JP2549539B2 - Method for producing hot dip galvanized steel sheet for ultra deep drawing - Google Patents

Method for producing hot dip galvanized steel sheet for ultra deep drawing

Info

Publication number
JP2549539B2
JP2549539B2 JP63001438A JP143888A JP2549539B2 JP 2549539 B2 JP2549539 B2 JP 2549539B2 JP 63001438 A JP63001438 A JP 63001438A JP 143888 A JP143888 A JP 143888A JP 2549539 B2 JP2549539 B2 JP 2549539B2
Authority
JP
Japan
Prior art keywords
hot
steel
steel sheet
temperature
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63001438A
Other languages
Japanese (ja)
Other versions
JPH01177349A (en
Inventor
征行 宮原
悟博 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP63001438A priority Critical patent/JP2549539B2/en
Publication of JPH01177349A publication Critical patent/JPH01177349A/en
Application granted granted Critical
Publication of JP2549539B2 publication Critical patent/JP2549539B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はプレス加工性に優れた合金化溶融亜鉛めっき
鋼板を製造する方法に係り、より詳細には、熱間圧延鋼
板を原板とし、冷間圧延することなしに溶融亜鉛めっき
して成形加工性及び耐縦割れ性に優れた溶融亜鉛めっき
鋼板を製造する方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a method for producing an alloyed hot-dip galvanized steel sheet having excellent press workability, and more specifically, a hot-rolled steel sheet as a base sheet The present invention relates to a method for producing a hot-dip galvanized steel sheet which is hot-dip galvanized without hot rolling and has excellent formability and vertical crack resistance.

(従来の技術) 近年、自動車等の車体或いはその構造部材には溶融亜
鉛めっき鋼板や合金化溶融亜鉛めっき鋼板が多く使用さ
れるようになってきた。これらの用途では、形状が複雑
であるため、プレス加工時に鋼板が厳しい加工を受ける
ことから、成形性の優れた溶融亜鉛めっき鋼板或いは合
金化溶融亜鉛めっき鋼板が要求されることになる。
(Prior Art) In recent years, a hot-dip galvanized steel sheet or an alloyed hot-dip galvanized steel sheet has been widely used for a vehicle body such as an automobile or a structural member thereof. In these applications, since the steel sheet is subjected to severe processing during press working due to its complicated shape, a hot-dip galvanized steel sheet or an alloyed hot-dip galvanized steel sheet having excellent formability is required.

従来、このような用途に供される合金化溶融亜鉛めっ
き鋼板の製造法としては、熱延鋼帯を冷間圧延に付した
後、そのまま或いは再結晶焼鈍を施した後、連続合金化
溶融亜鉛めっきライン(以下、「亜鉛めっきライン」と
称す)に通板して浸漬めっき及び合金化処理を行う、い
わゆる冷延鋼板を原板とした鋼板の製造法が通常の方法
である。
Conventionally, as a method for producing an alloyed hot-dip galvanized steel sheet to be used for such an application, a hot-rolled steel strip is subjected to cold rolling, and as it is or after recrystallization annealing, a continuous alloyed hot-dip zinc is applied. A usual method is a method for manufacturing a steel sheet using a so-called cold-rolled steel sheet as a base sheet, which is a steel sheet which is passed through a plating line (hereinafter referred to as a “galvanizing line”) and subjected to immersion plating and alloying treatment.

しかし、最近では、需要家側からコストダウンの要請
が強まり、加工性に優れ且つ安価な溶融亜鉛めっき鋼板
や合金化溶融亜鉛めっき鋼板が求められている。このた
め、冷延鋼板を原板とすることに代えて、熱延後酸洗す
るが、冷間圧延やこれに続く再結晶焼鈍を施すことな
く、直接亜鉛めっきラインへ通板する方法、すなわち、
製造工程の一部を省略して製造コストを低減する方法が
検討され、一部で実用化されている。
However, recently, there has been an increasing demand from customers for cost reduction, and there has been a demand for inexpensive hot-dip galvanized steel sheets and alloyed hot-dip galvanized steel sheets that are excellent in workability. Therefore, instead of using the cold-rolled steel sheet as the original sheet, it is pickled after hot rolling, without cold rolling or subsequent recrystallization annealing, a method of directly threading the galvanizing line, that is,
A method of reducing a manufacturing cost by omitting a part of the manufacturing process has been studied and partially put into practical use.

しかし、従来、熱延鋼板を冷間圧延することなく直接
亜鉛めっきラインへ通板して得られる熱延原板溶融亜鉛
めっき鋼板は、板厚が3.2mm以上の比較的板厚の厚い鋼
とか、或いは加工性がそれ程厳しくない用途に限られて
使用されているにすぎず、板厚が薄く且つ加工性を優れ
た熱延原板溶融亜鉛めっき鋼板はこれまであまり製造さ
れていない。
However, conventionally, hot-rolled hot-dip galvanized steel sheet obtained by passing the hot-rolled steel sheet directly to a galvanizing line without cold rolling is a relatively thick steel sheet having a plate thickness of 3.2 mm or more, Alternatively, it is only used for applications where workability is not so severe, and hot-rolled hot-dip galvanized steel sheets having a thin plate thickness and excellent workability have not been produced so far.

そこで、このような板厚が薄く且つ加工性の優れた熱
延原板溶融亜鉛めっき鋼板及び合金化溶融亜鉛めっき鋼
板の製造法については種々改善が試みられているが、未
だ有効な方法が見い出されていない。
Therefore, various improvements have been attempted for the manufacturing method of the hot-rolled raw material hot-dip galvanized steel sheet and the alloyed hot-dip galvanized steel sheet, which have such a thin plate thickness and excellent workability, but still an effective method has been found. Not not.

(発明が解決しようとする課題) 一般に、合金化溶融亜鉛めっき鋼板を製造するには、
第1図に一般的な熱サイクルを示すように、亜鉛めっき
ラインにおいて、まず酸化雰囲気中で加熱均熱され、次
いでめっき層の密着性を高めるために溶融亜鉛温度(46
0℃)程度に還元雰囲気中で保持した後、溶融亜鉛めっ
き浴中に浸漬される。この場合、加熱均熱過程では、再
結晶焼鈍或いは軟質化を目的として、約700〜850℃に保
持されるのが通例である。更に製品の塗装密着性を目的
として合金化処理を行う場合には、溶融亜鉛めっき後、
更に鋼帯は約500〜700℃に加熱される。上記溶融めっき
ラインは冷延鋼板を対象に設備設計されたものであり、
対象鋼板の昇温ラインを含んでいるから、元々加工組織
が残っておらず、したがって焼鈍を行う必要のない熱延
鋼板であっても、設備稼働上必然的に昇温を受けること
となる。
(Problems to be Solved by the Invention) Generally, in order to produce a galvannealed steel sheet,
As shown in the general heat cycle in Fig. 1, in a galvanizing line, first, heating and soaking is performed in an oxidizing atmosphere, and then the hot dip zinc temperature (46
After being kept at about 0 ° C.) in a reducing atmosphere, it is immersed in a hot dip galvanizing bath. In this case, in the heating soaking process, the temperature is usually maintained at about 700 to 850 ° C. for the purpose of recrystallization annealing or softening. Furthermore, when performing alloying treatment for the purpose of coating adhesion of the product, after hot dip galvanizing,
Further, the steel strip is heated to about 500 to 700 ° C. The hot-dip galvanizing line is designed for cold-rolled steel sheet,
Since it includes the temperature rising line of the target steel sheet, even if it is a hot-rolled steel sheet that originally has no work structure and therefore does not need to be annealed, it will inevitably receive a temperature rise during equipment operation.

