JP3898924B2 - High-strength hot-dip galvanized steel sheet excellent in appearance and workability and its manufacturing method - Google Patents

High-strength hot-dip galvanized steel sheet excellent in appearance and workability and its manufacturing method Download PDF

Info

Publication number
JP3898924B2
JP3898924B2 JP2001304036A JP2001304036A JP3898924B2 JP 3898924 B2 JP3898924 B2 JP 3898924B2 JP 2001304036 A JP2001304036 A JP 2001304036A JP 2001304036 A JP2001304036 A JP 2001304036A JP 3898924 B2 JP3898924 B2 JP 3898924B2
Authority
JP
Japan
Prior art keywords
phase
mass
steel sheet
appearance
workability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001304036A
Other languages
Japanese (ja)
Other versions
JP2003105513A (en
Inventor
展弘 藤田
昌史 東
学 高橋
康秀 森本
將夫 黒崎
明博 宮坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2001304036A priority Critical patent/JP3898924B2/en
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to KR1020077003396A priority patent/KR100747133B1/en
Priority to CN 200710140271 priority patent/CN101264681B/en
Priority to EP02733366A priority patent/EP1504134B1/en
Priority to PCT/JP2002/005627 priority patent/WO2002101112A2/en
Priority to US10/479,916 priority patent/US7267890B2/en
Priority to DE60220191T priority patent/DE60220191T2/en
Priority to CN 200710140272 priority patent/CN101125472B/en
Priority to KR1020077003395A priority patent/KR20070026882A/en
Priority to BRPI0210265-0A priority patent/BR0210265B1/en
Priority to CN2007101402736A priority patent/CN101125473B/en
Priority to KR1020037016036A priority patent/KR100753244B1/en
Priority to TW91112291A priority patent/TW573021B/en
Priority to AU2002304255A priority patent/AU2002304255A1/en
Priority to CNB028115236A priority patent/CN100562601C/en
Priority to CA002449604A priority patent/CA2449604C/en
Publication of JP2003105513A publication Critical patent/JP2003105513A/en
Publication of JP3898924B2 publication Critical patent/JP3898924B2/en
Application granted granted Critical
Priority to US11/893,935 priority patent/US7824509B2/en
Priority to US12/456,120 priority patent/US8216397B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、建材、家電製品、自動車などに適する外観と加工性に優れた高強度合金化溶融亜鉛めっき鋼板および溶融亜鉛めっき鋼板及びその製造方法に関する。
【0002】
【従来の技術】
溶融亜鉛めっきは鋼板の防食を目的として施され、建材、家電製品、自動車など広範囲に使用されている。その製造法としては、連続ラインに於いて、脱脂洗浄後、非酸化性雰囲気にて加熱し、H2及びN2を含む還元雰囲気にて焼鈍後、めっき浴温度近傍まで冷却し、溶融亜鉛浴に浸漬後、冷却、もしくは再加熱してFe−Zn合金相を生成させた後に冷却、というゼンジマー法があり、鋼板の処理に多用されている。
【0003】
めっき前の焼鈍については、脱脂洗浄後、非酸化性雰囲気中での加熱を経ず直ちにH2及びN2を含む還元雰囲気にて焼鈍を行う、全還元炉方式も行われる場合がある。また、鋼板を脱脂、酸洗した後、塩化アンモニウムなどを用いてフラックス処理を行って、めっき浴に浸漬、その後冷却、というフラックス法も行われている。
【0004】
これらのめっき処理で用いられるめっき浴中には溶融亜鉛の脱酸のために少量のAlが添加されている。ゼンジマー法においてZnめっき浴は質量%で0.1%程度のAlを含有している。この浴中のAlはFeとの親和力がFe−Znよりも強いため、鋼がめっき浴に浸漬した際、鋼表面にFe−Al合金相すなわちAlの濃化層が生成し、Fe−Znの反応を抑制することが知られている。Alの濃化層が存在するために、得られためっき層中のAl含有率は通常、めっき浴中のAl含有率より高くなる。
【0005】
近年、特に自動車車体において燃費向上を目的とした車体軽量化の観点から、延性の高い高強度鋼板の需要が高まりつつある。安価な強化法として鋼中へのSi添加が行われ、特に高延性高強度鋼板には1質量%以上含有する場合もある。
【0006】
一方で、めっきの観点からすると鋼中のSiの含有率が、質量%で0.3%を超えると、通常のAlを含有しためっき浴を用いたゼンジマー法ではめっき濡れ性が大きく低下し、不めっきが発生するため外観品質が悪化する。この原因は、還元焼鈍時に鋼板表面にSi酸化物が濃化し、Si酸化物の溶融亜鉛に対する濡れ性が悪いためであると言われている。
【0007】
この問題を解決する手段として、特開平3−28359号公報、特開平3−64437号公報等に見られるように、特定のめっきを付与することでめっき性の改善を行っているが、この方法では、溶融めっきライン焼鈍炉前段に新たにめっき設備を設けるか、もしくは、あらかじめ電気めっきラインにおいてめっき処理を行わなければならず、大幅なコストアップとなるという問題点がある。
【0008】
また、熱延時に発生するSiスケール傷も後々のめっき外観を損ねる原因となる。これを抑制するには、鋼中のSi量を低減することが不可欠となるが、高延性型の高強度鋼板の代表である残留オーステナイト鋼や複相鋼板では、その強度延性バランスと高める点でSiは極めて効果的な添加元素である。
【0009】
【発明が解決しようとする課題】
本発明は、上記課題を解決し、不めっきが抑制され、外観と加工性の優れた高強度合金化溶融亜鉛めっき鋼板および溶融亜鉛めっき鋼板及びその製造方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
発明者らは、種々検討を行った結果、めっき層に特定の元素を適正濃度含有させることおよびそれと鋼板の成分と組み合わせることで、高強度鋼板の溶融亜鉛めっき濡れ性および合金化めっきに於ける合金化促進を見いだした。この効果は、主に、めっき中Al濃度と鋼中Mnとを制御することにより出現させることができる。
【0011】
鋼中Mn含有率をX(質量%)、鋼中Si含有率をY(質量%)、めっき中Al含有率をZ(質量%)とすると、X、Y、Zが(1)式を満たすことで、極めて良好なめっきが得られることを見いだした。
【0012】
0.6−(X/18+Y+Z)≧0 ・・・(1)
本発明は、上記知見に基づいて完成されたもので、その要旨とするところは以下の通りである。
〔1〕 質量%で、
C :0.0001〜0.3%
Si:0.001〜0.1%未満
Mn:0.01〜3%
Al:0.001〜4%
Mo:0.001〜1%
P:0.0001〜0.3%
S:0.0001〜0.1%
を含有し、残部Fe及び不可避不純物からなり、鋼のミクロ組織が、主相と第2相からなる複合組織であり、前記主相が体積分率で50〜97%のフェライト相又はフェライト相とベイナイト相であり、前記主相の平均粒径が20μ m 以下であり、前記第2相がマルテンサイト相、残留オーステナイト相の一方もしくは両方からなり、前記第2相の体積分率が合計3〜50%であり、前記第2相の平均粒径が10μ m 以下であり、前記第2相の平均粒径が前記主相の平均粒径の0.01〜0.7倍である鋼板の表面に、質量%で、
Mn:0.001〜3%
Al:0.001〜4%
Mo:0.0001〜1%
Fe:5〜20%
を含有し、残部がZn及び不可避不純物からなるめっき層を有する溶融亜鉛めっき鋼板であって、鋼中Mn含有率をX(質量%)、鋼中Si含有率をY(質量%)、めっき中Al含有率をZ(質量%)とすると、X、YおよびZが(1)式を満たすことを特徴とする外観と加工性に優れた高強度溶融亜鉛めっき冷延鋼板。
【0013】
0.6−(X/18+Y+Z)≧0 ・・・(1)
〔2〕 質量%で、
C :0.0001〜0.3%
Si:0.001〜0.1%未満
Mn:0.01〜3%
Al:0.001〜4%
Mo:0.001〜1%
P:0.0001〜0.3%
S:0.0001〜0.1%
を含有し、残部Fe及び不可避不純物からなり、鋼のミクロ組織が、主相と第2相からなる複合組織であり、前記主相が体積分率で50〜97%のフェライト相又はフェライト相とベイナイト相であり、前記主相の平均粒径が20μ m 以下であり、前記第2相がマルテンサイト相、残留オーステナイト相の一方もしくは両方からなり、前記第2相の体積分率が合計3〜50%であり、前記第2相の平均粒径が10μ m 以下であり、前記第2相の平均粒径が前記主相の平均粒径の0.01〜0.7倍である鋼板の表面に、質量%で、
Mn:0.001〜3%
Al:0.001〜4%
Mo:0.0001〜1%
Fe:5%未満
を含有し、残部がZn及び不可避不純物からなるめっき層を有する溶融亜鉛めっき鋼板であって、鋼中Mn含有率をX(質量%)、鋼中Si含有率をY(質量%)、めっき中Al含有率をZ(質量%)とすると、X、YおよびZが(1)式を満たすことを特徴とする外観と加工性に優れた高強度溶融亜鉛めっき冷延鋼板。
0.6−(X/18+Y+Z)≧0 ・・・(1)
〔3〕 めっき層が、さらに質量%で、
Si:0.0001〜0.1%、
W:0.001〜0.1%、
Zr:0.001〜0.1%、
Cs:0.001〜0.1%、
Rb:0.001〜0.1%、
K:0.001〜0.1%、
Ag:0.001〜5%、
Na:0.001〜0.05%、
Cd:0.001〜3%、
Cu:0.001〜3%、
Ni:0.001〜0.5%、
Co:0.001〜1%、
La:0.001〜0.1%、
Tl:0.001〜8%、
Nd:0.001〜0.1%、
Y:0.001〜0.1%、
In:0.001〜5%、
Be:0.001〜0.1%、
Cr:0.001〜0.05%、
Pb:0.001〜1%、
Hf:0.001〜0.1%、
Tc:0.001〜0.1%、
Ti:0.001〜0.1%、
Ge:0.001〜5%、
Ta:0.001〜0.1%、
V:0.001〜0.2%、
B:0.001〜0.1%、
の1種または2種以上を含有することを特徴とする〔1〕または〔2〕に載の外観と加工性に優れた高強度溶融亜鉛めっき冷延鋼板。
〔4〕 鋼が、さらに質量%で、
Cr:0.001〜25%、
Ni:0.001〜10%、
Cu:0.001〜5%、
Co:0.001〜5%
W:0.001〜5%
の1種または2種以上を含有することを特徴とする〔1〕〜〔3〕の何れか1項に記載の外観と加工性に優れた高強度溶融亜鉛めっき冷延鋼板。
〔5〕 鋼が、さらに質量%で、Nb、Ti、V、Zr、Hf、Taの1種または2種以上を合計で0.001〜1%含有することを特徴とする〔1〕〜〔4〕のいずれか1項に記載の外観と加工性に優れた高強度溶融亜鉛めっき冷延鋼板。
〔6〕 鋼が、さらに質量%で、B:0.0001〜0.1%含有することを特徴とする〔1〕〜〔5〕のいずれか1項に記載の外観と加工性に優れた高強度溶融亜鉛めっき冷延鋼板。
〔7〕 鋼が、さらに質量%で、Y、Rem、Ca、Mg、Ceの1種又は2種以上を合計で0.0001〜1%含有することを特徴とする〔1〕〜〔6〕のいずれか1項に記載の外観と加工性に優れた高強度溶融亜鉛めっき冷延鋼板。
主相が体積分率で70〜97%のフェライト相であり、第2相体積分率3〜30%であることを特徴とする〔1〕〜〔〕のいずれか1項に記載の外観と加工性に優れた高強度溶融亜鉛めっき冷延鋼板。
2相が残留オーステナイトであり、鋼中の炭素量:C(質量%)、鋼中のMn量:Mn(質量%)、前記残留オーステナイトの体積率:Vγ(%)、フェライト及びベイナイトの体積率:Vα(%)が(2)式を満たすことを特徴とする〔1〕〜〔〕のいずれか1項に記載の外観と加工性に優れた高強度溶融亜鉛めっき冷延鋼板。
(Vγ+Vα)/Vγ×C+Mn/8≧2.000 ・・・(2)
10主相が体積分率で50〜95%のフェライト相と体積分率で2〜47%のベイナイト相であり、第2相体積分率3〜30%であることを特徴とする〔1〕〜〔〕の何れか1項に記載の外観と加工性に優れた高強度溶融亜鉛めっき冷延鋼板。
11〕 〔〕〜〔10〕の何れか1項に記載の高強度溶融亜鉛めっき冷延鋼板を製造する方法であって、〔1〕、〔4〕〜〔7〕の何れか1項に記載の鋼板の成分からなる鋳造スラブを鋳造ままもしくは一旦冷却した後に1180〜1250℃に再度加熱し、880〜1100℃で熱延を終了させた後巻取った熱延鋼板を酸洗後冷延し、その後、0.1×(Ac3−Ac1)+Ac1(℃)以上Ac3+50(℃)以下の温度域で10秒〜30分焼鈍した後に、0.1〜10℃/秒の冷却速度で650〜700℃の温度域に冷却する一次冷却を行い、引き続いて前記一次冷却よりも大きく、かつ、5〜100℃/秒の冷却速度でめっき浴温度−50℃〜めっき浴温度+50(℃)にまで冷却する二次冷却を行った後めっき浴に浸漬し、浸漬時間を含めて、めっき浴温度−50℃〜めっき浴温度+50(℃)の温度域に2〜200秒保持した後、室温まで冷却することを特徴とする加工性に優れた高強度溶融亜鉛めっき冷延鋼板の製造方法。
[12] [1]、[3]〜[10]の何れか1項に記載の高強度溶融亜鉛めっき冷延鋼板を製造する方法であって、めっき浴浸漬および保持後に、合金化処理を400〜550℃の温度域で行い、室温まで冷却することを特徴とする[11]に記載の外観と加工性に優れた高強度溶融亜鉛めっき冷延鋼板の製造方法。
【0014】
【発明の実施の形態】
以下、本発明を詳細に説明する。
【0015】
発明者らは、質量%で、
C :0.0001〜0.3%、
Si:0.001〜0.1%未満、
Mn:0.01〜3%、
Al:0.001〜4%
Mo:0.001〜1%
P:0.0001〜0.3%
S:0.0001〜0.1%
を含有し、残部Fe及び不可避不純物からなる鋼板を焼鈍し、温度450〜470℃のZnめっき浴に3秒間浸漬を行い、さらに一部試料については500〜530℃で10〜60秒加熱を行った。その後、めっき鋼板表面の欠陥発生率に基づき外観を5段階評価した。また、引張り試験にて機械的性質を合わせて評価した。その結果、鋼中Mn含有率をX(質量%)、鋼中Si含有率をY(質量%)、めっき中Al含有率をZ(質量%)とするとX、YおよびZが(1)式を満たす組成で、外観欠陥がほとんど生じない評点5を得ることがわかった。
0.6−(X/18+Y+Z)≧0 ・・・(1)
評点1〜5はそれぞれ、めっきの外観は不めっきの発生状態および傷や模様の欠陥発生状態を目視にて評価した。評価指標は以下の通りである。
評点5:不めっき、傷や模様はほとんど無し(面積率で1%以下)
評点4:不めっき、傷や模様は微小(面積率で1%超10%以下)
評点3:不めっき、傷や模様は小(面積率で10%超50%未満)
評点2:不めっき、傷や模様は多数(面積率で50%超)
評点1:めっき濡れず不めっきの発生やその他の欠陥が抑制される理由の詳細については不明であるが、めっき浴中に添加されたAlと鋼板表面に生成したSiO2 との濡れ性が悪いため不めっきが発生すると考えられる。すなわち、Zn浴に添加したAlの悪影響を除去する元素を添加することで不めっきの発生を抑制することが可能となる。本発明者らが鋭意検討した結果、Mnを適正な濃度範囲で添加することで表記目的を達成出来ることが判明した。また、鋼中のSi量を低減したことにより熱延時に生じるSiスケール起因の傷発生が抑制されたことも外観良好化に効果的と考えられる。また、低Si化に伴う材質劣化については、製造条件や他成分:AlおよびMo添加により延性確保ができること、低Si化およびAl添加は合金化の促進に効果的であることをもあわせて見出した。
【0016】
さらにめっき層中にW、Zr、Cs、Rb、K、Ag、Na、Cd、Cu、Ni、Co、La、Tl、Nd、Y、In、Be、Cr、Pb、Hf、Tc、Ti、Ge、Ta、V、Bの1種または2種以上を含有することで、不めっきが抑制されることおよび合金化が促進させることを見出した。
【0017】
めっき付着量については、特に制約は設けないが、耐食性の観点から片面付着量で5g/m2 以上であることが望ましい。本発明の溶融Znめっき鋼板上に塗装性、溶接性を改善する目的で上層めっきを施すことや、各種の処理、例えば、クロメート処理、りん酸塩処理、潤滑性向上処理、溶接性向上処理等を施しても、本発明を逸脱するものではない。
【0018】
めっき層中Mn量を0.001〜3質量%の範囲内としたのは、この範囲において不めっきが発生せず、良好な外観のめっきが得られるためである。Mn量が上限の3質量%を超えるとめっき浴中にてMn−Zn化合物が析出し、めっき層中に取り込まれることで外観が著しく低下する。
【0019】
めっき層中Al量を0.001〜4質量%の範囲としたのは、0.001質量%未満では、ドロス発生が顕著で良好な外観が得られないこと、4質量%を超えてAlを添加すると合金化反応を著しく抑制してしまい、合金化溶融亜鉛めっき層を形成することが困難となるためである。
【0020】
めっき層中Mo量を0.0001〜1質量%の範囲内としたのは、この範囲において不めっきが抑制され、良好な外観のめっきが得られるためである。Mo量が上限の1質量%を越えるとMoを含有するドロスの生成により、めっき外観が著しく低下する。
【0021】
合金化処理によってめっき層中にFeが取り込まれ、塗装性やスポット溶接性に優れた高強度溶融亜鉛めっき鋼板を得ることができる。前記〔1〕に係る発明ではめっき層のFe量が5質量%未満ではスポット溶接性が不十分となる。一方、Fe量が20質量%を超えるとめっき層自体の密着性を損ない、加工の際めっき層が破壊・脱落し金型に付着することで、成形時の疵の原因となる。したがって、合金化処理を行う場合のめっき層中Fe量の範囲は5〜20質量%とする。
【0022】
合金化処理をしない場合には、めっき層中のFe量は5質量%未満でもよい。即ち、前記〔2〕に係る発明ではめっき層のFe量が5質量%未満でも、〔1〕に係る本発明の合金化による効果以外である外観と加工性や耐食性等の効果は良好である。
【0023】
めっき層中Si量を0.0001〜0.1質量%、W量を0.001〜0.1質量%、Zr量を0.001〜0.1質量%、Cs量を0.001〜0.1質量%、Rb量を0.001〜0.1質量%、K量を0.001〜0.1質量%、Ag量を0.001〜5質量%、Na量を0.001〜0.05質量%、Cd量を0.001〜3質量%、Cu量を0.001〜3質量%、Ni量を0.001〜0.5質量%、Co量を0.001〜1質量%、La量を0.001〜0.1質量%、Tl量を0.001〜8質量%、Nd量を0.001〜0.1質量%、Y量を0.001〜0.1質量%、In量を0.001〜5質量%、Be量を0.001〜0.1質量%、Cr量を0.001〜0.05質量%、Pb量を0.001〜1質量%、Hf量を0.001〜0.1質量%、Tc量を0.001〜0.1質量%、Ti量を0.001〜0.1質量%、Ge量を0.001〜5質量%、Ta量を0.001〜0.1質量%、V量を0.001〜0.2質量%、B量を0.001〜0.1質量%の範囲内としたのは、それぞれこの範囲において不めっきが抑制され、良好な外観のめっきが得られるためである。各元素量が上限を越えるとそれぞれの元素を含有するドロスの生成により、めっき外観が著しく低下する。
【0024】
次に、本発明における鋼板成分の限定理由について述べる。
【0025】
C:強度を確保するためにC量の下限を0.0001質量%とした。また、特に残留オーステナイトを充分な量と安定性を確保するのに必要な不可欠な添加元素である。一方では、溶接性を保持可能な上限として0.3質量%とした。
【0026】
Si:製造性および材質上強度を確保するため0.001%以上とし、また、スケール傷低減からSiを0.1%未満とした。これを超える添加はスケール傷が多発して、めっき外観の劣化や鋼板の歩留まり低下にもつながる。
【0027】
Mn:0.01〜3質量%の範囲としたのは、0.01質量%以上で強化効果が現れること、3質量%を上限としたのは、これを上回る添加は伸びに悪影響を及ぼすためである。
【0028】
Al:0.001〜4質量%の範囲としたのは、低Siであるがゆえに脱酸の目的で0.001質量%以上とした。また、強度延性バランスを向上させたりめっきの合金化挙動を促進させる効果を有する。一方、過剰添加は溶接性やめっき濡れ性、製造性に悪影響を及ぼすため4%を上限とした。
【0029】
Mo:強化元素である。低Siであるため、強度延性バランスに悪影響を及ぼすパーライトや炭化物析出をSiの変わりに抑制するために0.001質量%以上添加する。一方で、過剰添加は残留オーステナイトの生成や安定化およびフェライトを硬化させることから延性低下を伴うため1%を上限とした。
【0030】
P量を0.0001〜0.3質量%の範囲としたのは、0.0001質量%以上で強化効果が現れることや極低化は経済的にも不利であることからこれを下限とした。また、0.3質量%を上限としたのは、これを超える量の添加では、溶接性や鋳造時や熱延時の製造性に悪影響を及ぼすためである。
【0031】
S量を0.0001〜0.1質量%の範囲としたのは、極低化は経済的にも不利であることから、0.0001質量%を下限とし、また、0.1質量%を上限としたのは、これを超える量の添加では、溶接性や鋳造時や熱延時の製造性に悪影響を及ぼすためである。
【0032】
さらに、本発明が対象とする鋼は、強度のさらなる向上を目的としてCr、Ni、Cu、Co、Wの1種または2種以上を含有できる。
【0033】
Cr量を0.001〜25質量%の範囲としたのは、0.001質量%以上で強化効果が現れること、25質量%を上限としたのは、これを超える量の添加では、加工性に悪影響を及ぼすためである。
【0034】
Ni量を0.001〜10質量%の範囲としたのは、0.001%以上で強化効果が現れること、10質量%を上限としたのは、これを超える量の添加では、加工性に悪影響を及ぼすためである。
【0035】
Cu量を0.001〜5質量%の範囲としたのは、0.001質量%以上で強化効果が現れること、25質量%を上限としたのは、これを超える量の添加では、加工性に悪影響を及ぼすためである。
【0036】
Co量を0.001〜5質量%の範囲としたのは、0.001質量%以上で強化効果が現れること、5質量%を上限としたのは、これを超える量の添加では、加工性に悪影響を及ぼすためである。
【0037】
W量を0.001〜5質量%の範囲としたのは、0.001質量%以上で強化効果が現れること、5質量%を上限としたのは、これを超える量の添加では、加工性に悪影響を及ぼすためである。
【0038】
さらに、本発明が対象とする鋼は、強度のさらなる向上を目的として強炭化物形成元素であるNb,Ti,V,Zr,Hf,Taの1種または2種以上を含有できる。
【0039】
これらの元素は、微細な炭化物、窒化物または炭窒化物を形成して、鋼板の強化は極めて有効であるため、必要に応じて1種または2種以上を合計で0.001質量%以上の添加とした。一方で、延性劣化や残留オーステナイト中へのCの濃化を阻害することから、1種又は2種以上の合計添加量の上限として1質量%とした。
【0040】
Bもまた、必要に応じて添加できる。Bは、0.0001質量%以上の添加で粒界の強化や鋼材の高強度化に有効ではあるが、その添加量が0.1質量%を超えるとその効果が飽和するばかりでなく、必要以上に鋼板強度を上昇させ、加工性が低下するため、上限を0.1質量%とした。
【0041】
Y、Rem、Ca、Mg、Ce、:めっきの濡れ性を劣化させるSi系の内部粒界酸化相生成を抑制する目的で添加する。Si系の酸化物のように粒界酸化物が形成するのではなく、比較的微細な酸化物を分散して形成させることができる。これらの元素群中から1種または2種以上の元素をあわせて0.0001%以上の添加とした。また一方で過剰添加は鋳造性や熱間加工性などの製造性および鋼板製品の延性を低下させるため1質量%を上限とした。
【0042】
次に、基材鋼板の好ましいミクロ組織について述べる。加工性を十分に確保するためには主を体積分率で50%以上、好ましくは70%以上のフェライト相とするのが望ましいが、高強度化を考慮するとベイナイト相を含んでも良い。一方、フェライトの体積分率の増加は延性を高めるが強度低下に結びつくため、上限はベイナイト相を含有しない場合は体積分率で97%,ベイナイト相を含有する場合は体積分率で95%とするまた、高強度と高延性を両立させるため、残留オーステナイト相および/またはマルテンサイト相を含む複合組織とする。高強度と高延性のために、残留オーステナイト相とマルテンサイト相は、体積率で合計3%以上とした。体積率が合計50%を超えると脆化傾向を示すため、50%以下とし、30%以下が望ましい。
【0043】
鋼板自体の高延性を確保するたに、フェライトの平均粒径を20μm以下とし、第2相である残留オーステナイト及び/又はマルテンサイトの平均粒径を10μm以下と規定する。またここで、第2相を残留オーステナイト及び/又はマルテンサイトとし、主相であるフェライトの平均粒径に対して0.7以下の比率を確保することが望ましい。一方、第2相である残留オーステナイト及び/又はマルテンサイトの平均粒径はフェライトの平均粒径の0.01倍未満とすることは実製造上困難であるため、0.01倍以上であることが好ましい。
【0044】
さらに、めっき密着性と高い強度延性・延性のバランスを良好にするためには、鋼板の第2相が残留オーステナイトである場合に鋼中の炭素量:C(質量%)、鋼中のMn量:Mn(質量%)、残留オーステナイトの体積率:Vγ(%)、フェライト及びベイナイトの体積率:Vα(%)としたき(2)式を満たすこととした。
(Vγ+Vα)/ Vγ×C+Mn/8 ≧ 2.000 ・・・(2)
この式を満たすことで特に強度・延性のバランスに優れ、かつめっき密着性も良好な鋼板が得られる。
【0045】
ベイナイトを含む場合における体積分率等について説明すると次のとおりである。ベイナイト相は体積分率で2%以上含有することにより高強度化に役立つ上、オーステナイト相と共存すると残留オーステナイトの安定化に寄与して結果として高n値化に役立つ。また、この相は基本的に微細であり、高加工時のめっき密着性にも寄与する。特に第2相が残留オーステナイトの場合には、ベイナイトの体積分率を2%以上とすると、さらにめっき密着性と延性のバランスが向上する。一方で、過多に生成すると延性低下を招く事からベイナイト相は体積分率で47%以下とする。
【0046】
上記の他にミクロ組織の残部組織として、炭化物、窒化物、硫化物、酸化物の1又は2種以上を含有する場合も本発明の鋼板の範疇であるが、これらの1種又は2種以上は体積分率で1%以下であることが好ましい。なお、上記ミクロ組織の、フェライト、ベイナイト残留オーステナイト、マルテンサイトおよび残部組織の同定、存在位置の観察および平均粒径(平均円相当径)と占積率の測定は、ナイタール試薬および特開昭59−219473号公報に開示された試薬により鋼板圧延方向断面または圧延方向と直角な断面を腐食して500倍〜1000倍の光学顕微鏡観察により定量化が可能である。ここで、マルテンサイトの粒径測定は光学顕微鏡を用いた場合困難なことがある。この場合には、走査型電子顕微鏡を用いてマルテンサイトのブロック境界、パケット境界またはそれらの集合を観察・粒径測定して平均円相当径を求めることとする。
【0047】
平均粒径は、上記の方法により20視野観察以上した結果に基づいて、JISにより求めた値と定義する。
【0048】
このような組織を有する高強度溶融亜鉛めっき鋼板の製造方法について以下説明する。
【0049】
熱延後冷延・焼鈍して本発明の鋼板を製造する場合には、所定の成分に調整されたスラブを鋳造ままもしくは一旦冷却した後1180℃以上に再加熱して均一なスケールを鋼片表面に形成させてデスケール性を高める。一方、1250℃超の加熱が局部的な異常酸化を促進させてしまうことからこれを加熱温度の上限とした。また、過剰な内部酸化生成を抑制する目的から熱延は880℃以上で終了することとし、その後酸洗し、冷延後焼鈍することで最終製品とする。この時、熱延完了温度は鋼の化学成分によって決まるAr3 変態温度以上で行うのが一般的であるが、Ar3 から10℃程度低温までであれば最終的な鋼板の特性を劣化させない。一方、酸化スケールの多量生成を避けるために、熱延完了温度は1100℃以下とする。
【0050】
また、冷却後の巻取温度は鋼の化学成分によって決まるベイナイト変態開始温度以上とすることで、冷延時の荷重を必要以上に高めることが避けられるが、冷延の全圧下率が小さい場合にはこの限りでなく、鋼のベイナイト変態温度以下で巻き取られても最終的な鋼板の特性を劣化させない。また、冷延の全圧下率は、最終板厚と冷延荷重の関係から設定されるが、40%以上であれば最終的な鋼板の特性を劣化させない。
【0051】
冷延後焼鈍する際に、焼鈍温度が鋼の化学成分によって決まる温度Ac1 及びAc3 温度(例えば「鉄鋼材料学」:W.C. Leslie著、幸田成康監訳、丸善P273)で、表現される0.1×(Ac3 −Ac1 )+Ac1 (℃)未満の場合には、焼鈍温度で得られるオーステナイト量が少ないので、最終的な鋼板中に残留オーステナイト相またはマルテンサイト相を残すことができないためにこれを焼鈍温度の下限とした。また、焼鈍温度がAc3 +50(℃)を超えても何ら鋼板の特性を改善することがでず製造コストの上昇をまねくために、焼鈍温度の上限をAc3 +50(℃)とした。この温度での焼鈍時間は鋼板の温度均一化とオーステナイトの確保のために10秒以上が必要である。しかし、30分超では、効果が飽和するばかりでなくコストの上昇を招くのでこれを上限とした。
【0052】
その後の一次冷却はオーステナイト相からフェライト相への変態を促して、未変態のオーステナイト相中にCを濃化させて残留オーステナイトの安定化をはかるのに重要である。この冷却速度が0.1℃/秒未満にすることは、必要な生産ライン長を長くしたり、生産速度を極めて遅くするといった製造上のデメリットを生じるために、この冷却速度の下限を0.1℃/秒とした。一方、冷却速度が10℃/秒超の場合にはフェライト変態が十分に起こらず、最終的な鋼板中の残留オーステナイト相確保が困難となったり、マルテンサイト相などの硬質相が多量になってしまうため、これを上限とした。
【0053】
この一次冷却が650℃より低温まで行われると、冷却中にパーライトが生成したり充分なフェライトが生成しないことからこれを下限とした。しかしながら、冷却が700℃より高温で終了するとフェライト変態の進行が十分ではないのでこれを上限とした。
【0054】
引き続き行われる二次冷却の急速冷却は、冷却中にパーライト変態や鉄炭化物の析出などが起こらないような冷却速度として最低0.1℃/秒以上が必要となる。但しこの冷却速度を100℃/秒超にすることは設備能力上困難であることから、0.1〜100℃/秒を冷却速度の範囲とした。なお、実施例の表4の発明鋼である、製造番号1、2、4、5、7、10〜17、19〜26、28、30の2次冷却速度が1次冷却速度よりも大きいことに基づいて、ニ次冷却の冷却速度は、一次冷却の冷却速度よりも大きいこととし、二次冷却の冷却速度の下限は、実施例の表4の製造番号4、5、11〜13の2次冷却速度が5℃/sであることに基づいて、5℃/s以上とした。
【0055】
この二次冷却の冷却停止温度がめっき浴温度−50℃よりも低いと操業上大きな問題となり、めっき浴温度+50(℃)を超えると炭化物析出が短時間で生じるため得られる残留オーステナイトやマルテンサイトの量が確保できなくなる。このため、2次冷却の停止温度をめっき浴温度−50℃以上めっき浴温度+50(℃)とした。鋼板中に残留しているオーステナイト相を室温で安定にするためには、その一部をベイナイト相へ変態させる事でオーステナイト中の炭素濃度を更に高めることが必須である。合金化処理を併せてベイナイト変態を短時間で進行させるため、めっき温度−50℃からめっき温度+50℃の温度域で浸漬時間を含めて2〜200秒保持することとした。
【0056】
めっき温度−50℃未満ではベイナイト変態が起こりにくく、めっき温度+50℃を超えると炭化物が生じて十分な残留オーステナイト相を残すことが困難となる。
【0057】
マルテンサイト相を生成させるには、残留オーステナイト相の場合とは異なりベイナイト変態を生じさせる必要がない。一方では、炭化物やパーライト相の生成は残留オーステナイト相と同様、抑制する必要があるため、2次冷却後の十分な合金化処理を行うため400〜550℃の温度域で合金化処理することとする。
【0058】
【実施例】
以下、実施例によって本発明をさらに詳細に説明する。
【0059】
表1に示すような組成の鋼板を、1180〜1250℃に加熱し、880〜1100℃で熱延を完了し、冷却後各鋼の化学成分で決まるベイナイト変態開始温度以上で巻き取った鋼帯を酸洗後、冷延して1.0mm厚とした。
【0060】
【表1】

