depending on the desired strength. The effect becomes significant when the content exceeds 0.040 mass%. On the other hand, if the content exceeds 0.18 mass%, the alloying of the plating is significantly delayed, and the material deteriorates due to solidification segregation during casting. . Further, when the C content is reduced for the purpose of improving the material, secondary work brittleness resistance starts to deteriorate when the content is 0.12 mass% or more, and when it is 0.15 mass% or more, a large amount of B needs to be added.
Accordingly, the P content is specified to be 0.040 mass% or more and 0.18 mass% or less, preferably 0.040 mass% or more and 0.15 mass% or less, more preferably 0.040 mass% or more and 0.12 mass% or less.
[0018]
S: 0.015 mass% or less S is an upper limit because if M content exceeds 0.015 mass%, a large amount of MnS precipitates and the workability deteriorates. However, from the viewpoint of further improving the workability, it is preferably 0.010 mass% or less, more preferably 0.008 mass% or less. In addition, although the one where content is small is desirable, when it will be less than 0.0005 mass%, since a manufacturing cost will rise remarkably with the present technology, it is not practical.
[0019]
Al: 0.005 mass% or more, 0.10 mass% or less
Al is added as necessary for deoxidation and precipitation fixation of N in steel. However, if the content is less than 0.005 mass%, inclusions increase and good workability cannot be obtained. On the other hand, when the content is too large, not only the workability is deteriorated but also the surface properties are deteriorated. Therefore, the Al content is limited to 0.005 mass% or more and 0.10 mass% or less. However, from the viewpoint of optimization of workability by the above mechanism, it is preferably 0.005 mass% or more and 0.06 mass% or less, more preferably 0.01 mass% or more and 0.06 mass% or less.
[0020]
N: 0.0060 mass% or less N is a harmful component that is one of the main causes of strain aging. If the content is too large, addition of a large amount of Ti or Al is required, so 0.0060 mass% is the upper limit. However, from the viewpoint of further improving the workability, it is preferably 0.0040 mass% or less, more preferably 0.0030 mass% or less. In addition, although the one where content is small is desirable, when it will be less than 0.0003 mass%, since a manufacturing cost will raise remarkably by the present technology, it is not practical.
[0021]
Next, the reason for limiting the process conditions will be described.
Steelmaking / casting conditions may be performed in accordance with conventional methods.
The hot rolling finishing temperature needs to be at least 750 ° C in order to improve the workability after cold rolling and annealing. If the temperature is lower than this, the remaining rolling structure in the hot-rolled sheet becomes remarkable, which is disadvantageous for formation of a texture that is advantageous for press formability. On the other hand, when the rolling is finished at a temperature exceeding 1000 ° C., the hot rolled sheet structure becomes coarse, and a texture that is advantageous for press formability cannot be obtained. Therefore, the hot rolling finishing temperature should be 750 ° C or higher and 1000 ° C or lower.
In cold rolling, sufficient workability cannot be obtained unless the cold rolling reduction is 60% or more. It is advantageous that the cold rolling reduction is preferably 70% or more. On the other hand, if the cold rolling reduction ratio is 95% or more, the workability deteriorates, so the upper limit is made 95%.
[0022]
Plating is performed with a continuous hot dip galvanizing facility. The recrystallization annealing temperature after the cold rolling may be 700 ° C. or more and 950 ° C. or less, but desirably annealing is performed at 800 ° C. or more. After annealing, cool rapidly to 380-530 ° C. If the quenching stop temperature is less than 380 ° C, non-plating occurs. On the other hand, if it exceeds 530 ° C, unevenness occurs on the plating surface, which is not preferable. After the rapid cooling, it is subsequently immersed in a hot dip galvanizing bath containing 0.12 to 0.145 mass% of Al for plating. If the Al content in the bath is less than 0.12 mass%, alloying proceeds too much and plating adhesion (powdering resistance) deteriorates. On the other hand, non-plating occurs when the content exceeds 0.145 mass%. Alloying by heating following plating is performed so that the Fe content in the plating layer is 9 to 12%. That is, in the temperature range of 450 to 550 ° C., heating is performed for 14 seconds or more and 28 seconds or less to form an alloy. When the heating temperature is less than 450 ° C. or the heating time is less than 14 seconds, alloying is not sufficiently performed, and the Fe content is less than 9%, and the flaking resistance is deteriorated. On the other hand, when the heating temperature exceeds 550 ° C. or the heating time exceeds 28 seconds, alloying proceeds excessively and powdering resistance deteriorates.
[0023]
The bath temperature of the galvanizing bath is in the range of 450 to 490 ° C, and the temperature of the plate entering the bath is not less than the bath temperature and not more than (bath temperature + 10 ° C). When the bath temperature is less than 450 ° C. or the intrusion plate temperature is less than the bath temperature, the solidification of zinc is promoted, and the adjustment of the amount of plating is difficult. On the other hand, if the bath temperature exceeds 490 ° C or the intrusion plate temperature exceeds (bath temperature + 10 ° C), the elution of iron from the steel sheet into the bath is promoted, and dross is formed and surface defects are likely to occur.
The steel sheet obtained by the present invention does not change to the characteristics of the present invention even if it is subjected to a special treatment such as applying a lubricant to the surface to further improve the press formability, weldability, or corrosion resistance. Further, even if the steel sheet of the present invention (or a steel sheet obtained by specially processing the surface of the steel sheet of the present invention) is subjected to temper rolling for the purpose of shape correction, the characteristics of the present invention remain unchanged.
[0024]
【Example】
Hot rolling is performed using steel slabs of the composition shown in Table 2 melted in a converter as raw materials, followed by pickling and cold rolling to a plate pressure of 0.8 mm, followed by plating on a continuous hot dip galvanizing line The tensile properties and plating properties of the obtained steel sheets were investigated. The plating bath temperature is in the range of 460 to 480 ° C, the intrusion plate temperature is higher than the plating bath temperature, the bath temperature is + 10 ° C or less, and the condition of the gold compound is heating in the range of 480 to 540 ° C for 15 to 28 seconds. Retained.
[0025]
[Table 2]
Figure 0003716439
[0026]
As the above manufacturing conditions, investigation results such as hot rolling finishing temperature (FDT), cold rolling reduction, annealing temperature, quenching stop temperature, Al content in the plating bath, and Fe content in the plated layer after alloying Table 3 summarizes the results.
[0027]
[Table 3]
Figure 0003716439
[0028]
Here, the tensile properties were measured using JIS No. 5 test pieces, and the plating properties were tested and evaluated in the same manner as in the above experiment.
From Tables 2 and 3, it can be seen that all of the conforming examples of the present invention are excellent in TS-El balance represented by TS × El, and at the same time have excellent plating characteristics.
[0029]
【The invention's effect】
This invention uses Si as a strengthening component in ultra-low carbon steel, and by specifying the interrelationship between the contents of Si and Mn, it has excellent plating characteristics and has characteristics suitable for press molding. A tensile alloyed hot-dip galvanized steel sheet is obtained, and the steel sheet according to the present invention can greatly contribute to weight reduction and safety improvement of automobiles.

Claims (1)

C:0.0005mass% 以上、 0.0050mass%以下、
Si:0.3 mass% 以上、 2.5 mass%以下(但し、0.3 mass% を除く)、
Mn:0.1 mass% 以上、 2.5 mass%以下、
Ti:0.003 mass% 以上、 0.10mass%以下、
Nb:0.003 mass% 以上、 0.10mass%以下、
B:0.0005mass% 以上、 0.0080mass%以下、
P:0.040 mass% 以上、 0.18mass%以下、
S:0.015 mass% 以下、
Al:0.005 mass% 以上、 0.10mass%以下および
N:0.0060mass% 以下
で、かつ、SiおよびMnを下記式(1) の関係のもとで含有し、残部はFeおよび不可避的不純物の組成よりなる鋼スラブを素材として、熱間圧延して 750℃以上、1000℃以下の温度範囲にて仕上圧延を終了し、酸洗後圧下率60%以上、95%以下の範囲の冷間圧延を行って冷延板とし、その冷延板を連続式溶融亜鉛めっき設備で 700℃以上、 950℃以下の温度範囲にて再結晶焼鈍後 380〜530 ℃の温度域まで急冷し、Alを0.12〜0.145 mass%の範囲で含有する 450〜490 ℃の温度範囲の溶融亜鉛めっき浴に浴温以上、浴温+10℃以下の温度域で浸漬してめっきしたのち、 450〜550 ℃の温度範囲にて14秒間以上、28秒間以下の加熱をして合金化することを特徴とするめっき特性に優れる高張力合金化溶融亜鉛めっき鋼板の製造方法。

1.5 (maas% Mn)−2≦(mass% Si)≦2(mass% Mn) ----(1)
C: 0.0005 mass% or more, 0.0050 mass% or less,
Si: 0.3 mass% or more, 2.5 mass% or less (except 0.3 mass%),
Mn: 0.1 mass% or more, 2.5 mass% or less,
Ti: 0.003 mass% or more, 0.10 mass% or less,
Nb: 0.003 mass% or more, 0.10 mass% or less,
B: 0.0005 mass% or more, 0.0080 mass% or less,
P: 0.040 mass% or more, 0.18 mass% or less,
S: 0.015 mass% or less,
Al: 0.005 mass% or more, 0.10 mass% or less and N: 0.0060 mass% or less, and Si and Mn are contained in the relationship of the following formula (1), and the balance is based on the composition of Fe and inevitable impurities The steel slab to be used as a raw material is hot-rolled and finish rolling in the temperature range of 750 ° C or higher and 1000 ° C or lower, and after pickling, it is cold-rolled in a range of 60% to 95%. The cold-rolled sheet is rapidly cooled to a temperature range of 380-530 ° C after recrystallization annealing in a temperature range of 700 ° C or higher and 950 ° C or lower with a continuous hot-dip galvanizing facility, and Al is 0.12-0.145. After dipping in a hot dip galvanizing bath containing 450% to 490 ° C in a mass range, bath temperature + 10 ° C or less, and plating at a temperature range of 450 ° C to 550 ° C. High tensile alloyed hot dip galvanized steel sheet with excellent plating characteristics, characterized by being alloyed by heating for at least 28 seconds and not longer than 28 seconds Manufacturing method.
Record
1.5 (maas% Mn) -2 ≦ (mass% Si) ≦ 2 (mass% Mn) ---- (1)
JP02650195A 1994-02-15 1995-02-15 Manufacturing method of high-tensile alloyed hot-dip galvanized steel sheet with excellent plating characteristics Expired - Fee Related JP3716439B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02650195A JP3716439B2 (en) 1994-02-15 1995-02-15 Manufacturing method of high-tensile alloyed hot-dip galvanized steel sheet with excellent plating characteristics