なお、別の観点から見た場合においても溶融めっきの
密着性を確保するには亜鉛の溶融温度(約460℃)以上
に予熱しておく必要もあり、更に合金化処理を行う場合
にも良好な塗装密着性及びめっき層の加工性を得るため
に亜鉛めっき中の鉄濃度を適正な値に制御しなければな
らず、このためにも約550℃以上の鋼帯の加熱が必要で
あり、いずれにせよ、原板の再加熱処理は不可避のプロ
セスとなっている。
Even from a different point of view, it is necessary to preheat above the melting temperature of zinc (about 460 ° C) to secure the adhesion of hot dip coating, which is also good when alloying treatment is performed. It is necessary to control the iron concentration during galvanization to an appropriate value in order to obtain good coating adhesion and workability of the plating layer, and for this purpose it is necessary to heat the steel strip at about 550 ° C or higher, In any case, reheating the original plate is an unavoidable process.

しかるに、例えばCが0.005〜0.05%程度でTi、Nb等
の炭化物形成元素を含まないAlキルド熱延鋼板に上記の
ような熱処理を施すと、熱延・巻取り後の徐冷過程で鋼
中に十分析出したセメンタイトが昇温によって再固溶す
るという現象が生じる。このような炭素の再固溶が行わ
れた鋼は、溶融めっきラインを通過する過程で、特にそ
の後半工程においてかなりの急速冷却を受けるため、再
固溶されている炭素を再び十分に析出させることは容易
でなく、再固溶された炭素は大部分が固溶した状態で鋼
中に残存するのである。このため、熱延・巻取り後の鋼
板と、溶融めっき後の鋼板についてそられの特性を比較
すると、後者の降伏強度は上昇し、伸びが大幅に低下す
る。同時に後者の時効指数が高くなり、時効によって機
械的性質が劣化する。これらの原因が総合的な影響を与
える結果、鋼の成形加工性が大きく低下するという問題
を生ずる。
However, for example, when an Al-killed hot-rolled steel sheet having a C content of about 0.005 to 0.05% and containing no carbide forming elements such as Ti and Nb is subjected to the heat treatment as described above, the steel is cooled in the slow cooling process after hot rolling and winding. Then, a phenomenon occurs in which the cementite that has sufficiently precipitated is re-dissolved by increasing the temperature. The steel in which the carbon is re-dissolved is subjected to considerable rapid cooling in the process of passing through the hot dip galvanizing line, particularly in the latter half of the process, so that the re-dissolved carbon is sufficiently precipitated again. This is not easy, and most of the re-dissolved carbon remains in the steel in the form of solid solution. Therefore, when the characteristics of the steel sheet after hot rolling and winding and the steel sheet after hot dip coating are compared, the yield strength of the latter increases and the elongation decreases significantly. At the same time, the latter has a high aging index and mechanical properties deteriorate due to aging. As a result of these factors exerting a comprehensive influence, there arises a problem that the formability of steel is greatly reduced.

このような問題を解消するために鋼中のC含有量を極
めて低く制御し且つTi、Nb等の炭化物形成元素を添加し
て残留Cを固定することが考えられる。このようにして
得られる鋼板中のCは、熱延鋼板の段階でTiC、NbCとし
て析出しており、これらの炭化物は溶融めっきラインの
加熱均熱工程においても殆ど再固溶しない。したがっ
て、溶融めっきライン通板後の材質及び加工性の劣化は
防止される。ところが、このように固溶Cが存在しない
鋼の場合は、結晶粒界の強度が弱くなる結果、成形加工
後に衝撃荷重が加わったり、或いは低温での変形を行っ
たりしたときに脆性破壊を生ずる、いわゆる「縦割れ現
象」を発生するおそれがあり、この種の鋼板を強度部材
として用いた場合、特に問題となる。更に、熱延鋼板の
耐縦割れ性が優れていても、溶融亜鉛めっきを施した場
合、亜鉛めっきラインでの鋼帯の加熱温度によっては耐
縦割れ性が大幅に劣化することがある。
In order to solve such a problem, it is conceivable to control the C content in steel to an extremely low level and add a carbide forming element such as Ti or Nb to fix the residual C. C in the steel sheet thus obtained is precipitated as TiC and NbC at the stage of the hot rolled steel sheet, and these carbides hardly re-dissolve in the heating and soaking process of the hot dip coating line. Therefore, deterioration of the material and workability after passing through the hot dip plating line is prevented. However, in the case of steel in which solid solution C does not exist as described above, the strength of the crystal grain boundaries is weakened, and as a result, brittle fracture occurs when an impact load is applied after forming or deformation at low temperature is performed. The so-called "vertical crack phenomenon" may occur, which is a particular problem when this type of steel sheet is used as a strength member. Furthermore, even if the hot-rolled steel sheet has excellent vertical crack resistance, when hot-dip galvanizing is applied, the vertical crack resistance may significantly deteriorate depending on the heating temperature of the steel strip in the galvanizing line.

従来、前記のように鋼中のCを極力抑制し、Ti、Nb等
により鋼中のCを固定し、熱延鋼板の加工性を向上させ
る方法は種々提案されている。例えば、特開昭49−1345
09号、同61−73836号、同50−141517号などがあるが、
これらはいずれも熱延鋼板の加工性に関するものであ
り、前記のような溶融亜鉛めっきライン通板による材質
の変動については何ら考慮されていない。
Conventionally, various methods have been proposed for suppressing C in steel as much as possible and fixing C in steel with Ti, Nb or the like to improve workability of a hot-rolled steel sheet. For example, JP-A-49-1345
There are 09, 61-73836, 50-141517, etc.,
These are all related to the workability of the hot rolled steel sheet, and no consideration is given to the variation of the material due to the hot-dip galvanizing line threading as described above.

以上のように熱延鋼板を原板として溶融亜鉛めっき鋼
板を製造する場合には、亜鉛めっきラインで溶融亜鉛め
っきを行うことによる引張り特性の劣化(降伏点の上
昇、伸びの低下)、及びこれを抑えるために製品段階で
鋼中に固溶するCを低減すること、更にはこのような鋼
を亜鉛めっきラインで溶融亜鉛めっきを施すこと等によ
る耐縦割れ性の劣化と云った種々の問題点があり、これ
らを解決するたの手段については何ら提案されていなか
った。
As described above, when a hot-dip galvanized steel sheet is produced using a hot-rolled steel sheet as a base sheet, deterioration of tensile properties (increased yield point, reduction of elongation) due to hot-dip galvanizing in a galvanizing line, and Various problems such as deterioration of longitudinal cracking resistance due to reduction of solid solution C in steel at the product stage in order to suppress and further hot dip galvanizing such steel in a galvanizing line There was no suggestion as to how to solve these problems.

これに対し、本発明者らは、まず、亜鉛めっきライン
での溶融亜鉛めっきによる引張り特性の劣化に対し、特
願昭62−11107号にて、鋼中のC含有量を30ppm以下とす
るか、或いは鋼中のC含有量を90ppm以下とし、Ti、Nb
等の炭化物形成元素の添加によりCを固定し、鋼中に固
溶するCを30ppm以下とすることを提案した。また、特
願昭62−62063号では、Cを低減し、Ti、Nbを添加し、
鋼中の固溶Cを低減することに加えて、特に亜鉛めっき
ラインでの溶融亜鉛めっき処理による耐縦割れ性の劣化
を抑制するためにBを添加することを提案した。
On the other hand, the inventors of the present invention firstly set the content of C in the steel to 30 ppm or less in Japanese Patent Application No. 62-11107 with respect to deterioration of tensile properties due to hot dip galvanizing in a galvanizing line. Or, the C content in steel is 90ppm or less, and Ti, Nb
It has been proposed that C be fixed by the addition of carbide forming elements such as, and the C dissolved in steel should be 30 ppm or less. Further, in Japanese Patent Application No. 62-62063, C is reduced, Ti and Nb are added,
In addition to reducing the solid solution C in the steel, it was proposed to add B in order to suppress deterioration of vertical cracking resistance due to hot dip galvanizing treatment in a galvanizing line.

本発明は、上記両提案で得た知見に基づき、優れた引
張り特性を有しつつ、更に耐縦割れ性を向上し、より厳
しい加工を加えられる用途へも供給できる超深絞り用溶
融亜鉛めっき鋼板を安定して製造し得る方法を提供する
ことを目的とするものである。
The present invention is based on the findings obtained in both of the above proposals, has excellent tensile properties, further improves longitudinal crack resistance, and can be supplied to applications where more severe processing can be applied. It is an object of the present invention to provide a method capable of stably producing a steel sheet.

(課題を解決するための手段) 前記目的を達成するため、本発明者らは、鋼の組成、
製造プロセス条件等について鋭意研究を重ねた結果、
C、N、S、Tiの含有量の調整、特に鋼中のCを固定す
るのに有効なTi量を規定して成分バランスを図ることに
より溶融亜鉛めっきによる引張り特性の劣化を効果的に
防止でき、更にこのような成分調整のもとで熱延後の巻
取温度並びに亜鉛めっきラインでのめっき前予熱温度を
コントロールすることにより耐縦割れ性を著しく向上で
きることを知見し、ここに本発明をなしたものである。
(Means for Solving the Problems) In order to achieve the above-mentioned object, the present inventors have made the composition of steel,
As a result of earnest research on manufacturing process conditions,
By adjusting the C, N, S, and Ti contents, and especially by defining the Ti amount effective for fixing C in steel to balance the components, deterioration of tensile properties due to hot dip galvanization is effectively prevented. It has been found that the vertical crack resistance can be remarkably improved by controlling the coiling temperature after hot rolling and the preheating temperature before plating in the galvanizing line under such a component adjustment. It was made.

すなわち、本発明に係る超深絞り用溶融亜鉛めっき鋼
板の製造方法は、要するに、必須元素として、C:0.0010
〜0.009%、S:0.015%以下、N:0.0010〜0.0040%、P:0.
05%以下と、必要に応じてB:0.0005〜0.0045%を含み、
更にTiを次式(1)〜(3)で与えられる条件を同時に
満足するように必須元素として含を鋼を、熱間圧延後、
600℃未満の温度にて鋼帯をコイル状に巻取り、次いで
冷間圧延をせずに溶融亜鉛めっきを施すに際し、溶融亜
鉛めっきラインにおける鋼帯の最高加熱温度を460〜730
℃とすることを特徴とするものである。
That is, the method for producing a galvanized steel sheet for ultra-deep drawing according to the present invention, in short, as an essential element, C: 0.0010
~ 0.009%, S: 0.015% or less, N: 0.0010 to 0.0040%, P: 0.
05% or less, including B: 0.0005 to 0.0045% as necessary,
Furthermore, after hot-rolling steel containing Ti as an essential element so that the conditions given by the following formulas (1) to (3) are simultaneously satisfied,
When the steel strip is wound into a coil at a temperature of less than 600 ° C, and then hot-dip galvanizing is performed without cold rolling, the maximum heating temperature of the steel strip in the hot-dip galvanizing line is 460 to 730.
It is characterized in that it is set to ° C.

Ti≦0.08% …(3) 但し、Ti:鋼中のCを固定するのに有効なTi量 以下に本発明を更に詳細に説明する。 Ti ≦ 0.08% (3) However, Ti * : Ti amount effective for fixing C in steel The present invention will be described in more detail below.

まず、本発明の第1の目的である亜鉛めっきラインで
の“合金化溶融亜鉛めっき処理による”(以下、単に
“亜鉛めっきによる”と呼ぶ)引張り特性の劣化を抑制
するためには、上記のような亜鉛めっき前の予熱或いは
合金化処理による加熱によるセメンタイトの再固溶及び
冷却後の固溶状態での残存を抑制することが主眼となる
ため、C、N、S、Tiの含有量の調整が問題となる。
First, in order to suppress the deterioration of the tensile properties “due to the galvannealing treatment” (hereinafter simply referred to as “due to galvanization”) in the galvanizing line, which is the first object of the present invention, Since the main purpose is to suppress re-dissolution of cementite by preheating before galvanizing or heating by alloying treatment and remaining in a solid solution state after cooling, the content of C, N, S, Ti Adjustment is a problem.

そこで、本発明者らは、鋼中における上記成分含有量
の最適バランスを調べるため、これらの成分バランスと
溶融亜鉛めっき前後の引張り特性との関係を調査した。
Therefore, the present inventors investigated the relationship between these component balances and the tensile properties before and after hot dip galvanizing in order to investigate the optimum balance of the above component contents in steel.

第1表に示す化学成分を有する鋼を溶製し、連続鋳造
によりスラブとし、更に熱間圧延を施して板厚2.0mmに
仕上げ、コイル状に巻取った。仕上げ温度は910〜920
℃、巻取り温度は570〜590℃であった。この熱延鋼板を
酸洗後、亜鉛めっきラインにより溶融亜鉛めっき処理を
行った。めっき前の予熱温度は700℃である。
Steel having the chemical composition shown in Table 1 was melted, continuously cast into a slab, further hot-rolled to a plate thickness of 2.0 mm, and wound into a coil. Finishing temperature is 910-920
The coiling temperature was 570 to 590 ° C. This hot-rolled steel sheet was pickled and then hot-dip galvanized by a galvanizing line. The preheating temperature before plating is 700 ° C.

亜鉛めっきラインでの通板前後で圧延方向よりJIS5号
試験片を採取し、機械的性質を調査した。
A JIS No. 5 test piece was sampled from the rolling direction before and after passing through the galvanizing line to investigate the mechanical properties.

ここで、Tiは熱延前のスラブ加熱段階でもTiN、TiCと
して析出することが知られており、この場合、TiN、TiC
として析出したTiはその後の冷却過程ではCを固定する
ことはないと考えられる。したがって、鋼中のCを固定
するのに有効なTi量(以下、Tiと定義する)は、 で表わすことができる。したがって、実験により得られ
た結果について、横軸として、鋼中CからTiによりTi
Cとして固定され得るCを差し引いた値C(すなわ
ち、鋼中CとTiのバランスにN、S量を加味した値)を と定義し、このCと降伏点及び伸びとの関係を第2図
に示す。
Here, Ti is known to precipitate as TiN and TiC even in the slab heating stage before hot rolling. In this case, TiN and TiC
It is considered that Ti precipitated as does not fix C in the subsequent cooling process. Therefore, the amount of Ti effective to fix C in steel (hereinafter defined as Ti * ) is Can be represented by Therefore, regarding the results obtained by the experiment, the abscissa indicates the Ti from C in steel to Ti *.
The value C * (that is, the value of the balance of C and Ti in the steel with the addition of N and S) is calculated by subtracting C that can be fixed as C. And the relationship between this C * and the yield point and elongation is shown in FIG.