Figure 0003898924
【0061】
その後、各鋼の成分(質量%)から下記式にしたがってAc1 とAc3 変態温度を計算により求めた。
【0062】
Figure 0003898924
これらのAc1 およびAc3 変態温度から計算される焼鈍温度に10%H2 −N2雰囲気中で昇温・保定したのち、0.1〜10℃/秒の冷却速度で650〜700℃温度域に冷却し、引き続いて0.1〜20℃/秒の冷却速度でめっき浴温度にまで冷却し、浴組成を種々変化させた460〜470℃の亜鉛めっき浴に3秒間浸漬することでめっきを行った。
【0063】
また、一部の鋼板については、Fe−Zn合金化処理として、めっき後の鋼板を400〜550℃の温度域で15秒〜20分保持し、めっき層中のFe含有率が質量%で5〜20%となるよう調節した。めっき表面外観のドロス巻き込み状況の目視観察および不めっき部面積の測定によりめっき外観を評価した。作製しためっきはめっき層をインヒビターを含有した5%塩酸溶液で溶解し化学分析に供し組成を求め表2に示した。
【0064】
表2および表3より、本発明鋼は、外観評点がすべて5で、かつ強度・伸びバランスにも優れる。一方、本発明の範囲を満たさない比較例は、いずれも外観評点が低く、強度・伸びバランスに劣る。また、本発明の請求項の範囲で製造した鋼板は、ミクロ組織も上述した組織になっており外観及び強度・伸びバランスに優れている。
【0065】
【表2】
Figure 0003898924
【0066】
【表3】
Figure 0003898924
【0067】
【表4】
Figure 0003898924
【0068】
【発明の効果】
本発明の高強度溶融亜鉛めっき鋼板はめっき外観に極めて優れ、加工性が良好であり、建材、家電製品、自動車車体用途等に極めて有効である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-strength alloyed hot-dip galvanized steel sheet and hot-dip galvanized steel sheet that are excellent in appearance and workability suitable for building materials, home appliances, automobiles, and the like, and a method for producing the same.
[0002]
[Prior art]
Hot dip galvanizing is applied for the purpose of corrosion protection of steel sheets, and is widely used in building materials, home appliances, automobiles and the like. As a manufacturing method thereof, in a continuous line, after degreasing and cleaning, heating in a non-oxidizing atmosphere,2And N2There is a Sendzimer method of cooling after annealing in a reducing atmosphere containing, cooling to near the plating bath temperature, immersing in a molten zinc bath, cooling or reheating to form an Fe-Zn alloy phase, It is frequently used for processing.
[0003]
For annealing before plating, after degreasing and washing, immediately after heating in a non-oxidizing atmosphere, H2And N2In some cases, an all-reducing furnace method in which annealing is performed in a reducing atmosphere containing selenium is also performed. In addition, a flux method is also performed in which a steel sheet is degreased and pickled, and then flux treatment is performed using ammonium chloride and the like, soaking in a plating bath, and then cooling.
[0004]
A small amount of Al is added to the plating bath used in these plating processes for deoxidation of molten zinc. In the Sendzimer method, the Zn plating bath contains about 0.1% Al by mass. Since Al in this bath has a stronger affinity for Fe than Fe—Zn, when steel is immersed in the plating bath, an Fe—Al alloy phase, that is, an Al concentrated layer, is formed on the steel surface, and Fe—Zn It is known to suppress the reaction. Due to the presence of the Al concentrated layer, the Al content in the obtained plating layer is usually higher than the Al content in the plating bath.
[0005]
In recent years, the demand for high-strength steel sheets having high ductility has been increasing from the viewpoint of reducing the weight of a vehicle body for the purpose of improving fuel consumption especially in the automobile body. As an inexpensive strengthening method, Si is added to the steel, and the high ductility and high strength steel sheet may contain 1% by mass or more.
[0006]
On the other hand, from the viewpoint of plating, when the content of Si in the steel exceeds 0.3% by mass, plating wettability is greatly reduced in the Sendzimer method using a normal Al-containing plating bath, Appearance quality deteriorates because non-plating occurs. It is said that this is because Si oxide is concentrated on the surface of the steel sheet during reduction annealing, and the wettability of Si oxide to molten zinc is poor.
[0007]
As a means for solving this problem, as shown in JP-A-3-28359, JP-A-3-64437 and the like, the plating property is improved by applying specific plating. Then, it is necessary to provide a new plating facility in front of the hot dipping line annealing furnace, or to perform a plating process in the electroplating line in advance, resulting in a significant increase in cost.
[0008]
Further, Si scale scratches generated during hot rolling also cause the appearance of subsequent plating to be damaged. In order to suppress this, it is indispensable to reduce the amount of Si in the steel. However, in the retained austenitic steel and the duplex steel sheets, which are representative of high ductility type high-strength steel sheets, the balance between strength and ductility is enhanced. Si is a very effective additive element.
[0009]
[Problems to be solved by the invention]
An object of the present invention is to solve the above-mentioned problems, and to provide a high-strength galvannealed steel sheet, a galvanized steel sheet, and a method for producing the same, in which non-plating is suppressed and appearance and workability are excellent.
[0010]
[Means for Solving the Problems]
  As a result of various investigations, the inventors have made the plating layer contain a specific element at an appropriate concentration and combine it with the components of the steel sheet to thereby improve the hot dip galvanizing wettability and alloying plating of the high strength steel sheet. Found alloying promotion. This effect is mainly due to platinglayerIt can be made to appear by controlling the concentration of medium Al and Mn in steel.
[0011]
  Mn content in steel is X (mass%), Si content in steel is Y (mass%), platinglayerAssuming that the content of Al in the middle is Z (mass%), it has been found that extremely good plating can be obtained when X, Y and Z satisfy the formula (1).
[0012]
  0.6− (X / 18 + Y + Z) ≧ 0 (1)
  The present invention has been completed based on the above findings, and the gist thereof is as follows.
[1] By mass%
        C: 0.0001 to 0.3%
        Si: 0.001 to less than 0.1%
        Mn: 0.01 to 3%
        Al: 0.001 to 4%
        Mo: 0.001 to 1%
        P: 0.0001 to 0.3%
        S: 0.0001 to 0.1%
From the balance Fe and inevitable impuritiesThe steel microstructure is a composite structure composed of a main phase and a second phase, and the main phase is a ferrite phase or a ferrite phase and a bainite phase with a volume fraction of 50 to 97%, and the average of the main phase Particle size is 20μ m The second phase is composed of one or both of a martensite phase and a retained austenite phase, the volume fraction of the second phase is 3 to 50% in total, and the average particle size of the second phase is 10 μm. m The average particle size of the second phase is 0.01 to 0.7 times the average particle size of the main phase.On the surface of the steel plate
        Mn: 0.001 to 3%
        Al: 0.001 to 4%
        Mo: 0.0001 to 1%
        Fe: 5 to 20%
A hot-dip galvanized steel sheet having a plating layer consisting of Zn and inevitable impurities, the balance being Mn content in steel X (mass%), Si content in steel Y (mass%), during plating High-strength hot-dip galvanizing excellent in appearance and workability, characterized in that X, Y, and Z satisfy the formula (1) where the Al content is Z (mass%)Cold rollingsteel sheet.
[0013]
    0.6− (X / 18 + Y + Z) ≧ 0 (1)
[2] By mass%
        C: 0.0001 to 0.3%
        Si: 0.001 to less than 0.1%
        Mn: 0.01 to 3%
        Al: 0.001 to 4%
        Mo: 0.001 to 1%
        P: 0.0001 to 0.3%
        S: 0.0001 to 0.1%
From the balance Fe and inevitable impuritiesThe steel microstructure is a composite structure composed of a main phase and a second phase, and the main phase is a ferrite phase or a ferrite phase and a bainite phase with a volume fraction of 50 to 97%, and the average of the main phase Particle size is 20μ m The second phase is composed of one or both of a martensite phase and a retained austenite phase, the volume fraction of the second phase is 3 to 50% in total, and the average particle size of the second phase is 10 μm. m The average particle size of the second phase is 0.01 to 0.7 times the average particle size of the main phase.On the surface of the steel plate
        Mn: 0.001 to 3%
        Al: 0.001 to 4%
        Mo: 0.0001 to 1%
        Fe: less than 5%
A hot-dip galvanized steel sheet having a plating layer consisting of Zn and inevitable impurities, the balance being Mn content in steel X (mass%), Si content in steel Y (mass%), during plating High-strength hot-dip galvanizing excellent in appearance and workability, characterized in that X, Y, and Z satisfy the formula (1) where the Al content is Z (mass%)Cold rollingsteel sheet.
    0.6− (X / 18 + Y + Z) ≧ 0 (1)
[3] The plating layer is further mass%,
        Si: 0.0001 to 0.1%,
        W: 0.001 to 0.1%,
        Zr: 0.001 to 0.1%,
        Cs: 0.001 to 0.1%,
        Rb: 0.001 to 0.1%,
        K: 0.001 to 0.1%,
        Ag: 0.001 to 5%,
        Na: 0.001 to 0.05%,
        Cd: 0.001 to 3%
        Cu: 0.001 to 3%,
        Ni: 0.001 to 0.5%,
        Co: 0.001-1%,
        La: 0.001 to 0.1%,
        Tl: 0.001-8%
        Nd: 0.001 to 0.1%,
        Y: 0.001 to 0.1%
        In: 0.001 to 5%,
        Be: 0.001 to 0.1%,
        Cr: 0.001 to 0.05%,
        Pb: 0.001 to 1%,
        Hf: 0.001 to 0.1%,
        Tc: 0.001 to 0.1%,
        Ti: 0.001 to 0.1%,
        Ge: 0.001 to 5%,
        Ta: 0.001 to 0.1%,
        V: 0.001 to 0.2%,
        B: 0.001 to 0.1%,
High-strength hot-dip galvanizing excellent in appearance and workability described in [1] or [2], characterized by containing one or more ofCold rollingsteel sheet.
[4] Steel is further mass%,
        Cr: 0.001 to 25%,
        Ni: 0.001 to 10%,
        Cu: 0.001 to 5%,
        Co: 0.001 to 5%
        W: 0.001 to 5%
The high-strength hot-dip galvanizing excellent in appearance and workability according to any one of [1] to [3], characterized by containing one or more ofCold rollingsteel sheet.
[5] The steel further contains 0.001 to 1% in total of one or more of Nb, Ti, V, Zr, Hf, and Ta in mass%. 4] High-strength hot-dip galvanizing excellent in appearance and workabilityCold rollingsteel sheet.
[6] Steel is further contained by mass%, and B: 0.0001 to 0.1%, and is excellent in appearance and workability according to any one of [1] to [5] High strength hot dip galvanizingCold rollingsteel sheet.
[7] The steel further contains 0.0001 to 1% of one or more of Y, Rem, Ca, Mg, and Ce in total by mass% [1] to [6] High-strength hot-dip galvanizing with excellent appearance and workabilityCold rollingsteel sheet.
[8]The main phase isFerai with volume fraction of 70-97%In phaseYes, second phaseofVolume fractionBut3-30%so[1]-[7] High-strength hot-dip galvanizing excellent in appearance and workabilityCold rollingsteel sheet.
[9]FirstTwo phasesResidualAustenitephaseThe amount of carbon in steel: C (mass%), the amount of Mn in steel: Mn (mass%),Said residueAustenitephaseVolume ratio: Vγ (%), ferritephaseAnd bainitephaseVolume ratio: Vα (%) satisfies the formula (2) [1] to [1]8] High-strength hot-dip galvanizing excellent in appearance and workabilityCold rollingsteel sheet.
(Vγ + Vα) /Vγ×C+Mn/8≧2.000 (2)
[10]The main phase isFerrite with volume fraction of 50-95%2 to 47% bainite phase by volume and volume fractionAnd the second phaseofVolume fractionBut3-30%In[1]-[9] High-strength hot-dip galvanizing excellent in appearance and workabilityCold rollingsteel sheet.
[11] [2] ~ [10] High-strength hot-dip galvanizing according to any one ofCold rollingA method of manufacturing a steel plate, wherein the cast slab comprising the steel plate component according to any one of [1], [4] to [7] is heated to 1180 to 1250 ° C. as cast or once cooled. The hot-rolled steel sheet wound after the hot rolling at 880 to 1100 ° C. is cold-rolled after pickling, and then 0.1 × (Ac3-Ac1) + Ac1 (° C.) or more and Ac3 + 50 (° C.) or less. After annealing in the temperature range for 10 seconds to 30 minutes, cooling to a temperature range of 650 to 700 ° C. at a cooling rate of 0.1 to 10 ° C./secondDo the primary coolingAnd thenGreater than the primary cooling and 5Cooling to plating bath temperature -50 ° C to plating bath temperature + 50 (° C) at a cooling rate of ~ 100 ° C / secondDo secondary coolingAfter being immersed in a plating bath and after being kept in a temperature range of plating bath temperature −50 ° C. to plating bath temperature +50 (° C.) for 2 to 200 seconds including the immersion time., RoomHigh-strength hot-dip galvanizing with excellent workability characterized by cooling to temperatureCold rollingA method of manufacturing a steel sheet.
[12] A method for producing a high-strength hot-dip galvanized cold-rolled steel sheet according to any one of [1] and [3] to [10], wherein the alloying treatment is performed after immersion and holding in the plating bath. The method for producing a high-strength hot-dip galvanized cold-rolled steel sheet having excellent appearance and workability according to [11], wherein the method is performed in a temperature range of ˜550 ° C. and cooled to room temperature.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
[0015]
  Inventors are mass%,
    C: 0.0001 to 0.3%,
    Si: 0.001 to less than 0.1%,
    Mn: 0.01 to 3%
    Al: 0.001 to 4%
    Mo: 0.001 to 1%
    P: 0.0001 to 0.3%
    S: 0.0001 to 0.1%
Steel, the balance Fe and inevitable impurities steel plate is annealed, immersed in a Zn plating bath at a temperature of 450 to 470 ° C. for 3 seconds, and some samples are heated at 500 to 530 ° C. for 10 to 60 seconds. It was. Thereafter, the external appearance was evaluated in five stages based on the defect occurrence rate on the surface of the plated steel sheet. In addition, mechanical properties were evaluated in a tensile test. As a result, the Mn content in steel is X (mass%), the Si content in steel is Y (mass%), platinglayerIt was found that when the Al content is Z (mass%), X, Y, and Z satisfy the formula (1), and a rating of 5 with almost no appearance defect is obtained.
0.6− (X / 18 + Y + Z) ≧ 0 (1)
  In each of the grades 1 to 5, the appearance of plating was visually evaluated for the occurrence of unplating and the occurrence of scratches and pattern defects. The evaluation index is as follows.
Score 5: almost no plating, scratches or patterns (area ratio of 1% or less)
Score 4: Unplated, scratches and patterns are very small (over 1% in area ratio and less than 10%)
Score 3: Unplated, small scratches and patterns (over 10% and less than 50% in area ratio)
Score 2: Unplated, many scratches and patterns (over 50% in area ratio)
Score 1: The details of why the plating does not get wet and the occurrence of non-plating and other defects are unknown, but the wettability between Al added to the plating bath and SiO2 formed on the steel sheet surface is poor. It is thought that non-plating occurs. That is, it is possible to suppress the occurrence of non-plating by adding an element that removes the adverse effect of Al added to the Zn bath. As a result of intensive studies by the present inventors, it was found that the notation purpose can be achieved by adding Mn in an appropriate concentration range. Moreover, it is thought that it is effective for the improvement of external appearance that the generation | occurrence | production of the damage | wound by Si scale produced at the time of hot rolling by suppressing the amount of Si in steel was suppressed. In addition, with regard to material deterioration due to the reduction of Si, it has also been found that ductility can be ensured by adding manufacturing conditions and other components: Al and Mo, and that the reduction of Si and addition of Al are effective in promoting alloying. It was.
[0016]
Further, in the plating layer, W, Zr, Cs, Rb, K, Ag, Na, Cd, Cu, Ni, Co, La, Tl, Nd, Y, In, Be, Cr, Pb, Hf, Tc, Ti, Ge It has been found that by containing one or more of Ta, V, and B, non-plating is suppressed and alloying is promoted.
[0017]
There are no particular restrictions on the amount of plating deposited, but the amount on one side is 5 g / m from the viewpoint of corrosion resistance.2 The above is desirable. For the purpose of improving the paintability and weldability on the hot-dip Zn plated steel sheet of the present invention, various treatments such as chromate treatment, phosphate treatment, lubricity improvement treatment, weldability improvement treatment, etc. However, the present invention does not depart from the present invention.
[0018]
The reason why the amount of Mn in the plating layer is within the range of 0.001 to 3% by mass is that non-plating does not occur in this range and plating with a good appearance can be obtained. When the amount of Mn exceeds 3 mass% of an upper limit, a Mn-Zn compound will precipitate in a plating bath and it will take in in a plating layer, and an external appearance will fall remarkably.
[0019]
The reason why the amount of Al in the plating layer is in the range of 0.001 to 4% by mass is that when less than 0.001% by mass, dross generation is remarkable and a good appearance cannot be obtained, and Al exceeds 4% by mass. If added, the alloying reaction is remarkably suppressed, and it becomes difficult to form an alloyed hot-dip galvanized layer.
[0020]
The reason why the amount of Mo in the plating layer is in the range of 0.0001 to 1% by mass is that non-plating is suppressed in this range and plating with a good appearance is obtained. When the amount of Mo exceeds the upper limit of 1% by mass, the appearance of plating is significantly deteriorated due to generation of dross containing Mo.
[0021]
Fe is taken into the plating layer by the alloying treatment, and a high-strength hot-dip galvanized steel sheet excellent in paintability and spot weldability can be obtained. In the invention according to [1], the spot weldability is insufficient when the Fe content of the plating layer is less than 5% by mass. On the other hand, if the amount of Fe exceeds 20% by mass, the adhesion of the plating layer itself is impaired, and the plating layer breaks and drops during processing and adheres to the mold, thereby causing defects during molding. Therefore, the range of the amount of Fe in the plating layer when performing the alloying treatment is 5 to 20% by mass.
[0022]
When the alloying treatment is not performed, the amount of Fe in the plating layer may be less than 5% by mass. That is, in the invention according to the above [2], even if the Fe content of the plating layer is less than 5% by mass, the effects such as appearance, workability and corrosion resistance other than the effects of the alloying according to the present invention according to [1] are good. .
[0023]
The amount of Si in the plating layer is 0.0001 to 0.1 mass%, the amount of W is 0.001 to 0.1 mass%, the amount of Zr is 0.001 to 0.1 mass%, and the amount of Cs is 0.001 to 0. 0.1 mass%, Rb content is 0.001 to 0.1 mass%, K content is 0.001 to 0.1 mass%, Ag content is 0.001 to 5 mass%, and Na content is 0.001 to 0. 0.05 mass%, Cd content 0.001-3 mass%, Cu content 0.001-3 mass%, Ni content 0.001-0.5 mass%, Co content 0.001-1 mass% The La amount is 0.001 to 0.1% by mass, the Tl amount is 0.001 to 8% by mass, the Nd amount is 0.001 to 0.1% by mass, and the Y amount is 0.001 to 0.1% by mass. In amount 0.001 to 5 mass%, Be amount 0.001 to 0.1 mass%, Cr amount 0.001 to 0.05 mass%, Pb amount 0.001 to 1 mass%, Hf 0.001 to 0.1 mass%, Tc content 0.001 to 0.1 mass%, Ti content 0.001 to 0.1 mass%, Ge content 0.001 to 5 mass%, Ta content In the range of 0.001 to 0.1% by mass, V content in the range of 0.001 to 0.2% by mass, and B content in the range of 0.001 to 0.1% by mass in this range, respectively. This is because plating with a good appearance can be obtained. When the amount of each element exceeds the upper limit, the appearance of plating is remarkably deteriorated due to generation of dross containing each element.
[0024]
Next, the reasons for limiting the steel plate components in the present invention will be described.
[0025]
  C: In order to ensure strength, the lower limit of the C amount was 0.0001% by mass. Also especially retained austenitephaseIs an indispensable additive element necessary to ensure a sufficient amount and stability. On the other hand, the upper limit for maintaining weldability was set to 0.3% by mass.
[0026]
Si: 0.001% or more to ensure manufacturability and material strength, and Si was made less than 0.1% to reduce scale scratches. Addition exceeding this often causes scale damage, leading to deterioration of the plating appearance and reduction of the yield of the steel sheet.
[0027]
The range of Mn: 0.01 to 3% by mass is that a strengthening effect appears at 0.01% by mass or more, and 3% by mass is the upper limit because addition exceeding this has an adverse effect on elongation. It is.
[0028]
Al: The range of 0.001 to 4% by mass is set to 0.001% by mass or more for the purpose of deoxidation because of low Si. It also has the effect of improving the strength ductility balance and promoting the alloying behavior of the plating. On the other hand, excessive addition adversely affects weldability, plating wettability and manufacturability, so 4% was made the upper limit.
[0029]
  Mo: Strengthening element. Perlite that adversely affects strength ductility balance due to low SiphaseFurther, 0.001 mass% or more is added to suppress precipitation of carbides instead of Si. On the other hand, excessive addition is retained austenitephaseGeneration and stabilization of ferritephase1% was made the upper limit because it causes a decrease in ductility.
[0030]
The amount of P is set in the range of 0.0001 to 0.3% by mass because the strengthening effect appears at 0.0001% by mass or more, and the extremely low is economically disadvantageous, so this is the lower limit. . The reason why the upper limit is 0.3% by mass is that the addition exceeding this amount adversely affects weldability and manufacturability during casting and hot rolling.
[0031]
The reason why the amount of S is in the range of 0.0001 to 0.1% by mass is that the extremely low is economically disadvantageous, so 0.0001% by mass is set as the lower limit, and 0.1% by mass is set. The upper limit is because addition of an amount exceeding this adversely affects weldability, manufacturability during casting and hot rolling.
[0032]
Furthermore, the steel targeted by the present invention can contain one or more of Cr, Ni, Cu, Co, and W for the purpose of further improving the strength.
[0033]
The Cr content in the range of 0.001 to 25% by mass means that a strengthening effect appears at 0.001% by mass or more, and the upper limit is 25% by mass. This is to adversely affect
[0034]
The amount of Ni in the range of 0.001 to 10% by mass is that the strengthening effect appears at 0.001% or more, and the upper limit of 10% by mass is the workability when the amount exceeds this. This is to have an adverse effect.
[0035]
The amount of Cu in the range of 0.001 to 5% by mass is that the strengthening effect appears at 0.001% by mass or more, and the upper limit of 25% by mass is the workability when the amount exceeds this. This is to adversely affect
[0036]
The Co amount in the range of 0.001 to 5% by mass is that the strengthening effect appears at 0.001% by mass or more, and the upper limit of 5% by mass is the workability when the amount exceeds this. This is to adversely affect
[0037]
The amount of W in the range of 0.001 to 5% by mass is that the strengthening effect appears at 0.001% by mass or more, and the upper limit of 5% by mass is the workability when the amount exceeds this. This is to adversely affect
[0038]
Furthermore, the steel targeted by the present invention can contain one or more of Nb, Ti, V, Zr, Hf, and Ta, which are strong carbide forming elements, for the purpose of further improving the strength.
[0039]
  These elements form fine carbides, nitrides or carbonitrides, and the strengthening of the steel sheet is extremely effective. Therefore, if necessary, one or more elements may be added in total to 0.001% by mass or more. It was set as addition. On the other hand, ductile deterioration and retained austenitephaseSince the concentration of C into the inside is inhibited, the upper limit of the total amount of one or more types is set to 1% by mass.
[0040]
B can also be added as needed. B is effective for strengthening grain boundaries and increasing the strength of steel by adding 0.0001% by mass or more. However, when the amount of addition exceeds 0.1% by mass, the effect is not only saturated but also necessary. Since the steel sheet strength is increased and the workability is lowered as described above, the upper limit is set to 0.1% by mass.
[0041]
Y, Rem, Ca, Mg, Ce, are added for the purpose of suppressing the formation of an Si-based internal grain boundary oxidation phase that deteriorates the wettability of plating. Grain boundary oxides are not formed like Si-based oxides, but relatively fine oxides can be dispersed and formed. From these element groups, one or more elements were added in an amount of 0.0001% or more. On the other hand, excessive addition reduces the manufacturability such as castability and hot workability, and the ductility of the steel sheet product, so the upper limit was made 1 mass%.
[0042]
  Next, a preferable microstructure of the base steel sheet will be described. Mainly to ensure sufficient workabilityphaseIs preferably 50% or more, and preferably 70% or more in terms of volume fraction, but a bainite phase may be included in consideration of increasing the strength. Meanwhile, ferritephaseThe increase in volume fraction increases the ductility but leads to a decrease in strength, so the upper limit is 97% in the volume fraction when not containing the bainite phase, and 95% in the volume fraction when containing the bainite phase. In order to achieve both high strength and high ductility, a composite structure containing a retained austenite phase and / or martensite phase is formed. For high strength and high ductility, the residual austenite phase and martensite phase were made 3% or more in total by volume. Since the embrittlement tendency is exhibited when the volume ratio exceeds 50% in total, it is set to 50% or less, and preferably 30% or less.
[0043]
  In order to ensure the high ductility of the steel plate itself,phaseThe average particle size of 20 μm or less is the second phaseResidualAustenitephaseAnd / or martensitephaseThe average particle size is defined as 10 μm or less. Also here the second phaseResidualAustenitephaseAnd / or martensitephaseAnd ferrite as the main phasephaseIt is desirable to ensure a ratio of 0.7 or less with respect to the average particle diameter. On the other hand, it is the second phaseResidualAustenitephaseAnd / or martensitephaseThe average particle size of ferritephaseSince it is difficult for actual production to be less than 0.01 times the average particle size, it is preferably 0.01 times or more.
[0044]
  Furthermore, in order to achieve a good balance between plating adhesion and high strength ductility / ductility, the second phase of the steel sheetResidualAustenitephaseWhen the amount of carbon in steel: C (mass%), the amount of Mn in steel: Mn (mass%),ResidualAustenitephaseVolume ratio: Vγ (%), ferritephaseAnd bainitephaseThe volume ratio of Vα (%) was set to satisfy the formula (2).
  (Vγ + Vα) / Vγ × C + Mn / 8 ≧ 2,000 (2)
By satisfying this formula, a steel sheet having a particularly excellent balance between strength and ductility and good plating adhesion can be obtained.
[0045]
  Bay nightphaseThe volume fraction and the like in the case of including are described as follows. By containing 2% or more of the bainite phase in terms of volume fraction, it helps to increase the strength, and if it coexists with the austenite phaseResidualAustenitephaseAs a result, it helps to increase the n value. In addition, this phase is basically fine and contributes to plating adhesion during high processing. Especially the second phaseResidualAustenitephaseIn the case of bainitephaseIf the volume fraction of is 2% or more, the balance between plating adhesion and ductility is further improved. On the other hand, when it produces | generates excessively, a ductility fall will be caused, and a bainite phase shall be 47% or less by a volume fraction.
[0046]
  In addition to the above, the case of containing one or more of carbides, nitrides, sulfides, and oxides as the remaining structure of the microstructure is also within the category of the steel sheet of the present invention. Is preferably 1% or less in volume fraction. In addition, ferrite of the above microstructurephase, Bay nightphase,ResidualAustenitephase,MartensitephaseIn addition, the identification of the remaining structure, the observation of the existing position, and the measurement of the average particle diameter (average equivalent circle diameter) and the space factor were carried out by using the Nital reagent and the reagent disclosed in Japanese Patent Application Laid-Open No. 59-219473 in the direction of rolling in the steel plate. The cross section perpendicular to the rolling direction can be corroded and quantified by observation with an optical microscope of 500 to 1000 times. Where martensitephaseMeasurement of the particle size may be difficult when using an optical microscope. In this case, use a scanning electron microscope to martensite.phaseThe average circle equivalent diameter is obtained by observing the block boundaries, packet boundaries, or a set of them and measuring the particle size.
[0047]
The average particle size is defined as a value obtained by JIS based on the result of 20 field observations or more by the above method.
[0048]
A method for producing a high-strength hot-dip galvanized steel sheet having such a structure will be described below.
[0049]
When the steel sheet of the present invention is manufactured by cold rolling and annealing after hot rolling, the slab adjusted to a predetermined component is cast or once cooled and then reheated to 1180 ° C. or higher to form a uniform scale. Increases descalability by forming on the surface. On the other hand, since heating above 1250 ° C. promotes local abnormal oxidation, this was set as the upper limit of the heating temperature. Moreover, in order to suppress excessive internal oxidation production, the hot rolling is finished at 880 ° C. or higher, and then pickled and annealed after cold rolling to obtain a final product. At this time, the hot rolling completion temperature is determined by the chemical composition of the steel.Three Generally, it is carried out at the transformation temperature or higher, but ArThree If it is from about 10 degreeC to about 10 degreeC low temperature, the characteristic of the final steel plate will not be deteriorated. On the other hand, in order to avoid the formation of a large amount of oxide scale, the hot rolling completion temperature is set to 1100 ° C. or lower.
[0050]
In addition, if the coiling temperature after cooling is higher than the bainite transformation start temperature determined by the chemical composition of the steel, it is possible to avoid increasing the load during cold rolling more than necessary, but when the total rolling reduction of cold rolling is small Is not limited to this, and even if the steel sheet is wound at a temperature lower than the bainite transformation temperature of the steel, the properties of the final steel sheet are not deteriorated. Further, the total rolling reduction ratio of the cold rolling is set based on the relationship between the final sheet thickness and the cold rolling load, but if it is 40% or more, the final steel sheet characteristics are not deteriorated.
[0051]
  When annealing after cold rolling, the annealing temperature is expressed by the temperature Ac1 and Ac3 temperature determined by the chemical composition of the steel (for example, “Steel Material Science” written by W.C. Leslie, translated by Narita Koda, Maruzen P273). When the temperature is less than 1 × (Ac3−Ac1) + Ac1 (° C.), the amount of austenite obtained at the annealing temperature is so small that the retained austenite phase or martensite phase cannot be left in the final steel sheet. Was the lower limit of the annealing temperature. Further, even if the annealing temperature exceeded Ac3 +50 (° C), the upper limit of the annealing temperature was set to Ac3 +50 (° C) in order to improve the manufacturing cost without improving the properties of the steel sheet. The annealing time at this temperature is equal to the temperature of the steel sheet and austenitephaseIt takes 10 seconds or more to secure the above. However, if it exceeds 30 minutes, the effect is not only saturated but also the cost is increased.
[0052]
  Subsequent primary cooling promotes transformation from the austenite phase to the ferrite phase, concentrating C in the untransformed austenite phase.ResidualAustenitephaseIt is important to achieve stabilization. If the cooling rate is less than 0.1 ° C./second, a production disadvantage such as lengthening the required production line length or extremely slowing the production rate is caused. The temperature was 1 ° C./second. On the other hand, when the cooling rate exceeds 10 ° C./sec, ferrite transformation does not occur sufficiently, and it becomes difficult to secure the residual austenite phase in the final steel sheet, and the hard phase such as martensite phase becomes large. Therefore, this is the upper limit.
[0053]
  When this primary cooling is performed to a temperature lower than 650 ° C., the pearlite is cooled during the cooling.phaseProduces enough ferritephaseThis is set as the lower limit since does not generate. However, if the cooling is finished at a temperature higher than 700 ° C., the ferrite transformation does not progress sufficiently, so this was made the upper limit.
[0054]
  The subsequent rapid cooling of the secondary cooling requires a cooling rate of at least 0.1 ° C./second or more so as not to cause pearlite transformation or precipitation of iron carbide during cooling. However, since it is difficult to increase the cooling rate above 100 ° C./second in terms of equipment capacity, the cooling rate range was set to 0.1-100 ° C./second.In addition, secondary cooling rate of production number 1, 2, 4, 5, 7, 10-17, 19-26, 28, 30 which is invention steel of Table 4 of an Example must be larger than a primary cooling rate. Based on the above, it is assumed that the cooling rate of the secondary cooling is larger than the cooling rate of the primary cooling, and the lower limit of the cooling rate of the secondary cooling is 2 of production numbers 4, 5, 11 to 13 in Table 4 of Examples. Based on the fact that the next cooling rate was 5 ° C./s, the cooling rate was 5 ° C./s or more.
[0055]
  If the cooling stop temperature of this secondary cooling is lower than the plating bath temperature of −50 ° C., it becomes a serious problem in operation, and if it exceeds the plating bath temperature of +50 (° C.), carbide precipitation occurs in a short time, resulting in retained austenite.phaseAnd martensitephaseThe amount of can not be secured. For this reason, the secondary cooling stop temperature was set to a plating bath temperature of −50 ° C. or higher and a plating bath temperature of +50 (° C.). In order to stabilize the austenite phase remaining in the steel sheet at room temperature, a part of the austenite phase is transformed into a bainite phase.phaseIt is essential to further increase the carbon concentration inside. In order to allow the bainite transformation to proceed in a short time together with the alloying treatment, it was held for 2 to 200 seconds including the dipping time in the temperature range from the plating temperature −50 ° C. to the plating temperature + 50 ° C.
[0056]
If the plating temperature is less than −50 ° C., the bainite transformation hardly occurs, and if the plating temperature exceeds + 50 ° C., carbides are generated and it is difficult to leave a sufficient residual austenite phase.
[0057]
Unlike the retained austenite phase, it is not necessary to cause the bainite transformation to produce the martensite phase. On the other hand, since it is necessary to suppress the formation of carbides and pearlite phases in the same manner as the retained austenite phase, alloying treatment is performed in a temperature range of 400 to 550 ° C. in order to perform sufficient alloying treatment after secondary cooling. To do.
[0058]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
[0059]
A steel strip having a composition as shown in Table 1 was heated to 1180 to 1250 ° C., completed hot rolling at 880 to 1100 ° C., and wound up at a temperature higher than the bainite transformation start temperature determined by the chemical composition of each steel after cooling. After pickling, it was cold rolled to a thickness of 1.0 mm.
[0060]
[Table 1]
Figure 0003898924
[0061]
Then, according to the following formula from the component (mass%) of each steel, Ac1 And AcThree The transformation temperature was determined by calculation.
[0062]
Figure 0003898924
These Ac1 And AcThree 10% H in the annealing temperature calculated from the transformation temperature2 -N2After raising the temperature and holding in the atmosphere, it is cooled to a temperature range of 650 to 700 ° C. at a cooling rate of 0.1 to 10 ° C./second, and subsequently to the plating bath temperature at a cooling rate of 0.1 to 20 ° C./second. The plating was performed by immersing in a galvanizing bath at 460 to 470 ° C. with various changes in the bath composition for 3 seconds.
[0063]
Moreover, about some steel plates, as a Fe-Zn alloying process, the steel plate after plating is hold | maintained for 15 seconds-20 minutes in the temperature range of 400-550 degreeC, and the Fe content rate in a plating layer is 5 by mass%. Adjusted to ˜20%. The plating appearance was evaluated by visual observation of the dross entrainment condition of the plating surface appearance and measurement of the non-plated area. The prepared plating was dissolved in a 5% hydrochloric acid solution containing an inhibitor and subjected to chemical analysis, and the composition was determined and shown in Table 2.
[0064]
From Tables 2 and 3, the steel according to the present invention has an appearance score of 5 and is excellent in strength / elongation balance. On the other hand, all the comparative examples not satisfying the scope of the present invention have low appearance scores and are inferior in strength / elongation balance. Moreover, the steel sheet manufactured in the scope of the claims of the present invention has the microstructure described above, and is excellent in appearance, strength and elongation balance.
[0065]
[Table 2]
Figure 0003898924
[0066]
[Table 3]
Figure 0003898924
[0067]
[Table 4]
Figure 0003898924
[0068]
【The invention's effect】
The high-strength hot-dip galvanized steel sheet of the present invention is extremely excellent in plating appearance, has good workability, and is extremely effective for building materials, home appliances, automobile body applications, and the like.

Claims (12)

質量%で、
C :0.0001〜0.3%
Si:0.001〜0.1%未満
Mn:0.01〜3%
Al:0.001〜4%
Mo:0.001〜1%
P:0.0001〜0.3%
S:0.0001〜0.1%
を含有し、残部Fe及び不可避不純物からなり、鋼のミクロ組織が、主相と第2相からなる複合組織であり、前記主相が体積分率で50〜97%のフェライト相又はフェライト相とベイナイト相であり、前記主相の平均粒径が20μ m 以下であり、前記第2相がマルテンサイト相、残留オーステナイト相の一方もしくは両方からなり、前記第2相の体積分率が合計3〜50%であり、前記第2相の平均粒径が10μ m 以下であり、前記第2相の平均粒径が前記主相の平均粒径の0.01〜0.7倍である鋼板の表面に、質量%で、
Mn:0.001〜3%
Al:0.001〜4%
Mo:0.0001〜1%
Fe:5〜20%
を含有し、残部がZn及び不可避不純物からなるめっき層を有する溶融亜鉛めっき鋼板であって、
鋼中Mn含有率をX(質量%)、鋼中Si含有率をY(質量%)、めっき中Al含有率をZ(質量%)とすると、X、YおよびZが(1)式を満たすことを特徴とする外観と加工性に優れた高強度溶融亜鉛めっき冷延鋼板。
0.6−(X/18+Y+Z)≧0 ・・・(1)
% By mass
C: 0.0001 to 0.3%
Si: 0.001 to less than 0.1% Mn: 0.01 to 3%
Al: 0.001 to 4%
Mo: 0.001 to 1%
P: 0.0001 to 0.3%
S: 0.0001 to 0.1%
Containing, Ri Do the balance Fe and unavoidable impurities, the steel microstructure is a composite structure consisting of the main phase and the second phase, 50 to 97% of ferrite phase or a ferrite phase the main phase at a volume fraction and a bainitic phase, the average grain size of the main phase is less 20 [mu] m, the second phase is martensite phase, made from one or both of retained austenite phase, the volume fraction of the second phase is a total of 3 was 50%, an average particle size of the second phase is equal to or less than 10 [mu] m, an average particle size of the second phase Ru 0.01 to 0.7 Baidea an average particle size of the main phase steel plate On the surface of the
Mn: 0.001 to 3%
Al: 0.001 to 4%
Mo: 0.0001 to 1%
Fe: 5 to 20%
Is a hot dip galvanized steel sheet having a plating layer consisting of Zn and inevitable impurities,
Assuming that the Mn content in steel is X (mass%), the Si content in steel is Y (mass%), and the Al content in plating is Z (mass%), X, Y and Z satisfy the formula (1). A high-strength hot-dip galvanized cold-rolled steel sheet with excellent appearance and workability.
0.6− (X / 18 + Y + Z) ≧ 0 (1)
質量%で、
C :0.0001〜0.3%
Si:0.001〜0.1%未満
Mn:0.01〜3%
Al:0.001〜4%
Mo:0.001〜1%
P:0.0001〜0.3%
S:0.0001〜0.1%
を含有し、残部Fe及び不可避不純物からなり、鋼のミクロ組織が、主相と第2相からなる複合組織であり、前記主相が体積分率で50〜97%のフェライト相又はフェライト相とベイナイト相であり、前記主相の平均粒径が20μ m 以下であり、前記第2相がマルテンサイト相、残留オーステナイト相の一方もしくは両方からなり、前記第2相の体積分率が合計3〜50%であり、前記第2相の平均粒径が10μ m 以下であり、前記第2相の平均粒径が前記主相の平均粒径の0.01〜0.7倍である鋼板の表面に、質量%で、
Mn:0.001〜3%
Al:0.001〜4%
Mo:0.0001〜1%
Fe:5%未満
を含有し、残部がZn及び不可避不純物からなるめっき層を有する溶融亜鉛めっき鋼板であって、
鋼中Mn含有率をX(質量%)、鋼中Si含有率をY(質量%)、めっき中Al含有率をZ(質量%)とすると、X、YおよびZが(1)式を満たすことを特徴とする外観と加工性に優れた高強度溶融亜鉛めっき冷延鋼板。
0.6−(X/18+Y+Z)≧0 ・・・(1)
% By mass
C: 0.0001 to 0.3%
Si: 0.001 to less than 0.1% Mn: 0.01 to 3%
Al: 0.001 to 4%
Mo: 0.001 to 1%
P: 0.0001 to 0.3%
S: 0.0001 to 0.1%
Containing, Ri Do the balance Fe and unavoidable impurities, the steel microstructure is a composite structure consisting of the main phase and the second phase, 50 to 97% of ferrite phase or a ferrite phase the main phase at a volume fraction and a bainitic phase, the average grain size of the main phase is less 20 [mu] m, the second phase is martensite phase, made from one or both of retained austenite phase, the volume fraction of the second phase is a total of 3 was 50%, an average particle size of the second phase is equal to or less than 10 [mu] m, an average particle size of the second phase Ru 0.01 to 0.7 Baidea an average particle size of the main phase steel plate On the surface of the
Mn: 0.001 to 3%
Al: 0.001 to 4%
Mo: 0.0001 to 1%
Fe: a hot dip galvanized steel sheet having a plating layer containing less than 5%, the balance being Zn and inevitable impurities,
Assuming that the Mn content in steel is X (mass%), the Si content in steel is Y (mass%), and the Al content in plating is Z ( mass%), X, Y and Z satisfy the formula (1). A high-strength hot-dip galvanized cold-rolled steel sheet with excellent appearance and workability.
0.6− (X / 18 + Y + Z) ≧ 0 (1)
めっき層が、さらに質量%で、
Si:0.0001〜0.1%、
W:0.001〜0.1%、
Zr:0.001〜0.1%、
Cs:0.001〜0.1%、
Rb:0.001〜0.1%、
K:0.001〜0.1%、
Ag:0.001〜5%、
Na:0.001〜0.05%、
Cd:0.001〜3%、
Cu:0.001〜3%、
Ni:0.001〜0.5%、
Co:0.001〜1%、
La:0.001〜0.1%、
Tl:0.001〜8%、
Nd:0.001〜0.1%、
Y:0.001〜0.1%、
In:0.001〜5%、
Be:0.001〜0.1%、
Cr:0.001〜0.05%、
Pb:0.001〜1%、
Hf:0.001〜0.1%、
Tc:0.001〜0.1%、
Ti:0.001〜0.1%、
Ge:0.001〜5%、
Ta:0.001〜0.1%、
V:0.001〜0.2%、
B:0.001〜0.1%、
の1種または2種以上を含有することを特徴とする請求項1または2に記載の外観と加工性に優れた高強度溶融亜鉛めっき冷延鋼板。
The plating layer is further mass%,
Si: 0.0001 to 0.1%,
W: 0.001 to 0.1%,
Zr: 0.001 to 0.1%,
Cs: 0.001 to 0.1%,
Rb: 0.001 to 0.1%,
K: 0.001 to 0.1%,
Ag: 0.001 to 5%,
Na: 0.001 to 0.05%,
Cd: 0.001 to 3%
Cu: 0.001 to 3%,
Ni: 0.001 to 0.5%,
Co: 0.001-1%,
La: 0.001 to 0.1%,
Tl: 0.001-8%
Nd: 0.001 to 0.1%,
Y: 0.001 to 0.1%
In: 0.001 to 5%,
Be: 0.001 to 0.1%,
Cr: 0.001 to 0.05%,
Pb: 0.001 to 1%,
Hf: 0.001 to 0.1%,
Tc: 0.001 to 0.1%,
Ti: 0.001 to 0.1%,
Ge: 0.001 to 5%,
Ta: 0.001 to 0.1%,
V: 0.001 to 0.2%,
B: 0.001 to 0.1%,
The high-strength hot-dip galvanized cold-rolled steel sheet having excellent appearance and workability according to claim 1 or 2, characterized by containing one or more of the following.
鋼が、さらに質量%で、
Cr:0.001〜25%、
Ni:0.001〜10%、
Cu:0.001〜5%、
Co:0.001〜5%、
W:0.001〜5%、
の1種または2種以上を含有することを特徴とする請求項1〜3の何れか1項に記載の外観と加工性に優れた高強度溶融亜鉛めっき冷延鋼板。
Steel is more mass%,
Cr: 0.001 to 25%,
Ni: 0.001 to 10%,
Cu: 0.001 to 5%,
Co: 0.001-5%
W: 0.001 to 5%,
The high-strength hot-dip galvanized cold-rolled steel sheet excellent in appearance and workability according to any one of claims 1 to 3, characterized by containing one or more of the following.
鋼が、さらに質量%で、Nb、Ti、V、Zr、Hf、Taの1種または2種以上を合計で0.001〜1%含有することを特徴とする請求項1〜4のいずれか1項に記載の外観と加工性に優れた高強度溶融亜鉛めっき冷延鋼板。The steel further contains 0.001 to 1% in total of one or more of Nb, Ti, V, Zr, Hf, and Ta in mass%. A high-strength hot-dip galvanized cold-rolled steel sheet excellent in appearance and workability as described in item 1. 鋼が、さらに質量%で、B:0.0001〜0.1%を含有することを特徴とする請求項1〜5のいずれか1項に記載の外観と加工性に優れた高強度溶融亜鉛めっき冷延鋼板。The high-strength molten zinc excellent in appearance and workability according to any one of claims 1 to 5, wherein the steel further contains B: 0.0001 to 0.1% by mass. Plated cold-rolled steel sheet. 鋼が、さらに質量%で、Y、Rem、Ca、Mg、Ceの1種又は2種以上を0.0001〜1%含有することを特徴とする請求項1〜6のいずれか1項に記載の外観と加工性に優れた高強度溶融亜鉛めっき冷延鋼板。7. The steel according to claim 1, wherein the steel further contains 0.0001 to 1% of one or more of Y, Rem, Ca, Mg, and Ce in mass%. high-strength galvanized cold-rolled steel sheet excellent in appearance and workability. 主相が体積分率で70〜97%のフェライト相であり、第2相体積分率3〜30%であることを特徴とする請求項1〜のいずれか1項に記載の外観と加工性に優れた高強度溶融亜鉛めっき冷延鋼板。 A 70 to 97% of ferrite phase main phase volume fraction, according to any one of claims 1 to 7, the volume fraction of the second phase is characterized by a 3% to 30% High-strength hot-dip galvanized cold-rolled steel sheet with excellent appearance and workability. 2相が残留オーステナイトであり、鋼中の炭素量:C(質量%)、鋼中のMn量:Mn(質量%)、前記残留オーステナイトの体積率:Vγ(%)、フェライト及びベイナイトの体積率:Vα(%)が(2)式を満たすことを特徴とする請求項1〜の何れか1項に記載の外観と加工性に優れた高強度溶融亜鉛めっき冷延鋼板。
(Vγ+Vα)/ Vγ×C+Mn/8 ≧ 2.000 ・・・(2)
The second phase is the retained austenite phase , the carbon content in the steel: C (mass%), the Mn content in the steel: Mn (mass%), the volume fraction of the retained austenite phase : Vγ (%), the ferrite phase and The volume ratio of bainite phase : Vα (%) satisfies the formula (2). 9. The high-strength hot-dip galvanized cold-rolled steel sheet having excellent appearance and workability according to any one of claims 1 to 8. .
(Vγ + Vα) / Vγ × C + Mn / 8 ≧ 2,000 (2)
主相が体積分率で50〜95%のフェライト相と体積分率で2〜47%のベイナイト相であり、第2相体積分率3〜30%であることを特徴とする請求項1〜の何れか1項に記載の外観と加工性に優れた高強度溶融亜鉛めっき冷延鋼板。A 2-47% bainite phase in a ferrite phase and a volume fraction of 50% to 95% in the main phase volume fraction, wherein the volume fraction of the second phase is characterized by 3% to 30% der Rukoto Item 10. A high-strength hot-dip galvanized cold-rolled steel sheet excellent in appearance and workability according to any one of items 1 to 9 . 請求項10の何れか1項に記載の高強度溶融亜鉛めっき冷延鋼板を製造する方法であって、請求項1、4〜7の何れか1項に記載の鋼板の成分からなる鋳造スラブを鋳造ままもしくは一旦冷却した後に1180〜1250℃に再度加熱し、880〜1100℃で熱延を終了させた後、巻取った熱延鋼板を酸洗後冷延し、その後、0.1×(Ac3−Ac1)+Ac1(℃)以上Ac3+50(℃)以下の温度域で10秒〜30分焼鈍した後に、0.1〜10℃/秒の冷却速度で650〜700℃の温度域に冷却する一次冷却を行い、引き続いて前記一次冷却よりも大きく、かつ、5〜100℃/秒の冷却速度でめっき浴温度−50℃〜めっき浴温度+50(℃)にまで冷却する二次冷却を行った後めっき浴に浸漬し、浸漬時間を含めて、めっき浴温度−50℃〜めっき浴温度+50(℃)の温度域に2〜200秒保持した後、室温まで冷却することを特徴とする外観と加工性に優れた高強度溶融亜鉛めっき冷延鋼板の製造方法。A method for producing the high-strength hot-dip galvanized cold-rolled steel sheet according to any one of claims 2 to 10 , wherein the casting comprises the steel sheet component according to any one of claims 1 and 4 to 7. After the slab is cast or once cooled, it is heated again to 1180 to 1250 ° C., and after hot rolling is completed at 880 to 1100 ° C., the wound hot-rolled steel sheet is pickled and cold-rolled. × (Ac3-Ac1) + Ac1 (° C.) to Ac3 + 50 (° C.) and after annealing for 10 seconds to 30 minutes, cooling to 650 to 700 ° C. at a cooling rate of 0.1 to 10 ° C./second perform primary cooling to, greater than said primary cooling subsequently, and subjected to secondary cooling to cool down to 5 to 100 ° C. / sec cooling rate in the plating bath temperature -50 ° C. ~ plating bath temperature +50 (° C.) After immersion in the plating bath, including the immersion time After holding 2-200 seconds to a temperature range of the plating bath temperature -50 ° C. ~ plating bath temperature +50 (° C.), the high-strength galvanized cold-rolled steel sheet excellent in workability and appearance, characterized in that cooling to room temperature Manufacturing method. 請求項1、3〜10の何れか1項に記載の高強度溶融亜鉛めっき冷延鋼板を製造する方法であって、めっき浴浸漬および保持後に、合金化処理を400〜550℃の温度域で行い、室温まで冷却することを特徴とする請求項11に記載の外観と加工性に優れた高強度溶融亜鉛めっき冷延鋼板の製造方法。 A method for producing the high-strength hot-dip galvanized cold-rolled steel sheet according to any one of claims 1, 3 to 10 , wherein the alloying treatment is performed in a temperature range of 400 to 550 ° C after immersion and holding of the plating bath. The method for producing a high-strength hot-dip galvanized cold-rolled steel sheet having excellent appearance and workability according to claim 11 , wherein the method is performed and cooled to room temperature.
JP2001304036A 2001-06-06 2001-09-28 High-strength hot-dip galvanized steel sheet excellent in appearance and workability and its manufacturing method Expired - Lifetime JP3898924B2 (en)

Priority Applications (18)

Application Number Priority Date Filing Date Title
JP2001304036A JP3898924B2 (en) 2001-09-28 2001-09-28 High-strength hot-dip galvanized steel sheet excellent in appearance and workability and its manufacturing method
TW91112291A TW573021B (en) 2001-06-06 2002-06-06 High-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having fatigue resistance, corrosion resistance, ductility and plating adhesion, after severe deformation, and a method of producing the same
CN 200710140271 CN101264681B (en) 2001-06-06 2002-06-06 Hot-dip galvannealed steel sheet, steel sheet treated by hot-dip galvannealed layer diffusion and a method of producing the same
PCT/JP2002/005627 WO2002101112A2 (en) 2001-06-06 2002-06-06 High-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having fatigue resistance, corrosion resistance, ductility and plating adhesion, after severe deformation, and a method of producing the same
US10/479,916 US7267890B2 (en) 2001-06-06 2002-06-06 High-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having fatigue resistance corrosion resistance ductility and plating adhesion after servere deformation and a method of producing the same
DE60220191T DE60220191T2 (en) 2001-06-06 2002-06-06 HIGH-FIXED FIRE-GRAINED GALVANIZED STEEL PLATE AND FIRE-PLATED BLEED STEEL PLATE WITH RESISTANCE TO FATIGUE, CORROSION RESISTANCE, DUCTILITY AND PLATING RESILIENCE, TO STRONG DEFORMATION, AND METHOD FOR THE PRODUCTION THEREOF
CN 200710140272 CN101125472B (en) 2001-06-06 2002-06-06 Hot-dip galvanized thin steel sheet, thin steel sheet processed by hot-dip galvanized layer, and a method of producing the same
KR1020077003395A KR20070026882A (en) 2001-06-06 2002-06-06 High-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having fatigue resistance, corrosion resistance, ductility and plating adhesion, after severe deformation
AU2002304255A AU2002304255A1 (en) 2001-06-06 2002-06-06 High-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having fatigue resistance, corrosion resistance, ductility and plating adhesion, after severe deformation, and a method of producing the same
CN2007101402736A CN101125473B (en) 2001-06-06 2002-06-06 Hot-dip galvanized thin steel sheet, thin steel sheet processed by hot-dip galvanized layer, and a method of producing the same
KR1020077003396A KR100747133B1 (en) 2001-06-06 2002-06-06 High-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having fatigue resistance, corrosion resistance, ductility and plating adhesion, after severe deformation
EP02733366A EP1504134B1 (en) 2001-06-06 2002-06-06 High-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having fatigue resistance, corrosion resistance, ductility and plating adhesion, after severe deformation, and a method of producing the same
BRPI0210265-0A BR0210265B1 (en) 2001-06-06 2002-06-06 Hot-dip galvanized or galvanized steel sheet.
CNB028115236A CN100562601C (en) 2001-06-06 2002-06-06 Have the high-strength hot-dip galvanized steel sheet of high binding force of cladding material behind fatigue resistance, erosion resistance, ductility and the severe deformation and the steel sheet and the manufacture method thereof of galvanizing layer DIFFUSION TREATMENT
CA002449604A CA2449604C (en) 2001-06-06 2002-06-06 High-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having fatigue resistance, corrosion resistance, ductility and plating adhesion, after severe deformation, and a method of producing the same
KR1020037016036A KR100753244B1 (en) 2001-06-06 2002-06-06 High-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having fatigue resistance, corrosion resistance, ductility and plating adhesion, after severe deformation, and a method of producing the same
US11/893,935 US7824509B2 (en) 2001-06-06 2007-08-16 High-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having fatigue resistance, corrosion resistance, ductility and plating adhesion, after severe deformation, and a method of producing the same
US12/456,120 US8216397B2 (en) 2001-06-06 2009-06-10 High-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having fatigue resistance, corrosion resistance, ductility and plating adhesion, after severe deformation, and a method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001304036A JP3898924B2 (en) 2001-09-28 2001-09-28 High-strength hot-dip galvanized steel sheet excellent in appearance and workability and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2003105513A JP2003105513A (en) 2003-04-09
JP3898924B2 true JP3898924B2 (en) 2007-03-28

Family

ID=19124021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001304036A Expired - Lifetime JP3898924B2 (en) 2001-06-06 2001-09-28 High-strength hot-dip galvanized steel sheet excellent in appearance and workability and its manufacturing method

Country Status (1)

Country Link
JP (1) JP3898924B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4214006B2 (en) * 2003-06-19 2009-01-28 新日本製鐵株式会社 High strength steel sheet with excellent formability and method for producing the same
JP4501716B2 (en) * 2004-02-19 2010-07-14 Jfeスチール株式会社 High-strength steel sheet with excellent workability and method for producing the same
JP4671634B2 (en) 2004-07-09 2011-04-20 新日本製鐵株式会社 High-strength quenched molded body with excellent corrosion resistance and method for producing the same
JP4644028B2 (en) * 2005-04-20 2011-03-02 新日本製鐵株式会社 High-strength hot-dip galvanized steel sheet with excellent formability and method for producing the same
JP4837604B2 (en) * 2007-03-16 2011-12-14 新日本製鐵株式会社 Alloy hot-dip galvanized steel sheet
JP5636727B2 (en) * 2010-04-27 2014-12-10 新日鐵住金株式会社 Hot-dip galvanized steel sheet and manufacturing method thereof
KR102485003B1 (en) * 2020-12-11 2023-01-05 주식회사 포스코 High strength plated steel sheet having excellent formability and surface property, and manufacturing method for the same

Also Published As

Publication number Publication date
JP2003105513A (en) 2003-04-09

Similar Documents

Publication Publication Date Title
CN109312433B (en) Steel plate
KR100747133B1 (en) High-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having fatigue resistance, corrosion resistance, ductility and plating adhesion, after severe deformation
JP3898923B2 (en) High-strength hot-dip Zn-plated steel sheet excellent in plating adhesion and ductility during high processing and method for producing the same
JP3527092B2 (en) High-strength galvannealed steel sheet with good workability and method for producing the same
JP5499664B2 (en) High-strength cold-rolled steel sheet having a tensile maximum strength of 900 MPa or more excellent in fatigue durability, and its manufacturing method, and high-strength galvanized steel sheet and its manufacturing method
JP3887308B2 (en) High strength and high ductility hot dip galvanized steel sheet and its manufacturing method
JP3921136B2 (en) High strength and high ductility hot dip galvanized steel sheet with excellent burring workability and manufacturing method thereof
KR20180120722A (en) The present invention relates to a method for manufacturing a hot-rolled steel sheet, a method for manufacturing a hot-rolled steel sheet, a method for manufacturing a hot-rolled steel sheet, a method for manufacturing a thin steel sheet,
JP3374644B2 (en) High-strength hot-rolled steel sheet, high-strength galvanized steel sheet excellent in pitting corrosion resistance and workability, and methods for producing them
CN113272466A (en) Method for producing hot-dip galvanized steel sheet
JP4528135B2 (en) High strength and high ductility hot dip galvanized steel sheet excellent in hole expansibility and method for producing the same
KR20180074009A (en) High strength hot-rolled steel sheet having excellent continuously producing property, high strength gavanized steel sheet having excellent surface property and plating adhesion and method for manufacturing thereof
JP4227431B2 (en) High strength and high ductility steel sheet and method for producing the same
JP4331915B2 (en) High strength and high ductility hot dip galvanized steel sheet excellent in fatigue durability and corrosion resistance and method for producing the same
JP3921135B2 (en) High strength and high ductility hot dip galvanized steel sheet with excellent burring workability and manufacturing method thereof
JP3631710B2 (en) Si-containing high-strength hot-dip galvanized steel sheet with excellent corrosion resistance and ductility and method for producing the same
JP4781577B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
JP3898924B2 (en) High-strength hot-dip galvanized steel sheet excellent in appearance and workability and its manufacturing method
JP4150277B2 (en) High strength galvannealed steel sheet excellent in press formability and method for producing the same
JP2003328099A (en) Production method for high-strength hot-dip galvanized steel sheet
JP3898925B2 (en) High strength and high ductility hot dip galvanized steel sheet excellent in corrosion resistance and method for producing the same
JP4975406B2 (en) High-strength galvannealed steel sheet and method for producing the same
JP4148235B2 (en) Steel plate with excellent workability and shape freezing property and its manufacturing method
JP6838665B2 (en) High-strength alloyed electrogalvanized steel sheet and its manufacturing method
JP2000109965A (en) Production of hot dip galvanized high tensile strength steel sheet excellent in workability

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061027

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061222

R151 Written notification of patent or utility model registration

Ref document number: 3898924

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140105

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350