JPS5937333B2 - Manufacturing method of alloyed hot-dip galvanized steel sheet - Google Patents

Manufacturing method of alloyed hot-dip galvanized steel sheet

Info

Publication number
JPS5937333B2
JPS5937333B2 JP13794480A JP13794480A JPS5937333B2 JP S5937333 B2 JPS5937333 B2 JP S5937333B2 JP 13794480 A JP13794480 A JP 13794480A JP 13794480 A JP13794480 A JP 13794480A JP S5937333 B2 JPS5937333 B2 JP S5937333B2
Authority
JP
Japan
Prior art keywords
temperature
hot
steel sheet
less
galvanized steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13794480A
Other languages
Japanese (ja)
Other versions
JPS5773125A (en
Inventor
篤樹 岡本
政司 高橋
精一 杉沢
修二 中居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP13794480A priority Critical patent/JPS5937333B2/en
Publication of JPS5773125A publication Critical patent/JPS5773125A/en
Publication of JPS5937333B2 publication Critical patent/JPS5937333B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】 この発明は、良好な成形加工性および点溶接性を有し、
さらに常温遅時効性および焼付硬化性も合せもつた合金
化処理溶融亜鉛メッキ鋼板の製造法に関するものである
DETAILED DESCRIPTION OF THE INVENTION This invention has good formability and spot weldability,
Furthermore, the present invention relates to a method for producing an alloyed hot-dip galvanized steel sheet that has slow aging properties at room temperature and bake hardenability.

一般に、例えば自動車用鋼板には、プレス加工の際にし
わや割れが発生しない良好なプレス成形性のほかに、プ
レス型によくなじみ、かつ成形品をプレス型から外した
時にスプリングバックの発生がない、すなわちすぐれた
形状性も要求されるものである。
In general, steel sheets for automobiles, for example, not only have good press formability that does not cause wrinkles or cracks during press working, but also conform well to the press die and prevent springback from occurring when the molded product is removed from the press die. In other words, excellent formability is also required.

なお、プレス成形性および形状性(以下、成形加工性と
いう)については、ランクフオード値(以下r値という
)が高く、降伏強度の低いものが良しとされている。し
たがつて、自動車用鋼板には、プレス成形前の特性とし
て、高いr値および低い降伏強度を備え、一方プレス成
形して焼付塗装した後においては、高い降伏強度をもつ
ようになる性質(焼付硬化性)が要求されることになる
。一方、近年、自動車の耐錆性向上をはかる目的で、そ
の車体の製造に多量の亜鉛メツキ鋼板が使用される傾向
にある。
Regarding press formability and shapeability (hereinafter referred to as formability), it is considered that a material having a high Lanford value (hereinafter referred to as r value) and a low yield strength is good. Therefore, automotive steel sheets have the characteristics of high r-value and low yield strength before press forming, and on the other hand, after press forming and baking painting, they have the property of having high yield strength (baking). curability) is required. On the other hand, in recent years, a large amount of galvanized steel sheets has been used in the manufacture of automobile bodies in order to improve the rust resistance of automobiles.

一般に、亜鉛メツキ鋼板は、電気亜鉛メツキ法あるいは
溶融亜鉛メツキ法によつて製造されるが、その生産性は
、焼鈍とメツキとを同一ラインで実施することができる
溶融亜鉛メツキ法の方が圧到的に良く、かつ製造コスト
および耐食性の点からみても溶融亜鉛メツキ鋼板の方が
多量に使用される傾向にある。
Generally, galvanized steel sheets are manufactured by electrogalvanizing or hot-dip galvanizing, but the productivity is higher with hot-dip galvanizing, which allows annealing and plating to be carried out on the same line. Hot-dip galvanized steel sheets tend to be used in larger quantities because they are extremely good, and also from the viewpoint of manufacturing costs and corrosion resistance.

しかし、上記溶融亜鉛メツキ法には、鋼板を急速加熱お
よび急速冷却するために、鋼板の成形加工性および点溶
接性が劣化するようになるという問題点がある。
However, the above-mentioned hot-dip galvanizing method has a problem in that the forming processability and spot weldability of the steel sheet deteriorate because the steel sheet is rapidly heated and cooled.

そこで、連続溶融亜鉛メツキラインの亜鉛メツキ浴出側
にFe−Zn合金化炉を設置し、亜鉛メツキされた鋼板
を520〜620℃の温度範囲内の温度に再加熱して、
その表面のZn層をFe一Zn合金層にすることにより
点溶接性を改善することが行なわれており、確かに、こ
の結果得られれ合金化処理溶融亜鉛メツキ鋼板は、点溶
接性が著しく改善されたものになるが、合金化処理後の
急冷のために成形加工性および常温時効性が通常の溶融
亜鉛メツキ鋼板と同等か、これより劣るものとなり、特
に常温時効性は通常の溶融亜鉛メツキ鋼板に比して著し
いものであつて調質圧延後1力月もすると、その特性に
非常な劣化をきたすものであつた.しかして、上記合金
化処理溶融亜鉛メツキ鋼板をもつ常温時効性を遅時効性
とするために、合金化処理後、別ラインでポストアニー
ルを施すことも考えられるが、この場合には製造コスト
がかさんで好ましくない上に、焼付硬化性が消失してし
まうという問題点がある。
Therefore, an Fe-Zn alloying furnace is installed on the galvanizing bath outlet side of the continuous hot-dip galvanizing line, and the galvanized steel sheet is reheated to a temperature within the temperature range of 520 to 620 °C.
Spot weldability has been improved by changing the Zn layer on the surface to a Fe-Zn alloy layer, and it is true that the alloyed hot-dip galvanized steel sheet obtained as a result of this has significantly improved spot weldability. However, due to the rapid cooling after alloying treatment, the formability and room temperature aging properties are equal to or inferior to normal hot-dip galvanized steel sheets. This was remarkable compared to steel sheets, and its properties deteriorated significantly within one month after temper rolling. Therefore, in order to change the normal temperature aging property of the above-mentioned alloyed hot-dip galvanized steel sheet to slow aging property, it may be possible to perform post-annealing on a separate line after the alloying process, but in this case, the manufacturing cost will increase. There is a problem that not only is it undesirable because it is bulky, but also the bake hardenability is lost.