第2図より、Cが低い鋼No.I及びNo.IIでは亜鉛め
っきによる引張り特性の変化は小さいが、Cが高い鋼
No.III及びNo.IVでは亜鉛めっきにより降伏点が上昇
し、伸びが低下しており、亜鉛めっきによる引張り特性
の劣化はCを0.0030%以下にすることにより抑制し得
ることがわかる。換言すれば、Tiで示される有効Ti量
が原子量論的にC量から0.003%を差し引いた量より多
ければ(次式(1))、亜鉛めっきによる引張り特性の
劣化を抑制し得ることが判明した。
From Fig. 2, it can be seen that in steels No. I and No. II with low C * , changes in tensile properties due to galvanization are small, but steels with high C *
In No. III and No. IV, the yield point increased and the elongation decreased due to zinc plating, and it can be seen that the deterioration of tensile properties due to zinc plating can be suppressed by setting C * to 0.0030% or less. In other words, if the effective Ti amount represented by Ti * is more than the amount obtained by atomically stoichiometrically subtracting 0.003% from the C amount (following formula (1)), it is possible to suppress the deterioration of the tensile properties due to zinc plating. found.

但し、 次に、本発明の第2の目的である耐縦割れ性の向上の
ために、本発明者らは、前記(1)式を満足する鋼を用
いて熱延後の巻取り温度、亜鉛めっきラインでのめっき
前予熱温度及びBの添加と耐縦割れ性の関係を調査し
た。
However, Next, in order to improve the vertical cracking resistance which is the second object of the present invention, the present inventors have used a steel satisfying the above formula (1) for winding temperature after hot rolling and zinc plating. The relationship between the preheating temperature before plating on the line and the addition of B and the vertical crack resistance was investigated.

実験では、第2表に示す化学成分を有する鋼を溶製
し、連続鋳造によりスラブとし、仕上げ温度910〜930℃
にて板厚2.0mmに熱間圧延した後、コイル状に巻取っ
た。この熱延鋼板を酸洗後、亜鉛めっきラインにより溶
融亜鉛めっきを行った。
In the experiment, steel having the chemical composition shown in Table 2 was melted and made into a slab by continuous casting, and the finishing temperature was 910 to 930 ° C.
After hot rolling to a plate thickness of 2.0 mm, it was wound into a coil. This hot-rolled steel sheet was pickled and then hot-dip galvanized by a galvanizing line.

第3表に熱延後の巻取り温度、めっき前予熱温度を示
す。
Table 3 shows the winding temperature after hot rolling and the preheating temperature before plating.

亜鉛めっきラインの通板前後で鋼板のサンプリングを
行い、耐縦割れ性を調査した。なお、縦割れ試験として
は、145mmφのブランクを打ち抜き、平底円筒絞り成形
(絞り比:2.3)を行い、その後旋盤にて耳落し加工を施
し、最終絞り比:2.0相当のカツプ状成形品を作製し、−
130℃〜0℃で10分間保持した後、円錐ポンチにて穴拡
げ加工を行った。各保持温度毎に3〜5個のカップ成形
品を供試し、縦割れ(脆性割れ)発生率50%の時の温度
を遷移温度とした。
Steel plates were sampled before and after passing through the galvanizing line to investigate vertical crack resistance. As a vertical cracking test, a 145 mmφ blank was punched, flat-bottomed cylindrical drawing (drawing ratio: 2.3) was performed, and after that, it was pierced with a lathe to produce a cup-shaped molded product with a final drawing ratio of 2.0. Then-
After holding at 130 ° C to 0 ° C for 10 minutes, hole expansion processing was performed with a conical punch. Three to five cup-molded products were tested for each holding temperature, and the temperature when the vertical crack (brittle crack) occurrence rate was 50% was taken as the transition temperature.

第3図に熱延後の巻取り温度(以下、単に巻取り温度
という)と縦割れ遷移温度との関係を示す。同表からわ
かるように、鋼No.A、Bともに巻取り温度が600℃未満
では縦割れ遷移温度が殆ど変化しないが、巻取り温度が
680℃で両鋼とも大きく縦割れ遷移温度が上昇してい
る。また、鋼No.Cは従来鋼であるC量の多い通常のAlキ
ルド鋼であり、これと同等以上の耐縦割れ性を確保すれ
ば、Cを低下しTiを添加することによる耐縦割れ性の劣
化を抑制できたと考えることができ、このレベルを図中
斜線で示す。
FIG. 3 shows the relationship between the coiling temperature after hot rolling (hereinafter, simply referred to as coiling temperature) and the vertical crack transition temperature. As can be seen from the table, the longitudinal crack transition temperature hardly changes when the coiling temperature is less than 600 ° C for both steel Nos. A and B, but the coiling temperature
At both temperatures of 680 ℃, the transition temperature of vertical cracks increases significantly. Steel No. C is a conventional Al-killed steel with a large amount of C, which is a conventional steel. If vertical cracking resistance equal to or higher than this is secured, vertical cracking resistance by reducing C and adding Ti It can be considered that the deterioration of the sex could be suppressed, and this level is shown by the diagonal lines in the figure.

したがって、この実験結果より、本発明で第2の目的
とする良好な耐縦割れ性を得るためには、巻取り温度は
600℃未満とする。
Therefore, from this experimental result, in order to obtain good longitudinal crack resistance which is the second object of the present invention, the winding temperature is
Below 600 ° C.

第4図にはめっき前予熱温度と縦割れ遷移温度との関
係を示す。鋼No.A、Bともにめっき前予熱温度が730℃
までは殆ど縦割れ遷移温度は変化しないが、めっき前予
熱温度が750℃では、両鋼とも大きく遷移温度が上昇し
ている。前述と同様に本発明の目的とする縦割れ遷移温
度を斜線部で示す。すなわち、本発明の目的を達成する
ためには、めっき前予熱温度は730℃以下とすることが
必要である。
FIG. 4 shows the relationship between the preheating temperature before plating and the vertical crack transition temperature. Steel No.A and B have preheating temperature of 730 ℃ before plating
Although the transition temperature of vertical cracks hardly changes up to, the transition temperatures of both steels greatly increase when the preheating temperature before plating is 750 ° C. Similarly to the above, the vertical crack transition temperature which is the object of the present invention is shown by the shaded portion. That is, in order to achieve the object of the present invention, the preheating temperature before plating needs to be 730 ° C or lower.

以上のように、巻取り温度やめっき前予熱温度により
めっき後の耐縦割れ性が変化することについては、その
詳細な理由は不明であるが、以下のように考えられる。
As described above, the reason why the vertical crack resistance after plating changes depending on the winding temperature or the preheating temperature before plating is not clear, but it is considered as follows.

前述したように、亜鉛めっきラインでの再加熱による
引張り特性の変化を抑制するためにCを低減し、しかも
Tiを添加した鋼の場合、鋼中に固溶したCが少なすぎる
と粒界が純化し粒界強度が低下し、耐縦割れ性が通常の
0.04%C程度の鋼に比べて劣るのである。この鋼中に固
溶したCの減少はTiがTiCとして析出することが原因で
あると考えられる。通常、熱延前のスラブ加熱段階(約
1050〜1200℃)ではTiCは殆ど固溶しており、これを熱
延後670℃以上の高い巻取り温度でコイル状に巻取れ
ば、その後の徐冷過程でTiCとして析出し、上記したよ
うに、このTiCは亜鉛めっきラインでの再加熱(800℃以
下)程度では再固溶することがなく、したがって、鋼中
に固溶するCが少ないままであり、耐縦割れ性に劣るも
のと考えられる。ところが、本発明者らは、亜鉛めっき
ラインでの引張り特性の劣化を抑制するためにCを低減
し、Tiを添加し、更にTiの添加量が原子当量論的にCの
数倍程度含む鋼であっても、巻取り温度が600℃未満に
て巻取れば良好な耐縦割れ性が得られる可能性を示した
訳であり、すなわち、この場合、TiCの析出がある程度
抑制でき、鋼中に固溶Cを残すことができたものと考え
られる。
As described above, C is reduced in order to suppress the change in tensile properties due to reheating in the galvanizing line, and
In the case of a steel containing Ti, if the amount of C dissolved in the steel is too small, the grain boundary is purified and the grain boundary strength is lowered, and the vertical crack resistance is
It is inferior to the steel of about 0.04% C. It is considered that the decrease of C dissolved in the steel is caused by the precipitation of Ti as TiC. Usually, the slab heating stage before hot rolling (approx.
(1050-1200 ℃), TiC is almost solid solution, and if it is coiled at a high coiling temperature of 670 ℃ or higher after hot rolling, it precipitates as TiC in the subsequent slow cooling process. In addition, this TiC does not re-dissolve on reheating in a galvanizing line (800 ° C or lower), and therefore, the amount of C dissolved in the steel remains small and the longitudinal crack resistance is inferior. Conceivable. However, the present inventors have decided to reduce C in order to suppress the deterioration of tensile properties in a galvanizing line, add Ti, and further add Ti in an atomic equivalent stoichiometric amount to several times that of C. However, even if the coiling temperature was less than 600 ° C, good longitudinal crack resistance could be obtained, that is, in this case, precipitation of TiC could be suppressed to some extent, and It is considered that the solid solution C could be left behind.

同様に、めっきラインでの再加熱処理時の温度につい
ても、この温度が760℃以上の場合には、たとえその加
熱時間が短時間であつても熱延巻取り工程で残存させた
鋼中の固溶Cがこの再加熱時にTiCとして析出し鋼中固
溶C量が減少するために耐縦割れ性が大きく劣化するも
のと考えられる。したがって、たとえめっき前予熱温度
が730℃以下であっても、その後合金化処理を行う場
合、合金化のための再加熱温度が高い(例えば、760
℃)と耐縦割れ性が劣化することを本発明者らは確認し
ており、すなわち、合金化処理も含めて考慮した上で良
好な耐縦割れ性を得るためには、合金化処理時も含め、
溶融亜鉛めっきラインでの鋼帯最高加熱温度を730℃以
下とする必要がある。
Similarly, regarding the temperature during the reheating treatment in the plating line, if this temperature is 760 ° C or higher, even if the heating time is short, the It is considered that the solute C precipitates as TiC during this reheating and the amount of solute C in the steel decreases, so that the longitudinal crack resistance is greatly deteriorated. Therefore, even if the preheating temperature before plating is 730 ° C or lower, the reheating temperature for alloying is high when the alloying treatment is performed thereafter (for example, 760
The present inventors have confirmed that the vertical cracking resistance is deteriorated, that is, in order to obtain good vertical cracking resistance in consideration of the alloying treatment as well, it is necessary to improve the vertical cracking resistance during the alloying treatment. Including
It is necessary to keep the maximum heating temperature of the steel strip in the hot dip galvanizing line at 730 ° C or lower.

また、本実験結果より耐縦割れ性に及ぼすBの効果が
わかる。すなわち、Bを添加することにより溶融亜鉛め
っき鋼板の耐縦割れ性が更に向上する。この効果は、め
っき前での耐縦割れ性を向上させることと、以下の効果
によるものとの複合効果であると考えられる。すなわ
ち、第3図及び第4図で示されているように、Bの有無
(鋼No.AとB)にかかわらず、本発明による熱延めっき
条件で製造しても亜鉛めっき処理により縦割れ遷移温度
が上昇するが、Bを添加した場合にはこの変化量が小さ
くなり、したがって溶融亜鉛めっき後でも優れた耐縦割
れ性を示す。これらのBの効果はその詳細な理由は不明
であるが、BはCと同様に粒界強度を強める効果がある
と考えられ、しかもめっき処理時の再加熱によりBが更
に粒界に拡散し、粒界強度を高めているのではないかと
考えられる。
Moreover, the effect of B on the vertical cracking resistance can be seen from the results of this experiment. That is, the addition of B further improves the vertical crack resistance of the hot-dip galvanized steel sheet. This effect is considered to be a combined effect of improving the vertical cracking resistance before plating and the following effects. That is, as shown in FIGS. 3 and 4, regardless of the presence or absence of B (steel Nos. A and B), vertical cracking occurs due to the galvanizing treatment even when manufactured under the hot rolling plating conditions according to the present invention. Although the transition temperature rises, when B is added, this change amount becomes small, and therefore, excellent longitudinal cracking resistance is exhibited even after hot-dip galvanizing. Although the detailed reason for the effect of B is unknown, it is considered that B has the effect of strengthening the grain boundary strength like C, and B is further diffused to the grain boundary by reheating during the plating treatment. It seems that the grain boundary strength is increased.

以上が本発明に至った実験結果の説明であるが、本発
明は、これにより得た知見に基づいて更に化学成分の調
整の詳細を検討し、完成したものである。
The above is a description of the experimental results that led to the present invention, but the present invention has been completed by further studying the details of the adjustment of chemical components based on the findings obtained thereby.

以下に本発明を構成する各因子の限定条件について述
べる。
The limiting conditions of each factor constituting the present invention will be described below.

まず、本発明における化学成分の限定理由を説明す
る。
First, the reasons for limiting the chemical components in the present invention will be described.

(イ)C 溶融亜鉛めっき処理後の成形加工性を劣化させないた
めには、めっき処理後の固溶C量が少ないことが肝要で
ある。固溶C量は鋼中のC及び炭化物形成元素であるTi
の量により定まる。したがって、Tiの添加量が増大すれ
ばCの許容含有量も大となるのであるが、C含有量及び
Tiの添加量が増大すると炭化物が増大し、鋼の延性が劣
化することとなるため、C含有量の上限値を0.009%と
し、Tiの添加量についても後に述べるように一定値以下
に制限する。
(A) C In order not to deteriorate the formability after hot dip galvanizing, it is essential that the amount of solid solution C after plating is small. The solute C content is C in steel and Ti which is a carbide forming element.
It depends on the amount of. Therefore, if the addition amount of Ti increases, the allowable content of C also increases.
If the Ti addition amount increases, carbides increase and the ductility of the steel deteriorates. Therefore, the upper limit of the C content is set to 0.009%, and the Ti addition amount is also limited to a certain value or less as described later. .

(ロ)Ti Tiは炭化物形成元素であり、この炭化物は溶融亜鉛め
っきラインの加熱均熱工程において再固溶しないため、
Tiの添加によりめっき後の固溶C量を少なくすることが
でき、その結果、亜鉛めっきによる引張り特性の劣化が
小さいものと考えられる。しかし乍ら、鋼中のC量が0.
0030%以下の場合には亜鉛めっきによる引張り特性の変
化が小さく、前記(1)式よりTiが0以下となる。し
かし、Tiは高温でTiN、次いでTiSとして析出し、特にTi
Sが析出した場合には鋼板の穴拡がり特性が向上する。
したがって、原子量論的に鋼中N及びSと同量のTi量は
必要である(次式(2))。
(B) Ti Ti is a carbide forming element, and since this carbide does not re-dissolve in the heating and soaking process of the hot dip galvanizing line,
It is considered that the addition of Ti can reduce the amount of solute C after plating, and as a result, the deterioration of the tensile properties due to zinc plating is small. However, the amount of C in steel is 0.
When the content is less than 30%, the change in tensile properties due to galvanization is small, and Ti * becomes 0 or less according to the equation (1). However, Ti precipitates as TiN and then TiS at high temperature, especially Ti
When S precipitates, the hole expansion characteristics of the steel sheet improve.
Therefore, the amount of Ti that is atomically stoichiometrically the same as N and S in steel is necessary (the following equation (2)).

但し、Tiの添加量が増大すれば前述のように延性の低
下を招くことになる。本発明者らの研究によれば、Ti≦
0.08%の含有量であれば延性の低下による不都合は生じ
ないことがわかった(次式(3))。
However, if the addition amount of Ti is increased, the ductility is lowered as described above. According to the research conducted by the present inventors, Ti ≦
It was found that if the content is 0.08%, the inconvenience due to the decrease in ductility does not occur (the following formula (3)).

Ti≦0.08% …(3) (ハ)S Sは前述したようにTi化合物を形成するため、TiCの
形成に必要なTiを下げる作用がある。したがって、製造
コストを下げる観点からTi添加量を下げるためには、S
を低くし、Tiを下げることが好ましい。したがって、
Sは0.015%以下に規制するのが好ましい。
Ti ≦ 0.08% (3) (C) S S forms a Ti compound as described above, and therefore has an action of lowering Ti necessary for forming TiC. Therefore, in order to reduce the Ti addition amount from the viewpoint of reducing the manufacturing cost, S
It is preferable to lower Ti * and Ti * . Therefore,
It is preferable to control S to 0.015% or less.

(ニ)N NもSと同様にTi化合物を形成するため、可及的に低
くすることが製造コスト上有利であり、したがって、0.
0040%以下とすることが好ましい。
(D) N N also forms a Ti compound similarly to S, so it is advantageous in terms of manufacturing cost to make it as low as possible.
It is preferably set to 0040% or less.

(ホ)B Bは、本発明では必ずしも必須元素とする必要はない
が、溶融めっき鋼板の耐縦割れ性を更に向上させる作用
があるので、必要に応じて添加することができる。この
ようなBの添加効果を得るためには少なくとも0.0005%
以上の添加量が望ましいが、0.0045%を超えると連鋳工
程のスラブ段階でスラブ表面割れを招くおそれがあり、
製品コストも増大するので、B添加量は0.0045%以下に
制限することが望ましい。
(E) BB B does not necessarily have to be an essential element in the present invention, but since it has a function of further improving the vertical crack resistance of the hot-dip plated steel sheet, it can be added as necessary. To obtain such an effect of adding B, at least 0.0005%
The above addition amount is desirable, but if it exceeds 0.0045%, slab surface cracking may occur at the slab stage of the continuous casting process,
Since the product cost also increases, it is desirable to limit the B addition amount to 0.0045% or less.

以上の必須構成元素の他に、鋼の強度或いは鋼精錬時
の脱酸を目的としてそれぞれMn及びAlを添加することが
でき、また、通常不可避的不純物して混在するSi、P等
の影響もあるので、以下にこれらの元素の好ましい添加
量或いは含有量について説明する。
In addition to the above essential constituent elements, Mn and Al can be added respectively for the purpose of steel strength or deoxidation during steel refining, and the influence of Si, P, etc. which are usually mixed as unavoidable impurities Therefore, the preferable addition amount or content of these elements will be described below.

(ヘ)Mn MnはSの存在によって生ずる熱間脆性破壊を抑制する
効果を有する。その添加効果を得るためには0.05%以上
の添加量が望ましいが、0.5%を超えると成形加工性が
低下するおそれがあるので、Mn添加量は0.5%以下とす
ることが望ましい。
(F) Mn Mn has an effect of suppressing hot brittle fracture caused by the presence of S. In order to obtain the effect of addition, the addition amount of 0.05% or more is desirable, but if it exceeds 0.5%, the moldability may deteriorate, so the addition amount of Mn is desirably 0.5% or less.

(ト)Al Alは鋼精錬時の脱酸剤として添加される元素であり、
Tiの歩留りを向上させる点から添加量は0.01%以上であ
ることが望ましい。しかし、0.1%を超えると鋼板のい
わゆるスリバー疵の原因となり、製造コスト低減の点か
らも好ましくないので、Al添加量は0.1%以下に制限す
ることが望ましい。
(G) Al Al is an element added as a deoxidizer during steel refining,
From the viewpoint of improving the yield of Ti, the added amount is preferably 0.01% or more. However, if it exceeds 0.1%, it causes so-called sliver flaws of the steel sheet, which is not preferable from the viewpoint of manufacturing cost reduction. Therefore, it is desirable to limit the added amount of Al to 0.1% or less.

(チ)Si Siの含有量は0.2%以下であることが望ましい。含有
量が0.2%を超えると熱延段階で赤スケールが生じるお
それがあり、赤スケール模様は酸洗後も残るため、めっ
き表面に縞状模様が浮き出て表面外観を劣化させ、商品
価値を著しく低下させる。更に赤スケールが発生した場
合、スケール発生部分のめっき密着性が劣化するため、
この観点からもSi含有量は可及的に抑制することが好ま
しい。
(H) Si The Si content is preferably 0.2% or less. If the content exceeds 0.2%, red scale may occur in the hot rolling stage, and the red scale pattern remains even after pickling.Therefore, a striped pattern emerges on the plating surface, deteriorating the surface appearance and significantly increasing the commercial value. Lower. Furthermore, if red scale occurs, the plating adhesion at the scale generation part deteriorates,
From this viewpoint as well, it is preferable to suppress the Si content as much as possible.

(リ)P Pは0.05%以上の含有量があるとめっき密着性が劣化
するため、含有量は0.05%以下とする。
(I) Pp If the content of P is 0.05% or more, the plating adhesion deteriorates, so the content is made 0.05% or less.

次に上記化学成分を有する鋼の製造プロセス因子につ
いて説明する。
Next, the manufacturing process factors of the steel having the above chemical composition will be described.

(ヌ)巻取り温度、亜鉛めっきラインでの再加熱温度 これらは、前述したように、良好な耐縦割れ性を得る
ためにTiCの析出を抑制できる条件とする必要があり、
巻取り温度及び亜鉛めっきラインでの再加熱温度はそれ
ぞれ600℃未満、730℃以下とする。なお、巻取り温度に
ついてはいくら低くても特に本発明に支障となるもので
はなく、室温程度で巻取ってもよい。但し、亜鉛めっき
ラインでの再加熱温度は、溶融亜鉛めっき前の予熱とし
てめっき密着性を確保するために亜鉛の溶融温度(約46
0℃)以上に加熱する必要があるので、460℃を下限値と
する。
(G) Winding temperature, reheating temperature in galvanizing line These are, as described above, required to be the conditions capable of suppressing precipitation of TiC in order to obtain good longitudinal crack resistance.
The coiling temperature and reheating temperature in the galvanizing line shall be less than 600 ℃ and 730 ℃ or less, respectively. It should be noted that no matter how low the winding temperature is, it does not particularly hinder the present invention, and the winding temperature may be around room temperature. However, the reheating temperature in the galvanizing line is the preheating before hot dip galvanizing to ensure the adhesion of the zinc.
Since it is necessary to heat above 0 ° C), the lower limit value is 460 ° C.

(ル)その他 熱延仕上げ温度については、Ar3変態点以上であるこ
とが望ましいが、本発明が対象とするような極低C鋼で
は、多少Ar3変態点を下回っても再結晶し、この場合、
降伏点や伸びには大きな影響を及ぼさないため、約850
℃以上であればよい。
(L) Others Regarding the hot rolling finishing temperature, it is desirable that the Ar 3 transformation point or higher be used. However, in the extremely low C steel that is the object of the present invention, recrystallization occurs even if it is slightly below the Ar 3 transformation point, in this case,
Approximately 850, as it does not significantly affect yield point and elongation
It may be at least ° C.

また、熱延後、溶融亜鉛めっき処理前の酸洗処理につ
いては、本発明により得られる溶融亜鉛めっき鋼板の機
械的性質に対して特に作用乃至影響を及ぼさないため、
特に条件は限定されない。
Further, after hot rolling, for the pickling treatment before the hot dip galvanizing treatment, since it has no particular effect or influence on the mechanical properties of the hot dip galvanized steel sheet obtained by the present invention,
The conditions are not particularly limited.

次に本発明の一実施例を示す。なお、本発明はこの実
施例のみに限定されるものではないことは云うまでもな
く、既述の各種基礎研究及び実験例のほか、他の態様も
可能である。
Next, an embodiment of the present invention will be described. Needless to say, the present invention is not limited to this embodiment, and other embodiments are possible in addition to the various basic researches and experimental examples described above.

(実施例) 第4表に示す化学成分(wt%)を有する鋼を常法によ
り溶製し、転炉出鋼後、連続鋳造によりスラブとした。
次いで板厚2mmまで熱間圧延を施し、第5表に示す巻取
り温度にて巻取った。なお、仕上げ温度は880〜915℃と
した。
(Example) A steel having the chemical composition (wt%) shown in Table 4 was melted by a conventional method, and after the steel was taken out from the converter, it was continuously cast into a slab.
Then, hot rolling was performed to a plate thickness of 2 mm, and wound at the winding temperature shown in Table 5. The finishing temperature was 880 to 915 ° C.

得られた熱延コイルを酸洗した後、亜鉛めっきライン
にて第5表に示す均熱温度で均熱処理し、溶融亜鉛めっ
き処理を施し、伸び率1.0%の調質圧延を施した。
After pickling the obtained hot rolled coil, it was subjected to a soaking treatment at a soaking temperature shown in Table 5 in a galvanizing line, a hot dip galvanizing treatment, and a temper rolling with an elongation of 1.0%.

得られた溶融亜鉛めっき鋼板の諸特性を第5表に併記
する。表中、引張特性は該鋼板から圧延方向にJIS5号試
験片を採取し、引張試験を行った結果であり、また、第
5表には得られた溶融めっき鋼板の機械的性質と縦割れ
試験により求めた縦割れ遷移温度を示す。縦割れ試験と
しては、145mmφのブランクを打ち抜き、平底円筒絞り
成形(絞り比:2.3)を行い、その後旋盤にて耳落し加工
を施し、最終絞り比:2.0相当のカップ状成形品を作製
し、−160℃〜0℃で10分間保持した後、円錐ポンチに
て穴拡げ加工を行った。各保持温度毎に3〜5個のカツ
プ成形品を供試し、縦割れ(脆性割れ)発生率50%の時
の温度を遷移温度とした。
Table 5 also shows various properties of the obtained hot-dip galvanized steel sheet. In the table, the tensile properties are the results of a tensile test of JIS No. 5 test pieces taken from the steel sheet in the rolling direction, and Table 5 shows the mechanical properties and longitudinal cracking test of the obtained hot dip plated steel sheet. The vertical crack transition temperature obtained by As a vertical cracking test, a 145 mmφ blank was punched out, flat-bottomed cylindrical drawing (drawing ratio: 2.3) was performed, and after that, it was processed by a lathe to produce a cup-shaped molded product with a final drawing ratio of 2.0. After holding at −160 ° C. to 0 ° C. for 10 minutes, hole expansion processing was performed with a conical punch. Three to five cup-molded products were tested for each holding temperature, and the temperature when the vertical crack (brittle crack) occurrence rate was 50% was taken as the transition temperature.

第5表より明らかなとおり、本発明例であるNo.C−1
は降伏点が低く、かつ高い伸びを示し、優れた引張り特
性を示すのに加え、耐縦割れ性にも優れている。また本
発明例のNo.E−1はBを添加した鋼を溶融亜鉛めっき後
合金化処理を行ったものであるが、No.C−1と同様に優
れた引張り特性を示し、より優れた耐縦割れ性を有して
おり、本発明法が合金化処理を施した場合にも適用でき
ることを示している。
As is clear from Table 5, No. C-1 which is an example of the present invention
Has a low yield point, high elongation, excellent tensile properties, and excellent longitudinal crack resistance. Further, No. E-1 of the present invention example is a steel to which B is added, which has been subjected to an alloying treatment after hot dip galvanizing, but exhibits excellent tensile properties like No. C-1 and is more excellent. It has vertical cracking resistance, indicating that the method of the present invention can be applied to the case where alloying treatment is performed.

これに対し、比較例のNo.C−2及びNo.E−2では、巻
取り温度が高く、TiCが析出するため、鋼中の固溶C量
が減少するので、耐縦割れ性に劣っている。また比較例
No.C−3及びNo.E−3では、めっき前予熱温度が高いた
め、同様に鋼中固溶C量が不足し、耐縦割れ性が悪い。
On the other hand, in Comparative Examples No. C-2 and No. E-2, the coiling temperature was high and TiC was precipitated, so that the amount of solid solution C in the steel was decreased, so that the longitudinal crack resistance was poor. ing. Comparative example
In No. C-3 and No. E-3, since the preheating temperature before plating is high, similarly, the amount of solute C in steel is insufficient and the vertical cracking resistance is poor.

また比較例No.D及びFでは、第4表に示すCが0.00
30%を超えるものであり、換言すればTi添加量が少ない
ため、溶融亜鉛めっき前の予熱処理により引張り特性が
劣化し、得られる溶融亜鉛めっき鋼板の降状点は高く、
かつ伸びも低い。また比較例No.Iは通常のAlキルド鋼で
あるが、引張り特性が悪い。
In Comparative Examples Nos. D and F, C * shown in Table 4 is 0.00
It is more than 30%, in other words, since the amount of Ti added is small, the tensile properties are deteriorated by the preheat treatment before hot dip galvanizing, and the yield point of the obtained hot dip galvanized steel sheet is high.
And the growth is low. Comparative Example No. I is a normal Al-killed steel, but has poor tensile properties.

また比較例No.G及びNo.Hは、それぞれC量、Ti量がい
ずれも多すぎるため、引張り特性に劣り、高度の加工性
が要求される用途には適していない。
Further, Comparative Examples No. G and No. H each have an excessive amount of C and an excessive amount of Ti, respectively, and therefore are inferior in tensile properties and are not suitable for applications requiring high workability.

(発明の効果) 以上詳述したように、本発明によれば、化学成分をバ
ランスよく調整すると共に巻取り温度及びめっきでの再
加熱温度を適正な条件にコントロールするので、得られ
る溶融亜鉛めっき鋼板は鋼中に適正な固溶Cを有するた
めに優れた引張り特性及び優れた耐縦割れ性の両特性を
兼ね備え、しかも安定して製造することができるため、
より加工の厳しい用途(超深絞り用)への適用が可能と
なると共に、冷間圧延を要せずに製造できるため、経済
的で生産性向上の効果が大きい。
(Effect of the invention) As described in detail above, according to the present invention, the chemical components are adjusted in a well-balanced manner, and the winding temperature and the reheating temperature during plating are controlled to appropriate conditions. The steel sheet has both excellent tensile properties and excellent vertical cracking resistance properties because it has an appropriate solid solution C in the steel, and can be stably manufactured.
It can be applied to more severe applications (for ultra-deep drawing) and can be produced without cold rolling, which is economical and has a great effect of improving productivity.

【図面の簡単な説明】[Brief description of drawings]

第1図は亜鉛めっきラインにおける一般的な熱サイクル
を示す図、 第2図はC(鋼中CとTiのバランスにN、S量を加味
した値)と降状点及び伸びとの関係を示す図、 第3図は熱延後巻取り温度と熱延鋼板まま及び溶融亜鉛
めっき鋼板の縦割れ遷移温度との関係を示す図、 第4図はめっき前予熱温度と熱延鋼板まま及び溶融亜鉛
めっき鋼板の縦割れ遷移温度との関係を示す図である。
Fig. 1 shows a general heat cycle in a galvanizing line, and Fig. 2 shows the relationship between C * (value of N and S in the balance of C and Ti in steel) and yield point and elongation. FIG. 3 is a diagram showing the relationship between the coiling temperature after hot rolling and the hot-rolled steel sheet as it is and the vertical crack transition temperature of the hot-dip galvanized steel sheet, and FIG. 4 is the preheating temperature before coating and the hot-rolled steel sheet as it is. It is a figure which shows the relationship with the vertical crack transition temperature of a hot dip galvanized steel sheet.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】重量%で(以下、同じ)、C:0.0010〜0.00
90%、S:0.015%以下、N:0.0010〜0.0040%、P:0.05%
以下と、更にTiを下記(1)〜(3)式で与えられる条
件を同時に満足するようにそれぞれ必須元素として含む
鋼を、熱間圧延後、600℃未満の温度にて鋼帯をコイル
状に巻取り、次いで冷間圧延をせずに溶融亜鉛めっきを
施すに際し、溶融亜鉛めっきラインにおける鋼帯の最高
加熱温度を460〜730℃とすることを特徴とする超深絞り
用溶融亜鉛めっき鋼板の製造方法。 Ti≦0.08% …(3) 但し、Ti:鋼中のC量を固定するのに有効なTi量
1. In weight% (hereinafter the same), C: 0.0010 to 0.00
90%, S: 0.015% or less, N: 0.0010 to 0.0040%, P: 0.05%
After the hot rolling, steels containing the following, and Ti as the essential elements so that the conditions given by the following formulas (1) to (3) are simultaneously satisfied, are coiled into a steel strip at a temperature of less than 600 ° C. The hot-dip galvanized steel sheet for ultra-deep drawing is characterized in that the maximum heating temperature of the steel strip in the hot-dip galvanizing line is 460 to 730 ° C when the hot-dip galvanizing is carried out and then cold-rolled. Manufacturing method. Ti ≦ 0.08% (3) However, Ti * : Ti amount effective for fixing the C amount in steel
【請求項2】C:0.0010〜0.0090%、S:0.015%以下、N:
0.0010〜0.0040%、P:0.05%以下、B:0.0005〜0.0045%
と、更にTiを下記(1)〜(3)式で与えられる条件を
同時に満足するようにそれぞれ必須元素として含む鋼
を、熱間圧延後、600℃未満の温度にて鋼帯をコイル状
に巻取り、次いで冷間圧延をせずに溶融亜鉛めっきを施
すに際し、溶融亜鉛めっきラインにおける鋼帯の最高加
熱温度を460〜730℃とすることを特徴とする超深絞り用
溶融亜鉛めっき鋼板の製造方法。 Ti≦0.08% …(3) 但し、Ti:鋼中のC量を固定するのに有効なTi量
2. C: 0.0010 to 0.0090%, S: 0.015% or less, N:
0.0010 to 0.0040%, P: 0.05% or less, B: 0.0005 to 0.0045%
In addition, steel that contains Ti as an essential element so as to simultaneously satisfy the conditions given by the following formulas (1) to (3) is hot-rolled, and then the steel strip is coiled at a temperature of less than 600 ° C. When applying hot dip galvanizing without winding and then cold rolling, the maximum heating temperature of the steel strip in the hot dip galvanizing line is set to 460 to 730 ° C. Production method. Ti ≦ 0.08% (3) However, Ti * : Ti amount effective for fixing the C amount in steel
JP63001438A 1988-01-07 1988-01-07 Method for producing hot dip galvanized steel sheet for ultra deep drawing Expired - Fee Related JP2549539B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63001438A JP2549539B2 (en) 1988-01-07 1988-01-07 Method for producing hot dip galvanized steel sheet for ultra deep drawing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63001438A JP2549539B2 (en) 1988-01-07 1988-01-07 Method for producing hot dip galvanized steel sheet for ultra deep drawing

Publications (2)

Publication Number Publication Date
JPH01177349A JPH01177349A (en) 1989-07-13
JP2549539B2 true JP2549539B2 (en) 1996-10-30

Family

ID=11501446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63001438A Expired - Fee Related JP2549539B2 (en) 1988-01-07 1988-01-07 Method for producing hot dip galvanized steel sheet for ultra deep drawing

Country Status (1)

Country Link
JP (1) JP2549539B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH083127B2 (en) * 1990-12-28 1996-01-17 株式会社神戸製鋼所 Method for producing high strength galvanized steel sheet with excellent workability
KR100676174B1 (en) * 2006-05-25 2007-02-01 주식회사 엠코 Attachment-free safety net support for steel construction frame

Also Published As

Publication number Publication date
JPH01177349A (en) 1989-07-13

Similar Documents

Publication Publication Date Title
WO2011118421A1 (en) Method for producing high-strength steel plate having superior deep drawing characteristics
JPH0379420B2 (en)
JP3263143B2 (en) Bake hardening type high strength alloyed hot-dip galvanized steel sheet excellent in workability and method for producing the same
JP4177477B2 (en) Manufacturing method of cold-rolled steel sheet and hot-dip galvanized steel sheet with excellent room temperature aging resistance and panel characteristics
JP2800541B2 (en) Manufacturing method of high strength hot-dip galvanized steel sheet for deep drawing
JP4890492B2 (en) Method for producing alloyed hot-dip galvanized steel sheet with excellent paint bake hardening performance
JP2549539B2 (en) Method for producing hot dip galvanized steel sheet for ultra deep drawing
JPH1088238A (en) Production of electrogalvanized steel sheet excellent in surface appearance and workability
JPH0559970B2 (en)
JP3404798B2 (en) Method for producing high-strength steel sheet having bake hardenability
JPS582248B2 (en) Manufacturing method for hot-dip galvanized steel sheet with excellent workability
JPH0657337A (en) Production of high strength galvannealed steel sheet excellent in formability
JP2505038B2 (en) Manufacturing method of hot-dip galvanized steel sheet for processing
JP2515139B2 (en) Method for manufacturing alloyed hot-dip galvanized steel sheet for ultra deep drawing
JP3602263B2 (en) Manufacturing method of high strength hot-dip galvanized steel sheet with excellent deep drawability
JPH0699760B2 (en) Method for producing steel plate with hot dip zinc for ultra deep drawing
JP2514298B2 (en) Method for producing galvannealed steel sheet with excellent press formability
JP2565054B2 (en) Method for producing galvannealed steel sheet with excellent deep drawability and plating adhesion
JP3716439B2 (en) Manufacturing method of high-tensile alloyed hot-dip galvanized steel sheet with excellent plating characteristics
JP2000144261A (en) Production of hot rolled base hot dip galvanized and hot dip galvannealed high tensile strength steel sheet excellent in ductility
JPH0158256B2 (en)
JP4218598B2 (en) High tensile alloyed hot dip galvanized steel sheet with excellent plating characteristics
JPH0756056B2 (en) Method for producing high strength galvanized steel sheet having high r value
JP2571585B2 (en) Manufacturing method of hot-dip galvanized steel sheet for processing
JP2024527360A (en) High strength coated dual phase stainless steel strip and method for its manufacture

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees