JP4781577B2 - High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof - Google Patents

High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof Download PDF

Info

Publication number
JP4781577B2
JP4781577B2 JP2001287413A JP2001287413A JP4781577B2 JP 4781577 B2 JP4781577 B2 JP 4781577B2 JP 2001287413 A JP2001287413 A JP 2001287413A JP 2001287413 A JP2001287413 A JP 2001287413A JP 4781577 B2 JP4781577 B2 JP 4781577B2
Authority
JP
Japan
Prior art keywords
mass
plating
steel sheet
galvanized steel
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001287413A
Other languages
Japanese (ja)
Other versions
JP2003049239A (en
Inventor
康秀 森本
展弘 藤田
將夫 黒崎
学 高橋
明博 宮坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001287413A priority Critical patent/JP4781577B2/en
Publication of JP2003049239A publication Critical patent/JP2003049239A/en
Application granted granted Critical
Publication of JP4781577B2 publication Critical patent/JP4781577B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、建材、家電製品、自動車などに適する加工性に優れた高強度溶融亜鉛めっき鋼板及びその製造方法に関する。
【0002】
【従来の技術】
溶融亜鉛めっきは鋼板の防食を目的として施され、建材、家電製品、自動車など広範囲に使用されている。その製造法としては、連続ラインに於いて、脱脂洗浄後、非酸化性雰囲気にて加熱し、H2 及びN2 を含む還元雰囲気にて焼鈍後、めっき浴温度近傍まで冷却し、溶融亜鉛浴に浸漬後、冷却、もしくは再加熱してFe−Zn合金相を生成させた後に冷却、というゼンジマー法があり、鋼板の処理に多用されている。
【0003】
めっき前の焼鈍については、脱脂洗浄後、非酸化性雰囲気中での加熱を経ず直ちに、H2 及びN2 を含む還元雰囲気にて焼鈍を行う、全還元炉方式も行われる場合がある。また、鋼板を脱脂、酸洗した後、塩化アンモニウムなどを用いてフラックス処理を行って、めっき浴に浸漬、その後冷却、というフラックス法も行われている。
【0004】
これらのめっき処理で用いられるめっき浴中には溶融亜鉛の脱酸のために少量のAlが添加されている。ゼンジマー法においてZnめっき浴は質量%で0.1%程度のAlを含有している。この浴中のAlはFeとの親和力がFe−Znよりも強いため、鋼がめっき浴に浸漬した際、鋼表面にFe−Al合金相すなわちAlの濃化層が生成し、Fe−Znの反応を抑制することが知られている。Alの濃化層が存在するために、得られためっき層中のAl含有率は通常、めっき浴中のAl含有率より高くなる。
【0005】
近年、特に自動車車体において燃費向上を目的とした車体軽量化の観点から、延性の高い高強度鋼板の需要が高まりつつある。安価な強化法として鋼中へのSi添加が行われ、特に高延性高強度鋼板には1質量%以上含有する場合もある。
一方で、めっきの観点からすると鋼中のSiの含有率が、質量%で0.3%を超えると、通常のAlを含有しためっき浴を用いたゼンジマー法ではめっき濡れ性が大きく低下し、不めっきが発生するため外観品質が悪化する。この原因は、還元焼鈍時に鋼板表面にSi酸化物が濃化し、Si酸化物の溶融亜鉛に対する濡れ性が悪いためであると言われている。
【0006】
この問題を解決する手段として、特開平3−28359号公報、特開平3−64437号公報等に見られるように、特定のめっきを付与することでめっき性の改善を行っているが、この方法では、溶融めっきライン焼鈍炉前段に新たにめっき設備を設けるか、もしくは、あらかじめ電気めっきラインにおいてめっき処理を行わなければならず、大幅なコストアップとなるという問題点がある。
【0007】
【発明が解決しようとする課題】
本発明は、上記課題を解決し、不めっきが抑制され、加工性の優れた高強度溶融亜鉛めっき鋼板及びその製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
発明者らは、種々検討を行った結果、めっき層に特定の元素を適正濃度含有させることで、高強度鋼板の溶融亜鉛めっき濡れ性が向上することを見いだした。また、この効果は、めっき相中Al濃度を低減することで強められること、さらに、鋼のSi含有率:X(質量%)、鋼のMn含有率:Y(質量%)、鋼のAl含有率:Z(質量%)、めっき層のAl含有率:A(質量%)、めっき層のMn含有率:B(質量%)が、3−(X+Y/10+Z/3)−12.5×(A−B)≧0を満たす鋼およびめっき組成とすることにより、極めて良好なめっきが得られることを見いだした。
【0009】
本発明は、上記知見に基づいて完成されたもので、その要旨とするところは以下の通りである。
(1)質量%で、C:0.0001〜0.3%、Si:0.1〜2.5%、Mn:0.01〜3%、Al:0.001〜4%を含有し、残部Fe及び不可避不純物からなり、表面に、質量%で、Al:0.001〜0.5%、Mn:0.001〜2%、Fe:5〜20%を含有し、残部がZn及び不可避不純物からなるめっき層を有する溶融亜鉛めっき鋼板であって、鋼のSi含有率:X(質量%)、鋼のMn含有率:Y(質量%)、鋼のAl含有率:Z(質量%)、めっき層のAl含有率:A(質量%)、めっき層のMn含有率:B(質量%)が、下記(1)式を満たし、且つ、TS×Elが22000MPa・%以上であることを特徴とする加工性に優れた高強度溶融亜鉛めっき鋼板。
3−(X+Y/10+Z/3)−12.5×(A−B)≧0・・・(1)
【0011】
(2)めっき層が、質量%で、Si:0.001〜0.1%、Mo:0.001〜0.1%、W:0.001〜0.1%、Zr:0.001〜0.1%、Cs:0.001〜0.1%、Rb:0.001〜0.1%、K:0.001〜0.1%、Ag:0.001〜5%、Na:0.001〜0.05%、Cd:0.001〜3%、Cu:0.001〜3%、Ni:0.001〜0.5%、Co:0.001〜1%、La:0.001〜0.1%、Tl:0.001〜8%、Nd:0.001〜0.1%、Y:0.001〜0.1%、In:0.001〜5%、Be:0.001〜0.1%、Cr:0.001〜0.05%、Pb:0.001〜1%、Hf:0.001〜0.1%、Tc:0.001〜0.1%、Ti:0.001〜0.1%、Ge:0.001〜5%、Ta:0.001〜0.1%、V:0.001〜0.2%、B:0.001〜0.1%、の1種または2種以上を、さらに含有することを特徴とする前記(1)に記載の加工性に優れた高強度溶融亜鉛めっき鋼板。
)鋼が、質量%で、Mo:0.001〜5%を、さらに含有することを特徴とする前記(1)または(2)に記載の加工性に優れた高強度溶融亜鉛めっき鋼板。
)鋼が、質量%で、Cr:0.001〜25%、Ni:0.001〜10%、W:0.001〜5%、Cu:0.001〜5%、Co:0.001〜5%の1種または2種以上を、さらに含有することを特徴とする前記(1)乃至()のいずれかに記載の加工性に優れた高強度溶融亜鉛めっき鋼板。
【0012】
)鋼が、質量%で、Nb:0.001%以上、Ti:0.001%以上、V:0.001%以上の1種または2種以上を合計で1%以下、さらに含有することを特徴とする前記(1)乃至()のいずれか1項に記載の加工性に優れた高強度溶融亜鉛めっき鋼板。
)鋼が、質量%で、B:0.0001〜0.1%を、さらに含有することを特徴とする前記(1)乃至()のいずれか1項に記載の加工性に優れた高強度溶融亜鉛めっき鋼板。
)鋼が、質量%で、Zr:0.001%以上、Hf:0.001%以上、Ta:0.001%以上の1種または2種以上を合計で1%以下、さらに含有することを特徴とする前記(1)乃至()のいずれか1項に記載の加工性に優れた高強度溶融亜鉛めっき鋼板。
)鋼が、質量%で、Y、REMの1種または2種以上を合計で0.0001〜0.1%、さらに含有することを特徴とする前記(1)乃至()のいずれか1項に記載の加工性に優れた高強度溶融亜鉛めっき鋼板。
)鋼が、質量%で、P:0.1%以下、S:0.1%以下を、さらに含有することを特徴とする前記(1)乃至()のいずれか1項に記載の加工性に優れた高強度溶融亜鉛めっき鋼板。
【0013】
10)鋼のミクロ組織が、フェライト相もしくはフェライト相とベイナイト相からなり、マルテンサイト相、残留オーステナイト相の一方もしくは両方を、体積分率で合計3%以上含む複合組織であることを特徴とするとする前記(1)乃至()のいずれか1項に記載の加工性に優れた高強度溶融亜鉛めっき鋼板。
11)前記(10)に記載の高強度溶融亜鉛めっき鋼板の製造において、鋳造スラブを鋳造ままもしくは一旦冷却した後に再度加熱し、熱延後巻取った熱延鋼板を酸洗後冷延し、その後、0.1×(Ac3 −Ac1 )+Ac1 (℃)以上Ac3+50(℃)以下の温度域で10秒〜30分焼鈍した後に、0.1〜10℃/秒の冷却速度で550〜700℃温度域に冷却し、引き続いて0.1〜100℃/秒の冷却速度でめっき浴温度〜めっき浴温度+100(℃)にまで冷却した後めっき浴に浸漬し、その後合金化処理を300〜580℃の温度域で行い、室温まで冷却することを特徴とする加工性に優れた高強度溶融亜鉛めっき鋼板の製造方法にある。
【0014】
【発明の実施の形態】
以下、本発明を詳細に説明する。