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1836494 1994-02-15
JP6-18364 1994-06-21
JP02650195A JP3716439B2 (en) 1994-02-15 1995-02-15 Manufacturing method of high-tensile alloyed hot-dip galvanized steel sheet with excellent plating characteristics

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004181336A Division JP4218598B2 (en) 1994-02-15 2004-06-18 High tensile alloyed hot dip galvanized steel sheet with excellent plating characteristics

Publications (2)

Publication Number Publication Date
JPH07278745A JPH07278745A (en) 1995-10-24
JP3716439B2 true JP3716439B2 (en) 2005-11-16

Family

ID=26355045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02650195A Expired - Fee Related JP3716439B2 (en) 1994-02-15 1995-02-15 Manufacturing method of high-tensile alloyed hot-dip galvanized steel sheet with excellent plating characteristics

Country Status (1)

Country Link
JP (1) JP3716439B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5897967A (en) * 1996-08-01 1999-04-27 Sumitomo Metal Industries, Ltd. Galvannealed steel sheet and manufacturing method thereof
CA2683739C (en) 2007-04-11 2013-02-19 Nippon Steel Corporation Hot dip plated high strength steel sheet for press forming use superior in low temperature toughness and method of production of the same

Also Published As

Publication number Publication date
JPH07278745A (en) 1995-10-24

Similar Documents

Publication Publication Date Title
JP5042232B2 (en) High-strength cold-rolled steel sheet excellent in formability and plating characteristics, galvanized steel sheet using the same, and method for producing the same
TW200532032A (en) High strength cold rolled steel sheet and method for manufacturing the same
JP5251207B2 (en) High strength steel plate with excellent deep drawability and method for producing the same
JP4687260B2 (en) Manufacturing method of deep drawing high tensile cold-rolled steel sheet with excellent surface properties
JP2576894B2 (en) Hot-dip galvanized high-tensile cold-rolled steel sheet excellent in press formability and method for producing the same
JP3528716B2 (en) High-strength cold-rolled steel sheet, high-strength galvanized steel sheet excellent in surface properties and press formability, and manufacturing method thereof
JP4177477B2 (en) Manufacturing method of cold-rolled steel sheet and hot-dip galvanized steel sheet with excellent room temperature aging resistance and panel characteristics
JP4370795B2 (en) Method for producing hot-dip galvanized steel sheet
JP2000265244A (en) Hot-dip galvanized steel sheet excellent in strength and ductility, and its manufacture
JP4613618B2 (en) High-strength cold-rolled steel sheet excellent in deep drawability and its manufacturing method
JP4367205B2 (en) Strain aging treatment method for steel sheet and method for producing high-strength structural member
JP3293681B2 (en) Hot-dip galvanized or alloyed hot-dip galvanized high-strength steel sheet and method for producing the same
KR100308003B1 (en) High Strength Alloy Hot Dip Galvanized Steel Sheet
JPH09209039A (en) Production of high strength cold rolled steel sheet excellent in deep drawability
JPH06306531A (en) Cold rolled steel sheet for machining excellent in baking hardenability and surface treated steel sheet
JP3716439B2 (en) Manufacturing method of high-tensile alloyed hot-dip galvanized steel sheet with excellent plating characteristics
JP2003003216A (en) Method for producing high strength galvanized steel sheet having excellent deep drawability and secondary working brittleness resistance
JP3404798B2 (en) Method for producing high-strength steel sheet having bake hardenability
JP3475560B2 (en) High tensile alloyed hot-dip galvanized steel sheet excellent in plating characteristics and secondary work brittleness resistance and method for producing the same
JP3347152B2 (en) Method for producing cold-rolled high-strength hot-dip galvanized steel sheet with excellent resistance to pitting corrosion
JP2820819B2 (en) High strength thin steel sheet excellent in stretch flange formability and method for producing the same
JP4299451B2 (en) High-strength hot-dip galvanized steel sheet with excellent formability and method for producing the same
JP4218598B2 (en) High tensile alloyed hot dip galvanized steel sheet with excellent plating characteristics
JP3602263B2 (en) Manufacturing method of high strength hot-dip galvanized steel sheet with excellent deep drawability
JPH0699760B2 (en) Method for producing steel plate with hot dip zinc for ultra deep drawing

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050822

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080909

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090909

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090909

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100909

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100909

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110909

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110909

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120909

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120909

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130909

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees