JPH0699760B2 - Method for producing steel plate with hot dip zinc for ultra deep drawing - Google Patents

Method for producing steel plate with hot dip zinc for ultra deep drawing

Info

Publication number
JPH0699760B2
JPH0699760B2 JP62075094A JP7509487A JPH0699760B2 JP H0699760 B2 JPH0699760 B2 JP H0699760B2 JP 62075094 A JP62075094 A JP 62075094A JP 7509487 A JP7509487 A JP 7509487A JP H0699760 B2 JPH0699760 B2 JP H0699760B2
Authority
JP
Japan
Prior art keywords
less
temperature
deep drawing
content
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62075094A
Other languages
Japanese (ja)
Other versions
JPS63241122A (en
Inventor
修二 中居
信一郎 勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP62075094A priority Critical patent/JPH0699760B2/en
Publication of JPS63241122A publication Critical patent/JPS63241122A/en
Publication of JPH0699760B2 publication Critical patent/JPH0699760B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 <産業上の利用分野> この発明は、焼付硬化性を有すると共に遅時効性の超深
絞り用溶融亜鉛めっき鋼板の製造方法に関するものであ
る。
TECHNICAL FIELD The present invention relates to a method for producing a hot dip galvanized steel sheet for ultra-deep drawing which has bake hardenability and is slow aging.

<背景技術> 近年、省資源・省エネルギーの思想は産業界の隅々にま
で浸透しているが、例えば自動車業界においても、重量
を軽減して燃料消費量を節減すべく乗用車を始めとした
各種自動車類に高強度冷延鋼板の使用が一般化してき
た。そして、これに伴ってより一層強度が高く、かつ深
絞り性の一層向上した冷延鋼板に対する要求も益々厳し
いものになってきた。
<Background Art> In recent years, the idea of resource saving and energy saving has permeated every corner of the industrial world. For example, in the automobile industry as well, various vehicles such as passenger cars have been used to reduce weight and fuel consumption. The use of high-strength cold-rolled steel sheets has become common in automobiles. Along with this, the demand for cold-rolled steel sheets having higher strength and improved deep drawability has become more and more severe.

一方、自動車類にあっては、寒冷地において道路に撒か
れる岩塩等の凍結防止剤への対応策も問題となってお
り、これらの観点から使用鋼板の耐食性に対してもより
一段と厳しい要求がなされるようになり、防食めっき層
を有する深絞り用高強度冷延鋼板が求められるようにな
った。
On the other hand, in automobiles, countermeasures against anti-freezing agents such as rock salt sprinkled on roads in cold regions are also problematic, and from these viewpoints, even more stringent demands are made on the corrosion resistance of steel sheets used. As a result, there has been a demand for a high strength cold rolled steel sheet for deep drawing having an anticorrosion plating layer.

勿論、従来から強度が高くしかも深絞り性の一段と向上
した超深絞り用高強度冷延鋼板の開発には多大な努力が
払われており、これまでにも、例えば 極低C鋼にPを添加したAlキルド鋼板、 極低C鋼にPを添加したNbキルド鋼板、 極低C鋼にTi及びNbを添加し、更にP含有量を抑え
た鋼板(特開昭59−31827号公報)、 等が提案されてきたが、上記及びの鋼板では十分に
満足できるランクフォード値(r値)を確保することが
難しい上に低降伏比とはならないので、スタイリングの
面から複雑なプレス成形加工を必要とする自動車向け等
の超深絞り用冷延鋼板としては不満足なものであり、ま
た前記の鋼板では焼付硬化性を得ることができない
上、二次加工脆性の問題が完全に解消されていなかっ
た。ここで、二次加工脆性とは、例えばプレス等で絞り
成形した円筒を口端から押し拡げた場合に脆性割れを生
じると言う形で現れるものであり、結晶粒界強度の低い
極低C系材料の欠点として存在することが知られてい
る。
Of course, much effort has been made to develop a high-strength cold-rolled steel sheet for ultra-deep drawing, which has high strength and is further improved in deep drawability. Al-killed steel plate added, Nb-killed steel plate added with P to ultra-low C steel, steel plate added with Ti and Nb to ultra-low C steel, and further suppressing P content (JP-A-59-31827), However, since it is difficult to secure a sufficiently satisfactory Rankford value (r value) with the steel sheets mentioned above and a low yield ratio, a complicated press forming process is required in terms of styling. It is unsatisfactory as a cold-rolled steel sheet for ultra-deep drawing required for automobiles, etc. Moreover, the above steel sheet cannot obtain bake hardenability, and the problem of secondary work brittleness has not been completely solved. It was Here, the secondary working brittleness appears in the form of causing brittle cracking when a cylinder drawn by a press or the like is expanded from the mouth end, for example, and an extremely low C system having a low grain boundary strength. It is known to exist as a material defect.

<問題点を解決する手段> 本発明者等は、従来の深絞り用冷延鋼板に見られる上述
のような問題点を踏まえた上で、冷延鋼板に優れた深絞
り性を確保するには常温時効の防止が不可欠であり、し
かもこれに自動車用高張力鋼板等としても十分に満足で
きる耐デント性を付与するには少なくとも3kg/mm2以上
の焼付硬化量を確保する必要がある上、加えて自動車用
鋼板等として要求される耐食性を備えしめるには好適め
っき条件で能率良く防食めっきすることが欠かせないと
の観点に立ち、十分な遅時効性を有していて極めて優れ
た深絞り性を示すと共に、十分な焼付硬化性を備え、か
つ二次加工脆性等の問題が払拭された超深絞り用防食め
っき鋼板を能率良く安定して提供すべく研究を行った結
果、 「素材鋼として、C及びN量を低減し、かつTiを添加し
て常温時効を抑制した鋼を使用すると共に、そのP含有
量を確保してC低減による強度低下を補償し、更にBを
添加することにより極低C−高P鋼に生じがちな二次加
工脆性を抑え、しかもTi量をより適切に注意深く調整す
ると共に固溶C量調整のためのNbをも適量添加したもの
を使用した上で、これに所定の熱間圧延を施しかつ冷間
圧延して得た冷延鋼板を、熱処理と溶融亜鉛めっき処理
とが結合した“ゼンジミア型連続亜鉛めっきライン”に
て適切な“焼鈍”とこれに続く“低温域滞留処理”とを
施すと微妙な固溶C制御が安定・確実に行えることとな
って適切な焼付硬化量が確保できるようになり、しかも
この“低温域滞留処理”に引き続いて溶融亜鉛めっき処
理を行うと密着性に優れた亜鉛めっき層が形成され、優
れた深絞り性、十分な焼付硬化性並びに良好な遅時効性
を有する耐食性に優れた超深絞り用めっき鋼板が得られ
る」 との知見を得るに至ったのである。
<Means for Solving Problems> The inventors of the present invention, in view of the above-mentioned problems found in the conventional cold-rolled steel sheet for deep drawing, have the purpose of ensuring excellent deep drawability of the cold-rolled steel sheet. Is essential to prevent aging at room temperature, and it is necessary to secure a bake hardening amount of at least 3 kg / mm 2 in order to impart sufficient dent resistance to high tensile strength steel sheets for automobiles. In addition, from the viewpoint that it is essential to efficiently perform anticorrosion plating under suitable plating conditions in order to provide the corrosion resistance required for steel sheets for automobiles, etc., it has sufficient delayed aging and is extremely excellent. As a result of conducting research to efficiently and stably provide anti-corrosion plated steel sheets for ultra-deep drawing that have deep bakeability, have sufficient bake hardenability, and have eliminated problems such as secondary work brittleness, As a raw material steel, reduce the amount of C and N, and While using a steel with Ti added to suppress normal temperature aging, the P content is secured to compensate for the strength decrease due to C reduction, and the addition of B further results in an extremely low C-high P steel. The secondary working brittleness is suppressed, the amount of Ti is adjusted more appropriately and carefully, and an appropriate amount of Nb is added for adjusting the amount of solid solution C. The cold-rolled steel sheet obtained by cold rolling is subjected to appropriate "annealing" and subsequent "retention treatment in the low temperature range" in a "Sendimia type continuous galvanizing line" in which heat treatment and hot dip galvanizing are combined. As a result, delicate solid solution C control can be performed stably and reliably, and an appropriate bake hardening amount can be secured. Moreover, if this "low temperature range retention treatment" is followed by hot dip galvanizing treatment, adhesion will be improved. Excellent galvanized layer is formed and excellent deep drawing Sex is the ultra-deep drawing plated steel sheet excellent in corrosion resistance with sufficient bake hardenability and good slow aging property came to obtain a knowledge that "obtained.

この発明は、上記知見に基づいてなされたものであり、 C:0.001〜0.006%(以下、成分割合を表わす%は重量%
とする), Mn:0.06〜0.40%,P:0.100%以下,S:0.030%以下, Ti:0.003〜0.020%で、かつ式 を満足する値, Nb:0.060%以下で、かつ式 を満足する値, N:0.0040%以下, sol.Al:0.010〜0.090%, B:0.0002〜0.0010%, Fe及び不可避的不純物:残り から成る成分組成の鋼をAr3点以上の温度域で熱間圧延
した後600℃以下で巻取り、次いで酸洗、冷間圧延の
後、ゼンジミア型連続亜鉛めっきラインにて、例えば第
1図で示すヒートパターンの如く、再結晶温度以上900
℃以下の温度で焼鈍してその後の700〜500℃区間を冷却
速度:1℃/sec以上で冷却すると共に、更にその途中の48
0〜430℃の温度域に20〜120秒滞留せしめ、引き続いて
溶融亜鉛めっきを施すことにより、優れた深絞り性、焼
付硬化性並びに遅時効性を有する耐食性に優れた超深絞
り用溶融亜鉛めっき鋼板を安定かつ高能率で量産し得る
ようにした点、 に特徴を有するものである。
The present invention was made based on the above findings, and C: 0.001 to 0.006% (hereinafter,% representing a component ratio is% by weight).
, Mn: 0.06-0.40%, P: 0.100% or less, S: 0.030% or less, Ti: 0.003-0.020%, and the formula Satisfying the condition, Nb: 0.060% or less, and the formula Satisfying the following conditions: N: 0.0040% or less, sol.Al: 0.010 to 0.090%, B: 0.0002 to 0.0010%, Fe and unavoidable impurities: Steel of the composition consisting of the remainder is heated in the temperature range of Ar 3 points or more. Rolling after hot rolling at 600 ℃ or less, then pickling, cold rolling, and then at a recrystallization temperature above 900 ° C on a Sendzimir type continuous galvanizing line, for example, as in the heat pattern shown in Fig. 1.
Anneal at a temperature of ℃ or less and cool the subsequent 700 to 500 ℃ section at a cooling rate of 1 ℃ / sec or more, and further 48
By keeping it in the temperature range of 0 to 430 ° C for 20 to 120 seconds and then performing hot dip galvanizing, it has excellent deep drawability, bake hardenability, and delayed aging. It is characterized in that it enables stable and highly efficient mass production of plated steel sheets.

続いて、この発明において、素材鋼の成分組成、熱間圧
延条件並びに熱処理条件を前記の如くに限定した理由を
説明する。
Next, in the present invention, the reason why the composition of the raw material steel, the hot rolling condition and the heat treatment condition are limited as described above will be explained.

A)素材鋼の成分組成 (a) C Cは鋼板に焼付硬化性を付与するために必要な成分であ
り、その含有量が0.001%未満では所望の焼付硬化量を
確保することができない。一方、C含有量が0.006を超
えると常温時効性が大きくなって超深絞り用鋼板として
の性能が劣化する。従って、C含有量は0.001〜0.006%
と定めた。
A) Component composition of raw steel (a) CC is a component necessary for imparting bake hardenability to a steel sheet, and if the content thereof is less than 0.001%, a desired bake hardenability cannot be secured. On the other hand, if the C content exceeds 0.006, the room temperature aging becomes large and the performance as a steel plate for ultra deep drawing deteriorates. Therefore, the C content is 0.001 to 0.006%
I decided.

(b) Mn Mnは鋼の熱間加工性を確保するのに必要な成分であり、
その含有量が0.06%未満では赤熱脆性による表面疵の発
生を完全に防止することができず、一方、0.40%を超え
て含有させると固溶硬化により絞り性の劣化を招く上、
焼付硬化量の制御も困難になることから、Mn含有量は0.
06〜0.40%と定めた。
(B) Mn Mn is a component necessary to secure hot workability of steel,
If the content is less than 0.06% it is not possible to completely prevent the occurrence of surface defects due to red heat embrittlement, while if it exceeds 0.40% causes deterioration of drawability due to solid solution hardening,
Since it is difficult to control the bake hardening amount, the Mn content is 0.
It was set at 06 to 0.40%.

(c) P Pには鋼板の強度を向上させる作用があり、所望の強度
を確保するために積極的に含有せしめられる成分である
が、0.100%を超えて含有させるとユーザーでのスポッ
ト溶接性能に劣化を来たすことから、P含有量は0.100
%以下と定めた。
(C) P P has the effect of improving the strength of the steel sheet, and is a component that is positively included to secure the desired strength, but if it exceeds 0.100%, spot welding performance for users The P content is 0.100.
Defined to be less than or equal to%.

なお、P含有量は所望する強度によって調整されるもの
であるが、強度改善効果を確保するには少なくとも0.03
0%以上含有させるのが好ましい。
The P content is adjusted according to the desired strength, but at least 0.03 is required to secure the strength improving effect.
It is preferable to contain 0% or more.

(d) S Sは鋼中に必然的に随伴される不純物元素であるが、そ
の含有量が0.030%を超えると赤熱脆性による表面疵を
生じ易くなることから、S含有量は0.030%以下と定め
た。
(D) S S is an impurity element that is inevitably accompanied in steel, but if its content exceeds 0.030%, surface defects due to red heat embrittlement tend to occur, so the S content is 0.030% or less. Specified.

(e) Ti Ti成分には鋼中のNを固着して常温時効を防止する作用
があるが、その含有量が0.003%未満では前記作用に所
望の効果が得られず、一方、0.020%を超えて含有させ
るとNやSのほか、Cまでも析出物となり、焼付硬化量
が減少することから、Ti含有量は0.003〜0.020%と定め
た。
(E) Ti Ti component has a function of fixing N in steel to prevent normal temperature aging, but if its content is less than 0.003%, the desired effect cannot be obtained on the other hand, while 0.020% is added. If it is contained in excess, N and S as well as C become precipitates and the bake hardening amount decreases, so the Ti content was set to 0.003 to 0.020%.

また、鋼中のNを確実にTiNとして析出させるために
は、N含有量との関係で〔48/14×N(%)〕以上のTi
量(%)を確保する必要がある。
Further, in order to surely precipitate N in the steel as TiN, the Ti content of [48/14 × N (%)] or more is required in relation to the N content.
It is necessary to secure the amount (%).

一方、Tiは鋼中のSやCとも結び付いてTiSやTiCを析出
する傾向を見せるが、Tiとの結合力の強さはN→S→C
の順である。従って、N及びSと結び付く量以上のTiが
過剰に存在すると、N及びSと結び付いた残りのTiがTi
Cとなって析出し、焼付硬化性確保に必要な固溶Cを減
少させることとなる。このため、このような減少を生じ
させないためにはTi含有量を 以下に抑える必要がある。
On the other hand, Ti tends to precipitate TiS and TiC in association with S and C in steel, but the strength of the bond with Ti is N → S → C.
In that order. Therefore, if Ti is present in excess of the amount associated with N and S, the remaining Ti associated with N and S is Ti.
It precipitates as C and reduces the solid solution C necessary for ensuring the bake hardenability. Therefore, in order to prevent such a decrease, the Ti content should be reduced. It is necessary to keep below.

従って、Ti含有量は0.003〜0.020%の範囲内で、かつ式 を満足する値と定めた。Therefore, the Ti content is in the range of 0.003 to 0.020%, and Was determined as a value that satisfies.

(f) この発明の方法にて製造される溶融亜鉛めっき
鋼板は、適量の固溶C量によって所望の焼付硬化性を確
保するようにしたものてあるが、C量の調整やTi量の調
整のみでは固溶C量を確実に制御することはできない。
そこで、焼鈍に引き続く低温域滞留処理によって固溶C
の一部をNbCとして析出させ、固溶C量の適正化を図る
必要がある。
(F) The hot-dip galvanized steel sheet produced by the method of the present invention is designed to secure a desired bake hardenability by an appropriate amount of solute C, but the amount of C and the amount of Ti are adjusted. It is not possible to reliably control the amount of dissolved C alone.
Therefore, solid solution C is formed by the low temperature retention treatment subsequent to the annealing.
It is necessary to precipitate a part of NbC as NbC to optimize the amount of dissolved C.

このため、適量のNb添加は必須であるが、Nb含有量が
〔93/12×C(%)〕の値未満であると固溶C量の調整
が不十分で常温時効性が増大する。一方、0.060%も含
有させれば固溶Cの固着に十分であり、しかもこの量を
超えて含有させても硬化は飽和してしまうことから、Nb
含有量は0.060%以下で、かつ式 を満足する値と限定した。
For this reason, it is essential to add an appropriate amount of Nb, but if the Nb content is less than the value of [93/12 × C (%)], the amount of dissolved C is insufficiently adjusted and the room temperature aging property is increased. On the other hand, if 0.060% is also contained, it is sufficient for the solid solution C to be fixed, and if it is contained in excess of this amount, the curing will be saturated.
Content is 0.060% or less, and formula Is limited to satisfy the value.

(g) N Nも鋼中に必然的に随伴される不純物元素であり、常温
時効の原因となるので少ない程好ましいが、特にその含
有量が0.0040%を超えるとNを固着するためのTi量の増
加を招いてコスト的に不利となることから、N含有量は
0.0040%以下と制限した。
(G) NN N is also an impurity element that is inevitably accompanied in steel and causes aging at room temperature. Therefore, the smaller the content, the better. Particularly, if the content exceeds 0.0040%, the amount of Ti for fixing N is large. However, the N content is
The limit was 0.0040% or less.

(h) sol.Al sol.Alは鋼の脱酸剤として重要な成分であり、十分な脱
酸を行うためには少なくとも0.010%の含有量を確保す
る必要があるが、0.090%を超えて含有させてもその効
果が飽和してしまうことから、sol.Al含有量は0.010〜
0.090%と定めた。
(H) sol.Al sol.Al is an important component as a deoxidizer for steel, and it is necessary to secure a content of at least 0.010% in order to perform sufficient deoxidation, but exceeding 0.090%. Since the effect is saturated even if it is contained, the sol.Al content is 0.010 ~
It was set at 0.090%.

(i) B BはPが結晶粒界に偏析するよりも早く結晶粒界に偏析
しての悪影響を抑え、鋼板の二次加工脆化を防止する作
用を有しているが、その含有量が0.0002%未満では前記
作用に所望の効果が得られず、一方、0.0010%を超えて
含有させてもその効果が飽和して仕舞うことから、B含
有量は0.0002〜0.0010%と定めた。
(I) BB has the effect of suppressing the adverse effect of P segregating at the crystal grain boundaries earlier than segregating at the crystal grain boundaries and preventing secondary work embrittlement of the steel sheet. When the content is less than 0.0002%, the desired effect cannot be obtained, and when the content is more than 0.0010%, the effect is saturated, so the B content is defined as 0.0002 to 0.0010%.

この発明で対象とする素材鋼の成分は以上の成分を含有
するものであるが、その他、やはり鋼中に存在するSiは
固溶効果によって深絞り性に悪影響を及ぼすので0.05%
以下に抑えるのが好ましい。
The components of the material steel targeted by this invention are those containing the above components, but in addition, since Si present in the steel also adversely affects the deep drawability due to the solid solution effect, it is 0.05%.
It is preferable to suppress it to the following.

B)熱間圧延条件 (a) 仕上温度 熱間圧延仕上温度がAr3点の温度を下回ると熱延下の結
晶方位が絞り性に好ましくないものとなって、亜鉛めっ
き鋼板の深絞り性が低下する。従って、熱間圧延はAr3
点以上の温度域で仕上げることと定めた。
B) Hot rolling conditions (a) Finishing temperature When the hot rolling finishing temperature is lower than the temperature at the Ar 3 point, the crystal orientation during hot rolling becomes unfavorable for drawability and the deep drawability of the galvanized steel sheet is descend. Therefore, hot rolling requires Ar 3
It was decided to finish in the temperature range above the point.

(b) 巻取り温度 Tiにて十分に鋼板中のNを固定してTiNとするために
は、巻取り温度は十分に低くしてもその効果は変わらな
い。一方、巻取り温度が600℃を上回るとNbCの形成が十
分過ぎ、連続溶融亜鉛めっきラインでNbとCの分離固溶
が抑制されて固溶Cの制御が困難となる。
(B) In order to sufficiently fix N in the steel sheet to TiN at the winding temperature Ti, the effect does not change even if the winding temperature is sufficiently low. On the other hand, if the coiling temperature exceeds 600 ° C., the formation of NbC will be excessive, and the separation and solid solution of Nb and C will be suppressed in the continuous hot-dip galvanizing line, making it difficult to control the solid solution C.

従って、熱延巻取り温度は600℃以下と定めた。Therefore, the hot rolling coiling temperature is set to 600 ° C or lower.

C)焼鈍条件 (a) 焼鈍温度 この発明の方法で製造される溶融亜鉛めっき鋼板の焼付
硬化性は適量(約10ppm)の固溶C量によって得られる
が、このためには良加工性の組織を得るための再結晶焼
鈍を調整し、形成されているNbCを一旦溶解して固溶C
を生じさせる必要がある。ただ、焼鈍温度が900℃より
も高くなると異常粒成長が生じることから、焼鈍温度は
再結晶温度以上900℃以下と限定した。
C) Annealing condition (a) Annealing temperature The bake hardenability of the hot-dip galvanized steel sheet produced by the method of the present invention is obtained by an appropriate amount (about 10 ppm) of solid solution C. Of the NbC formed is adjusted by adjusting the recrystallization annealing to obtain solid solution C
Need to be generated. However, since abnormal grain growth occurs when the annealing temperature is higher than 900 ° C, the annealing temperature is limited to the recrystallization temperature or more and 900 ° C or less.

(b) 焼鈍後の冷却速度 焼鈍終了後の冷却時における冷却速度が遅くなって1℃
/sec未満となると、NbCが再び析出して所望の固溶C量
を確保できなくなる。なお、前記冷却速度の上限は格別
に存在しないが、実際には100℃/secを超える冷却速度
とする必要はない。
(B) Cooling rate after annealing The cooling rate at the time of cooling after the annealing was slowed down to 1 ° C.
If it is less than / sec, NbC will precipitate again and the desired amount of solid solution C cannot be secured. Although there is no particular upper limit of the cooling rate, it is not actually necessary to set the cooling rate to more than 100 ° C./sec.

D)低温域滞留条件 前記焼鈍によって再結晶とNbCの溶解、固溶Cの確保が
なされたが、前記焼鈍・急冷処理を実施するとCは10pp
m以上、少なくとも30ppm以上程度固溶してしまうことと
なる。従って、このままでは固溶Cが多過ぎて焼付硬化
量は大きくなるが常温時効も大きくなって“超深絞り
用”としては不適となる。
D) Retention condition in low temperature region Recrystallization, NbC dissolution and solid solution C were secured by the annealing, but C was 10 pp when the annealing / quenching was performed.
At least m, at least 30 ppm or more will be dissolved. Therefore, if it is left as it is, the amount of solid solution C is too large and the bake hardening amount is large, but the room temperature aging is also large and it is not suitable for "for ultra deep drawing".

このため、焼鈍後の冷却の途中において480〜430℃の温
度域に20〜120秒滞留(保持又は徐冷)させて固溶Cの
一部をNbCとして析出させ、適量の固溶Cとしなければ
ならない。
For this reason, during cooling after annealing, a certain amount of solid solution C must be precipitated as NbC by allowing it to stay (hold or slowly cool) in the temperature range of 480 to 430 ° C. for 20 to 120 seconds, and form an appropriate amount of solid solution C. I have to.

この低温保持又は徐冷を、480℃を超える温度域で実施
するとNbCの析出が生じ過ぎて焼付硬化性が小さくな
り、一方、低温保持又は徐冷の温度域が430℃を下回る
と溶融亜鉛めっきの密着不良を来たすようになる。
If this low-temperature holding or slow cooling is performed in a temperature range exceeding 480 ° C, precipitation of NbC will occur too much and bake hardenability will be reduced, while if the low-temperature holding or slow cooling temperature range falls below 430 ° C, hot dip galvanizing will occur. Will cause poor adhesion.

また、上記温度域での滞留時間が20秒未満であると固溶
C過多による耐時効性が劣化し、一方、該時間が120秒
を超えるとやはりNbCの析出が生じ過ぎて焼付硬化性が
小さくなる。
Further, if the residence time in the above temperature range is less than 20 seconds, the aging resistance due to excessive solid solution C deteriorates, while if it exceeds 120 seconds, precipitation of NbC also occurs too much and the bake hardenability increases. Get smaller.

このようなことから、低温滞留処理は480〜430℃の温度
域で20〜120秒間実施することと定めた。
Therefore, it was decided that the low temperature retention treatment should be carried out in the temperature range of 480 to 430 ° C for 20 to 120 seconds.

以上のように処理された冷延鋼板は、通常は1.5%以下
の伸び率で調質圧延され溶融亜鉛めっきされるが、溶融
亜鉛めっき種類には格別な制限はなく、溶融亜鉛めっき
を施すのみでも良いし、引き続いて合金化処理を行って
も良い。
Cold-rolled steel sheets treated as described above are usually temper-rolled at an elongation of 1.5% or less and hot-dip galvanized, but there is no particular limitation on the hot-dip galvanizing type, only hot-dip galvanizing is performed. However, the alloying treatment may be performed subsequently.

次いで、この発明を実施例によって説明する。Next, the present invention will be described with reference to examples.

<実施例> まず、常法によって第1表に示す如き成分組成の連続鋳
造スラブを製造し、続いて、これに第2表に示す条件で
熱間圧延を施して板厚3.0mmの熱延コイルとした後、酸
洗、冷間圧延によって板厚0.8mmの冷延鋼板を得た。
<Example> First, a continuous cast slab having a composition as shown in Table 1 was manufactured by a conventional method, and subsequently hot-rolled under the conditions shown in Table 2 to obtain a hot rolled sheet having a thickness of 3.0 mm. After forming the coil, it was pickled and cold-rolled to obtain a cold-rolled steel sheet having a plate thickness of 0.8 mm.

次に、得られた冷延鋼板を、ゼンジミア型連続溶融亜鉛
めっきラインにて焼鈍,低温滞留処理,調質圧延(延び
率:1%)及び溶融亜鉛めっき処理して亜鉛めっき鋼板と
したが、その処理条件は第2表に示す通りであった。
Next, the obtained cold rolled steel sheet was annealed in a Sendzimir type continuous hot dip galvanizing line, subjected to low temperature retention treatment, temper rolling (elongation ratio: 1%) and hot dip galvanized to obtain a galvanized steel sheet. The processing conditions were as shown in Table 2.

このようにして製造された溶融亜鉛めっき鋼板の“引張
り性質",“遷移温度”並びに“焼付硬化量”を調査し、
その結果を第2表に併せて示した。
"Tensile properties", "transition temperature" and "bake hardening amount" of the hot-dip galvanized steel sheet produced in this way were investigated,
The results are also shown in Table 2.

ここで、“遷移温度”とは、脆性割れを発生する境界温
度を意味し、絞り比1.6の円筒を絞り成形した後これを
円錐台に被せ、衝撃を加えて押し込んで脆性割れを調べ
る方法により測定した。
Here, the "transition temperature" means the boundary temperature at which brittle cracking occurs, and a method of investigating brittle cracks by drawing a cylinder with a drawing ratio of 1.6, covering it with a truncated cone, and then pushing it in by impacting It was measured.

また、“焼付硬化量”は、2%の予歪を引張りによって
付加した後に再び引張ったときの降伏点の上昇量として
測定した。
The "bake hardening amount" was measured as the amount of increase in the yield point when a prestrain of 2% was applied by tension and then tension was applied again.

第2表に示される結果からも明らかなように、本発明の
条件通りに製造された鋼板は優れた深絞 り性と適度の焼付硬化量を示すのに対して、製造条件が
本発明で規定する条件から外れたものは、焼付硬化性を
期待する超深絞り用亜鉛めっき鋼板として十分に満足で
きる特性を有しないことが分かる。
As is clear from the results shown in Table 2, the steel sheets manufactured according to the conditions of the present invention have excellent deep drawing. On the other hand, those exhibiting a good bake-hardening property and an appropriate bake-hardening amount, while those whose manufacturing conditions deviate from the conditions specified in the present invention, have sufficiently satisfactory properties as a galvanized steel sheet for ultra-deep drawing which is expected to have a bake-hardening property. It turns out that they don't have it.

<効果の総括> 以上に説明した如く、この発明によれば、優れた深絞り
性、焼付硬化性並びに遅時効性を有する耐食性に優れた
超深絞り用溶融亜鉛めっき鋼板を安定かつ高能率で量産
することができ、厳しい内容の自動車用鋼板としての要
求にも十分に応えることが可能であるなど、産業上極め
て有用な効果がもたらされるのである。
<Summary of Effects> As described above, according to the present invention, a hot-dip galvanized steel sheet for super deep drawing having excellent deep drawability, bake hardenability, and slow aging and excellent corrosion resistance can be stably and efficiently provided. It can be mass-produced and can sufficiently meet the demands as a steel sheet for automobiles with strict contents, resulting in an extremely useful effect in industry.

【図面の簡単な説明】[Brief description of drawings]

第1図は、この発明に係る“ゼンジミア型連続溶融亜鉛
めっきラインでの冷延鋼板の処理例”のヒートパターン
を示した線図である。
FIG. 1 is a diagram showing a heat pattern of "a processing example of a cold rolled steel sheet in a Sendzimir type continuous hot dip galvanizing line" according to the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C23C 2/02 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location C23C 2/02

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】重量割合にて C:0.001〜0.006%,Mn:0.06〜0.40%,P:0.100%以下,S:
0.030%以下, Ti:0.003〜0.020%で、かつ式 を満足する値, Nb:0.060%以下で、かつ式 を満足する値, N:0.0040%以下,sol.Al:0.010〜0.090%, B:0.0002〜0.0010%,Fe及び不可避的不純物:残り から成る成分組成の鋼をAr3点以上の温度域で熱間圧延
した後600℃以下で巻取り、次いで酸洗,冷間圧延の
後、ゼンジミア型連続亜鉛めっきラインにて、再結晶温
度以上900℃以下の温度で焼鈍してその後の700〜500℃
区間を冷却速度:1℃/sec以上で冷却すると共に、更にそ
の途中の480〜430℃の温度域に20〜120秒滞留せしめ、
引き続いて溶融亜鉛めっきを施すことを特徴とする、焼
付硬化性を備えた超深絞り用溶融亜鉛めっき鋼板の製造
方法。
1. A weight ratio of C: 0.001 to 0.006%, Mn: 0.06 to 0.40%, P: 0.100% or less, S:
0.030% or less, Ti: 0.003 to 0.020%, and formula Satisfying the condition, Nb: 0.060% or less, and the formula Satisfying the following conditions: N: 0.0040% or less, sol.Al: 0.010 to 0.090%, B: 0.0002 to 0.0010%, Fe and unavoidable impurities: Steel of the composition consisting of the remainder is heated in the temperature range of Ar 3 points or more. Rolling after hot rolling at 600 ℃ or less, then pickling, cold rolling, then annealing at a temperature of recrystallization temperature or more and 900 ℃ or less in the Sendzimir type continuous galvanizing line, then 700 ~ 500 ℃
While cooling the section at a cooling rate of 1 ° C / sec or more, let it stay in the temperature range of 480 to 430 ° C for 20 to 120 seconds,
A method for producing a galvanized steel sheet for ultra-deep drawing having bake hardenability, which is characterized by performing hot dip galvanization subsequently.
JP62075094A 1987-03-28 1987-03-28 Method for producing steel plate with hot dip zinc for ultra deep drawing Expired - Lifetime JPH0699760B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62075094A JPH0699760B2 (en) 1987-03-28 1987-03-28 Method for producing steel plate with hot dip zinc for ultra deep drawing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62075094A JPH0699760B2 (en) 1987-03-28 1987-03-28 Method for producing steel plate with hot dip zinc for ultra deep drawing

Publications (2)

Publication Number Publication Date
JPS63241122A JPS63241122A (en) 1988-10-06
JPH0699760B2 true JPH0699760B2 (en) 1994-12-07

Family

ID=13566237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62075094A Expired - Lifetime JPH0699760B2 (en) 1987-03-28 1987-03-28 Method for producing steel plate with hot dip zinc for ultra deep drawing

Country Status (1)

Country Link
JP (1) JPH0699760B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07116521B2 (en) * 1989-08-09 1995-12-13 株式会社神戸製鋼所 Thin steel sheet manufacturing method
JPH07242948A (en) * 1994-02-28 1995-09-19 Kobe Steel Ltd Production of cold rolled steel sheet for deep drawing excellent in baking hardenability
JP3569949B2 (en) * 1994-05-02 2004-09-29 Jfeスチール株式会社 Method of manufacturing thin steel sheet for processing with excellent bake hardenability and aging resistance
JP4177477B2 (en) * 1998-04-27 2008-11-05 Jfeスチール株式会社 Manufacturing method of cold-rolled steel sheet and hot-dip galvanized steel sheet with excellent room temperature aging resistance and panel characteristics
JP3793351B2 (en) * 1998-06-30 2006-07-05 新日本製鐵株式会社 Cold rolled steel sheet with excellent bake hardenability

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5845322A (en) * 1981-09-14 1983-03-16 Nippon Steel Corp Production of painted steel plate having paint baking hardenability
JPS5974232A (en) * 1982-10-20 1984-04-26 Nippon Steel Corp Production of bake hardenable galvanized steel sheet for ultradeep drawing having extremely outstanding secondary processability
JPS617454U (en) * 1984-06-20 1986-01-17 いすゞ自動車株式会社 Shift lever locking device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5845322A (en) * 1981-09-14 1983-03-16 Nippon Steel Corp Production of painted steel plate having paint baking hardenability
JPS5974232A (en) * 1982-10-20 1984-04-26 Nippon Steel Corp Production of bake hardenable galvanized steel sheet for ultradeep drawing having extremely outstanding secondary processability
JPS617454U (en) * 1984-06-20 1986-01-17 いすゞ自動車株式会社 Shift lever locking device

Also Published As

Publication number Publication date
JPS63241122A (en) 1988-10-06

Similar Documents

Publication Publication Date Title
EP0572666B1 (en) Cold-rolled steel sheet and galvanized cold-rolled steel sheet which are excellent in formability and baking hardenability, and production thereof
JP2576894B2 (en) Hot-dip galvanized high-tensile cold-rolled steel sheet excellent in press formability and method for producing the same
JP3263143B2 (en) Bake hardening type high strength alloyed hot-dip galvanized steel sheet excellent in workability and method for producing the same
JP3528716B2 (en) High-strength cold-rolled steel sheet, high-strength galvanized steel sheet excellent in surface properties and press formability, and manufacturing method thereof
JP2800541B2 (en) Manufacturing method of high strength hot-dip galvanized steel sheet for deep drawing
JPH0699760B2 (en) Method for producing steel plate with hot dip zinc for ultra deep drawing
JPS5937333B2 (en) Manufacturing method of alloyed hot-dip galvanized steel sheet
JPH09209039A (en) Production of high strength cold rolled steel sheet excellent in deep drawability
JPH0154413B2 (en)
JP3404798B2 (en) Method for producing high-strength steel sheet having bake hardenability
JPH0559970B2 (en)
JPH0826411B2 (en) Method for manufacturing high strength cold rolled steel sheet with excellent deep drawability
JPH05195060A (en) Production of baking hardening type cold rolled steel sheet excellent in ageing resistance and press formability
JP4094498B2 (en) Deep drawing high strength cold-rolled steel sheet and method for producing the same
JP3602263B2 (en) Manufacturing method of high strength hot-dip galvanized steel sheet with excellent deep drawability
JP3716439B2 (en) Manufacturing method of high-tensile alloyed hot-dip galvanized steel sheet with excellent plating characteristics
JPS6152218B2 (en)
JP2514298B2 (en) Method for producing galvannealed steel sheet with excellent press formability
JP2549539B2 (en) Method for producing hot dip galvanized steel sheet for ultra deep drawing
JPS6320888B2 (en)
JP2565054B2 (en) Method for producing galvannealed steel sheet with excellent deep drawability and plating adhesion
JP4218598B2 (en) High tensile alloyed hot dip galvanized steel sheet with excellent plating characteristics
JPS5852430A (en) Production of zinc plated steel plate for drawing
JP3257715B2 (en) Method for producing high-strength galvannealed steel sheet for high working with excellent plating adhesion
JP3293190B2 (en) Manufacturing method of thin steel sheet with excellent bake hardenability

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071207

Year of fee payment: 13