発明者らは、質量%で、C :0.0001〜0.3%、Si:0.1〜2.5%、Mn:0.01〜3%、Al:0.001〜4%を含有し、残部Fe及び不可避不純物からなる鋼板を焼鈍し、温度450〜470℃のZnめっき浴に3秒間浸漬を行い、さらに500〜550℃で10〜60秒加熱を行った。その後、めっき鋼板表面の不めっき部面積を測定することでめっき性を評価し、引張り試験にて機械的性質を合わせて評価した結果を、鋼中Si含有率:X(質量%)、鋼中Mn含有率:Y(質量%)、鋼中Al含有率:Z(質量%)、めっき層中Al含有率:A(質量%)、めっき層中Mn含有率:B(質量%)として、
3−(X+Y/10+Z/3)−12.5×(A−B)
の式にて整理したところ、
3−(X+Y/10+Z/3)−12.5×(A−B)≧0
を満たす組成で、不めっきのほとんど見られない高強度溶融めっき鋼板が得られることを見出した。
【0015】
不めっきの発生が抑制される理由の詳細については不明であるが、めっき浴中に添加されたAlと鋼板表面に生成したSiO2 との濡れ性が悪いため不めっきが発生すると考えられる。すなわち、Zn浴に添加したAlの悪影響を除去する元素を添加することで不めっきの発生を抑制することが可能となる。発明者らが鋭意検討した結果、Mnを適正な濃度範囲で添加することで表記目的を達成出来ることが判明した。MnはZn浴中に添加しているAlより優先的に酸化皮膜を形成し、鋼板表面に生成しているSi系の酸化皮膜との反応性を高めるものと推定される。
【0016】
また、めっき層中に質量%で、Si:0.001〜0.1%、Mo:0.001〜0.1%、W:0.001〜0.1%、Zr:0.001〜0.1%、Cs:0.001〜0.1%、Rb:0.001〜0.1%、K:0.001〜0.1%、Ag:0.001〜5%、Na:0.001〜0.05%、Cd:0.001〜3%、Cu:0.001〜3%、Ni:0.001〜0.5%、Co:0.001〜1%、La:0.001〜0.1%、Tl:0.001〜8%、Nd:0.001〜0.1%、Y:0.001〜0.1%、In:0.001〜5%、Be:0.001〜0.1%、Cr:0.001〜0.05%、Pb:0.001〜1%、Hf:0.001〜0.1%、Tc:0.001〜0.1%、Ti:0.001〜0.1%、Ge:0.001〜5%、Ta:0.001〜0.1%、V:0.001〜0.2%、B:0.001〜0.1%、の1種または2種以上を、さらに含有することで、不めっきが抑制されることを見出した。
【0017】
めっき付着量については、特に制約は設けないが、耐食性の観点から片面付着量で5g/m2 以上であることが望ましい。本発明の溶融Znめっき鋼板上に塗装性、溶接性を改善する目的で上層めっきを施すことや、各種の処理、例えば、クロメート処理、りん酸塩処理、潤滑性向上処理、溶接性向上処理等を施しても、本発明を逸脱するものではない。
【0018】
めっき層中Al量を0.001〜0.5質量%の範囲としたのは、0.001%未満では、ドロス発生が顕著で良好な外観が得られないこと、0.5%を超えてAlを添加すると合金化反応を著しく抑制してしまい、合金化溶融亜鉛めっき層を形成することが困難となるためである。
めっき層中Mn量を0.001〜2質量%の範囲内としたのは、この範囲において不めっきが発生せず、良好な外観のめっきが得られるためである。Mn量が上限の2質量%を超えるとめっき浴中にてMn−Zn化合物が析出し、めっき層中に取り込まれることで外観が著しく低下する。
【0019】
めっき層中Si量を0.001〜0.1質量%の範囲内としたのは、この範囲において不めっきが抑制され、良好な外観のめっきが得られるためである。Si量が上限の0.1質量%を超えるとSi有するドロスの生成により、めっき外観が著しく低下する。
めっき層中Mo量を0.001〜0.1質量%の範囲内としたのは、この範囲において不めっきが抑制され、良好な外観のめっきが得られるためである。Mo量が上限の0.1質量%を超えるとMoを含有するドロスの生成により、めっき外観が著しく低下する。
めっき層中W量を0.001〜0.1質量%の範囲内としたのは、この範囲において不めっきが抑制され、良好な外観のめっきが得られるためである。W量が上限の0.1質量%を超えるとWを含有するドロスの生成により、めっき外観が著しく低下する。
めっき層中Zr量を0.001〜0.1質量%の範囲内としたのは、この範囲において不めっきが抑制され、良好な外観のめっきが得られるためである。Zr量が上限の0.1質量%を超えるとZrを含有するドロスの生成により、めっき外観が著しく低下する。
めっき層中Cs量を0.001〜0.1質量%の範囲内としたのは、この範囲において不めっきが抑制され、良好な外観のめっきが得られるためである。Cs量が上限の0.1質量%を超えるとCsを含有するドロスの生成により、めっき外観が著しく低下する。
【0020】
めっき層中Rb量を0.001〜0.1質量%の範囲内としたのは、この範囲において不めっきが抑制され、良好な外観のめっきが得られるためである。Rb量が上限の0.1質量%を超えるとRbを含有するドロスの生成により、めっき外観が著しく低下する。
めっき層中K量を0.001〜0.1質量%の範囲内としたのは、この範囲において不めっきが抑制され、良好な外観のめっきが得られるためである。K量が上限の0.1質量%を超えるとKを含有するドロスの生成により、めっき外観が著しく低下する。
【0021】
めっき層中Ag量を0.001〜5質量%の範囲内としたのは、この範囲において不めっきが抑制され、良好な外観のめっきが得られるためである。Ag量が上限の5質量%を超えるとAgを含有するドロスの生成により、めっき外観が著しく低下する。
めっき層中Na量を0.001〜0.05質量%の範囲内としたのは、この範囲において不めっきが抑制され、良好な外観のめっきが得られるためである。Na量が上限の0.05質量%を超えるとNaを含有するドロスの生成により、めっき外観が著しく低下する。
【0022】
めっき層中Cd量を0.001〜3質量%の範囲内としたのは、この範囲において不めっきが抑制され、良好な外観のめっきが得られるためである。Cd量が上限の3質量%を超えるとCdを含有するドロスの生成により、めっき外観が著しく低下する。
めっき層中Cu量を0.001〜3質量%の範囲内としたのは、この範囲において不めっきが抑制され、良好な外観のめっきが得られるためである。Cu量が上限の3質量%を超えるとCuを含有するドロスの生成により、めっき外観が著しく低下する。
【0023】
めっき層中Ni量を0.001〜0.5質量%の範囲内としたのは、この範囲において不めっきが抑制され、良好な外観のめっきが得られるためである。Ni量が上限の0.5質量%を超えるとNiを含有するドロスの生成により、めっき外観が著しく低下する。
めっき層中Co量を0.001〜1質量%の範囲内としたのは、この範囲において不めっきが抑制され、良好な外観のめっきが得られるためである。Co量が上限の1質量%を超えるとCoを含有するドロスの生成により、めっき外観が著しく低下する。
【0024】
めっき層中La量を0.001〜0.1質量%の範囲内としたのは、この範囲において不めっきが抑制され、良好な外観のめっきが得られるためである。La量が上限の0.1質量%を超えるとLaを含有するドロスの生成により、めっき外観が著しく低下する。
めっき層中Tl量を0.001〜8質量%の範囲内としたのは、この範囲において不めっきが抑制され、良好な外観のめっきが得られるためである。Tl量が上限の8質量%を超えるとTlを含有するドロスの生成により、めっき外観が著しく低下する。
【0025】
めっき層中Nd量を0.001〜0.1質量%の範囲内としたのは、この範囲において不めっきが抑制され、良好な外観のめっきが得られるためである。Nd量が上限の0.1質量%を超えるとNdを含有するドロスの生成により、めっき外観が著しく低下する。
めっき層中Y量を0.001〜0.1質量%の範囲内としたのは、この範囲において不めっきが抑制され、良好な外観のめっきが得られるためである。Y量が上限の0.1質量%を超えるとYを含有するドロスの生成により、めっき外観が著しく低下する。
【0026】
めっき層中In量を0.001〜5質量%の範囲内としたのは、この範囲において不めっきが抑制され、良好な外観のめっきが得られるためである。In量が上限の5質量%を超えるとInを含有するドロスの生成により、めっき外観が著しく低下する。
【0027】
めっき層中Be量を0.001〜0.1質量%の範囲内としたのは、この範囲において不めっきが抑制され、良好な外観のめっきが得られるためである。Be量が上限の0.1質量%を超えるとBeを含有するドロスの生成により、めっき外観が著しく低下する。
めっき層中Cr量を0.001〜0.05質量%の範囲内としたのは、この範囲において不めっきが抑制され、良好な外観のめっきが得られるためである。Cr量が上限の0.05質量%を超えるとCrを含有するドロスの生成により、めっき外観が著しく低下する。
【0028】
めっき層中Pb量を0.001〜1質量%の範囲内としたのは、この範囲において不めっきが抑制され、良好な外観のめっきが得られるためである。Pb量が上限の1質量%を超えるとPbを含有するドロスの生成により、めっき外観が著しく低下する。
めっき層中Hf量を0.001〜0.1質量%の範囲内としたのは、この範囲において不めっきが抑制され、良好な外観のめっきが得られるためである。Hf量が上限の0.1質量%を超えるとHfを含有するドロスの生成により、めっき外観が著しく低下する。
【0029】
めっき層中Tc量を0.001〜0.1質量%の範囲内としたのは、この範囲において不めっきが抑制され、良好な外観のめっきが得られるためである。Tc量が上限の0.1質量%を超えるとTcを含有するドロスの生成により、めっき外観が著しく低下する。
めっき層中Ti量を0.001〜0.1質量%の範囲内としたのは、この範囲において不めっきが抑制され、良好な外観のめっきが得られるためである。Ti量が上限の0.1質量%を超えるとTiを含有するドロスの生成により、めっき外観が著しく低下する。
【0030】
めっき層中Ge量を0.001〜5質量%の範囲内としたのは、この範囲において不めっきが抑制され、良好な外観のめっきが得られるためである。Ge量が上限の5質量%を超えるとGeを含有するドロスの生成により、めっき外観が著しく低下する。
めっき層中Ta量を0.001〜0.1質量%の範囲内としたのは、この範囲において不めっきが抑制され、良好な外観のめっきが得られるためである。Ta量が上限の0.1質量%を超えるとTaを含有するドロスの生成により、めっき外観が著しく低下する。
【0031】
めっき層中V量を0.001〜0.2質量%の範囲内としたのは、この範囲において不めっきが抑制され、良好な外観のめっきが得られるためである。V量が上限の0.2質量%を超えるとVを含有するドロスの生成により、めっき外観が著しく低下する。