なお、上記焼付硬化性とは、上記のように鋼板をプレス
成形した後、塗装焼付するに際して、鋼板の降伏強度が
向上する性質をいうのであつて、この性質があると、成
形前の母材鋼板の降伏強度は低くても、塗装焼付後の成
形品には強度を確保することができることになり、した
がつて低い降伏強度でのプレス成形が可能となり、この
結果形状性の良好なものになるので、使用者にとつて望
ましい性質である。
The above-mentioned bake hardenability refers to the property that the yield strength of the steel plate increases when the steel plate is press-formed and then painted and baked as described above. Even if the yield strength of the steel plate is low, it is possible to ensure the strength of the molded product after painting and baking, making it possible to press form with a low yield strength, resulting in a product with good shape. Therefore, this is a desirable property for users.

さて、この焼付硬化性および常温時効性は、主として鋼
中に固溶している炭素含有量に影響されるものであつて
、溶融亜鉛メツキ鋼板の場合、固溶炭素量が多いので、
焼付硬化性および常温時効性が大きいものとなる.一方
、合金化処理後、ポストアニールした溶融亜鉛メツキ鋼
板においては、固溶炭素含有量が著しく少なくなるため
に、常温遅時効性をもつようになるが、同時に焼付硬化
性も失なわれたものになつてしまうのである。
Now, the bake hardenability and room temperature aging properties are mainly affected by the carbon content dissolved in the steel, and in the case of hot-dip galvanized steel sheets, the content of solid solution carbon is large, so
It has high bake hardenability and room temperature aging properties. On the other hand, hot-dip galvanized steel sheets that have been post-annealed after alloying treatment have a significantly lower solute carbon content, so they have slow aging properties at room temperature, but at the same time they have also lost their bake hardenability. It becomes like that.

本発明者等は、上述のような観点から、点溶接性の良好
な合金化処理溶融亜鉛メツキ鋼板に、ポストアニールな
ど別ラインでの焼鈍を必要とすることなく、常温遅時効
性および焼付硬化性と共に、良好な成形加工性を付与す
べく研究を行なつた結果、鋼の組成を、C:0.002
〜0.15%,Si:0.6%以下,Mn:0.5〜1
.6(fl),P:0.15%以下,SOt.At:0
.01〜0.10%を含有し、さらに必要に応じてCr
:0.04〜0.80%,B:0.0005〜0.00
30%,および:0.02〜0.40%のうちの1種ま
たは2種以上を含有し、残りがFeと不可避不純物から
なる組成(以上重量%,以下%の表示はすべて重量%を
意味する)、すなわち、特にMn含有量を0.5〜1.
6(F6ltCコントロールすると、常温遅時効性と焼
付硬化性とを合せもつようになり、さらに溶融亜鉛メツ
キ前に、冷延鋼板に対して400℃〜Al変態点の比較
的低い温度範囲内の温度で箱焼鈍を施すと、r値が著し
く上昇するようになるという知見を得たのである。この
発明は、上記知見にもとづいてなされたものであつて、
C:0.002〜0.15%,Si:0.601)以下
,Mn:0.5〜1.691),P:0.15(fl)
以下,SOtOAt:0.01〜0.10%を含有し、
さらに必要に応じてCr:0.04〜0.80(F6,
B:0.0005〜0.003(L,および:0.02
〜0.40(F6のうちの1種または2種以上を含有し
、残りがFeと不可避不純物からなる組成を有する鋼を
、仕上温度:700〜950℃,巻取温度:200〜6
20℃の条件で熱間圧延した後、圧下率:40%以上の
条件で冷間圧延し、ついで、400℃〜Al変態点の温
度範囲内の温度で箱焼鈍した後、連続溶融亜鉛メツキラ
インにて、480〜900℃の温度範囲内の温度に加熱
し、前記加熱後の冷却過程で浴温:420〜520℃の
亜鉛メツキ浴中に浸漬し、引続いて520〜640℃の
温度範囲内の温度に3秒以上保持の条件で合金化処理す
ることによつて、良好な成形加工性および点溶接性を有
し、かつ常温遅時効性および焼付硬化性も合せもつた合
金化処理溶融亜鉛メツキ鋼板を製造する方法に特徴を有
するものである。
From the above-mentioned viewpoints, the present inventors have developed alloyed hot-dip galvanized steel sheets with good spot weldability, without the need for post-annealing or other annealing on a separate line. As a result of conducting research to impart good formability as well as steel composition, the composition of the steel was changed to C: 0.002.
~0.15%, Si: 0.6% or less, Mn: 0.5-1
.. 6 (fl), P: 0.15% or less, SOt. At:0
.. 01 to 0.10%, and further contains Cr as necessary.
:0.04~0.80%, B:0.0005~0.00
30%, and: 0.02 to 0.40%, and the remainder is Fe and unavoidable impurities (all percentages by weight mean weight percent) ), that is, in particular, the Mn content is 0.5 to 1.
6 (F6ltC control provides both room temperature slow aging and bake hardenability, and furthermore, before hot-dip galvanizing, the temperature within the relatively low temperature range of 400°C to Al transformation point is applied to the cold-rolled steel sheet. They found that when box annealing is carried out, the r value increases significantly.This invention was made based on the above knowledge, and
C: 0.002-0.15%, Si: 0.601) or less, Mn: 0.5-1.691), P: 0.15 (fl)
The following contains SOtOAt: 0.01 to 0.10%,
Furthermore, if necessary, Cr: 0.04 to 0.80 (F6,
B: 0.0005 to 0.003 (L, and: 0.02
~0.40 (contains one or more of F6, and the remainder is Fe and unavoidable impurities. Finishing temperature: 700 ~ 950 ° C., Coiling temperature: 200 ~ 6
After hot rolling at 20°C, cold rolling at a reduction rate of 40% or more, and then box annealing at a temperature within the temperature range of 400°C to Al transformation point, the product was transferred to a continuous hot-dip galvanizing line. and heated to a temperature within the temperature range of 480 to 900 °C, and in the cooling process after the heating, immersed in a galvanizing bath with a bath temperature of 420 to 520 °C, and subsequently within the temperature range of 520 to 640 °C. Alloyed molten zinc has good formability and spot weldability, as well as room temperature slow aging and bake hardenability, by alloying it at a temperature of 3 seconds or more. This method is characterized by the method of manufacturing plated steel sheets.

