JPH0559970B2 - - Google Patents

Info

Publication number
JPH0559970B2
JPH0559970B2 JP61191296A JP19129686A JPH0559970B2 JP H0559970 B2 JPH0559970 B2 JP H0559970B2 JP 61191296 A JP61191296 A JP 61191296A JP 19129686 A JP19129686 A JP 19129686A JP H0559970 B2 JPH0559970 B2 JP H0559970B2
Authority
JP
Japan
Prior art keywords
temperature
hot
low
steel
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61191296A
Other languages
Japanese (ja)
Other versions
JPS6347338A (en
Inventor
Shuji Nakai
Seiichi Sugisawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP19129686A priority Critical patent/JPS6347338A/en
Publication of JPS6347338A publication Critical patent/JPS6347338A/en
Publication of JPH0559970B2 publication Critical patent/JPH0559970B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、超深絞り性を有する高張力溶融亜鉛
めつき鋼板の製造方法に関する。更に詳述すれ
ば、本発明は、自動車の車重軽減に必要な高張力
鋼板であつて、自動車部品の難成形部材の薄肉化
を可能とする超深絞り性を有する高張力溶融亜鉛
めつき鋼板の製造方法に関する。 (従来の技術) 近年、自動車産業界では、車体軽量化に伴う燃
費向上および安全性の追求から高強度鋼板に対す
る要望が高まり、これら高強度鋼板のプレス成形
性、特に、深絞り性の改善が求められ、種々の高
強度鋼板が開発され自動車材料としてのみならず
多方面に利用されてきた。 したがつて、従来よりその優れた防錆能力から
自動車用部材等に用いられてきた溶融亜鉛めつき
鋼板についても高張力化そしてさらに高度なプレ
ス成形性を付与するために多くの提案がなされて
きた。 よく知られているように、この溶融亜鉛めつき
鋼板の製造方法には現在種々方式があるが、ライ
ン内に焼鈍炉を有する連続溶融亜鉛めつきライン
による方法(例:ゼンジミヤ方式)が一般的に用
いられていた。しかしながら、それらの方法で得
られた溶融亜鉛めつき鋼板は、共通してプレス成
形性すなわち、深絞り性に劣り、成形加工が十分
に行えるものではなかつた。 そのため、それらの材料のプレス成形性を改善
する方策が種々提案されている。 例えば、特開昭58−19465号公報では、溶融亜
鉛めつき鋼板を前記ゼンジミヤ方式等の連続式溶
融亜鉛めつきラインで製造する際に、低Cの鋼組
成とするとともに、これにBさらには必要に応じ
Ti,Nb,ZrおよびVの一種以上を添加すること
により、得られる溶融亜鉛めつき鋼板の時効特
性、およびプレス成形性を改良する方法が開示さ
れている。しかし、抗張力が35キロ級以上では超
深絞り性を得るのが困難である。 特開昭59−74232号公報には、極低C鋼にB、
TiおよびNbを複合添加するとともに、熱間圧延
後650〜800℃で低温巻取りを行い、次いで冷間圧
延後、Ac3点以下の温度で再結晶焼鈍を行い、調
整冷却することが提案されている。これはBによ
る歪時効性を利用した鋼種であるが、抗張力が35
キロ級以上では超深絞り性や耐低温脆性の確保が
難しい。 特開昭59−190332号公報では、前記公報同様の
連続式溶融亜鉛めつきラインで溶融亜鉛めつき鋼
板を製造する際に、極低C鋼にB,Ti,Nbを複
合添加して、二次加工性の良い超深絞り性を有す
る溶融亜鉛めつき鋼板を得る方法が開示されてい
る。 特開昭59−193221号公報には、以上と同様に極
低C鋼にB,Ti,Nbを複合添加し、Ac3点以下
の温度で連続的に再結晶焼鈍する方法が開示され
ている。 いずれの方法によつても、高強度および低温靱
性さらにすぐれたプレス成形性を併せて備えた溶
融亜鉛めつき鋼板を得るのが困難であつた。 (発明が解決しようとする問題点) 本発明の目的は、35〜45キロ級の引張強度を有
する、超深絞り性とすぐれた耐低温脆性を示す高
張力溶融亜鉛めつき鋼板の製造方法を提供するこ
とである。 (問題点を解決するための手段) そこで、本発明者らは、溶融亜鉛めつき鋼板に
高強度、超深絞り性、および耐低温脆性に優れた
性能を与えるために、種々の検討を加えたとこ
ろ、成形性を向上させるため極低Cとし、その成
形性を劣化させずに高強度を得るため主にMn、
Pを固溶強化元素として用い、さらに耐低温脆性
と成形性に関連する組成成分であるNb、Tiを適
宜調整した上で、耐低温脆性を改善するために適
度な量のBを添加し、さらに連続亜鉛めつきライ
ンにおいて低温帯の保持条件を適切に選択するこ
とで成形性を劣化させずに適度の固溶Cを残留さ
せることにより超深絞り高張力溶融亜鉛めつき鋼
板を製造できることを知り、本発明を完成した。 ここに、本発明の要旨とするところは、重量%
で、 C:0.0005〜0.0050%、Si≦0.60%、 Mn:1.0〜2.5%、P:0.010〜0.080%、 S≦0.015%、sol.Al:0.010〜0.100%、 N≦0.0050%、B:0.0002〜0.0008% を含有するとともに、 NbがNb/C≧4、かつNb≦0.08%であり、 更に、Tiに対するNの含有比率およびNとS
との総和の含有比率が、 (48/14N)≦Ti≦(48/14N+48/32S) の条件を満たす範囲内でTiを含有し、 残部がFeおよび付随不純物 である組成の溶鋼を連続鋳造し、得られた連続鋳
造スラブを熱間および冷間圧延した後、連続式溶
融亜鉛めつきラインで730〜900℃の温度で連続焼
鈍し、430〜500℃の保持温度で20〜120秒間低温
保持した後に、溶融亜鉛めつきを施した、成形性
の優れた超深絞り性をもち、かつ、耐低温脆性を
有する高張力溶融亜鉛めつき鋼板の製造方法であ
る。 上述の連続焼鈍後、1℃/sec以上の冷却速度
で前記の430〜500℃の保持温度に冷却してもよ
く、また、上記低温保持はいわゆる傾斜冷却であ
つてもよい。 本発明の1つの態様にあつては、熱間圧延後、
400〜680℃の温度で巻き取りを行つてもよい。 (作用) 本発明において、鋼中の各成分組成を上記の如
く限定した理由について述べる。 (a) C0.0005〜0.0050wt%: 成形加工性の面からC含量は低い程好ましい
が、あまり低すぎると鋼中の固溶C量が不足し
て、低温脆性を起こすので下限を0.0005wt%と
し、一方、多すぎると成形加工性が低下するため
上限を0.005wt%とする。 (b) Si≦0.60wt%: Siは0.60wt%を超えて鋼中に含有されると、固
溶硬化による成形性の低下が著しく、さらに亜鉛
めつきの合金化を行う場合、その合金化速度が低
下するため、その上限を0.60wt%とする。 (c) Mn1.0〜2.5wt%: Mnは、その存在により熱間圧延時の鋼の赤熱
脆化による表面疵発生を防止する作用を有する
が、その含有量が1.0wt%より低い場合は、所定
の高張力が得られないため、下限を1.0wt%とす
る。 一方、その含有量が高い場合は、転炉出鋼時に
成分調整のためMn合金鉄を多量に投入すること
を意味し、鋳込温度が低下し、鋳込みが困難にな
るため、上限を2.5wt%とする。好ましくは、1.0
〜2.0wt%である。 (d) P:0.010〜0.080wt%: P成分は、その含有により固溶強化し引張力を
増す硬化を有するため、0.010wt%以上必要であ
るが、多すぎると粒界偏析により伸びの低下が起
こり、低温脆性の主原因にもなるため上限を
0.080wt%とする。 また、Pの添加による成形性の低下はMnと同
様、高強度化の割に少ない。 (e) S≦0.015wt%: S成分は、Mnと結合し、凝固時にMnなる延
伸し易い非金属介在物を形成する。これはプレス
成形時に割れなどの不具合発生の起点になり易
い。 さらに鋼中のTiとTiSを生成するためTiの添
加量が増し、コストの面で好ましくない。本発明
では0.015wt%以下に制限する。 (f) sol.Al(酸可溶Al):0.010〜0.10wt%: sol.Alは脱酸元素として鋼中に添加するが、
0.10wt%を超えると脱酸効果が飽和し、Al2O3
どの介在物を生じ、それらが多くなり表面性状を
劣化させる。一方、0.010wt%より少ないと脱酸
効果が減り、MnO、SiO2などの酸化物を生じさ
せ、タンデイツシユノズル詰まりを発生させ、さ
らにTiO2によりTi添加歩留を悪化させる。 したがつて、sol.Al含有量は0.010〜0.10wt%と
することが好ましい。 (g) N≦0.0050wt%: Nは鋼中への不可避的に混入する不純物元素で
あるが、TiによりTiNとして固定し、成形性を
向上させているが、このN含量が0.0050wt%より
も多いとその安定化に要するTiの添加量が増し、
コスト面で好ましくない。したがつて、その上限
を0.0050wt%とする。 (h) (48/14N)≦Ti≦(48/14N+48/32S) 上記式はTiで固着するN、SとTiの各含有量
を定めるものである。 Tiは鋼中のNおよびSをTiN、TiSとして固着
させ、その成形性を改善するが、その含有量が少
ないと固溶N過多により成形性不良を起こし、一
方、その含有量が多いとCまで固着してしまい、
TiCを形成することにより成品での固溶C不足を
起こし、耐低温脆性が悪化する。 したがつて、Ti含量は上記式を満たすことが
好ましい。 (i) Nb/C≧4かつNb≦0.080wt%: Nbは鋼中に固溶すると安定な窒化物、炭化物
を形成し、成形性を改善するものである。特に本
発明の場合、炭化物形成によつて成形性の改善を
図る。上限を0.08wt%とするのは、これを越えて
添加してもその効果が飽和するからである。 また、Nb/Cの比であるが、その比が4.0未満
では、固溶C過多により成形性が悪化する。その
ため、Nb/Cの比の下限を4とする。 (j) B0.0002〜0.0008wt%: Bは鋼中の粒界に優先偏析し、Pの低温脆性に
よる劣化を防ぐものであるが、その含有量が多す
ぎると硬度を高くし深絞り性を低下させ成形性が
劣化する。したがつて、Bの添加の上限は
0.0008wt%とする。一方、Pの粒界偏析を防ぎ、
低温脆性による劣化を防ぐのに有効な下限を
0.0002wt%とする。本発明においてB添加の範囲
を0.0002〜0.0008wt%とするのが好ましい。 次に、本発明の製造条件について詳しく説明す
る。 上記の成分組成を有する溶鋼を転炉吹錬に続い
て転炉出鋼時に成分調整を行い溶製する。次いで
通常の連続鋳造によりCCスラブを鋳造し、この
スラブをそのまま冷却なしに直送するか、あるい
は直送したのち熱するか、あるいは一旦冷片とし
て再加熱した後に熱間圧延する。 このスラブの加熱温度は、特に制限はないが、
通常の熱間圧延に必要な温度、すなわち1100℃以
上とするのがよい。また、その仕上温度は、冷間
圧延後の絞り性に対する好ましくない集合組織を
生じさせるので、Ar3点以上とするのが良い。 次に、巻取り温度は低すぎると平坦度不良が発
生し、めつき密着性、めつき付着量均一性がそれ
ぞれ悪化するため、通常下限を400℃とする。ま
た、巻取り温度が高すぎるとスケール発生量が増
加し、酸洗時の脱スケール能率が低下するので上
限を680℃とする。好ましくは、500〜660℃であ
る。 冷間圧延に際しては、通常の酸洗を行い、鋼板
表面にスケール除去を実施後、冷間圧延する。そ
のときの冷間圧延率は、高くすることにより絞り
性の指標のr(ランクフード)値が向上する。ま
た、本発明ではTi、Nb、Bを複合添加している
ため、圧下率を50%以上とすることにより再結晶
温度を下げるのが好ましい。 本発明における連続溶融亜鉛めつきはゼンジミ
ヤ方式等のライン内の焼鈍炉を有する連続式溶融
亜鉛めつきラインによる方法により実施される。 この連続焼鈍時の保持温度と保持時間を、再結
晶温度以上で行い、粒成長させて所望のTSを得
る。 さらにこのときにNbCをNbとCに溶解し、固
溶Cを生じさせる。このとき再結晶をもたらすた
め加熱保持温度と保持時間を730℃以上10秒以上
とし、軟化しすぎて成分添加(Si,P,Mn)に
よる硬質化の効率が悪化するのを防止するため、
900℃以下60秒以下とする。 また、この加熱保持後の冷却速度はNb+C→
NbCによるNbCの再析出を防止する。すなわち
低YPなる成形性と固溶Cをわずかに残留せしめ
て低温脆性を防止するために1℃/sec以上とす
るのが好ましい。 冷却後の低温保持の温度(鋼中の固溶C量の制
御のための温度)は430〜500℃で20〜120秒間保
持する。この低温保持は必ずしも一定温度に保持
する必要はなく、必要に応じいわゆる傾斜冷却を
行つてもよく、例えば430〜500℃の温度範囲を20
〜120秒間傾斜冷却してもよい。すなわち、この
低温保持の際にNb+C→NbC+とする。すな
わち、Cの固溶量をコントロールするのであり、
保持温度が500℃よりも高過ぎるとむしろNbCが
析出し、鋼中の固溶Cが減少し、低温脆性が劣化
する。また、この保持温度が430℃よりも低すぎ
ると固溶C量が多すぎて、YP値が上昇し、成形
性が劣化する。 さらに加えて、この保持温度が低すぎると溶融
亜鉛めつきを行うため溶融亜鉛に浸漬した時に、
溶融亜鉛の温度が低下し、めつき性状(密着性、
均一性)が劣化する。したがつて、保持温度を
430〜500℃とすることが好ましい。また、このと
きの保持時間は、20〜120秒間である。 溶融亜鉛めつきの終了後は、必要に応じて合金
化処理を施してもよい。また、溶融亜鉛めつき単
独または合金化処理を施したものいずれの場合も
形状修正を目的とした2.0%より低い調質圧延を
施してもよい。 本発明によれば、以上のような製造条件を経て
高張力溶融亜鉛めつき鋼板が製造されるのである
が、まず、本発明における組成上の特徴は、連続
鋳造による極低C鋼にTi+Nbを添加することに
より、先ず、TiによりNおよびSを固着し、Nb
によりCを固着する。 これにより、転位を固着する侵入元素(C+
N)が減少するため、IF鋼(Interstitial Free)
鋼となり、低YP、高値、El値のすぐれた成形
性を得ることができる。 このようにして、成形性の改善を図るととも
に、今度は、高張力化を実現するためにMn、
P、Siを積極的に添加する。一方、IF鋼は低温脆
性に劣る傾向にあり、Pを添加すると粒界を脆化
し、その傾向を助長する。そのため、本発明にあ
つては、Bを添加してPによる脆化傾向を抑制す
るとともに前述の高温焼鈍と冷却速度および低温
保持条件により適度の固溶C量を制御することを
図つたものである。 添付図面は本発明におけるヒートサイクルを示
す線図である。すでに述べたように、本発明によ
れば、亜鉛めつきに先立つて730〜900℃の温度範
囲において10〜60秒間保持して連続焼鈍を行い、
NbCの溶解を図り、次いで一時冷却として、例
えば1℃/sec以上の冷却速度で430〜500℃の温
度範囲にまで冷却するとともに、その温度範囲に
20〜120秒間低温保持して固溶Cの制御を行う。
この場合、その温度範囲を傾斜冷却してもよい。
なお、この点、従来は、上述の一時冷却後、直ち
に後述の溶融亜鉛めつきを行つていた。 本発明の場合、このようにして低温保持により
固溶C量を調整してから、例えば460℃の温度で
連続溶融亜鉛めつきを行う。このとき上記保持温
度が460℃より高い場合、めつきに際して二次冷
却が行われる。溶融亜鉛めつき後は、所望により
例えば530℃まで昇温して合金化処理を行う。 かくして、本発明によれば、低温脆性を改善し
た高張力溶融亜鉛めつき鋼板が製造される。 次に、本発明を実施例によつてさらに詳細に説
明する。 実施例 第1表は、本発明に係る化学組成の鋼種A〜E
および本発明と比較する化学組成の鋼種F〜Iの
成分組成を示すものである。 第1表に示した化学成分組成の鋼を転炉により
成分調整して溶製し、連続鋳造によりスラブとし
た。 同表中のA鋼〜E鋼が本発明例によるものであ
り、F鋼〜I鋼が比較例によるものである。 次いで、これらのスラブを下記の製造条件に従
い、熱間圧延、冷間圧延そしてゼンジミヤ方式連
続溶融亜鉛、メツキライン使用して溶融亜鉛めつ
きを行い、溶融亜鉛めつき鋼板を製造した。 高張力溶融亜鉛めつき鋼板の製造条件 1 熱間圧延 1スラブ加熱温度 1100〜1250℃ 2仕上温度 860〜960℃ 2 冷間圧延 圧延率 50〜90% 第2表に具体的熱間圧延巻き取り条件、めつき
予備処理条件とともに成品性能をまとめて示す。 なお、そのような製造条件により第1表の化学
組成をもつて製造された溶融亜鉛めつき鋼板の
(YP)値、(TS)値、(El)値、()値、低温脆
性の遷移温度、めつき密着性の各性能を第2表に
まとめて示すが、ここに言う、遷移温度は絞り比
=1.6の円筒絞り後、衝撃破壊させ、その破断面
が脆性になる温度である。つまり、低温脆性を表
わす指標である。 めつき密着性は鋼板面に施しためつき層の剥離
の有無を調べる下記のめつき密着性試験による方
法を用いた。めつき密着性試験については、金属
材料曲げ試験(JIS Z2248)IT折り曲げ、曲げ内
面にテープをはり、テープを剥離し、そのテープ
に付着するめつき層の有無および剥離面の状態を
みてその密着性を評価した。
(Industrial Application Field) The present invention relates to a method for producing a high-tensile galvanized steel sheet having ultra-deep drawability. More specifically, the present invention is a high-strength steel plate necessary for reducing the weight of automobiles, and is a high-tensile hot-dip galvanized steel sheet having ultra-deep drawability that enables thinning of difficult-to-form parts of automobile parts. This invention relates to a method for manufacturing steel plates. (Conventional technology) In recent years, demand for high-strength steel sheets has increased in the automobile industry due to the pursuit of improved fuel efficiency and safety associated with lighter vehicle bodies. In response to this demand, various high-strength steel plates have been developed and used not only as automobile materials but also in many other fields. Therefore, many proposals have been made to increase the tensile strength and provide even more advanced press formability to hot-dip galvanized steel sheets, which have traditionally been used for automobile parts due to their excellent anti-corrosion properties. Ta. As is well known, there are currently various methods for manufacturing hot-dip galvanized steel sheets, but the most common method is a method using a continuous hot-dip galvanizing line with an annealing furnace in the line (e.g. Sendzimir method). It was used in However, the hot-dip galvanized steel sheets obtained by these methods have poor press formability, that is, deep drawability, and cannot be sufficiently formed. Therefore, various measures have been proposed to improve the press formability of these materials. For example, in Japanese Patent Application Laid-Open No. 58-19465, when producing hot-dip galvanized steel sheets on a continuous hot-dip galvanizing line such as the Sendzimir method, a low C steel composition is used, and B and As needed
A method is disclosed for improving the aging characteristics and press formability of the obtained hot-dip galvanized steel sheet by adding one or more of Ti, Nb, Zr, and V. However, when the tensile strength is 35 kg or more, it is difficult to obtain ultra-deep drawability. Japanese Patent Application Laid-open No. 59-74232 describes ultra-low C steel with B,
In addition to adding Ti and Nb in combination, it has been proposed to perform low-temperature winding at 650 to 800℃ after hot rolling, then perform recrystallization annealing at a temperature below Ac 3 points after cold rolling, and adjust cooling. ing. This is a steel type that utilizes strain aging properties due to B, but the tensile strength is 35
It is difficult to ensure ultra-deep drawability and low-temperature embrittlement resistance in kilo-class and above. JP-A No. 59-190332 discloses that when producing hot-dip galvanized steel sheets on a continuous hot-dip galvanizing line similar to the above-mentioned publication, B, Ti, and Nb are added in combination to ultra-low C steel. A method for obtaining a hot-dip galvanized steel sheet having ultra-deep drawability with good subsequent workability is disclosed. JP-A No. 59-193221 discloses a method in which B, Ti, and Nb are added in combination to ultra-low C steel, and the steel is continuously recrystallized annealed at a temperature below the Ac 3 point. . With either method, it has been difficult to obtain a hot-dip galvanized steel sheet that has high strength, low-temperature toughness, and excellent press formability. (Problems to be Solved by the Invention) The purpose of the present invention is to provide a method for producing a high-tensile galvanized steel sheet that has a tensile strength of 35 to 45 kg and exhibits ultra-deep drawability and excellent low-temperature embrittlement resistance. It is to provide. (Means for Solving the Problems) Therefore, the present inventors conducted various studies in order to provide hot-dip galvanized steel sheets with high strength, ultra-deep drawability, and excellent resistance to low-temperature embrittlement. However, in order to improve the formability, we made it extremely low C, and in order to obtain high strength without deteriorating the formability, we mainly added Mn,
P is used as a solid solution strengthening element, Nb and Ti, which are compositional components related to low temperature brittleness resistance and formability, are adjusted appropriately, and an appropriate amount of B is added to improve low temperature brittleness resistance. Furthermore, by appropriately selecting the holding conditions in the low-temperature zone in a continuous galvanizing line, it is possible to produce ultra-deep-drawn high-strength hot-dip galvanized steel sheets by leaving an appropriate amount of solid solute C without deteriorating formability. I learned this and completed the present invention. Here, the gist of the present invention is that the weight%
So, C: 0.0005-0.0050%, Si≦0.60%, Mn: 1.0-2.5%, P: 0.010-0.080%, S≦0.015%, sol.Al: 0.010-0.100%, N≦0.0050%, B: 0.0002 ~0.0008%, Nb is Nb/C≧4, and Nb≦0.08%, and the content ratio of N to Ti and N and S are
Continuously cast molten steel with a composition that contains Ti within a range where the total content ratio of After hot and cold rolling, the obtained continuous casting slab was continuously annealed at a temperature of 730-900℃ in a continuous hot-dip galvanizing line, and then cold-held at a holding temperature of 430-500℃ for 20-120 seconds. This is a method for producing a high-strength hot-dip galvanized steel sheet that has excellent formability, ultra-deep drawability, and low-temperature embrittlement resistance, by hot-dip galvanizing the steel sheet. After the above-mentioned continuous annealing, cooling may be performed to the above-mentioned holding temperature of 430 to 500°C at a cooling rate of 1°C/sec or more, and the above-mentioned low-temperature holding may be so-called gradient cooling. In one embodiment of the present invention, after hot rolling,
Winding may be performed at a temperature of 400 to 680°C. (Function) In the present invention, the reason why the composition of each component in the steel is limited as described above will be described. (a) C0.0005 to 0.0050wt%: From the viewpoint of formability, the lower the C content is, the better; however, if it is too low, the amount of solid solution C in the steel will be insufficient, causing low-temperature brittleness, so the lower limit should be 0.0005wt. %, and on the other hand, if it is too large, moldability will deteriorate, so the upper limit is set to 0.005wt%. (b) Si≦0.60wt%: If Si is contained in steel in an amount exceeding 0.60wt%, the formability will be significantly reduced due to solid solution hardening, and furthermore, when alloying for galvanizing, the alloying speed will increase. Since this decreases, the upper limit is set at 0.60wt%. (c) Mn1.0-2.5wt%: Mn has the effect of preventing the occurrence of surface defects due to red heat embrittlement of steel during hot rolling due to its presence, but if its content is lower than 1.0wt% , since the predetermined high tension cannot be obtained, the lower limit is set to 1.0wt%. On the other hand, if the content is high, it means that a large amount of Mn alloy iron must be added to adjust the composition when tapping the steel in the converter, which lowers the casting temperature and makes casting difficult, so the upper limit is set at 2.5wt. %. Preferably 1.0
~2.0wt%. (d) P: 0.010 to 0.080wt%: The P component has solid solution strengthening and hardening that increases tensile strength due to its inclusion, so 0.010wt% or more is required, but if it is too large, elongation decreases due to grain boundary segregation. occurs and is the main cause of low-temperature embrittlement, so the upper limit should be set.
The content shall be 0.080wt%. Also, as with Mn, the drop in formability due to the addition of P is small despite the increase in strength. (e) S≦0.015wt%: The S component combines with Mn to form a nonmetallic inclusion called Mn that is easily stretched during solidification. This tends to become a starting point for defects such as cracks during press molding. Furthermore, since Ti and TiS are generated in the steel, the amount of Ti added increases, which is unfavorable in terms of cost. In the present invention, it is limited to 0.015wt% or less. (f) sol.Al (acid soluble Al): 0.010-0.10wt%: sol.Al is added to steel as a deoxidizing element,
When the content exceeds 0.10 wt%, the deoxidizing effect becomes saturated, and inclusions such as Al 2 O 3 are generated, which increase in number and deteriorate the surface quality. On the other hand, if it is less than 0.010wt%, the deoxidizing effect will be reduced and oxides such as MnO and SiO 2 will be produced, which will cause clogging of the tundish nozzle and further deteriorate the Ti addition yield due to TiO 2 . Therefore, the sol.Al content is preferably 0.010 to 0.10 wt%. (g) N≦0.0050wt%: N is an impurity element that inevitably mixes into steel, but Ti fixes it as TiN and improves formability. If there is a large amount of Ti added, the amount of Ti required for stabilization will increase.
Unfavorable in terms of cost. Therefore, the upper limit is set to 0.0050wt%. (h) (48/14N)≦Ti≦(48/14N+48/32S) The above formula determines the contents of N, S, and Ti that are fixed by Ti. Ti fixes N and S in steel as TiN and TiS and improves its formability, but if its content is low, it causes poor formability due to too much dissolved N, while if its content is high, It stuck until
The formation of TiC causes a shortage of solid solution C in the finished product, worsening its low-temperature embrittlement resistance. Therefore, it is preferable that the Ti content satisfies the above formula. (i) Nb/C≧4 and Nb≦0.080wt%: When Nb is dissolved in steel, it forms stable nitrides and carbides and improves formability. Particularly in the case of the present invention, the moldability is improved by the formation of carbides. The reason why the upper limit is set to 0.08 wt% is that the effect will be saturated even if added in excess of this value. Regarding the Nb/C ratio, if the ratio is less than 4.0, moldability deteriorates due to excessive solid solution C. Therefore, the lower limit of the Nb/C ratio is set to 4. (j) B0.0002-0.0008wt%: B preferentially segregates at grain boundaries in steel and prevents deterioration due to low-temperature brittleness of P, but if its content is too high, it increases hardness and reduces deep drawability. and moldability deteriorates. Therefore, the upper limit of B addition is
The content shall be 0.0008wt%. On the other hand, it prevents grain boundary segregation of P,
The effective lower limit for preventing deterioration due to low-temperature brittleness
0.0002wt%. In the present invention, the range of B addition is preferably 0.0002 to 0.0008 wt%. Next, the manufacturing conditions of the present invention will be explained in detail. Molten steel having the above-mentioned composition is melted by blowing in a converter, and then adjusting the composition at the time of tapping from the converter. Next, a CC slab is cast by normal continuous casting, and this slab is directly delivered without cooling, or directly delivered and then heated, or once reheated as a cold piece and then hot rolled. There is no particular limit to the heating temperature of this slab, but
It is preferable to set the temperature to the temperature required for normal hot rolling, that is, 1100°C or higher. In addition, the finishing temperature is preferably set to 3 or more Ar points, since this produces a texture that is unfavorable to the drawability after cold rolling. Next, if the winding temperature is too low, poor flatness will occur, and plating adhesion and uniformity of plating amount will deteriorate, so the lower limit is usually set to 400°C. Furthermore, if the winding temperature is too high, the amount of scale generated will increase and the descaling efficiency during pickling will decrease, so the upper limit is set at 680°C. Preferably it is 500-660°C. During cold rolling, ordinary pickling is performed to remove scale from the surface of the steel sheet, and then cold rolling is performed. By increasing the cold rolling rate at that time, the r (rank hood) value, which is an index of drawability, is improved. Furthermore, in the present invention, since Ti, Nb, and B are added in combination, it is preferable to lower the recrystallization temperature by setting the rolling reduction to 50% or more. Continuous hot-dip galvanizing in the present invention is carried out by a method using a continuous hot-dip galvanizing line having an in-line annealing furnace such as the Sendzimir method. The holding temperature and holding time during this continuous annealing are performed above the recrystallization temperature to cause grain growth and obtain the desired TS. Furthermore, at this time, NbC is dissolved into Nb and C to form solid solution C. At this time, in order to bring about recrystallization, the heating holding temperature and holding time are set at 730°C or higher and for 10 seconds or more, to prevent excessive softening and deterioration of the hardening efficiency due to component addition (Si, P, Mn).
900℃ or less and 60 seconds or less. Also, the cooling rate after this heating and holding is Nb+C→
Prevents redeposition of NbC by NbC. That is, it is preferable to set the temperature to 1° C./sec or more in order to achieve low YP formability and to prevent low-temperature brittleness by leaving a small amount of solid solution C. The temperature for maintaining the low temperature after cooling (temperature for controlling the amount of solid solution C in the steel) is maintained at 430 to 500°C for 20 to 120 seconds. This low temperature maintenance does not necessarily have to be maintained at a constant temperature, and if necessary, so-called gradient cooling may be performed. For example, the temperature range of 430 to 500°C
May be ramp cooled for ~120 seconds. That is, during this low temperature maintenance, Nb+C→NbC+ C . In other words, the amount of solid solution of C is controlled,
If the holding temperature is too high than 500°C, NbC will precipitate, solute C in the steel will decrease, and low-temperature brittleness will deteriorate. Moreover, if this holding temperature is too low than 430°C, the amount of solid solution C will be too large, the YP value will increase, and the moldability will deteriorate. In addition, if this holding temperature is too low, when immersed in molten zinc for hot-dip galvanizing,
The temperature of molten zinc decreases, and the plating properties (adhesion,
uniformity) deteriorates. Therefore, the holding temperature
It is preferable to set it as 430-500 degreeC. Further, the holding time at this time is 20 to 120 seconds. After hot-dip galvanizing, alloying treatment may be performed as necessary. In addition, in the case of either hot-dip galvanizing alone or alloying treatment, temper rolling of less than 2.0% may be performed for the purpose of shape modification. According to the present invention, a high-strength hot-dip galvanized steel sheet is manufactured through the above-mentioned manufacturing conditions.First, the compositional characteristics of the present invention are that Ti+Nb is added to ultra-low C steel by continuous casting. By adding Ti, N and S are first fixed, and Nb
to fix C. This causes interstitial elements (C+
IF steel (Interstitial Free)
It becomes steel and has excellent formability with low YP, high value, and El value. In this way, in order to improve the formability and achieve high tensile strength, Mn,
Actively add P and Si. On the other hand, IF steel tends to be inferior in low-temperature brittleness, and addition of P embrittles grain boundaries and promotes this tendency. Therefore, in the present invention, B is added to suppress the embrittlement tendency due to P, and the amount of solid solute C is controlled appropriately by the above-mentioned high temperature annealing, cooling rate, and low temperature holding conditions. be. The attached drawing is a diagram showing the heat cycle in the present invention. As already mentioned, according to the present invention, prior to galvanizing, continuous annealing is performed at a temperature range of 730 to 900°C for 10 to 60 seconds,
After dissolving NbC, it is then temporarily cooled to a temperature range of 430 to 500 °C at a cooling rate of 1 °C/sec or more, and
The solid solution C is controlled by maintaining the temperature at a low temperature for 20 to 120 seconds.
In this case, the temperature range may be cooled gradiently.
In this regard, conventionally, hot-dip galvanizing, which will be described later, has been performed immediately after the above-mentioned temporary cooling. In the case of the present invention, after adjusting the amount of solid solute C by maintaining the temperature at a low temperature in this manner, continuous hot-dip galvanizing is performed at a temperature of, for example, 460°C. At this time, if the holding temperature is higher than 460°C, secondary cooling is performed during plating. After hot-dip galvanizing, alloying treatment is performed by raising the temperature to, for example, 530° C., if desired. Thus, according to the present invention, a high-strength hot-dip galvanized steel sheet with improved low-temperature brittleness is manufactured. Next, the present invention will be explained in more detail with reference to Examples. Examples Table 1 shows steel types A to E with chemical compositions according to the present invention.
and shows the chemical compositions of steel types F to I whose chemical compositions are compared with those of the present invention. Steel having the chemical composition shown in Table 1 was melted by adjusting its composition in a converter, and was made into a slab by continuous casting. Steels A to E in the same table are based on the examples of the present invention, and steels F to I are based on comparative examples. Next, these slabs were hot-rolled, cold-rolled, and hot-dip galvanized using a Sendzimire continuous hot-dip zinc line and a glazing line to produce hot-dip galvanized steel sheets according to the manufacturing conditions described below. Manufacturing conditions for high-strength hot-dip galvanized steel sheets 1 Hot rolling 1 Slab heating temperature 1100 to 1250°C 2 Finishing temperature 860 to 960°C 2 Cold rolling Rolling rate 50 to 90% Table 2 shows specific hot rolling windings The performance of the finished product is shown together with the conditions and pre-plating treatment conditions. In addition, the (YP) value, (TS) value, (El) value, () value, and transition temperature of low temperature brittleness of hot-dip galvanized steel sheets manufactured under such manufacturing conditions and having the chemical composition shown in Table 1. The various performances of plating adhesion are summarized in Table 2, and the transition temperature referred to here is the temperature at which impact fracture occurs after cylindrical drawing with a drawing ratio of 1.6, and the fractured surface becomes brittle. In other words, it is an index representing low temperature brittleness. The plating adhesion was determined by the plating adhesion test described below, which examines the presence or absence of peeling of the plating layer applied to the surface of the steel plate. Regarding the plating adhesion test, the metal material bending test (JIS Z2248) IT is bent, a tape is applied to the inner surface of the bend, the tape is peeled off, and the adhesion is determined by checking whether there is a plating layer attached to the tape and the condition of the peeled surface. was evaluated.

【表】【table】

【表】 (注) ○:めつき密着性良好、×:めつき密着性不良
第2表から、本発明例の鋼A〜Eは、比較例の
鋼F〜Iに比べて、成形性の影響因子である低
YP、高Ts、El、値と低温脆性を表わす遷移温
度、よびめつき密着性を全体的に評価するとその
機械的性能が優れていることがわかる。 それを比較鋼F〜Iの試験結果に基づいて説明
すると比較鋼Fでは、化学組成分CとBが本発明
で限定する化学組成よりも含有量が高いため、
YP値が高くなり、そのため、値が低くなつた。
比較鋼Gでは、本発明よりもSiとP含量が高く、
Mn含量が逆に低いため、値が低くなり、その
ため亜鉛めつき密着性が悪い。比較鋼Hでは、B
の添加を行つていないため、遷移温度が高くな
り、そのため低温脆性が悪い。 以上の3種鋼は、本発明の製造条件と同じであ
るが、次の比較鋼Iでは、本発明で限定する化学
組成分と変わらないが、めつき予備処理条件が本
発明方法と異なり焼鈍後の低温保持を行つていな
いため、遷移温度が高くなり、そのため低温脆性
が悪い。 このように、本発明により製造された鋼A〜E
は総合的に前記諸性能を判断すると比較鋼F〜I
に比べ成品性能が優れるものであることがわか
る。 (発明の効果) 以上説明したように、本発明は、鋼中の化学組
成としてMn、P、Ti、Nbを複合添加すること
により、高TS値、低YP値、高値を有するプレ
ス成形加工性の優れた超深絞り性をもつ高張力が
得られ、さらに、鋼中の化学組成としてBを添加
させるとともに、Ti、Nb、Cとめつき連続炉に
よる特殊ヒートサイクル処理を行うことにより、
遷移温度が−40℃以下となり低温脆性が抑制され
従来の亜鉛めつき鋼板がもつ低温脆性を改善する
画期的な製造方法を実現するものである。そし
て、この製造方法により成形性の優れた超深絞り
性で高張力溶融亜鉛めつき鋼板を得すことができ
る。 したがつて、最近自動車の車重軽減のための薄
肉化および難成形部品への高張力材の利用の傾向
が高まつていることから考えて、本発明の意義を
大きいものといえる。
[Table] (Note) ○: Good plating adhesion, ×: Poor plating adhesion From Table 2, the steels A to E of the invention examples have better formability than the steels F to I of the comparative examples. The influence factor is low
An overall evaluation of YP, high Ts, El, transition temperature representing low-temperature brittleness, and plating adhesion reveals that its mechanical performance is excellent. To explain this based on the test results of comparative steels F to I, in comparative steel F, the chemical compositions C and B are higher in content than the chemical composition limited in the present invention.
The YP value became high and therefore the value became low.
Comparative steel G has higher Si and P contents than the present invention,
On the contrary, the Mn content is low, so the value is low, and therefore the zinc plating adhesion is poor. For comparison steel H, B
Since no addition is made, the transition temperature becomes high, resulting in poor low-temperature brittleness. The above three types of steel are manufactured under the same manufacturing conditions as in the present invention, but in the following Comparative Steel I, the chemical composition is the same as defined in the present invention, but the plating pretreatment conditions are different from the method of the present invention and are annealed. Since no subsequent low-temperature holding is performed, the transition temperature becomes high, and therefore low-temperature brittleness is poor. Thus, steels A to E produced according to the present invention
Judging from the above-mentioned performances comprehensively, the comparative steels F to I
It can be seen that the product performance is superior compared to that of the previous model. (Effects of the Invention) As explained above, the present invention provides press formability that has high TS value, low YP value, and high value by adding Mn, P, Ti, and Nb in a chemical composition in steel. By adding B to the chemical composition of the steel and performing a special heat cycle treatment using a continuous furnace for plating with Ti, Nb, and C,
The transition temperature is -40°C or lower, suppressing low-temperature brittleness, and realizing an innovative manufacturing method that improves the low-temperature brittleness of conventional galvanized steel sheets. By this manufacturing method, it is possible to obtain a high-tensile hot-dip galvanized steel sheet with excellent formability and ultra-deep drawability. Therefore, the present invention has great significance in view of the recent increasing trend toward thinner automobiles and the use of high tensile strength materials for difficult-to-form parts in order to reduce the weight of automobiles.

【図面の簡単な説明】[Brief explanation of the drawing]

添付図面は、本発明におけるヒートサイクルを
示す線図である。
The accompanying drawing is a diagram showing the heat cycle in the present invention.

Claims (1)

【特許請求の範囲】 1 重量%で、 C:0.0005〜0.0050%、Si≦0.60%、 Mn:1.0〜2.5%、P:0.010〜0.080%、 S≦0.015%、sol.Al:0.010〜0.100%、 N≦0.0050%、B:0.0002〜0.0008%、 を含有するとともに、 NbがNb/C≧4、かつNb≦0.08%であり、 更に、Tiに対するNの含有比率およびNとS
との総和の含有比率が、 (48/14N)≦Ti≦(48/14N+48/32S) の条件を満たす範囲内でTiを含有し、 残部がFeおよび付随不純物 である組成の溶鋼を連続鋳造し、得られた連続鋳
造スラブを熱間および冷間圧延した後、連続式溶
融亜鉛めつきラインで730〜900℃の温度で連続焼
鈍し、430〜500℃の保持温度で20〜120秒間低温
保持した後に、溶融亜鉛めつきを施した、成形性
の優れた超深絞り性をもち、かつ、耐低温脆性を
有する高張力溶融亜鉛めつき鋼板の製造方法。 2 連続焼鈍後、1℃/sec以上の冷却速度で前
記の430〜500℃の保持温度に冷却する、特許請求
の範囲第1項記載の方法。 3 熱間圧延後400〜680℃で巻き取りを行う、特
許請求の範囲第1項または第2項記載の方法。
[Claims] 1% by weight: C: 0.0005-0.0050%, Si≦0.60%, Mn: 1.0-2.5%, P: 0.010-0.080%, S≦0.015%, sol.Al: 0.010-0.100% , N≦0.0050%, B: 0.0002 to 0.0008%, Nb is Nb/C≧4 and Nb≦0.08%, and the content ratio of N to Ti and N and S are
Continuously cast molten steel with a composition that contains Ti within a range where the total content ratio of After hot and cold rolling, the obtained continuous casting slab was continuously annealed at a temperature of 730-900℃ in a continuous hot-dip galvanizing line, and then cold-held at a holding temperature of 430-500℃ for 20-120 seconds. A method for producing a high-tensile galvanized steel sheet having excellent formability, ultra-deep drawability, and low-temperature embrittlement resistance, which is then subjected to hot-dip galvanizing. 2. The method according to claim 1, wherein after continuous annealing, the material is cooled to the holding temperature of 430 to 500°C at a cooling rate of 1°C/sec or more. 3. The method according to claim 1 or 2, wherein winding is performed at 400 to 680°C after hot rolling.
JP19129686A 1986-08-15 1986-08-15 Production of high tension zinc hot dip coated steel sheet Granted JPS6347338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19129686A JPS6347338A (en) 1986-08-15 1986-08-15 Production of high tension zinc hot dip coated steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19129686A JPS6347338A (en) 1986-08-15 1986-08-15 Production of high tension zinc hot dip coated steel sheet

Publications (2)

Publication Number Publication Date
JPS6347338A JPS6347338A (en) 1988-02-29
JPH0559970B2 true JPH0559970B2 (en) 1993-09-01

Family

ID=16272203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19129686A Granted JPS6347338A (en) 1986-08-15 1986-08-15 Production of high tension zinc hot dip coated steel sheet

Country Status (1)

Country Link
JP (1) JPS6347338A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2610948B2 (en) * 1988-06-29 1997-05-14 川崎製鉄 株式会社 Manufacturing method of galvannealed steel sheet with excellent spot weldability
JPH0742547B2 (en) * 1990-10-16 1995-05-10 新日本製鐵株式会社 High strength alloy galvanized steel sheet
JPH059698A (en) * 1991-07-09 1993-01-19 Nippon Steel Corp Production of high-strength galvannealed steel sheet having excellent formability and painting baking hardenability
JP5042486B2 (en) * 2005-11-10 2012-10-03 新日本製鐵株式会社 Deep drawing high strength steel sheet and hot dipped cold-rolled steel sheet
JP5574061B2 (en) * 2011-12-27 2014-08-20 新日鐵住金株式会社 Hot-dip hot-dip steel sheet for press working with excellent low-temperature toughness and corrosion resistance and its manufacturing method
EP3342893A4 (en) * 2015-08-24 2019-01-16 Nippon Steel & Sumitomo Metal Corporation Alloying molten zinc-plated steel sheet and manufacturing method therefor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55110735A (en) * 1979-02-16 1980-08-26 Nippon Steel Corp Method and equipment for producing galvanized steel plate for deep drawing use
JPS61157639A (en) * 1984-12-28 1986-07-17 Nippon Steel Corp Manufacture of cold rolled steel sheet having excellent aging characteristics and high baking curing characteristics

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55110735A (en) * 1979-02-16 1980-08-26 Nippon Steel Corp Method and equipment for producing galvanized steel plate for deep drawing use
JPS61157639A (en) * 1984-12-28 1986-07-17 Nippon Steel Corp Manufacture of cold rolled steel sheet having excellent aging characteristics and high baking curing characteristics

Also Published As

Publication number Publication date
JPS6347338A (en) 1988-02-29

Similar Documents

Publication Publication Date Title
JP5564432B2 (en) High-strength cold-rolled steel sheet excellent in workability, galvanized steel sheet, and manufacturing method thereof
JP5456026B2 (en) High-strength steel sheet, hot-dip galvanized steel sheet with excellent ductility and no cracks at the edge, and manufacturing method thereof
JP3263143B2 (en) Bake hardening type high strength alloyed hot-dip galvanized steel sheet excellent in workability and method for producing the same
JP5397141B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP2576894B2 (en) Hot-dip galvanized high-tensile cold-rolled steel sheet excellent in press formability and method for producing the same
JP3473480B2 (en) Hot-dip galvanized steel sheet excellent in strength and ductility and method for producing the same
KR101403262B1 (en) Ultra high strength hot-dip plated steel sheet and method for manufacturing the same
JPH0559970B2 (en)
JP4010132B2 (en) Composite structure type high-tensile hot-dip galvanized steel sheet excellent in deep drawability and method for producing the same
CN112400033B (en) Hot-rolled plated steel sheet having high strength, high formability, and excellent bake hardenability, and method for producing same
JP2563021B2 (en) Method for producing high-strength hot-rolled hot-dip galvannealed steel sheet with excellent stretch flangeability
JP3293681B2 (en) Hot-dip galvanized or alloyed hot-dip galvanized high-strength steel sheet and method for producing the same
JP2826259B2 (en) Method for producing high-tensile cold-rolled steel sheet with excellent press formability
JP3404798B2 (en) Method for producing high-strength steel sheet having bake hardenability
JP3925064B2 (en) Hot-dip galvanized steel sheet excellent in press formability and strain age hardening characteristics and method for producing the same
JPH0699760B2 (en) Method for producing steel plate with hot dip zinc for ultra deep drawing
JP2549539B2 (en) Method for producing hot dip galvanized steel sheet for ultra deep drawing
JPH06179943A (en) High strength galvanized steel sheet and its production
JP3925063B2 (en) Cold-rolled steel sheet excellent in press formability and strain age hardening characteristics and method for producing the same
JP3716439B2 (en) Manufacturing method of high-tensile alloyed hot-dip galvanized steel sheet with excellent plating characteristics
JP3376590B2 (en) Method for producing high tensile alloyed hot-dip galvanized steel sheet with excellent stretch flangeability
JPH05230543A (en) Production of high strength cold rolled steel sheet excellent in baking hardenability and deep drawability
JP4218598B2 (en) High tensile alloyed hot dip galvanized steel sheet with excellent plating characteristics
JP2782468B2 (en) Manufacturing method of hot-dip galvanized high-strength hot-rolled steel sheet
JPH0238647B2 (en) CHOKOCHORYOKUKOHANNOSEIZOHOHO

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term