めっき層中B量を0.001〜0.1質量%の範囲内としたのは、この範囲において不めっきが抑制され、良好な外観のめっきが得られるためである。B量が上限の0.1質量%を超えるとBを含有するドロスの生成により、めっき外観が著しく低下する。
【0032】
合金化処理によってめっき層中にFeが取り込まれ、塗装性やスポット溶接性に優れた高強度溶融亜鉛めっき鋼板を得ることができる。Fe量が5質量%未満ではスポット溶接性が不十分となる。一方、Fe量が20質量%を超えるとめっき層自体の密着性を損ない、加工の際めっき層が破壊・脱落し金型に付着することで、成形時の疵の原因となる。したがって、合金化処理を行う場合のめっき層中Fe量の範囲は5〜20質量%とする
【0033】
次に、本発明における鋼板成分の限定理由について述べる。
C量の範囲を0.0001〜0.3質量%の範囲内としたのは、強度を確保するためにC量の下限を0.0001質量%とし、溶接性を保持可能な上限として0.3質量%とした。
Si量の範囲を0.01〜2.5質量%の範囲内としたのは、材質上強度を確保するためである。また、鋼中Siの上限を2.5質量%としたのは、これを超える添加は溶接性に悪影響を及ぼすためである。
【0034】
Mn量を0.01〜3質量%の範囲としたのは、0.01質量%以上で強化効果が現れること、3質量%を上限としたのは、これを上回る添加は伸びに悪影響を及ぼすためである。
Al量を0.001〜4質量%の範囲としたのは、0.001質量%以上で強化効果が現れる。この効果は4質量%で飽和し、それを超えるとめっき性など他の特性を損ない、製造コストの観点でも不利となるためである。
【0035】
Moは、強化に非常に有利な元素であるばかりでなく、強度延性バランスに悪影響を及ぼすパーライトや炭化物析出を効果的に抑制し、オーステナイトを残留させること、また、焼入れ性も向上させるためのマルテンサイト生成にも有利である。このため、Moは0.001質量%以上添加することが好ましい。一方で、過剰添加は生成した残留オーステナイトの安定化を遅延させたり、フェライトを硬化させることで延性低下を引き起こすため、5質量%を上限として添加する。
さらに、本発明が対象とする鋼は、強度のさらなる向上を目的としてCr、Ni、W、Cu、Coの1種または2種以上を含有できる。
Cr量を0.001〜25質量%の範囲としたのは、0.001質量%以上で強化効果が現れること、25質量%を上限としたのは、これを超える量の添加では、加工性に悪影響を及ぼすためである。
Ni量を0.001〜10質量%の範囲としたのは、0.001%以上で強化効果が現れること、10質量%を上限としたのは、これを超える量の添加では、加工性に悪影響を及ぼすためである。
【0036】
W量を0.001〜5質量%の範囲としたのは、0.001質量%以上で強
化効果が現れること、5質量%を上限としたのは、これを超える量の添加では、加工性に悪影響を及ぼすためである。
Cu量を0.001〜5質量%の範囲としたのは、0.001質量%以上で強化効果が現れること、25質量%を上限としたのは、これを超える量の添加では、加工性に悪影響を及ぼすためである。
【0037】
Co量を0.001〜5質量%の範囲としたのは、0.001質量%以上で強化効果が現れること、25質量%を上限としたのは、これを超える量の添加では、加工性に悪影響を及ぼすためである。
さらに、本発明が対象とする鋼は、強度のさらなる向上を目的として強炭化物形成元素であるNb,Ti,Vの1種または2種以上を含有できる。
【0038】
これらの元素は、微細な炭化物、窒化物または炭窒化物を形成して、鋼板の強化のは極めて有効であるため、必要に応じて1種または2種以上を0.001質量%以上の添加とした。一方で、延性劣化や残留オーステナイト中へのCの濃化を阻害することから、合計添加量の上限として1質量%ととした。
Bもまた、必要に応じて添加できる。Bは、粒界の強化や鋼材の高強度化に有効ではあるが、その添加量が0.1質量%を超えるとその効果が飽和するばかりでなく、必要以上に鋼板強度を上昇させ、加工性が低下するため、上限を0.1質量%とした。
強度のさらなる向上を目的として強炭化物形成元素であるZr,Hf,Taの1種または2種以上を含有できる。これらの元素は、微細な炭化物、窒化物または炭窒化物を形成して、鋼板の強化には極めて有効であるため、必要に応じて1種または2種以上を0.001質量%以上の添加とした。一方で、延性劣化や残留オーステナイト中へのCの濃化を阻害することから、合計添加量の上限として1質量%ととした。
Y、REMの合計量を0.0001〜0.1質量%の範囲としたのは、0.0001質量%以上でめっきの濡れ性を改善でき、また、0.1質量%を上限としたのは、これを超える量の添加では、溶接性や鋳造時や熱延時の製造性に悪影響を及ぼすためである。
【0039】
P量が0.1質量%を、S量が0.1質量%を、それぞれ超えると溶接性や鋳造時や熱延時の製造性に悪影響を及ぼすため、これらの値を上限として規制することが好ましいが、過度の極低化は経済的にも不利であることや、Pの場合は強化効果も期待できるため、P、Sのいずれも下限を0.0001質量%とすることが好ましい。
また、これ以外の不純物元素としては、Snを0.01質量%以下とすることが好ましく、この範囲であれば本発明鋼板の効果に悪影響は及ぼさない。
次に、基材鋼板の好ましいミクロ組織について述べる。
加工性を十分に確保するためには主組織をフェライト相とするのが望ましいが、高強度化を考慮するとベイナイト相を含んでも良い。また、高強度と高延性を両立させるため、残留オーステナイト相および/またはマルテンサイト相を含む複合組織とする。高強度と高延性のために、残留オーステナイト相とマルテンサイト相は、体積率で合計3%以上とした。上限は特に定めないが、体積率が合計40%を超えると脆化傾向を示すため、40%以下が望ましい。
【0040】
このような組織を有する高強度溶融亜鉛めっき鋼板の製造方法について以下説明する。
熱延後冷延・焼鈍して本発明の鋼板を製造する場合には、所定の成分に調整されたスラブを鋳造ままもしくは一旦冷却した後再加熱して熱延を行い、その後酸洗し、冷延後焼鈍することで最終製品とする。この時、熱延完了温度は鋼の化学成分によって決まるAr3 変態温度以上で行うのが一般的であるが、Ar3 から10℃程度低温までであれば最終的な鋼板の特性を劣化させない。また、冷却後の巻取温度は鋼の化学成分によって決まるベイナイト変態開始温度以上とすることで、冷延時の荷重を必要以上に高めることがさけられるが、冷延の全圧下率が小さい場合にはこの限りでなく、鋼のベイナイト変態温度以下で巻き取られても最終的な鋼板の特性を劣化させない。また、冷延の全圧下率は、最終板厚と冷延荷重の関係から設定されるが、40%以上であれば最終的な鋼板の特性を劣化させない。
【0041】
冷延後焼鈍する際に、焼鈍温度が鋼の化学成分によって決まる温度Ac1 及びAc3 温度(例えば「鉄鋼材料学」:W. C. Leslie著、幸田成康監訳、丸善P273)で、表現される0.1×(Ac3 −Ac1 )+Ac1 (℃)未満の場合には、焼鈍温度で得られるオーステナイト量が少ないので、最終的な鋼板中に残留オーステナイト相またはマルテンサイト相を残すことができないためにこれを焼鈍温度の下限とした。また、焼鈍温度がAc3 +50(℃)を超えても何ら鋼板の特性を改善することがでず製造コストの上昇をまねくために、焼鈍温度の上限をAc3 +50(℃)とした。この温度での焼鈍時間は鋼板の温度均一化とオーステナイトの確保のために10秒以上が必要である。しかし、3分超では、効果が飽和するばかりでなくコストの上昇を招くのでこれを上限とした。
【0042】
その後の一次冷却はオーステナイト相からフェライト相への変態を促して、未変態のオーステナイト相中にCを濃化させてオーステナイトの安定化をはかるのに重要である。この冷却速度が0.1℃/秒以下にすることは、必要な生産ライン長を長くしたり、生産速度を極めて遅くするといった製造上のデメリットを生じるために、この冷却速度の下限を0.1℃/秒とした。一方、冷却速度が10℃/秒以上の場合にはフェライト変態が十分に起こらず、最終的な鋼板中の残留オーステナイト相確保が困難となったり、マルテンサイト相などの硬質相が多量になってしまうため、これを上限とした。
【0043】
この一次冷却が550℃未満まで行われると、冷却中にパーライトが生成し、オーステナイト安定化元素であるCを浪費し、最終的に十分な量の残留オーステナイトが得られないために、これを下限とした。しかしながら、冷却が700℃超までしか行われなかった場合にはフェライト変態の進行が十分ではないので、これを上限とした。
引き続き行われる二次冷却の急速冷却は、冷却中にパーライト変態や鉄炭化物の析出などが起こらないような冷却速度として最低0.1℃/秒以上が必要となる。但しこの冷却速度を100℃/秒以上にすることは設備能力上困難であることから、0.1〜100℃を冷却速度の範囲とした。
【0044】
この二次冷却の冷却停止温度がめっき浴温度よりも低いと操業上問題となり、めっき浴温度+100(℃)を超えると炭化物析出が短時間で生じるため、得られる残留オーステナイトやマルテンサイトの量が確保できなくなる。このため、2次冷却の停止温度をめっき浴温度以上めっき浴温度+100(℃)とした。
鋼板中に残留しているオーステナイト相を室温で安定にするためには、その一部をベイナイト相へ変態させる事でオーステナイト中の炭素濃度を更に高めることが必須である。合金化処理を併せてベイナイト変態を促進するために300〜550℃の温度域に15秒から20分保持することが望ましい。300℃未満ではベイナイト変態が起こりにくく、580℃を超えると炭化物が生じて十分な残留オーステナイト相を残すことが困難となるため合金化処理温度の上限を580℃ととした。
【0045】
マルテンサイト相を生成させるには、残留オーステナイト相の場合とは異なりベイナイト変態を生じさせる必要がない。一方では、炭化物やパーライト相の生成は残留オーステナイト相と同様、抑制する必要があるため、2次冷却後の十分な合金化処理を行うため400℃〜550℃の温度域で合金化処理することとする。
【0046】
【実施例】
以下、実施例によって本発明をさらに詳細に説明する。
表1に示すような組成の鋼板を、1200℃に加熱し、Ar3 変態温度以上で熱延を完了し、冷却後各鋼の化学成分で決まるベイナイト変態開始温度以上で巻き取った鋼帯を酸洗後、冷延して1.0mm厚とした。
その後、各鋼の成分(質量%)から下記式にしたがってAc1 とAc3 変態温度を計算により求めた。

Figure 0004781577
【0047】
これらのAc1 およびAc3 変態温度から計算される焼鈍温度に10%H2 −N2 雰囲気中で昇温・保定したのち、0.1〜10℃/秒の冷却速度で550〜700℃温度域に冷却し、引き続いて0.1〜20℃/秒の冷却速度でめっき浴温度にまで冷却し、浴組成を種々変化させた460℃の亜鉛めっき浴に3秒間浸漬することでめっきを行った。
【0048】
また、一部の鋼板については、Fe−Zn合金化処理として、めっき後の鋼板を300〜580℃の温度域で15秒〜20分保持し、めっき層中のFe含有率が質量%で5〜20となるよう調節した。めっき表面外観のドロス巻き込み状況の目視観察および不めっき部面積の測定によりめっき性を評価した。作製しためっきはめっき層をインヒビターを含有した5%塩酸溶液で溶解し化学分析に供し組成を求め表2に示した。
【0049】
表1より、本発明鋼は、強度・伸びバランスに優れTS×Elが22000MPa・%と高いことがわかる。一方、本発明の成分範囲を満たさない比較例は、いずれも強度・伸びバランスに劣りTS×Elの値が15000MPa・%以下と低い。表2および表3より、本発明の鋼板(表中〜56)は、不めっき発生が少なく、外観も良好である。それに比較して本発明の範囲を逸脱する場合(表中57〜63)は、不めっきの発生が多いあるいは外観が不良、もしくは所定の材質を満たさない。また、表4は7および12の製造条件と材質の関係を示した表であるが、本願発明の請求項の範囲で製造した鋼板は、ミクロ組織も上述した組織になっており強度・伸びバランスに優れている。
【0050】
【表1】
Figure 0004781577
【0051】
【表2】
Figure 0004781577
【0052】
【表3】
Figure 0004781577
【0053】
【表4】
Figure 0004781577
【0054】
【発明の効果】
本発明の高強度溶融亜鉛めっき鋼板は不めっきの発生が抑制され外観及び加工性が良好であり、建材、家電製品、自動車車体用途等に極めて有効である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-strength hot-dip galvanized steel sheet excellent in workability suitable for building materials, home appliances, automobiles, and the like, and a method for producing the same.
[0002]
[Prior art]
Hot dip galvanizing is applied for the purpose of corrosion protection of steel sheets, and is widely used in building materials, home appliances, automobiles and the like. As a manufacturing method, after degreasing and cleaning in a continuous line, heat in a non-oxidizing atmosphere, anneal in a reducing atmosphere containing H2 and N2, cool to the plating bath temperature, and immerse in a molten zinc bath Thereafter, there is a Sendzimer method of cooling or reheating to generate an Fe—Zn alloy phase and then cooling, which is frequently used for the treatment of steel sheets.
[0003]
As for annealing before plating, an all-reducing furnace method in which annealing is performed in a reducing atmosphere containing H2 and N2 immediately after degreasing and without heating in a non-oxidizing atmosphere may be performed. In addition, a flux method is also performed in which a steel sheet is degreased and pickled, and then flux treatment is performed using ammonium chloride and the like, soaking in a plating bath, and then cooling.
[0004]
A small amount of Al is added to the plating bath used in these plating processes for deoxidation of molten zinc. In the Sendzimer method, the Zn plating bath contains about 0.1% Al by mass%. Since Al in this bath has a stronger affinity for Fe than Fe-Zn, when steel is immersed in the plating bath, an Fe-Al alloy phase, that is, an Al concentrated layer, is formed on the steel surface. It is known to suppress the reaction. Due to the presence of the Al concentrated layer, the Al content in the obtained plating layer is usually higher than the Al content in the plating bath.
[0005]
In recent years, the demand for high-strength steel sheets having high ductility has been increasing from the viewpoint of reducing the weight of a vehicle body for the purpose of improving fuel consumption especially in the automobile body. As an inexpensive strengthening method, Si is added to the steel, and the high ductility and high strength steel sheet may contain 1% by mass or more.
On the other hand, from the viewpoint of plating, when the Si content in the steel exceeds 0.3% by mass, plating wettability is greatly reduced in the Sendzimer method using a plating bath containing ordinary Al, Appearance quality deteriorates because non-plating occurs. It is said that this is because Si oxide is concentrated on the surface of the steel sheet during reduction annealing, and the wettability of Si oxide to molten zinc is poor.
[0006]
As a means for solving this problem, as shown in JP-A-3-28359, JP-A-3-64437 and the like, the plating property is improved by applying specific plating. Then, it is necessary to provide a new plating facility in front of the hot dipping line annealing furnace or to perform a plating process in the electroplating line in advance, resulting in a significant increase in cost.
[0007]
[Problems to be solved by the invention]
An object of the present invention is to solve the above-mentioned problems, and to provide a high-strength hot-dip galvanized steel sheet that is excellent in workability and in which non-plating is suppressed and a method for producing the same.
[0008]
[Means for Solving the Problems]
As a result of various studies, the inventors have found that the wettability of a high-strength steel sheet is improved by adding a specific element to the plating layer at an appropriate concentration. Moreover, this effect can be strengthened by reducing the Al concentration in the plating phase. Furthermore, the Si content of steel: X (mass%), the Mn content of steel: Y (mass%), and the Al content of steel. Rate: Z (mass%), Al content of plating layer: A (mass%), Mn content of plating layer: B (mass%) is 3- (X + Y / 10 + Z / 3) -12.5 × ( It has been found that extremely good plating can be obtained by using a steel and plating composition satisfying A−B) ≧ 0.
[0009]
  The present invention has been completed based on the above findings, and the gist thereof is as follows.
(1) By mass%, C: 0.0001 to 0.3%, Si: 0.1 to 2.5%, Mn: 0.01 to 3%, Al: 0.001 to 4%, The balance is composed of Fe and inevitable impurities, and on the surface, by mass, Al: 0.001 to 0.5%, Mn: 0.001 to 2%, Fe: 5 to 20%, the balance being Zn and inevitable A hot-dip galvanized steel sheet having a plating layer made of impurities, comprising: Si content of steel: X (mass%), Mn content of steel: Y (mass%), Al content of steel: Z (mass%) The Al content of the plating layer: A (mass%) and the Mn content of the plating layer: B (mass%) satisfy the following formula (1).And TS × El is 22000 MPa ·% or more.A high-strength hot-dip galvanized steel sheet with excellent workability.
3- (X + Y / 10 + Z / 3) -12.5 × (A−B) ≧ 0 (1)
[0011]
  (2) Plating layer is mass%, Si: 0.001 to 0.1%, Mo: 0.001 to 0.1%, W: 0.001 to 0.1%, Zr: 0.001 0.1%, Cs: 0.001 to 0.1%, Rb: 0.001 to 0.1%, K: 0.001 to 0.1%, Ag: 0.001 to 5%, Na: 0 0.001 to 0.05%, Cd: 0.001 to 3%, Cu: 0.001 to 3%, Ni: 0.001 to 0.5%, Co: 0.001 to 1%, La: 0.00. 001 to 0.1%, Tl: 0.001 to 8%, Nd: 0.001 to 0.1%, Y: 0.001 to 0.1%, In: 0.001 to 5%, Be: 0 0.001 to 0.1%, Cr: 0.001 to 0.05%, Pb: 0.001 to 1%, Hf: 0.001 to 0.1%, Tc: 0.001 to 0.1%, Ti: 0.001 to 0.1% , Ge: 0.001-5%, Ta: 0.001-0.1%, V: 0.001-0.2%, B: 0.001-0.1%, one or more Further containing (1))High-strength hot-dip galvanized steel sheet with excellent workability as described.
  (3The steel (1) is characterized by further containing Mo: 0.001 to 5% by mass.Or (2)High-strength hot-dip galvanized steel sheet with excellent workability as described in 1.
  (4) Steel is mass%, Cr: 0.001-25%, Ni: 0.001-10%, W: 0.001-5%, Cu: 0.001-5%, Co: 0.001- (1) to (1) characterized by further containing 5% of one kind or two or more kinds3) High-strength hot-dip galvanized steel sheet with excellent workability.
[0012]
  (5) The steel further contains 1% or less in total of one or more of Nb: 0.001% or more, Ti: 0.001% or more, V: 0.001% or more in mass%. Features (1) to (4The high-strength hot-dip galvanized steel sheet excellent in workability according to any one of the above.
  (6The steel (1) to (1), wherein the steel further contains B: 0.0001 to 0.1% by mass%.5The high-strength hot-dip galvanized steel sheet excellent in workability according to any one of the above.
  (7) The steel further contains 1% or less in total of one or more of Zr: 0.001% or more, Hf: 0.001% or more, Ta: 0.001% or more in mass%. Features (1) to (6The high-strength hot-dip galvanized steel sheet excellent in workability according to any one of the above.
  (8(1) to (1), wherein the steel further contains 0.0001 to 0.1% in total of one or more of Y and REM in mass%.7The high-strength hot-dip galvanized steel sheet excellent in workability according to any one of the above.
  (9) The steel further contains, by mass%, P: 0.1% or less and S: 0.1% or less (1) to (8The high-strength hot-dip galvanized steel sheet excellent in workability according to any one of the above.
[0013]
  (10) It is characterized in that the microstructure of the steel is a composite structure comprising a ferrite phase or a ferrite phase and a bainite phase and containing one or both of a martensite phase and a retained austenite phase in a total volume of 3% or more. (1) to (9The high-strength hot-dip galvanized steel sheet excellent in workability according to any one of the above.
  (11) (10In the production of the high-strength hot-dip galvanized steel sheet described in (1), the cast slab is cast as it is or once cooled and then heated again, and the hot-rolled steel sheet wound after hot rolling is pickled and cold-rolled, and then 0.1% X (Ac3 -Ac1) + Ac1 (° C.) After annealing in a temperature range of not less than Ac3 + 50 (° C.) for 10 seconds to 30 minutes, it is cooled to a temperature range of 550 to 700 ° C. at a cooling rate of 0.1 to 10 ° C./second. Subsequently, after cooling from a plating bath temperature to a plating bath temperature +100 (° C.) at a cooling rate of 0.1 to 100 ° C./second, the substrate is immersed in a plating bath, and then alloying treatment is performed in a temperature range of 300 to 580 ° C. It is in the manufacturing method of the high intensity | strength hot-dip galvanized steel plate excellent in workability characterized by performing and cooling to room temperature.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The inventors include, in mass%, C: 0.0001 to 0.3%, Si: 0.1 to 2.5%, Mn: 0.01 to 3%, Al: 0.001 to 4%. Then, the steel sheet composed of the remaining Fe and inevitable impurities was annealed, immersed in a Zn plating bath at a temperature of 450 to 470 ° C. for 3 seconds, and further heated at 500 to 550 ° C. for 10 to 60 seconds. Thereafter, the plating property was evaluated by measuring the area of the unplated portion on the surface of the plated steel sheet, and the result of evaluating the mechanical properties in combination with the tensile test was determined as follows: Si content in steel: X (mass%), Mn content: Y (mass%), Al content in steel: Z (mass%), Al content in plating layer: A (mass%), Mn content in plating layer: B (mass%),
3- (X + Y / 10 + Z / 3) -12.5 × (A−B)
When arranged by the formula of
3- (X + Y / 10 + Z / 3) -12.5 × (A−B) ≧ 0
It was found that a high-strength hot-dip galvanized steel sheet having a composition satisfying the above condition and having almost no plating was obtained.
[0015]
Although the details of the reason why the occurrence of non-plating is suppressed are unknown, it is considered that non-plating occurs due to poor wettability between Al added in the plating bath and SiO2 formed on the steel plate surface. That is, it is possible to suppress the occurrence of non-plating by adding an element that removes the adverse effect of Al added to the Zn bath. As a result of intensive studies by the inventors, it was found that the notation purpose can be achieved by adding Mn in an appropriate concentration range. It is presumed that Mn forms an oxide film preferentially over Al added in the Zn bath and enhances the reactivity with the Si-based oxide film generated on the steel sheet surface.
[0016]
Further, in the plating layer in mass%, Si: 0.001 to 0.1%, Mo: 0.001 to 0.1%, W: 0.001 to 0.1%, Zr: 0.001 to 0 0.1%, Cs: 0.001 to 0.1%, Rb: 0.001 to 0.1%, K: 0.001 to 0.1%, Ag: 0.001 to 5%, Na: 0.0. 001 to 0.05%, Cd: 0.001 to 3%, Cu: 0.001 to 3%, Ni: 0.001 to 0.5%, Co: 0.001 to 1%, La: 0.001 -0.1%, Tl: 0.001-8%, Nd: 0.001-0.1%, Y: 0.001-0.1%, In: 0.001-5%, Be: 0.0. 001-0.1%, Cr: 0.001-0.05%, Pb: 0.001-1%, Hf: 0.001-0.1%, Tc: 0.001-0.1%, Ti : 0.001 to 0.1% , Ge: 0.001-5%, Ta: 0.001-0.1%, V: 0.001-0.2%, B: 0.001-0.1%, one or more Furthermore, it discovered that non-plating was suppressed by containing.
[0017]
The plating adhesion amount is not particularly limited, but is preferably 5 g / m 2 or more in terms of single-sided adhesion from the viewpoint of corrosion resistance. For the purpose of improving the paintability and weldability on the hot-dip Zn plated steel sheet of the present invention, various treatments such as chromate treatment, phosphate treatment, lubricity improvement treatment, weldability improvement treatment, etc. However, the present invention does not depart from the present invention.
[0018]
The reason why the amount of Al in the plating layer is in the range of 0.001 to 0.5 mass% is that if it is less than 0.001%, dross generation is remarkable and a good appearance cannot be obtained, exceeding 0.5% When Al is added, the alloying reaction is remarkably suppressed, and it becomes difficult to form an alloyed hot-dip galvanized layer.
The reason why the amount of Mn in the plating layer is set in the range of 0.001 to 2 mass% is that no plating is generated in this range and plating with a good appearance can be obtained. When the amount of Mn exceeds 2 mass% of an upper limit, a Mn-Zn compound will precipitate in a plating bath and it will take in in a plating layer, and an external appearance will fall remarkably.
[0019]
The reason why the Si amount in the plating layer is within the range of 0.001 to 0.1% by mass is that non-plating is suppressed within this range, and plating with a good appearance can be obtained. When the amount of Si exceeds the upper limit of 0.1% by mass, the appearance of plating is remarkably deteriorated due to generation of dross having Si.
The reason why the amount of Mo in the plating layer is within the range of 0.001 to 0.1% by mass is that non-plating is suppressed within this range and plating with a good appearance can be obtained. When the amount of Mo exceeds the upper limit of 0.1% by mass, the appearance of plating is significantly deteriorated due to generation of dross containing Mo.
The reason why the W amount in the plating layer is within the range of 0.001 to 0.1% by mass is that non-plating is suppressed within this range, and plating with a good appearance can be obtained. When the amount of W exceeds the upper limit of 0.1% by mass, the appearance of plating is remarkably deteriorated due to the generation of dross containing W.
The reason why the amount of Zr in the plating layer is in the range of 0.001 to 0.1 mass% is that non-plating is suppressed in this range, and plating with a good appearance can be obtained. When the amount of Zr exceeds the upper limit of 0.1% by mass, the appearance of the plating is remarkably deteriorated due to generation of dross containing Zr.
The reason why the amount of Cs in the plating layer is within the range of 0.001 to 0.1% by mass is that non-plating is suppressed within this range, and plating with a good appearance can be obtained. When the amount of Cs exceeds the upper limit of 0.1% by mass, the appearance of plating is remarkably deteriorated due to the generation of dross containing Cs.
[0020]
The reason why the amount of Rb in the plating layer is within the range of 0.001 to 0.1% by mass is that non-plating is suppressed within this range, and plating with a good appearance can be obtained. When the amount of Rb exceeds the upper limit of 0.1% by mass, the appearance of plating is remarkably deteriorated due to the generation of dross containing Rb.
The reason why the amount of K in the plating layer is in the range of 0.001 to 0.1 mass% is that non-plating is suppressed in this range and plating with a good appearance is obtained. When the amount of K exceeds the upper limit of 0.1% by mass, the appearance of plating is remarkably deteriorated due to generation of dross containing K.
[0021]
The reason why the amount of Ag in the plating layer is in the range of 0.001 to 5% by mass is that non-plating is suppressed in this range and plating with a good appearance is obtained. When the amount of Ag exceeds the upper limit of 5% by mass, the appearance of plating is significantly deteriorated due to the generation of dross containing Ag.
The reason why the amount of Na in the plating layer is within the range of 0.001 to 0.05 mass% is that non-plating is suppressed within this range, and plating with a good appearance can be obtained. When the amount of Na exceeds the upper limit of 0.05% by mass, the appearance of plating is remarkably deteriorated due to generation of dross containing Na.
[0022]
The reason why the amount of Cd in the plating layer is in the range of 0.001 to 3% by mass is that non-plating is suppressed in this range and plating with a good appearance is obtained. When the amount of Cd exceeds the upper limit of 3% by mass, the appearance of plating is remarkably deteriorated due to generation of dross containing Cd.
The reason why the amount of Cu in the plating layer is within the range of 0.001 to 3% by mass is that non-plating is suppressed within this range and plating with a good appearance is obtained. When the amount of Cu exceeds the upper limit of 3% by mass, the appearance of plating is remarkably deteriorated due to the generation of dross containing Cu.
[0023]
The reason why the amount of Ni in the plating layer is within the range of 0.001 to 0.5% by mass is that non-plating is suppressed within this range and plating with a good appearance can be obtained. When the amount of Ni exceeds the upper limit of 0.5% by mass, the appearance of plating is remarkably deteriorated due to generation of dross containing Ni.
The reason why the amount of Co in the plating layer is within the range of 0.001 to 1% by mass is that non-plating is suppressed in this range and plating with a good appearance is obtained. When the amount of Co exceeds the upper limit of 1% by mass, the appearance of plating is significantly deteriorated due to the generation of dross containing Co.
[0024]
The reason why the amount of La in the plating layer is set in the range of 0.001 to 0.1% by mass is that non-plating is suppressed in this range and plating with a good appearance can be obtained. When the amount of La exceeds the upper limit of 0.1% by mass, the appearance of plating is remarkably deteriorated due to generation of dross containing La.
The reason why the amount of Tl in the plating layer is in the range of 0.001 to 8% by mass is that non-plating is suppressed in this range and plating with a good appearance can be obtained. When the amount of Tl exceeds the upper limit of 8% by mass, the appearance of plating is remarkably deteriorated due to generation of dross containing Tl.
[0025]
The reason why the amount of Nd in the plating layer is within the range of 0.001 to 0.1% by mass is that non-plating is suppressed within this range, and plating with a good appearance can be obtained. When the amount of Nd exceeds the upper limit of 0.1% by mass, the appearance of plating is significantly deteriorated due to generation of dross containing Nd.
The reason why the amount of Y in the plating layer is within the range of 0.001 to 0.1% by mass is that non-plating is suppressed within this range and plating with a good appearance can be obtained. When the amount of Y exceeds the upper limit of 0.1% by mass, the appearance of plating is remarkably deteriorated due to the generation of dross containing Y.
[0026]
The reason why the amount of In in the plating layer is in the range of 0.001 to 5% by mass is that non-plating is suppressed in this range and plating with a good appearance is obtained. When the amount of In exceeds the upper limit of 5% by mass, the appearance of plating is significantly deteriorated due to generation of dross containing In.
[0027]
The reason why the amount of Be in the plating layer is in the range of 0.001 to 0.1 mass% is that non-plating is suppressed in this range, and plating with a good appearance can be obtained. When the amount of Be exceeds the upper limit of 0.1% by mass, the appearance of plating is remarkably deteriorated due to generation of dross containing Be.
The reason why the Cr content in the plating layer is within the range of 0.001 to 0.05% by mass is that non-plating is suppressed within this range, and plating with a good appearance can be obtained. When the amount of Cr exceeds the upper limit of 0.05% by mass, the appearance of plating is remarkably deteriorated due to generation of dross containing Cr.
[0028]
The reason why the amount of Pb in the plating layer is within the range of 0.001 to 1% by mass is that non-plating is suppressed within this range and plating with a good appearance can be obtained. When the amount of Pb exceeds the upper limit of 1% by mass, the appearance of plating is remarkably deteriorated due to generation of dross containing Pb.
The reason why the amount of Hf in the plating layer is within the range of 0.001 to 0.1% by mass is that non-plating is suppressed within this range, and plating with a good appearance can be obtained. When the amount of Hf exceeds the upper limit of 0.1% by mass, the appearance of plating is significantly deteriorated due to generation of dross containing Hf.
[0029]
The reason why the amount of Tc in the plating layer is within the range of 0.001 to 0.1% by mass is that non-plating is suppressed within this range, and plating with a good appearance can be obtained. When the amount of Tc exceeds the upper limit of 0.1% by mass, the appearance of plating is remarkably deteriorated due to generation of dross containing Tc.
The reason why the amount of Ti in the plating layer is within the range of 0.001 to 0.1% by mass is that non-plating is suppressed within this range and plating with a good appearance can be obtained. When the amount of Ti exceeds the upper limit of 0.1% by mass, the appearance of plating is remarkably deteriorated due to generation of dross containing Ti.
[0030]
The reason why the amount of Ge in the plating layer is within the range of 0.001 to 5% by mass is that non-plating is suppressed within this range and plating with a good appearance can be obtained. When the amount of Ge exceeds the upper limit of 5% by mass, the appearance of plating is remarkably deteriorated due to generation of dross containing Ge.
The reason why the amount of Ta in the plating layer is in the range of 0.001 to 0.1 mass% is that non-plating is suppressed in this range and plating with a good appearance is obtained. When the amount of Ta exceeds the upper limit of 0.1% by mass, the appearance of plating is significantly deteriorated due to the generation of dross containing Ta.
[0031]
The reason why the amount of V in the plating layer is within the range of 0.001 to 0.2% by mass is that non-plating is suppressed in this range and plating with a good appearance can be obtained. When the amount of V exceeds the upper limit of 0.2% by mass, the appearance of plating is remarkably deteriorated due to generation of dross containing V.
The reason why the amount of B in the plating layer is within the range of 0.001 to 0.1% by mass is that non-plating is suppressed within this range and plating with a good appearance can be obtained. When the amount of B exceeds the upper limit of 0.1% by mass, the appearance of plating is remarkably deteriorated due to generation of dross containing B.
[0032]
  Fe is taken into the plating layer by the alloying treatment, and a high-strength hot-dip galvanized steel sheet excellent in paintability and spot weldability can be obtained. If the amount of Fe is less than 5% by mass, spot weldability is insufficient. On the other hand, if the amount of Fe exceeds 20% by mass, the adhesion of the plating layer itself is impaired, and the plating layer breaks and drops during processing and adheres to the mold, thereby causing defects during molding. Therefore, the range of the amount of Fe in the plating layer when alloying is performed is 5 to 20% by mass..
[0033]
Next, the reasons for limiting the steel plate components in the present invention will be described.
The range of the C amount is within the range of 0.0001 to 0.3% by mass because the lower limit of the C amount is 0.0001% by mass in order to ensure strength, and the upper limit for maintaining weldability is 0.00. The content was 3% by mass.
The reason why the Si amount is within the range of 0.01 to 2.5% by mass is to ensure strength in terms of material. The reason why the upper limit of Si in the steel is set to 2.5% by mass is that addition exceeding this value adversely affects weldability.
[0034]
The reason why the Mn amount is in the range of 0.01 to 3% by mass is that a strengthening effect appears at 0.01% by mass or more, and the upper limit of 3% by mass has an adverse effect on elongation. Because.
The reason why the Al amount is in the range of 0.001 to 4 mass% is that the strengthening effect appears at 0.001 mass% or more. This effect is saturated at 4% by mass, and beyond that, other characteristics such as plating properties are impaired, and this is disadvantageous from the viewpoint of manufacturing cost.
[0035]
Mo is not only a very advantageous element for strengthening, but also effectively suppresses the precipitation of pearlite and carbides that adversely affect the strength-ductility balance, leaving austenite, and also improving the hardenability. It is also advantageous for site generation. For this reason, it is preferable to add Mo 0.001 mass% or more. On the other hand, excessive addition delays stabilization of the produced retained austenite or causes ductile deterioration by hardening the ferrite, so 5 mass% is added as the upper limit.
Furthermore, the steel targeted by the present invention can contain one or more of Cr, Ni, W, Cu, Co for the purpose of further improving the strength.