つぎに、この発明の方法において、鋼の成分組成範囲お
よび製造条件を上記の通りに限定した理由を説明する。
A.鋼の成分組成範囲 (a) C 上記のようにC成分は鋼板の常温時効性および焼付硬化
性に影響を及ぼす筬分であるが、その含有量が0.00
2%未満では、所望の焼付硬化性を得ることができなく
なり(一方0.15%を越えて含有させると、鋼板の点
溶接性が劣化するようになることから、その含有量を0
.002〜0.15%と定めた。
Next, the reason why the composition range of the steel and the manufacturing conditions are limited as described above in the method of the present invention will be explained.
A. Component composition range of steel (a) C As mentioned above, the C component is a component that affects the room temperature aging property and bake hardenability of steel sheets, but if its content is 0.00
If the content is less than 2%, it will not be possible to obtain the desired bake hardenability (on the other hand, if the content exceeds 0.15%, the spot weldability of the steel plate will deteriorate, so the content should be reduced to 0.
.. It was set at 0.002% to 0.15%.

(b) Si 合金化処理で良好なFe−Zn合金層を形成し、かつ鋼
板に良好な遅時効性を付与するためには、Si含有量は
できるだけ少なくした方がよく、これらの良好な特性を
確保できる却容上限値0.6(f)である。
(b) In order to form a good Fe-Zn alloy layer through Si alloying treatment and to impart good slow aging properties to the steel sheet, it is better to keep the Si content as low as possible, and these good properties The upper limit of rejection is 0.6 (f) that can ensure the following.

一方Si成分には鋼板の強度を向上させる特性があるの
で、Siを0.6%以下の範囲内で含有させて、上記の
性質をそこなうことなく、強度改善をはかることができ
る。(c) Mn 連続ラインだけで鋼板が遅時効性と適度の焼付硬化性を
もつようにするために、Mn含有量を0.5〜1.6%
にコントロールする必要があるのであつて、その含有量
が0.5%未満では所望の遅時効性および焼付硬化性を
確保することができず、一方1.601)を越えた含有
になると、溶製が困難になつてコスト上昇の原因となり
、さらにr値の低下をまねくようになるのである。
On the other hand, since the Si component has the property of improving the strength of the steel sheet, it is possible to improve the strength without impairing the above properties by including Si in a range of 0.6% or less. (c) Mn In order to make the steel plate have slow aging properties and appropriate bake hardenability only on a continuous line, the Mn content is increased from 0.5 to 1.6%.
If the content is less than 0.5%, the desired slow aging properties and bake hardenability cannot be secured, while if the content exceeds 1.601), the melt This makes manufacturing difficult and causes an increase in cost, which further leads to a decrease in the r value.

(d) P P成分は、通常は不可避不純物として含有する程度含有
するものであり、特に鋼板に強度が要求される場合に0
.15%を越えない範囲で含有させることができる。
(d) P The P component is normally contained to the extent that it is included as an unavoidable impurity, and it is particularly necessary to reduce the amount of P component when strength is required for the steel plate.
.. It can be contained within a range not exceeding 15%.

なぜなら、P含有量が0.15%を越えると点溶接性が
劣化するようになるからである。(e) SOtOAt At成分には箱焼鈍時にAtNとなつて析出し、r値に
好ましい結晶方位の粒を発達させる作用があるが、その
含有量がSOt.Atで0.01%未満では、所定の量
のAtNを析出させることができないので、r値に所望
の改善効果が得られず、一方SOt.Atで0.101
)を越えて含有させてもより一層のr値改善効果は現わ
れず、経済性を考慮して、その含有量を0.01〜0.
1%と定めた。
This is because if the P content exceeds 0.15%, spot weldability will deteriorate. (e) SOtOAt The At component precipitates as AtN during box annealing and has the effect of developing grains with a preferable crystal orientation for the r value. If At is less than 0.01%, a predetermined amount of AtN cannot be precipitated, so the desired improvement effect on the r value cannot be obtained. 0.101 at At
) Even if the content exceeds 0.01 to 0.01, no further effect of improving the r value will be obtained.
It was set at 1%.

(f) Cr,B,およびこれらの成分には鋼板の強度
を向上させる均等的作用があるので、鋼板に強度が要求
される場合に必要に応じて含有されるが、その含有量が
、それぞれCr:0.04(:fl)未満,B:0.0
005%未満,およびV:0.02%未満では所望の強
度向上効果が得られず、一方Cr:0.8%,B:0.
003%,および:0.4%をそれぞれ越えて含有させ
ても、より一層の強度向上効果は得られず、コスト上昇
の原因となることから、これらの成分の含有量を、それ
ぞれCr:0.04〜0.8%,B:0.0005〜0
.003%,:0.02〜0.4(fl)と定めた。
(f) Cr, B, and these components have a uniform effect of improving the strength of steel sheets, so they are included as necessary when strength is required for steel sheets, but the content of each Cr: less than 0.04 (:fl), B: 0.0
0.005% and V: less than 0.02%, the desired strength improvement effect cannot be obtained, while Cr: 0.8% and B: 0.02%.
Even if the content exceeds Cr:0.03% and Cr:0.4%, no further strength improvement effect can be obtained and it will cause an increase in cost. .04~0.8%, B:0.0005~0
.. 003%, : 0.02 to 0.4 (fl).

B熱間圧延条件 (a)仕上温度 仕上温度が700℃未満では、多量のα相存在下での圧
延となるため鋼板のr値が低下するようになり、一方仕
上温度が950℃を越えると、熱延板の結晶粒径が大き
くなつて、同様にr値が低下するようになることから、
仕上温度を700〜950℃と定めた。
B Hot rolling conditions (a) Finishing temperature When the finishing temperature is less than 700°C, the r value of the steel plate decreases because rolling occurs in the presence of a large amount of α phase, whereas when the finishing temperature exceeds 950°C, the r value of the steel plate decreases. , as the grain size of the hot-rolled sheet increases, the r value similarly decreases.
The finishing temperature was set at 700-950°C.

なお、実施に際しては、Ar3変態点直上に仕上温度を
とるのがよい。(b)巻取温度 巻取温度は、熱延鋼板中にFe3cを微細に分布させ、
かつ合金化処理後の鋼板中の固溶炭素を少量にすると共
に、AtNの析出をコントロールするために管理される
が、巻取温度が200℃未満ではFe3cの析出力坏十
分であり、一方巻取温度が620℃を越えると、Fe3
cが粗大化すると共に、AtNの析出が起つてr値が低
下するようになることから、巻取温度を200〜620
℃と定めた。
In addition, in practice, it is preferable to set the finishing temperature just above the Ar3 transformation point. (b) Coiling temperature The coiling temperature finely distributes Fe3c in the hot rolled steel sheet,
In addition, the amount of solid solute carbon in the steel sheet after alloying treatment is controlled to be small and to control the precipitation of AtN. However, if the coiling temperature is less than 200°C, the precipitation force of Fe3c is sufficient, and one winding When the temperature exceeds 620℃, Fe3
As c becomes coarser, AtN precipitation occurs and the r value decreases, so the coiling temperature is set to 200 to 620.
It was set as ℃.

C冷間圧延の圧下率 冷間圧延における圧下率が40%未満では所望のr値を
確保することができないので、40911以上の圧下率
としなければならない。
C cold rolling rolling reduction If the rolling reduction in cold rolling is less than 40%, the desired r value cannot be secured, so the rolling reduction must be 40911 or more.

D箱焼鈍 箱焼鈍は、r値を高めるために行なわれるものであつて
、特にその昇温速度を遅くすることによつて、冷延組織
中にr値に好ましい結晶方位の発達に有効K働くAtN
を微細に析出させるための処理であるが、その温度が4
00℃未満ではAtNの析出が不十分で所望のr値向上
効果を確保することができず、一方Al変態点を越えた
高い温度で箱焼鈍を行なつてもr値の向上効果は小さく
、熱エネルギーの損失をまねくことから、その温度を4
00〜Al変態点と定めた。
D-box annealing Box annealing is performed to increase the r-value, and by slowing down the temperature increase rate, D-box annealing has an effective K effect on the development of crystal orientations favorable to the r-value in the cold-rolled structure. AtN
This is a treatment to finely precipitate
Below 00°C, precipitation of AtN is insufficient and the desired r-value improvement effect cannot be secured, while even if box annealing is performed at a high temperature exceeding the Al transformation point, the r-value improvement effect is small. The temperature should be lowered to 4 to avoid the loss of thermal energy.
00 to Al transformation point.

E溶融亜鉛メッキライン内での加熱 この加熱は、鋼板に延性を付与するために行なわれるが
、前工程の箱焼鈍が比較的高い温度の620℃以上で行
なわれた場合には冷延組織の再結晶はすでに完了してし
まつているので、高温加熱は必要でなく、この場合はZ
nの密着性をよくするための単なる加熱でよいことから
最低480℃に加熱すれば十分である。
E Heating in the hot-dip galvanizing line This heating is performed to impart ductility to the steel sheet, but if the box annealing in the previous process is performed at a relatively high temperature of 620°C or higher, the cold-rolled structure will change. Since recrystallization has already been completed, high-temperature heating is not necessary, and in this case Z
Simply heating to improve the adhesion of n is sufficient, so heating to a minimum of 480°C is sufficient.

一方箱焼鈍が620℃以下で行なわれた場合には、冷延
組織の再結晶が未だ完了していないので、比較的高温に
加熱して再結晶を完了させる必要があるが、900℃を
越えて加熱すると、結晶粒径の粗大化をまねき、r値が
低下するようになることから、その温度を480〜90
0℃と定めた。F亜鉛メツキ浴温度 その温度が420℃未満ではZnが凝固するようになり
、一方その温度が520℃を越えると、メツキ性が低ト
するようになることから、その温度を420〜520℃
と定めた。
On the other hand, if box annealing is performed at a temperature below 620°C, recrystallization of the cold-rolled structure has not yet been completed, so it is necessary to complete the recrystallization by heating to a relatively high temperature; Heating at a temperature of
The temperature was set at 0°C. F Zinc plating bath temperature If the temperature is lower than 420°C, Zn will solidify, but if the temperature exceeds 520°C, the plating properties will be poor, so the temperature should be set at 420 to 520°C.
It was determined that

G合金化処理条件 合金化処理温度が520℃未満の場合、並びに同保持時
間が3秒未満の場合には、合金化度が不足して所望の良
好な点溶接性を確保することができず、一方合金化処理
温度が640℃を越えると、合金化が進行しすぎて、鋼
板表面に脆化層が形成されるようになることから、合金
化処理温度を520〜640℃に、同保持時間を3秒以
上にそれぞれ定めた。
G Alloying Treatment Conditions If the alloying treatment temperature is less than 520°C and the holding time is less than 3 seconds, the degree of alloying will be insufficient and the desired good spot weldability cannot be secured. On the other hand, if the alloying temperature exceeds 640°C, alloying will progress too much and a brittle layer will be formed on the surface of the steel sheet, so the alloying temperature should be kept at 520 to 640°C. The time was set at 3 seconds or more.

つぎに、この発明の方法を実施例により具体的に説明す
る。
Next, the method of the present invention will be specifically explained using examples.

実施例 1 通常の溶解法により、C,Si,PおよびSOt.At
はこの発明の範囲内の含有量を有するが、MOはこの発
明の範囲を含み、かつこれより上下に外れた範囲まで含
有する種々の鋼、すなわちC:0.04〜0.06%,
Si:0.01〜0.03%,P:0.01〜0.01
5%,SOt.At:0.02〜0.04%,Mn:0
.1〜1.8%の成分組成範囲内の組成を有する種々の
鋼を溶製し、鋳造してスラブとした後、これらスラブに
、仕上温度:820〜860℃,巻取温度:400〜4
80℃,板厚:3.2Twnの条件で熱間圧延を施し、
ついで酸洗した後、圧下率:75%,板厚:0.8wr
mの条件で冷間圧延を行ない冷延板を製造した。
Example 1 C, Si, P and SOt. At
MO has a content within the range of this invention, but MO contains various steels that include the range of this invention and exceed this range, that is, C: 0.04 to 0.06%,
Si: 0.01-0.03%, P: 0.01-0.01
5%, SOt. At: 0.02-0.04%, Mn: 0
.. Various steels having compositions within the range of 1 to 1.8% are melted and cast into slabs, and then these slabs are processed at a finishing temperature of 820 to 860°C and a winding temperature of 400 to 400°C.
Hot rolled at 80℃ and plate thickness: 3.2Twn,
Then, after pickling, rolling reduction: 75%, plate thickness: 0.8wr
A cold rolled sheet was manufactured by performing cold rolling under the conditions of m.

引続いて、上記冷延板を、加熱速度:40℃/H,加熱
温度:560℃,保持時間:1時間,冷却速度:80℃
/hの条件で箱焼鈍した後、連続溶融亜鉛メツキライン
にて、まず温度:JモV0℃に約30秒加熱し、その冷却
過程で温度:510℃に約30秒保持した後、温度:4
60℃の亜鉛メツキ浴中に浸漬し、再び温度:560℃
に加熱して10秒保持の合金化処理を行ない、最終的に
降伏点伸びを消すために、同ライン内で調圧伸び率:0
.3%,Uベラ一伸び率:0.3Sの条件で、さらに同
ライン外で調圧伸び率:0.5%の条件で調節圧延を施
すことによつて合金化処理溶融亜鉛メツキ鋼板を製造し
た。
Subsequently, the cold-rolled plate was heated at a heating rate of 40°C/H, a heating temperature of 560°C, a holding time of 1 hour, and a cooling rate of 80°C.
After box annealing under the conditions of /h, in a continuous hot-dip galvanizing line, it was first heated to a temperature of 0°C for about 30 seconds, and during the cooling process it was held at a temperature of 510°C for about 30 seconds, and then heated to a temperature of 4°C.
Immersed in a galvanizing bath at 60℃ and then heated to 560℃ again.
Alloying treatment is carried out by heating to
.. 3%, U-flat elongation rate: 0.3S, and then outside the same line, adjustment rolling is performed under the conditions of adjustment elongation rate: 0.5% to produce alloyed hot-dip galvanized steel sheets. did.

ついで、この結果得られた合金化処理溶融亜鉛メツキ鋼
板よりL方向にJIS5号試験片を切り出し、この試験
片を用いて、そのままの状態、および温度:30′C.
lfC2ケ月保持の状態(常温時効処理後)で引張試験
を行ない、降伏応力,降伏点伸び,および破断伸びの変
化を求めた。
Next, a JIS No. 5 test piece was cut out in the L direction from the resulting alloyed hot-dip galvanized steel sheet, and this test piece was tested in that state and at a temperature of 30'C.
A tensile test was conducted under the condition of lfC being maintained for 2 months (after room temperature aging treatment), and changes in yield stress, elongation at yield point, and elongation at break were determined.

また、上記の切り出したままの試験片に対し、プレス成
形相当の2%の引張りを与えた後、塗装焼付処理に相当
する温度:170℃に20分保持の熱処理を行ない、降
伏応力の上昇量(焼付硬化量)を求めた。
In addition, after applying a 2% tension equivalent to press forming to the above-mentioned as-cut test piece, heat treatment was performed at a temperature equivalent to paint baking treatment: 170°C for 20 minutes, and the increase in yield stress was (Amount of bake hardening) was determined.

これらの結果を第1図に示した。第1図に示されるよう
に、Mn含有量がこの発明の範囲から低い方に外れると
、焼付硬化性は著しく増すものの、常温時効も著しいこ
とから、破断伸びの低下、降伏応力の上昇をまねき、さ
らに降伏点伸びの発生も大きく、この結果成形加工性の
悪いものとなる。これに対して、Mn含有量がこの発明
の範囲内にある合金化処理溶融亜鉛メツキ鋼板において
は、破断伸び低下量:296以下,降伏応力増加量:1
k9/1171以下,降伏点伸び増加量:0.501)
以下を示し、実質的に遅時効性を有することは明らかで
あり、さらに焼付硬化量も4k9/Md以上を示し、特
に自動車用鋼板として適したものであることがわかる。
実施例 2 転炉を用いて、それぞれ第1表に示される成分組成をも
つた鋼を溶製し、鋳造してスラブとした後、同じく第1
表に示される熱間圧延条件にて前記スラブに熱間圧延を
施して板厚:3.2wnの熱延板とし、以後箱焼鈍温度
およびメツキライン加熱温度をそれぞれ第1表に示され
る条件とする以外は、実施例1におけると同一の条件で
、冷間圧延,箱焼鈍,連続溶融亜鉛メツキラィンにて加
熱処理,溶融亜鉛メツキ,合金化処理,さらに調質圧延
を行なうことによつて、本発明法1〜9および比較法1
〜6をそれぞれ実施した。
These results are shown in FIG. As shown in Figure 1, when the Mn content deviates from the range of the present invention, bake hardenability increases significantly, but aging at room temperature is also significant, resulting in a decrease in elongation at break and an increase in yield stress. Furthermore, the elongation at yield point is large, resulting in poor moldability. On the other hand, in an alloyed hot-dip galvanized steel sheet whose Mn content is within the range of the present invention, the decrease in elongation at break: 296 or less, and the increase in yield stress: 1
k9/1171 or less, yield point elongation increase: 0.501)
It shows the following, and it is clear that it has substantially slow aging properties, and also shows a bake hardening amount of 4k9/Md or more, which shows that it is particularly suitable as a steel plate for automobiles.
Example 2 Using a converter, steel having the composition shown in Table 1 was melted and cast into a slab.
The slab is hot-rolled under the hot-rolling conditions shown in the table to form a hot-rolled plate with a thickness of 3.2wn, and thereafter the box annealing temperature and the line heating temperature are set to the conditions shown in Table 1. The present invention was obtained by performing cold rolling, box annealing, heat treatment in a continuous hot-dip galvanizing line, hot-dip galvanizing, alloying treatment, and temper rolling under the same conditions as in Example 1 except for the following. Methods 1 to 9 and Comparative Method 1
- 6 were carried out, respectively.

なお、比較法1は箱焼鈍を行なわない場合、比較法2は
箱焼鈍温度がこの発明の範囲から低い方に外れた場合、
比較法3は巻取温度が高い方に外れた場合、比較法4は
Mn含有量が高い方に外れた場合、比較法5,6はSO
t.AtおよびMnの含有量がそれぞれ低い方に外れた
場合のものである。
Comparative method 1 is used when box annealing is not performed, and comparative method 2 is used when the box annealing temperature is lower than the range of this invention.
Comparative method 3 results in a higher coiling temperature, comparative method 4 results in a higher Mn content, comparative methods 5 and 6 result in SO
t. This is a case where the At and Mn contents are each on the lower side.

ついで、この結果得られた合金化処理溶融亜鉛メツキ鋼
板について、実施例1におけると同一の条件で常温時効
破断伸び低下量,常温時効降伏点伸び増加量,および焼
付硬化量をそれぞれ求めた。
Next, for the alloyed hot-dip galvanized steel sheet obtained as a result, the amount of decrease in elongation at break due to room temperature aging, the amount of increase in elongation at yield point due to room temperature aging, and the amount of bake hardening were determined under the same conditions as in Example 1.

この結果を第1表に合せて示した。The results are also shown in Table 1.

なお、第1表には引張特性とr値も示した。第1表に示
される結果から、比較例1〜6によつて製造された鋼板
は、r値,破断伸び低下量,降伏点伸び増加量のうちの
少なくともいずれかの特性が望ましくない値を示してい
るのに対して、本発明法1〜9によつて製造された鋼板
は、いずれもr値: 1.5以上,破断伸び低下量:1
%以下,降伏点伸び増加量:0.5%以下であり、かつ
焼付硬化量も約4k9/一以上を示し、特に自動車用鋼
板に要求されるすべての特性を具備していることが明ら
かである。
Additionally, Table 1 also shows the tensile properties and r values. From the results shown in Table 1, the steel plates manufactured in Comparative Examples 1 to 6 exhibited undesirable values in at least one of the following properties: r value, decrease in elongation at break, and increase in elongation at yield. On the other hand, the steel plates manufactured by methods 1 to 9 of the present invention all have an r value of 1.5 or more and a decrease in elongation at break of 1.
% or less, yield point elongation increase: 0.5% or less, and the bake hardening amount was about 4k9/1 or more, and it is clear that it has all the properties particularly required for automotive steel sheets. be.

上述のように、この発明の方法によれば、良好な成形加
工性および点溶接性を有し、かつ常温遅時効性および焼
付硬化性も合せもつた合金化処理溶融亜鉛メッキ鋼板を
、別ラインでのポストアニールなどの必要性なく、連続
溶融亜鉛メツキラインだけで製造することができるので
ある。
As described above, according to the method of the present invention, an alloyed hot-dip galvanized steel sheet having good formability and spot weldability, as well as room-temperature slow aging and bake hardenability, is produced on a separate line. It can be manufactured using only a continuous hot-dip galvanizing line, without the need for post-annealing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は鋼板中のMn含有量と諸特性の関係を示した図
である。
FIG. 1 is a diagram showing the relationship between the Mn content in a steel sheet and various properties.

Claims (1)

【特許請求の範囲】 1 C:0.002〜0.15%、Si:0.6%以下
、Mn:0.5〜1.6%、P:0.15%以下、so
l.Al:0.01〜0.10%を含有し、残りがFe
と不可避不純物からなる組成(以上重量%)を有する鋼
を、仕上温度:700〜950℃、巻取温度:200〜
620℃の条件で熱間圧延した後、圧下率:40%以上
の条件で冷間圧延し、ついで400℃〜Al変態点の温
度範囲内の温度で箱焼鈍し、引続いて連続溶融亜鉛メッ
キラインにて、480〜900℃の温度範囲内の温度に
加熱し、前記加熱の冷却過程で浴温:420〜520℃
の亜鉛メッキ浴中に浸漬した後、520〜640℃の温
度範囲内の温度に再加熱して3秒以上保持の条件で合金
化処理することを特徴とする合金化処理溶融亜鉛メッキ
鋼板の製造法。 2 C:0.002〜0.15%、Si:0.6%以下
、Mn:0.5〜1.6%、P:0.15%以下、so
l.Al:0.01〜0.10%を含有し、さらにCr
:0.04〜0.80%、B:0.0005〜0.00
30%、およびV:0.02〜0.40%のうちの1種
または2種以上を含有し、残りがFeと不可避不純物か
らなる組成(以上重量%)を有する鋼を、仕上温度:7
00〜950℃、巻取温度:200〜620℃の条件で
熱間圧延した後、圧下率:40%以上の条件で冷間圧延
し、ついで400℃〜Al変態点の温度範囲内の温度で
箱焼鈍し、引続いて連続溶融亜鉛メッキラインにて、4
80〜900℃の温度範囲内の温度に加熱し、前記加熱
め冷却過程で浴温:420〜520℃の亜鉛メッキ浴中
に浸漬した後、520〜640℃の温度範囲内の温度に
再加熱して3秒以上保持の条件で合金化処理することを
特徴とする合金化処理溶融亜鉛メッキ鋼板の製造法。
[Claims] 1 C: 0.002 to 0.15%, Si: 0.6% or less, Mn: 0.5 to 1.6%, P: 0.15% or less, so
l. Contains Al: 0.01-0.10%, the rest is Fe
Finishing temperature: 700-950°C, coiling temperature: 200-950°C.
After hot rolling at 620°C, cold rolling at a rolling reduction of 40% or more, then box annealing at a temperature within the temperature range of 400°C to Al transformation point, followed by continuous hot-dip galvanizing. In the heating line, it is heated to a temperature within the temperature range of 480 to 900°C, and in the cooling process of the heating, the bath temperature is 420 to 520°C.
Production of an alloyed hot-dip galvanized steel sheet, characterized by immersing it in a galvanizing bath of Law. 2 C: 0.002 to 0.15%, Si: 0.6% or less, Mn: 0.5 to 1.6%, P: 0.15% or less, so
l. Contains Al: 0.01 to 0.10%, and further contains Cr
:0.04~0.80%, B:0.0005~0.00
30% and V: 0.02 to 0.40%, and the remainder is Fe and unavoidable impurities (weight%) at a finishing temperature of 7.
After hot rolling under the conditions of 00 to 950°C, coiling temperature: 200 to 620°C, cold rolling at a rolling reduction of 40% or more, and then at a temperature within the temperature range of 400°C to Al transformation point. Box annealing followed by continuous hot-dip galvanizing line, 4
Heating to a temperature within the temperature range of 80 to 900°C, immersing in a galvanizing bath with a bath temperature of 420 to 520°C during the heating and cooling process, and then reheating to a temperature within the temperature range of 520 to 640°C. 1. A method for producing an alloyed hot-dip galvanized steel sheet, characterized in that the alloying treatment is carried out under conditions of holding the temperature for 3 seconds or more.
JP13794480A 1980-10-02 1980-10-02 Manufacturing method of alloyed hot-dip galvanized steel sheet Expired JPS5937333B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13794480A JPS5937333B2 (en) 1980-10-02 1980-10-02 Manufacturing method of alloyed hot-dip galvanized steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13794480A JPS5937333B2 (en) 1980-10-02 1980-10-02 Manufacturing method of alloyed hot-dip galvanized steel sheet

Publications (2)

Publication Number Publication Date
JPS5773125A JPS5773125A (en) 1982-05-07
JPS5937333B2 true JPS5937333B2 (en) 1984-09-08

Family

ID=15210348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13794480A Expired JPS5937333B2 (en) 1980-10-02 1980-10-02 Manufacturing method of alloyed hot-dip galvanized steel sheet

Country Status (1)

Country Link
JP (1) JPS5937333B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5852431A (en) * 1981-09-19 1983-03-28 Sumitomo Metal Ind Ltd Production of thermally hardenable galvanized steel plate
US4591395A (en) * 1983-05-05 1986-05-27 Armco Inc. Method of heat treating low carbon steel strip
US4913746A (en) * 1988-08-29 1990-04-03 Lehigh University Method of producing a Zn-Fe galvanneal on a steel substrate
JPH03264649A (en) * 1990-03-13 1991-11-25 Kobe Steel Ltd Galvanized medium-strength steel sheet having good workability
US5795410A (en) * 1997-01-23 1998-08-18 Usx Corporation Control of surface carbides in steel strip
DE10102932C1 (en) * 2001-01-23 2002-08-22 Salzgitter Ag Process for producing a cold-rolled steel strip or sheet and strip or sheet which can be produced by the process
CN102162073A (en) * 2011-03-16 2011-08-24 北京科技大学 Preparation method of low-carbon low-silicon cold-rolled hot-galvanized dual-phase steel for extra-deep drawing
CN106239037B (en) * 2016-07-29 2019-02-15 黄冈三德板业有限公司 The cold rolling hot dip integrated production method and steel plate of steel plate

Also Published As

Publication number Publication date
JPS5773125A (en) 1982-05-07

Similar Documents

Publication Publication Date Title
US7959747B2 (en) Method of making cold rolled dual phase steel sheet
WO2017203348A1 (en) Twip steel sheet having an austenitic matrix
WO2016152148A1 (en) High-strength steel sheet and method for manufacturing same
JP2576894B2 (en) Hot-dip galvanized high-tensile cold-rolled steel sheet excellent in press formability and method for producing the same
US6143100A (en) Bake-hardenable cold rolled steel sheet and method of producing same
JPS5937333B2 (en) Manufacturing method of alloyed hot-dip galvanized steel sheet
JPH0394018A (en) Production of high tensile hot dip galvanized steel sheet excellent in bendability
JPH02111841A (en) Cold rolled steel sheet excellent in workability and having baking hardenability and hot dip zinc galvanizing steel sheet
JP2800541B2 (en) Manufacturing method of high strength hot-dip galvanized steel sheet for deep drawing
JP4890492B2 (en) Method for producing alloyed hot-dip galvanized steel sheet with excellent paint bake hardening performance
JPH02194126A (en) Manufacture of steel sheet having baking hardenability
JP4299451B2 (en) High-strength hot-dip galvanized steel sheet with excellent formability and method for producing the same
JPH05195060A (en) Production of baking hardening type cold rolled steel sheet excellent in ageing resistance and press formability
JPH0699760B2 (en) Method for producing steel plate with hot dip zinc for ultra deep drawing
JPS6320888B2 (en)
JP5682356B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JP3446001B2 (en) Method for producing cold-rolled steel sheet and hot-dip galvanized steel sheet with excellent workability
JP3716439B2 (en) Manufacturing method of high-tensile alloyed hot-dip galvanized steel sheet with excellent plating characteristics
JP2549539B2 (en) Method for producing hot dip galvanized steel sheet for ultra deep drawing
JP2631437B2 (en) Cold rolled steel sheet excellent in workability, bake hardenability and aging, and method for producing the same
JP2565054B2 (en) Method for producing galvannealed steel sheet with excellent deep drawability and plating adhesion
JPH0681045A (en) Production of cold rolled steel sheet excellent in workability and baking hardenability
JPH05230543A (en) Production of high strength cold rolled steel sheet excellent in baking hardenability and deep drawability
JPH021212B2 (en)
JPS5831035A (en) Production of zinc hot dipped steel plate having excellent workability and baking hardenability