The Cr content in the range of 0.001 to 25% by mass means that a strengthening effect appears at 0.001% by mass or more, and the upper limit is 25% by mass. This is to adversely affect
The amount of Ni in the range of 0.001 to 10% by mass is that the strengthening effect appears at 0.001% or more, and the upper limit of 10% by mass is the workability when the amount exceeds this. This is to have an adverse effect.
[0036]
The amount of W is in the range of 0.001 to 5% by mass and is strong at 0.001% by mass or more.
The reason why the effect of crystallization appears is that the upper limit of 5% by mass is that if the amount exceeds this, the workability is adversely affected.
The amount of Cu in the range of 0.001 to 5% by mass is that the strengthening effect appears at 0.001% by mass or more, and the upper limit of 25% by mass is the workability when the amount exceeds this. This is to adversely affect
[0037]
The Co content in the range of 0.001 to 5 mass% is that the strengthening effect appears at 0.001 mass% or more, and the upper limit of 25 mass% is the workability when the amount exceeds this amount. This is to adversely affect
Furthermore, the steel targeted by the present invention can contain one or more of Nb, Ti, and V, which are strong carbide forming elements, for the purpose of further improving the strength.
[0038]
These elements form fine carbides, nitrides or carbonitrides, and are extremely effective in strengthening steel sheets. If necessary, one or more elements are added in an amount of 0.001% by mass or more. It was. On the other hand, since it inhibits ductility deterioration and concentration of C in retained austenite, the upper limit of the total addition amount is set to 1% by mass.
B can also be added as needed. B is effective for strengthening grain boundaries and increasing the strength of steel, but when the amount of addition exceeds 0.1% by mass, the effect is not only saturated, but the strength of the steel sheet is increased more than necessary. The upper limit was made 0.1% by mass because the properties deteriorated.
For the purpose of further improving the strength, one or more of Zr, Hf, Ta, which are strong carbide forming elements, can be contained. These elements form fine carbides, nitrides, or carbonitrides, and are extremely effective for strengthening steel sheets. Therefore, one or more elements are added in an amount of 0.001% by mass or more as necessary. It was. On the other hand, since it inhibits ductility deterioration and concentration of C in retained austenite, the upper limit of the total addition amount is set to 1% by mass.
The total amount of Y and REM is in the range of 0.0001 to 0.1% by mass because the wettability of plating can be improved by 0.0001% by mass or more, and the upper limit is 0.1% by mass. This is because addition of an amount exceeding this adversely affects weldability and manufacturability during casting and hot rolling.
[0039]
If the amount of P exceeds 0.1% by mass and the amount of S exceeds 0.1% by mass, the weldability and the manufacturability during casting and hot rolling are adversely affected. However, excessively low is economically disadvantageous, and in the case of P, a strengthening effect can be expected. Therefore, it is preferable that the lower limit of both P and S is 0.0001% by mass.
Moreover, as an impurity element other than this, it is preferable to make Sn into 0.01 mass% or less, and if it is this range, it will not have a bad influence on the effect of this invention steel plate.
Next, a preferable microstructure of the base steel sheet will be described.
In order to sufficiently secure the workability, it is desirable that the main structure is a ferrite phase, but a bainite phase may be included in consideration of increasing the strength. Further, in order to achieve both high strength and high ductility, a composite structure including a retained austenite phase and / or a martensite phase is formed. For high strength and high ductility, the residual austenite phase and martensite phase were made 3% or more in total by volume. The upper limit is not particularly defined, but 40% or less is desirable because the embrittlement tendency is exhibited when the volume ratio exceeds 40% in total.
[0040]
A method for producing a high-strength hot-dip galvanized steel sheet having such a structure will be described below.
When producing the steel sheet of the present invention by cold rolling and annealing after hot rolling, the slab adjusted to a predetermined component is cast or once cooled and then reheated and hot rolled, and then pickled. Finished by annealing after cold rolling. At this time, the hot rolling completion temperature is generally higher than the Ar3 transformation temperature determined by the chemical composition of the steel, but if the temperature is lower than Ar3 by about 10 ° C, the final steel sheet characteristics will not be deteriorated. In addition, the coiling temperature after cooling is higher than the bainite transformation start temperature determined by the chemical composition of the steel, so that the load during cold rolling can be increased more than necessary, but when the total rolling reduction of cold rolling is small Is not limited to this, and even if the steel sheet is wound at a temperature lower than the bainite transformation temperature of the steel, the properties of the final steel sheet are not deteriorated. Further, the total rolling reduction ratio of the cold rolling is set based on the relationship between the final sheet thickness and the cold rolling load, but if it is 40% or more, the final steel sheet characteristics are not deteriorated.
[0041]
When annealing after cold rolling, the annealing temperature is expressed by the temperatures Ac1 and Ac3 determined by the chemical composition of the steel (for example, “Steel Material Science” written by W. C. Leslie, translated by Naruyasu Koda, Maruzen P273). When the temperature is less than 1 × (Ac3−Ac1) + Ac1 (° C.), the amount of austenite obtained at the annealing temperature is so small that the retained austenite phase or martensite phase cannot be left in the final steel sheet. Was the lower limit of the annealing temperature. Further, even if the annealing temperature exceeded Ac3 +50 (° C), the upper limit of the annealing temperature was set to Ac3 +50 (° C) in order to improve the manufacturing cost without improving the properties of the steel sheet. The annealing time at this temperature requires 10 seconds or more to make the temperature of the steel plate uniform and to secure austenite. However, if it exceeds 3 minutes, the effect is not only saturated but also the cost is increased, so this is set as the upper limit.
[0042]
Subsequent primary cooling is important for promoting the transformation from the austenite phase to the ferrite phase and concentrating C in the untransformed austenite phase to stabilize the austenite. Setting the cooling rate to 0.1 ° C./second or less causes manufacturing disadvantages such as lengthening the necessary production line length or extremely slowing the production rate. The temperature was 1 ° C./second. On the other hand, when the cooling rate is 10 ° C./second or more, ferrite transformation does not occur sufficiently, and it becomes difficult to secure the retained austenite phase in the final steel sheet, or the hard phase such as martensite phase becomes large. Therefore, this is the upper limit.
[0043]
If this primary cooling is performed to less than 550 ° C., pearlite is generated during cooling, and C, which is an austenite stabilizing element, is wasted, and finally a sufficient amount of retained austenite cannot be obtained. It was. However, when the cooling is performed only to over 700 ° C., the ferrite transformation does not proceed sufficiently, so this was set as the upper limit.
The subsequent rapid cooling of the secondary cooling requires a cooling rate of at least 0.1 ° C./second or more so as not to cause pearlite transformation or precipitation of iron carbide during cooling. However, since it is difficult to improve the cooling rate to 100 ° C./second or more in terms of equipment capacity, 0.1 to 100 ° C. is set as the cooling rate range.
[0044]
If the cooling stop temperature of this secondary cooling is lower than the plating bath temperature, it becomes an operational problem, and if it exceeds the plating bath temperature +100 (° C.), carbide precipitation occurs in a short time, so the amount of residual austenite and martensite obtained is It cannot be secured. For this reason, the secondary cooling stop temperature is set to the plating bath temperature + 100 (° C.) or more.
In order to stabilize the austenite phase remaining in the steel sheet at room temperature, it is essential to further increase the carbon concentration in the austenite by transforming a part thereof into the bainite phase. In order to promote the bainite transformation together with the alloying treatment, it is desirable to maintain the temperature range of 300 to 550 ° C. for 15 seconds to 20 minutes. If it is less than 300 ° C., bainite transformation is difficult to occur, and if it exceeds 580 ° C., carbides are formed and it is difficult to leave a sufficient residual austenite phase, so the upper limit of the alloying treatment temperature is set to 580 ° C.
[0045]
Unlike the retained austenite phase, it is not necessary to cause the bainite transformation to produce the martensite phase. On the other hand, it is necessary to suppress the formation of carbides and pearlite phases in the same manner as the retained austenite phase. And
[0046]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
A steel strip having a composition as shown in Table 1 is heated to 1200 ° C., and hot rolling is completed at or above the Ar3 transformation temperature, and after cooling, the steel strip wound up at or above the bainite transformation start temperature determined by the chemical composition of each steel is acidified. After washing, it was cold rolled to a thickness of 1.0 mm.
Thereafter, the Ac1 and Ac3 transformation temperatures were calculated from the components (mass%) of each steel according to the following formula.
Figure 0004781577
[0047]
After heating and holding in an atmosphere of 10% H2-N2 to the annealing temperature calculated from these Ac1 and Ac3 transformation temperatures, it is cooled to a temperature range of 550-700 ° C at a cooling rate of 0.1-10 ° C / second. Subsequently, the plating was performed by cooling to a plating bath temperature at a cooling rate of 0.1 to 20 ° C./second, and immersing in a 460 ° C. zinc plating bath with various changes in the bath composition for 3 seconds.
[0048]
Moreover, about some steel plates, as a Fe-Zn alloying process, the steel plate after plating is hold | maintained for 15 seconds-20 minutes in the temperature range of 300-580 degreeC, and the Fe content rate in a plating layer is 5 by mass%. Adjusted to ~ 20. The plating property was evaluated by visual observation of the dross entrainment state of the plating surface appearance and measurement of the area of the non-plated part. The prepared plating was dissolved in a 5% hydrochloric acid solution containing an inhibitor and subjected to chemical analysis, and the composition was determined and shown in Table 2.
[0049]
  Table 1 shows that the steel of the present invention is excellent in strength / elongation balance and TS × El is as high as 22000 MPa ·%. On the other hand, all of the comparative examples not satisfying the component range of the present invention are inferior in strength / elongation balance and have a low value of TS × El of 15000 MPa ·% or less. From Table 2 and Table 3, the steel plate of the present invention (in the table2-56) have less unplating and good appearance. If it deviates from the scope of the present invention as compared to that (from 5763) Has a large amount of non-plating or has a poor appearance or does not satisfy a predetermined material. Table 4 shows the relationship between the manufacturing conditions of 7 and 12 and the material, but the steel sheet manufactured in the scope of the claims of the present invention has the microstructure described above, and the strength / elongation balance. Is excellent.
[0050]
[Table 1]
Figure 0004781577
[0051]
[Table 2]
Figure 0004781577
[0052]
[Table 3]
Figure 0004781577
[0053]
[Table 4]
Figure 0004781577
[0054]
【The invention's effect】
The high-strength hot-dip galvanized steel sheet of the present invention is excellent in appearance and workability due to suppression of non-plating, and is extremely effective for building materials, home appliances, automobile body applications, and the like.

Claims (11)

質量%で、
C :0.0001〜0.3%、
Si:0.1〜2.5%、
Mn:0.01〜3%、
Al:0.001〜4%を含有し、残部Fe及び不可避不純物からなり、表面に、質量 %で、
Al:0.001〜0.5%、
Mn:0.001〜2%、
Fe:5〜20%を含有し、残部がZn及び不可避不純物からなるめっき層を有する溶 融亜鉛めっき鋼板であって、
鋼のSi含有率:X(質量%)、鋼のMn含有率:Y(質量%)、鋼のAl含有率:Z (質量%)、めっき層のAl含有率:A(質量%)、めっき層のMn含有率:B(質量 %)が、下記(1)式を満たし、且つ、TS×Elが22000MPa・%以上である ことを特徴とする加工性に優れた高強度溶融亜鉛めっき鋼板。
3−(X+Y/10+Z/3)−12.5×(A−B)≧0・・・(1)
% By mass
C: 0.0001 to 0.3%,
Si: 0.1 to 2.5%
Mn: 0.01 to 3%
Al: 0.001-4% contained, consisting of the remainder Fe and inevitable impurities, on the surface, in mass%,
Al: 0.001 to 0.5%,
Mn: 0.001-2%,
Fe: a hot dip galvanized steel sheet having a plating layer containing 5 to 20%, the balance being Zn and inevitable impurities,
Steel Si content: X (mass%), steel Mn content: Y (mass%), steel Al content: Z (mass%), plating layer Al content: A (mass%), plating Mn content of the layer: B (% by mass) is, meets the following expression (1), and a high-strength galvanized steel sheet having excellent workability, wherein the TS × El is 22000MPa ·% or more .
3- (X + Y / 10 + Z / 3) -12.5 × (A−B) ≧ 0 (1)
めっき層が、質量%で、
Si:0.001〜0.1%、
Mo:0.001〜0.1%、
W:0.001〜0.1%、
Zr:0.001〜0.1%、
Cs:0.001〜0.1%、
Rb:0.001〜0.1%、
K :0.001〜0.1%、
Ag:0.001〜5%、
Na:0.001〜0.05%、
Cd:0.001〜3%、
Cu:0.001〜3%、
Ni:0.001〜0.5%、
Co:0.001〜1%、
La:0.001〜0.1%、
Tl:0.001〜8%、
Nd:0.001〜0.1%、
Y :0.001〜0.1%、
In:0.001〜5%、
Be:0.001〜0.1%、
Cr:0.001〜0.05%、
Pb:0.001〜1%、
Hf:0.001〜0.1%、
Tc:0.001〜0.1%、
Ti:0.001〜0.1%、
Ge:0.001〜5%、
Ta:0.001〜0.1%、
V :0.001〜0.2%、
B :0.001〜0.1%の1種または2種以上を、さらに含有することを特徴とす る請求項1に記載の加工性に優れた高強度溶融亜鉛めっき鋼板。
The plating layer is mass%,
Si: 0.001 to 0.1%
Mo: 0.001 to 0.1%,
W: 0.001 to 0.1%,
Zr: 0.001 to 0.1%,
Cs: 0.001 to 0.1%,
Rb: 0.001 to 0.1%,
K: 0.001 to 0.1%,
Ag: 0.001 to 5%,
Na: 0.001 to 0.05%,
Cd: 0.001 to 3%
Cu: 0.001 to 3%,
Ni: 0.001 to 0.5%,
Co: 0.001-1%,
La: 0.001 to 0.1%,
Tl: 0.001-8%
Nd: 0.001 to 0.1%,
Y: 0.001 to 0.1%
In: 0.001 to 5%,
Be: 0.001 to 0.1%,
Cr: 0.001 to 0.05%,
Pb: 0.001 to 1%,
Hf: 0.001 to 0.1%,
Tc: 0.001 to 0.1%,
Ti: 0.001 to 0.1%,
Ge: 0.001 to 5%,
Ta: 0.001 to 0.1%,
V: 0.001 to 0.2%,
B: 0.001 to 0.1% of one or more high-strength galvanized steel sheet having excellent formability according to claim 1 you characterized by further comprising.
鋼が、質量%で、
Mo:0.001〜5%を、さらに含有することを特徴とする請求項1または2に記載 の加工性に優れた高強度溶融亜鉛めっき鋼板。
Steel is mass%
Mo: 0.001 to 5%, even high-strength galvanized steel sheet having excellent formability according to claim 1 or 2, characterized in that it contains.
鋼が、質量%で、
Cr:0.001〜25%、
Ni:0.001〜10%、
W :0.001〜5%、
Cu:0.001〜5%、
Co:0.001〜5%の1種または2種以上を、さらに含有することを特徴とする請 求項1乃至のいずれか1項に記載の加工性に優れた高強度溶融亜鉛めっき鋼板。
Steel is mass%
Cr: 0.001 to 25%,
Ni: 0.001 to 10%,
W: 0.001 to 5%,
Cu: 0.001 to 5%,
The high-strength hot-dip galvanized steel sheet excellent in workability according to any one of claims 1 to 3 , further comprising one or more of Co: 0.001 to 5%. .
鋼が、質量%で、
Nb:0.001%以上、
Ti:0.001%以上、
V :0.001%以上の1種または2種以上を合計で1%以下、さらに含有すること を特徴とする請求項1乃至のいずれか1項に記載の加工性に優れた高強度溶融亜鉛め っき鋼板。
Steel is mass%
Nb: 0.001% or more,
Ti: 0.001% or more,
V: High-strength melt excellent in workability according to any one of claims 1 to 4 , further comprising 1% or less in total of 1 type or 2 types or more of 0.001% or more Galvanized steel sheet.
鋼が、質量%で、B:0.0001〜0.1%を、さらに含有することを特徴とする請求項1乃至のいずれか1項に記載の加工性に優れた高強度溶融亜鉛めっき鋼板。The high-strength hot-dip galvanizing excellent in workability according to any one of claims 1 to 5 , wherein the steel further contains B: 0.0001 to 0.1% by mass%. steel sheet. 鋼が、質量%で、
Zr:0.001%以上、
Hf:0.001%以上、
Ta:0.001%以上の1種または2種以上を合計で1%以下、さらに含有すること を特徴とする請求項1乃至のいずれか1項に記載の加工性に優れた高強度溶融亜鉛め っき鋼板。
Steel is mass%
Zr: 0.001% or more,
Hf: 0.001% or more,
The high-strength melt excellent in workability according to any one of claims 1 to 6 , further comprising 1% or less of Ta: 0.001% or more in total of 1% or less Galvanized steel sheet.
鋼が、質量%で、
Y、REMの1種または2種以上を合計で0.0001〜0.1%、さらに含有するこ とを特徴とする請求項1乃至のいずれか1項に記載の加工性に優れた高強度溶融亜鉛 めっき鋼板。
Steel is mass%
The high workability according to any one of claims 1 to 7 , further comprising 0.0001 to 0.1% in total of one or more of Y and REM. Strength hot dip galvanized steel sheet.
鋼が、質量%で、
P :0.1%以下、
S :0.1%以下を、さらに含有することを特徴とする請求項1乃至のいずれか1 項に記載の加工性に優れた高強度溶融亜鉛めっき鋼板。
Steel is mass%
P: 0.1% or less,
The high strength hot-dip galvanized steel sheet with excellent workability according to any one of claims 1 to 8 , further comprising S: 0.1% or less.
鋼のミクロ組織が、フェライト相もしくはフェライト相とベイナイト相からなり、マルテンサイト相、残留オーステナイト相の一方もしくは両方を、体積分率で合計3%以上含む複合組織であることを特徴とする請求項1乃至のいずれか1項に記載の加工性に優れた高強度溶融亜鉛めっき鋼板。The microstructure of the steel is a composite structure comprising a ferrite phase or a ferrite phase and a bainite phase, and containing one or both of a martensite phase and a retained austenite phase in a total volume fraction of 3% or more. A high-strength hot-dip galvanized steel sheet excellent in workability according to any one of 1 to 9 . 請求項10に記載の高強度溶融亜鉛めっき鋼板の製造において、鋳造スラブを鋳造ままもしくは一旦冷却した後に再度加熱し、熱延後巻取った熱延鋼板を酸洗後冷延し、その後、0.1×(Ac3 −Ac1 )+Ac1 (℃)以上Ac3 +50(℃)以下の温度域で10秒〜30分焼鈍した後に、0.1〜10℃/秒の冷却速度で550〜700℃温度域に冷却し、引き続いて0.1〜100℃/秒の冷却速度でめっき浴温度〜めっき浴温度+100(℃)にまで冷却した後めっき浴に浸漬し、その後合金化処理を300〜580℃の温度域で行い、室温まで冷却することを特徴とする加工性に優れた高強度溶融亜鉛めっき鋼板の製造方法。In the production of the high-strength hot-dip galvanized steel sheet according to claim 10 , the cast slab is cast as it is or once cooled and then heated again, and the hot-rolled steel sheet wound after hot rolling is pickled and cold-rolled, and then 0 .1 × (Ac3 -Ac1) + Ac1 (° C.) to Ac3 +50 (° C.) and thereafter annealing for 10 seconds to 30 minutes, followed by a cooling rate of 0.1 to 10 ° C./second and a temperature range of 550 to 700 ° C. Then, after cooling from a plating bath temperature to a plating bath temperature + 100 (° C.) at a cooling rate of 0.1 to 100 ° C./second, it is immersed in a plating bath, and then alloying treatment is performed at 300 to 580 ° C. A method for producing a high-strength hot-dip galvanized steel sheet excellent in workability, characterized by performing in a temperature range and cooling to room temperature.
JP2001287413A 2001-02-26 2001-09-20 High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof Expired - Fee Related JP4781577B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001287413A JP4781577B2 (en) 2001-02-26 2001-09-20 High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2001049811 2001-02-26
JP2001-49811 2001-02-26
JP2001049811 2001-02-26
JP2001-160186 2001-05-29
JP2001160186 2001-05-29
JP2001160186 2001-05-29
JP2001287413A JP4781577B2 (en) 2001-02-26 2001-09-20 High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003049239A JP2003049239A (en) 2003-02-21
JP4781577B2 true JP4781577B2 (en) 2011-09-28

Family

ID=27346091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001287413A Expired - Fee Related JP4781577B2 (en) 2001-02-26 2001-09-20 High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4781577B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4544579B2 (en) * 2004-09-29 2010-09-15 日新製鋼株式会社 Manufacturing method of high strength molten Zn-Al-Mg alloy plated steel sheet
JP5250939B2 (en) * 2005-03-31 2013-07-31 Jfeスチール株式会社 Method for producing galvannealed steel sheet
CN103131984A (en) * 2011-11-29 2013-06-05 贵州铝厂 High-performance low zinc hot dipping aluminium alloy plating material
CN103131982B (en) * 2011-11-29 2015-03-11 贵州科学院 Multi-combination degenerative low-zinc hot-dipped aluminum alloy coating material
JP5852690B2 (en) 2013-04-26 2016-02-03 株式会社神戸製鋼所 Alloyed hot-dip galvanized steel sheet for hot stamping
CN103627984A (en) * 2013-11-11 2014-03-12 马鞍山市恒毅机械制造有限公司 Wear-resistant alloy steel material for sand maker hammerhead and preparation method thereof
CN105483534A (en) * 2015-12-08 2016-04-13 靖江市新程汽车零部件有限公司 Car anti-collision board and processing method thereof
CN105624555A (en) * 2016-01-20 2016-06-01 宋晓玲 High-strength and high-toughness alloy steel
KR102353730B1 (en) * 2019-12-20 2022-01-19 주식회사 포스코 Cold-rolled steel sheet for flux cored wire and manufacturing the same
CN113073267B (en) * 2021-03-29 2022-04-08 中国科学院合肥物质科学研究院 High-strength high-temperature-resistant RAFM steel and machine learning-based design method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6032700B2 (en) * 1980-01-29 1985-07-30 三菱マテリアル株式会社 Zinc alloy for hot-dip plating
JP2798520B2 (en) * 1991-03-27 1998-09-17 日新製鋼株式会社 Alloyed hot-dip galvanized steel sheet excellent in workability and method for producing the same
JPH05230608A (en) * 1992-02-24 1993-09-07 Sumitomo Metal Ind Ltd Galvannealed steel sheet and its manufacture
JP3263143B2 (en) * 1992-08-27 2002-03-04 株式会社神戸製鋼所 Bake hardening type high strength alloyed hot-dip galvanized steel sheet excellent in workability and method for producing the same
JPH0688251A (en) * 1992-09-10 1994-03-29 Nippon Steel Corp Si containing high strength galvannealed steel sheet
JPH07258814A (en) * 1994-03-24 1995-10-09 Nippon Steel Corp Galvannealed steel sheet excellent in corrosion resistance
JPH11131145A (en) * 1997-10-30 1999-05-18 Nkk Corp Production of high strength and high ductility hot-dip galvanized steel sheet

Also Published As

Publication number Publication date
JP2003049239A (en) 2003-02-21

Similar Documents

Publication Publication Date Title
JP3527092B2 (en) High-strength galvannealed steel sheet with good workability and method for producing the same
JP3898923B2 (en) High-strength hot-dip Zn-plated steel sheet excellent in plating adhesion and ductility during high processing and method for producing the same
JP4510488B2 (en) Hot-dip galvanized composite high-strength steel sheet excellent in formability and hole expansibility and method for producing the same
JP3921136B2 (en) High strength and high ductility hot dip galvanized steel sheet with excellent burring workability and manufacturing method thereof
WO2020148944A1 (en) Method for manufacturing hot-dip galvanized steel sheet
JP2023027288A (en) Galvannealed steel sheet
JP3731560B2 (en) Steel plate with excellent workability and shape freezing property and its manufacturing method
JP4781577B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
JP4331915B2 (en) High strength and high ductility hot dip galvanized steel sheet excellent in fatigue durability and corrosion resistance and method for producing the same
JP3921135B2 (en) High strength and high ductility hot dip galvanized steel sheet with excellent burring workability and manufacturing method thereof
JP3631710B2 (en) Si-containing high-strength hot-dip galvanized steel sheet with excellent corrosion resistance and ductility and method for producing the same
JP3898924B2 (en) High-strength hot-dip galvanized steel sheet excellent in appearance and workability and its manufacturing method
JP4320913B2 (en) High-tensile hot-dip galvanized steel sheet with excellent formability and method for producing the same
JPH09176815A (en) High strength hot dip galvanized steel sheet excellent in plating adhesion
JP2014240510A (en) Galvanized steel sheet and production method thereof
JP3738645B2 (en) High-tensile cold-rolled steel sheet with excellent electroplating adhesion and ductility and method for producing the same
JP6838665B2 (en) High-strength alloyed electrogalvanized steel sheet and its manufacturing method
JP4148235B2 (en) Steel plate with excellent workability and shape freezing property and its manufacturing method
JP3577930B2 (en) High-strength, high-ductility hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
JP3464611B2 (en) High-strength hot-dip galvanized steel sheet excellent in formability and corrosion resistance and method for producing the same
JP2000109965A (en) Production of hot dip galvanized high tensile strength steel sheet excellent in workability
JP3898925B2 (en) High strength and high ductility hot dip galvanized steel sheet excellent in corrosion resistance and method for producing the same
JP3347152B2 (en) Method for producing cold-rolled high-strength hot-dip galvanized steel sheet with excellent resistance to pitting corrosion
JP3921101B2 (en) Manufacturing method of high strength and high ductility hot dip galvanized steel sheet with excellent shape freezing property
JP4299451B2 (en) High-strength hot-dip galvanized steel sheet with excellent formability and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110628

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110706

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4781577

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees