JP4227431B2 - High strength and high ductility steel sheet and method for producing the same - Google Patents

High strength and high ductility steel sheet and method for producing the same Download PDF

Info

Publication number
JP4227431B2
JP4227431B2 JP2003033746A JP2003033746A JP4227431B2 JP 4227431 B2 JP4227431 B2 JP 4227431B2 JP 2003033746 A JP2003033746 A JP 2003033746A JP 2003033746 A JP2003033746 A JP 2003033746A JP 4227431 B2 JP4227431 B2 JP 4227431B2
Authority
JP
Japan
Prior art keywords
steel sheet
strength
rem
ductility
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003033746A
Other languages
Japanese (ja)
Other versions
JP2004244665A (en
Inventor
展弘 藤田
昌史 東
学 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003033746A priority Critical patent/JP4227431B2/en
Publication of JP2004244665A publication Critical patent/JP2004244665A/en
Application granted granted Critical
Publication of JP4227431B2 publication Critical patent/JP4227431B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、建材、家電製品、自動車などに適する延性に優れた高強度高延性鋼板および及びその製造方法に関する。なお、本発明の鋼板は熱延鋼板、冷延鋼板,Znめっき鋼板、合金化Znめっき鋼板を含むものである。
【0002】
【従来の技術】
高強度鋼板は、建材、家電製品、自動車など広範囲に使用されている。近年、特に自動車車体において軽量化や衝突安全性の向上の観点から、高強度鋼板が用いられるようになってきた。しかし、高強度ゆえ、加工性が強度と共に劣化してしまう。高強度鋼板の延性を向上させるためには、複合組織の活用が挙げられる。すなわち、軟質なフェライト相と第2相として硬質のマルテンサイト相を複合させたDual-Phase鋼(DP鋼)、または、第2相として加工により硬質のマルテンサイトに変態するオーステナイト相を複合させた残留オーステナイト鋼が開発されてきた。しかし、それ以降、高延性に対する画期的な技術は開発されておらず、高強度化と更なる延性向上をこれら複合組織化以上に達成される技術はない。
【0003】
本発明者らの一部は特許文献1および特許文献2等にREMを含有するDP鋼又はTRIP鋼に溶融Znめっきを施した溶融Znめっき鋼板を開示した。しかし、特許文献1および特許文献2に開示された発明は上述した複合組織化による高延性化を亜鉛めっき鋼板で実現する技術であり、更なる延性の向上を図るような技術ではない。
【0004】
【特許文献1】
特願2001−304034号
【特許文献2】
特願2001−304036号
【0005】
【発明が解決しようとする課題】
本発明は、上記課題を解決し、さらなる高延性化を達成する高強度鋼板及びその製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明者らは、種々検討を行った結果、鋼中の酸化物および硫化物を制御することで種々の鋼種の高延性化が可能であることを見出した。これまでにも、介在物を制御して加工性を向上させる技術は開示されているが、そのほとんどが局部伸び向上に関するものであり、均一伸びを向上させるものではなかった。すなわち、Remおよび/またはYを添加して酸化物および硫化物の形態を制御することで均一伸びが向上する技術を見出した。
【0007】
ここで、REMはRera Earth Metalの略でLaから始まるランタノイド系の元素を示す。工業的はミッシュメタルの形で添加されることがおおく、この場合には中でもLaおよびCeの含有が主体となる。
【0008】
また、この効果は、冷延や熱延、めっきといった異なる製品についても有効で、式(1)および(2)を満たすことで均一伸びの向上が達成される。
【0009】
本発明は、上記知見に基づいて完成されたもので、その要旨とするところは以下の通りである。
(1)質量%で、
C :0.0001〜0.3%、
Si:0.001〜2.5%、
Mn:0.01〜3%、
P :0.0001〜0.3%、
Al:0.0001〜4%、
S :0.0001〜0.1%、
N :0.0001〜0.3%、
O :0.0001〜0.1%、
を含有し、
Rem:0.0005〜0.3%、
Y :0.0005〜0.3%、
の一方又は両方を式(2)を満たす範囲で含有し、残部Fe及び不可避不純物からなり、RemまたはYの酸化物および/または硫化物が、
平均粒子径d:0.01〜10.0μm、
密度ρ:1平方mあたり107〜109個、
平均粒子径dと主相平均粒径dmとの比d/dm; 10-4〜100、
を満たす分布形態を有することを特徴とする高強度高延性鋼板。
(O/16+S/32+N/14) /(Rem/140+Y/89)=0〜10 …(2)
【0010】
2) さらに、質量%で、
Ti:0.0001〜1%、
Zr:0.0001〜1%、
Hf:0.0001〜1%、
Ca:0.0001〜1%、
の1種又は2種以上を式(1)を満たす範囲で含有することを特徴とする(1)記載の高強度高延性鋼板。
(Ti/48+Zr/91+Hf/178+Ca/40)/(Rem/140+Y/89)=0〜20 …(1)
(3)鋼板のミクロ組織が、主相としてフェライト又はフェライト及びベイナイトを面積分率で50〜97%含有し、第2相としてマルテンサイト、オーステナイトの一方又は両方を、面積分率で合計3〜50%未満含むことを特徴とする(1)又は(2)記載の高強度高延性鋼板。
(4)さらに質量%で、
Cr:0.001〜5%、
Mo:0.001〜5%、
Ni:0.001〜5%、
Cu:0.001〜5%、
Co:0.001〜5%、
W :0.001〜5%、
の1種又は2種以上を含有することを特徴とする(1)〜(3)のいずれか1項に記載の高強度高延性鋼板。
(5)さらに質量%で、
Nb:0.001〜1%、
V :0.001〜1%、
Ta:0.001〜1%、
の1種又は2種以上を含有することを特徴とする(1)〜(4)のいずれか1項に記載の高強度高延性鋼板。
(6)さらに質量%で、B:0.0001〜0.1%を含有することを特徴とする(1)〜(5)のいずれか1項に記載の高強度高延性鋼板。
(7)鋼板の表面にZnめっきが施されていることを特徴とする(1)〜(6)のいずれか1項に記載の高強度高延性鋼板。
(8)溶鋼に、Al、Ti、Si、Mnの1種以上を添加して脱酸した後、Remおよび/またはYを添加し、(1)、(2)、(4)〜(6)の何れか1項に記載の成分からなる溶鋼に調整した後0.1〜5m/min の鋳造速度で鋳込み、その鋼片を鋳造まま又は一旦700℃以下に冷却した後に、1150〜1280℃に加熱し、1150〜1280℃に加熱し、続いて熱延を行う際に、1000℃以上の圧延時の1パス当たり圧下率を30%以下とすることを特徴とする高強度高延性鋼板の製造方法。
【0011】
【発明の実施の形態】
以下、本発明を詳細に説明する。
【0012】
発明者らは、質量%で、C:0.0001〜0.3%、Si:0.001〜2.5%、Mn:0.01〜3%、P:0.001〜0.3%、Al:0.0001〜4%、S:0.0001〜0.03%、N:0.0001〜0.03%、O:0.0001〜0.05%を含有し、さらに、Rem、Y、Ti、Zr、Hf,Caの1種又は2種以上を含有する種々の溶綱を鋳造速度およびRem、Y、Ti、Zr、Hf,Caの添加タイミングを変化させて鋳造して、熱延鋼板、冷延鋼板およびめっき鋼板を作製した。それらの鋼板の引張り試験を行い、機械的性質を比較評価した。
【0013】
その結果、Rem、Yの添加に伴う酸化物および硫化物の形態制御により均一伸びおよび破断延性が向上することを見出した。
【0014】
すなわち、鋼板の成分でRem、Y、Ti、Zr,HfおよびCaの添加量の関係が次の2つの式を満たすことで均一伸びおよび破断延性が向上する。
【0015】
(Ti/48+Zr/91+Hf/178+Ca/40)/(Rem/140+Y/89)=0〜20 …(1)
(O/16+S/32+N/14) /(Rem/140+Y/89)=0〜10 …(2)
本発明では、Remおよび/またはYの酸化物および/または硫化物の形態を制御することで複合組織化による高延性化に加えてさらに延性を向上させることを目的としている。したがって、(1)式にあるように他の酸化物および/または硫化物形成元素との関係が重要で、RemおよびY以外の元素添加量との比率が大きいことが形態制御には重要であることを見出した。また、(2)式では酸素および/またはSと窒素の関係も形態制御には必要不可欠で、これら元素との比も形態制御には重要であることも併せて見出した。すなわち、上記2式を満たし、RemおよびYの酸化物および硫化物が下記の形態をとることが延性向上に重要である。
平均粒子径d:0.01〜10.0μm
密度ρ:1平方mmあたり107〜109
平均粒子径dと主相平均粒径dmとの比d/dm; 10-4〜100
すなわち、Rem,Yの酸化物および硫化物を活用して他の延性に悪影響を及ぼすアルミナやシリカ、MnS等の介在物を軽減することで、破断延性のみならず均一伸びをも向上させることができることを見出した。
【0016】
ここで、上述したような酸化物および硫化物の同定・観察や面積率測定は、光学顕微鏡、EPMAやFE-SEMなどを用いて行うことができる。本発明においては、500〜20000倍で50視野以上を測定し、画像解析により面積率を求めた。また、酸化物の同定には、抽出レプリカ試料を作成してTEMを用いたり、EBSP、EDXおよびEPMAを用いた。また、ここでいう、Rem,Yの酸化物および硫化物は、他の原子を含む複合物であったり、欠陥を多く含む場合があるが、元素分析及び構造同定からRem,Yを主体とした化合物で、例えば、Y2O3,La2O3,Ce2O3,CeO2,La2S3,LaS,Ce2S3,CeS,Ce3S4などの複合あるいは単独の化合物である。面積率測定は、上記形態観察やEPMAやFE-SEMなどを用い各成分の面分析を行うことで求めることができる。この場合には、個々の正確な構造の同定は難しいものの、上述した構造解析の結果と併せて形態やその組成から判断し得る。その後面分析の画像解析から各面面積率を求めることができる。
【0017】
次に、鋼板のミクロ組織について述べる。基本的には、上記酸化物および硫化物を制御することで、いずれの鋼板組織においてもその延性向上効果を得ることができる。しかし、鋼板の延性自体を十分に確保する目的から、主相をフェライト相とするのが望ましい。しかし、さらに高強度化を指向する場合にはベイナイト相を含んでも良いが、延性を確保する観点から主相としては、フェライトの単独相、又はフェライト及びベイナイトの複合相(本明細書中「フェライト又はフェライト及びベイナイト」と表記する場合も特段断らない限り同様の意味である)を、面積分率で50%以上含むことが望ましい。フェライト及びベイナイトの複合相とする場合も、フェライトは延性を確保するために、面積分率で50%以上含有することが好ましい。一方、高強度化と高延性をバランスさせるためには、フェライト又はフェライト及びベイナイトを面積分率で97%以下とすることが好ましい。
【0018】
さらに高強度と高延性を両立させるため、残留オーステナイトおよび/またはマルテンサイトを含む複合組織とすることも望ましい。高強度と高延性のために、残留オーステナイト相および/またはマルテンサイトは、面積分率で合計3%以上含有することが好ましいが面積分率が合計50%以上になると脆化傾向を示すので50%未満とすることが好ましい。
【0019】
上記の他にミクロ組織の残部組織として、炭化物、窒化物、硫化物、酸化物の1又は2以上を面積分率5%以下で含有する場合も本発明の範囲とする鋼板である。
【0020】
なお、上記ミクロ組織の各相、フェライト、ベイナイト、オーステナイト、マルテンサイト、界面酸化相および残部組織の同定、存在位置の観察および平均粒径(平均円相当径)と占積率の測定は、ナイタール試薬および特開昭59−219473号公報に開示された試薬により鋼板圧延方向断面または圧延直角方向断面を腐食して500倍〜10000倍の光学顕微鏡およびSEM観察により定量化が可能である。
【0021】
次に、本発明における鋼板成分の好適な範囲の限定理由について述べる。
【0022】
Cは、良好な強度延性バランスを確保するための第2相の面積分率を十分確保する目的で添加する元素である。特に第2相がオーステナイトである場合には、面積分率のみならずその安定性向上にも寄与して延性を大きく向上させる。強度および各第2相の面積分率を確保するために下限を0.0001質量%(以下、同じ)とし、溶接性を保持可能な上限として0.3質量%とした。
【0023】
Siは、主相であるフェライト生成を促進させることおよび強度延性バランスを劣化させる炭化物の生成を抑制する目的で添加する元素であり、その下限を0.001質量%とした。また、過剰添加は溶接性およびめっき濡れ性に悪影響を及ぼす。このため、上限を2.5質量%とした。
【0024】
Mnは、めっき濡れ性および密着性の制御に加えて、高強度化の目的で添加する。また、マルテンサイトやオーステナイトなどの第2相を含む場合には、強度低下と延性劣化の1つの原因である炭化物析出やパーライト生成を抑制する目的で添加する。これらのことから、0.01質量%以上とした。一方では、第2相がオーステナイトの場合に延性向上に寄与するベイナイト変態を遅滞させることや溶接性を劣化させることから3質量%を上限とした。
【0025】
P量を0.0001〜0.05質量%の範囲としたのは、0.0001質量%以上で強化効果が現れることや極低化は経済的にも不利であることからこれを下限とした。また、0.3質量%を上限としたのは、これを超える量の添加では、溶接性や鋳造時や熱延時の製造性に悪影響を及ぼすためである。
【0026】
Alは、Rem,Yの酸化物および硫化物を制御する上で重要な脱酸添加元素である。Rem,Y添加前の酸素量を制御して、これら元素の酸化物および硫化物形態を制御する目的から、0.0001質量%以上の添加とした。一方過剰添加は溶接性およびめっき濡れ性を損なうため4%を上限とした。
【0027】
SはRem,Yの硫化物を制御する観点から添加量を0.0001〜0.1質量%の範囲とした。また、Rem,Y添加の延性改善効果を得るために上述の式(2)を満たす範囲での添加とした。一方で、極低化は経済的にも不利である。また、0.1質量%を超える量の添加では、溶接性や鋳造時や熱延時の製造性に悪影響を及ぼすだけでなく、本発明のRem,Y添加効果が認められなくなることからこれを上限とした。
【0028】
NはC同様良好な強度延性バランスを確保するための第2相の面積分率を十分確保するためや、Rem,Yの酸化物および硫化物形成に影響するTi,Zr,Hfと窒化物を形成してRem,Yの酸化物および硫化物形成を間接的に促す役割がある元素であるために下限を0.0001%とし、さらに上記理由から式(2)を満たす範囲とした。一方で、溶接性を保持可能な上限として0.3質量%とした。
【0029】
OはSと同様にRem,Yの酸化物を制御する観点から添加量を0.0001〜0.1質量%の範囲とした。また、Rem,Y添加の延性改善効果を得るために上述の式(2)を満たす範囲での添加とした。一方で、極低化は経済的にも不利である。また、0.1質量%を超える量の添加では、延性や溶接性や鋳造時や熱延時の製造性に悪影響を及ぼすだけでなく、本発明のRem,Y添加効果が認められなくなることからこれを上限とした。
【0030】
Rem、Yは、本発明における酸化物および硫化物の形態制御による延性改善に重要な元素である。これらの元素を主成分とする酸化物および硫化物を形成させることで破断延性および均一伸びを向上させることができる。このため、それぞれ0.0005%を下限とした。また一方で過剰添加は鋳造性や熱間加工性などの製造性および鋼板製品の延性を低下させるため、それぞれ0.3質量%を上限とした。
【0031】
Ti,Zr,Hf,CaはAl同様、Rem,Yの酸化物および硫化物を制御する上で重要な脱酸添加元素であるが、添加量と添加タイミングによっては、Rem,Yの酸化物および硫化物の良好な形態形成を阻害する。阻害しない範囲として、それぞれ0.0001質量%以上1%以下とし、更に上記式(1)を満たす添加とした。
【0032】
さらに、本発明が対象とする鋼は、強度のさらなる向上を目的としてCr、Mo,Ni、Cu、Co、Wの1種または2種以上を含有できる。
【0033】
Crは、強化目的および炭化物生成の抑制の目的から添加する元素で、0.001質量%以上とし、5質量%を超える量の添加では、加工性に悪影響を及ぼすため、これを上限とした。
【0034】
Moは、強度延性バランスを劣化させる炭化物やパーライトの生成を抑制する目的で添加できる元素であり、良好な強度延性バランスを得るために重要な添加元素である。その下限を0.001質量%とした。また、過剰添加は、延性劣化を招くことから、上限を5%とした。
【0035】
Niは、組織強化の目的で0.001質量%以上とし、5質量%を超える量の添加では、加工性に悪影響を及ぼすため、これを上限とした。
【0036】
Cuは、強化目的で0.001質量%以上の添加とし、5質量%を超える量の添加では、加工性に悪影響を及ぼす。
【0037】
Coは、強度延性バランスの向上のため、0.001質量%以上の添加とした。一方、高価な元素であるため多量添加は経済性を損なうため、5質量%以下にすることが望ましい。
【0038】
W量を0.001〜5質量%の範囲としたのは、0.001質量%以上で強化効果が現れること、5質量%を上限としたのは、これを超える量の添加では、加工性に悪影響を及ぼすためである。
【0039】
さらに、本発明が対象とする鋼は、強度のさらなる向上を目的として強炭化物形成元素であるNb,V、Taの1種または2種以上を含有できる。
【0040】
これらの元素は、微細な炭化物、窒化物または炭窒化物を形成して、鋼板の強化に極めて有効であるため、必要に応じて1種または2種以上をそれぞれ0.001質量%以上の添加とした。一方で、延性劣化や残留オーステナイト中へのCの濃化を阻害することから、それぞれの添加量の上限として1質量%とした。
【0041】
Bもまた、必要に応じて添加できる。Bは、0.0001質量%以上の添加で粒界の強化や鋼材の高強度化に有効ではあるが、その添加量が0.1質量%を超えるとその効果が飽和するばかりでなく、必要以上に鋼板強度を上昇させ、加工性が低下するため、上限を0.1質量%とした。
【0042】
不可避的不純物として、例えばSnなどがあるがこれら元素をSn≦0.01質量%以下の範囲で含有しても本発明の効果を損なうものではない。
【0043】
本発明の鋼板は、熱延鋼板、冷延鋼板、亜鉛めっき鋼板および合金化亜鉛めっき鋼板についてその効果の発現を見出したものである。
【0044】
これらの鋼板を製造する場合には、所定の成分に調整された溶鋼を最終的に成分調整するにあたり、Rem,La,Yを添加する前にはAl,Ti、Si、Mnなどの強脱酸元素で十分に溶鋼中の酸素を低下させておく必要がある。その後、Rem,La,Yの1種又は2種以上を添加して鋳造するが、鋳造速度としては0.1〜5m/minが望ましい。この様に精錬および鋳造方法を制御することでRem,La,Yを主成分とする酸化物および硫化物の形態を制御して、延性向上効果を出現させるものであり、脱酸元素の添加順序は本発明において重要である。
【0045】
鋳造速度は0.01m/minより遅いかまたは5m/minより速いとRemやYの酸化物および/または硫化物形態が延性向上に寄与する形態とならずに延性向上硬化が得られない。
【0046】
その後、鋳造ままもしくは一旦700℃以下まで冷却した後、鋼片を再加熱して熱延を行う。鋳造ままの鋼片をそのまま加熱して熱延することは加熱原単位の減少になり好ましく、また鋼片を700℃以下まで冷却することはスラブ表面の手入れの必要な場合には好ましい。
【0047】
このとき、粒界酸化相の多量生成を抑制するために加熱温度を1150℃以上または1280℃以下とすることが望ましい。加熱温度が1150℃以上の高温になると全面に比較的均一に酸化スケールが形成され粒界酸化は抑制される傾向に有る。また、1150℃より低温加熱では熱延での変形抵抗が高くなり、傷や割れ発生の原因にもなる。一方、加熱温度が1280℃を超えると酸化スケールが多量発生したり粒径の粗大化を招くため、上記の範囲とすることが好ましい。また、1000℃以上の圧延時の1パス当たり圧下率を30%以下とすることで、熱間での割れを防止することおよび延性向上に寄与する酸化物および/または硫化物形態を形成させることができる。
【0048】
この時、熱延完了温度は鋼の化学成分によって決まるAr3 変態温度以上で行うのが一般的であるが、Ar3 から10℃程度低温までであれば最終的な鋼板の特性を劣化させない。また、冷却後の巻取温度は鋼の化学成分によって決まるベイナイト変態開始温度以上とすることで、冷延時の荷重を必要以上に高めることがさけられるが、冷延の全圧下率が小さい場合にはこの限りでなく、鋼のベイナイト変態温度以下で巻き取られても最終的な鋼板の特性を劣化させない。
【0049】
その後、必要に応じ、冷延後焼鈍したり、さらにめっき工程を経ることで各種の最終製品とする。冷延の全圧下率は、最終板厚と冷延荷重の関係から設定されるが、50%以上であれば製品での良好な強度延性のバランスを得やすい。
【0050】
【実施例】
以下、実施例によって本発明をさらに詳細に説明する。
【0051】
製鋼段階は、Al、Ti,Si,Mnで先に脱酸した後にRem、Yを添加し、最終的に表1、表2(表1のつづき)に示すような組成の溶鋼に調整し、0.05〜3m/minで鋳造した。鋳造後の鋼片を鋳造まま又は700℃以下に冷却した後、1020〜1250℃に加熱し、1000℃以上での圧下率を10〜30%ととしてAr3 変態温度以上で熱延を完了し、900℃で巻き取った鋼帯を酸洗後、各試験に供した。各製品はすべて1.4mm厚とした。冷延およびめっき鋼板用の熱延原板は3mmとし、1.4mmに冷延後、冷延用は連続焼鈍に、めっき用は溶融亜鉛めっき工程にてそれぞれ製品を作成した。
【0052】
表3、表4(表3のつづき)に示すように、発明鋼は均一伸びおよび全伸びの値が同様の成分・組織構成・強度を有する比較鋼に比べて2〜5%程度高い値を示す。
【0053】
また、表5、表6(表5のつづき)に幾つかの鋼材について、鋳造速度および熱延の加熱温度を変化させた場合の機械的特性およびRem,Yの酸化物および硫化物形態に及ぼす影響を示す。鋳造速度が速くなると介在物密度が大きくなり、遅くなると介在物密度が小さくなってしまう。その結果、延性改善効果が十分でないことが分かる。また、加熱温度が低い場合には、十分な強度が得られない。
【0054】
【表1】

Figure 0004227431
【0055】
【表2】
Figure 0004227431
【0056】
【表3】
Figure 0004227431
【0057】
【表4】
Figure 0004227431
【0058】
【表5】
Figure 0004227431
【0059】
【表6】
Figure 0004227431
【0060】
【発明の効果】
本発明により、鋼成分を特定の範囲とし、それらの量的関係を特定の関係式を満足するように調整することにより延性に優れた高強度高延性鋼板を得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-strength and high-ductility steel sheet excellent in ductility suitable for building materials, home appliances, automobiles, and the like, and a method for producing the same. The steel sheet of the present invention includes a hot rolled steel sheet, a cold rolled steel sheet, a Zn plated steel sheet, and an alloyed Zn plated steel sheet.
[0002]
[Prior art]
High-strength steel sheets are used in a wide range of building materials, home appliances, automobiles, and the like. In recent years, high-strength steel sheets have come to be used from the viewpoint of reducing weight and improving collision safety, particularly in automobile bodies. However, due to the high strength, the workability deteriorates with the strength. In order to improve the ductility of a high-strength steel sheet, the utilization of a composite structure is mentioned. That is, a dual-phase steel (DP steel) in which a soft ferrite phase and a hard martensite phase are combined as the second phase, or an austenite phase that is transformed into hard martensite by processing as the second phase. Residual austenitic steel has been developed. However, since then, no epoch-making technology for high ductility has been developed, and there is no technology that can achieve higher strength and further improvement of ductility than these composite structures.
[0003]
Some of the present inventors disclosed a hot-dip Zn-plated steel sheet obtained by applying hot-dip Zn plating to DP steel or TRIP steel containing REM in Patent Document 1 and Patent Document 2. However, the invention disclosed in Patent Document 1 and Patent Document 2 is a technique for realizing the above-described high ductility by the composite structure using a galvanized steel sheet, and is not a technique for further improving the ductility.
[0004]
[Patent Document 1]
Japanese Patent Application No. 2001-304034 [Patent Document 2]
Japanese Patent Application No. 2001-304036
[Problems to be solved by the invention]
An object of this invention is to provide the high strength steel plate which solves the said subject and achieves further high ductility, and its manufacturing method.
[0006]
[Means for Solving the Problems]
As a result of various studies, the present inventors have found that high ductility of various steel types can be achieved by controlling oxides and sulfides in the steel. Until now, techniques for controlling inclusions to improve workability have been disclosed, but most of them have been related to improvement of local elongation and have not improved uniform elongation. That is, the present inventors have found a technique in which uniform elongation is improved by adding Rem and / or Y to control the form of oxide and sulfide.
[0007]
Here, REM is an abbreviation for Rera Earth Metal and represents a lanthanoid element starting from La. Industrially, it is added in the form of misch metal. In this case, the inclusion of La and Ce is the main component.
[0008]
This effect is also effective for different products such as cold rolling, hot rolling, and plating, and uniform elongation can be improved by satisfying the formulas (1) and (2).
[0009]
The present invention has been completed based on the above findings, and the gist thereof is as follows.
(1) In mass%,
C: 0.0001 to 0.3%,
Si: 0.001 to 2.5%,
Mn: 0.01 to 3%
P: 0.0001 to 0.3%,
Al: 0.0001 to 4%
S: 0.0001 to 0.1%,
N: 0.0001 to 0.3%
O: 0.0001 to 0.1%
Containing
Rem: 0.0005 to 0.3%,
Y: 0.0005 to 0.3%
One or both of them in a range satisfying the formula ( 2), the balance consisting of Fe and inevitable impurities, and the oxide and / or sulfide of Rem or Y,
Average particle diameter d: 0.01-10.0 μm,
Density ρ: 10 7 to 10 9 per square meter,
Ratio d / dm of average particle diameter d and main phase average particle diameter dm; 10 −4 to 100,
A high-strength, high-ductility steel sheet characterized by having a distributed form satisfying
(O / 16 + S / 32 + N / 14) / (Rem / 140 + Y / 89) = 0-10 ... (2)
[0010]
( 2) Furthermore, in mass%,
Ti: 0.0001 to 1%
Zr: 0.0001 to 1%,
Hf: 0.0001 to 1%
Ca: 0.0001 to 1%,
1 type or 2 types or more are contained in the range with which Formula (1) is satisfy | filled, The high intensity | strength highly ductile steel plate of (1) description characterized by the above-mentioned.
(Ti / 48 + Zr / 91 + Hf / 178 + Ca / 40) / (Rem / 140 + Y / 89) = 0-20 ... (1)
(3) The microstructure of the steel sheet contains ferrite or ferrite and bainite as a main phase in an area fraction of 50 to 97%, and one or both of martensite and austenite as a second phase in a total area of 3 to 3 The high-strength and highly ductile steel sheet according to (1) or (2) , characterized by containing less than 50%.
(4) Furthermore, in mass%,
Cr: 0.001 to 5%,
Mo: 0.001 to 5%,
Ni: 0.001 to 5%,
Cu: 0.001 to 5%,
Co: 0.001-5%
W: 0.001 to 5%,
The high-strength and highly ductile steel sheet according to any one of (1) to (3), characterized by containing one or more of the following.
(5) Furthermore, in mass%,
Nb: 0.001 to 1%,
V: 0.001 to 1%,
Ta: 0.001 to 1%,
The high-strength and high-ductility steel sheet according to any one of (1) to (4), characterized by containing one or more of the following.
(6) The high-strength and highly ductile steel sheet according to any one of (1) to (5), further containing, by mass%, B: 0.0001 to 0.1%.
(7) The high strength and high ductility steel plate according to any one of (1) to (6), wherein the surface of the steel plate is Zn-plated.
(8) After adding one or more of Al, Ti, Si, and Mn to the molten steel and deoxidizing, Rem and / or Y are added, (1), (2), (4) to (6) After being adjusted to molten steel comprising any one of the components described above, casting is performed at a casting speed of 0.1 to 5 m / min, and the steel slab is cast as it is or once cooled to 700 ° C. or lower, and then 1150 to 1280 ° C. Heating to 1150-1280 ° C., followed by hot rolling, producing a high-strength, high-ductility steel sheet characterized in that the rolling reduction per pass during rolling at 1000 ° C. or higher is 30% or less Method.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
[0012]
The inventors, in mass%, C: 0.0001 to 0.3%, Si: 0.001 to 2.5%, Mn: 0.01 to 3%, P: 0.001 to 0.3% Al: 0.0001 to 4%, S: 0.0001 to 0.03%, N: 0.0001 to 0.03%, O: 0.0001 to 0.05%, and Rem, Various types of molten steel containing one or more of Y, Ti, Zr, Hf, and Ca are cast while changing the casting speed and the addition timing of Rem, Y, Ti, Zr, Hf, and Ca. A rolled steel sheet, a cold rolled steel sheet and a plated steel sheet were produced. The steel sheets were subjected to a tensile test, and the mechanical properties were compared and evaluated.
[0013]
As a result, it was found that uniform elongation and fracture ductility were improved by controlling the form of oxide and sulfide accompanying the addition of Rem and Y.
[0014]
That is, uniform elongation and fracture ductility are improved when the relationship between the amounts of Rem, Y, Ti, Zr, Hf and Ca added by the components of the steel sheet satisfies the following two expressions.
[0015]
(Ti / 48 + Zr / 91 + Hf / 178 + Ca / 40) / (Rem / 140 + Y / 89) = 0-20 (1)
(O / 16 + S / 32 + N / 14) / (Rem / 140 + Y / 89) = 0-10 ... (2)
An object of the present invention is to further improve ductility in addition to increasing ductility by complex structure by controlling the form of oxide and / or sulfide of Rem and / or Y. Therefore, the relationship with other oxides and / or sulfide-forming elements is important as shown in the formula (1), and it is important for form control that the ratio of the addition amount of elements other than Rem and Y is large. I found out. In addition, in the formula (2), the relationship between oxygen and / or S and nitrogen is also indispensable for morphology control, and the ratio of these elements is also important for morphology control. That is, it is important for improving ductility that the above two formulas are satisfied and the oxides and sulfides of Rem and Y take the following form.
Average particle diameter d: 0.01-10.0 μm
Density ρ: 10 7 to 10 9 particles per square mm d / dm between the average particle diameter d and the main phase average particle diameter dm; 10 −4 to 10 0
In other words, by utilizing the oxides and sulfides of Rem and Y and reducing inclusions such as alumina, silica, and MnS that adversely affect other ductility, not only break ductility but also uniform elongation can be improved. I found out that I can do it.
[0016]
Here, identification / observation and area ratio measurement of the oxides and sulfides as described above can be performed using an optical microscope, EPMA, FE-SEM, or the like. In the present invention, 50 fields or more were measured at 500 to 20000 times, and the area ratio was determined by image analysis. For identification of oxides, extraction replica samples were prepared and TEM was used, or EBSP, EDX and EPMA were used. In addition, the oxides and sulfides of Rem and Y mentioned here may be composites containing other atoms or contain many defects, but Rem and Y are mainly used from elemental analysis and structural identification. Compound, for example, Y 2 O 3 , La 2 O 3 , Ce 2 O 3 , CeO 2 , La 2 S 3 , LaS, Ce 2 S 3 , CeS, Ce 3 S 4 etc. . The area ratio measurement can be obtained by performing surface analysis of each component using the above morphological observation, EPMA, FE-SEM or the like. In this case, although it is difficult to identify an individual accurate structure, it can be determined from the form and the composition thereof together with the result of the structural analysis described above. Thereafter, each surface area ratio can be obtained from image analysis of surface analysis.
[0017]
Next, the microstructure of the steel sheet will be described. Basically, by controlling the oxides and sulfides, the effect of improving ductility can be obtained in any steel sheet structure. However, for the purpose of sufficiently ensuring the ductility of the steel sheet, it is desirable that the main phase is a ferrite phase. However, in order to further increase the strength, a bainite phase may be included. However, from the viewpoint of ensuring ductility, the main phase may be a single phase of ferrite or a composite phase of ferrite and bainite (in this specification, “ferrite Or “ferrite and bainite” unless otherwise specified) is preferably contained in an area fraction of 50% or more. Even when a composite phase of ferrite and bainite is used, it is preferable that ferrite is contained in an area fraction of 50% or more in order to ensure ductility. On the other hand, in order to balance the increase in strength and the high ductility, it is preferable that ferrite or ferrite and bainite have an area fraction of 97% or less.
[0018]
Furthermore, in order to achieve both high strength and high ductility, it is also desirable to have a composite structure containing retained austenite and / or martensite. For high strength and high ductility, the retained austenite phase and / or martensite is preferably contained in an area fraction of 3% or more in total. However, if the area fraction becomes 50% or more in total, an embrittlement tendency is exhibited. It is preferable to make it less than%.
[0019]
In addition to the above, the steel sheet within the scope of the present invention also includes one or more of carbides, nitrides, sulfides, and oxides with an area fraction of 5% or less as the remaining structure of the microstructure.
[0020]
In addition, each phase of the above microstructure, ferrite, bainite, austenite, martensite, interfacial oxidation phase and remaining structure identification, observation of the existing position and measurement of average particle size (average equivalent circle diameter) and space factor are The reagent and the reagent disclosed in JP-A-59-219473 can be quantified by corroding the cross section in the rolling direction of the steel sheet or the cross section in the direction perpendicular to the rolling direction with an optical microscope and SEM observation at 500 times to 10,000 times.
[0021]
Next, the reason for limiting the preferable range of the steel plate component in the present invention will be described.
[0022]
C is an element added for the purpose of sufficiently securing the area fraction of the second phase for ensuring a good strength ductility balance. In particular, when the second phase is austenite, the ductility is greatly improved by contributing not only to the area fraction but also to the stability thereof. In order to secure the strength and the area fraction of each second phase, the lower limit was set to 0.0001 mass% (hereinafter the same), and the upper limit capable of maintaining weldability was set to 0.3 mass%.
[0023]
Si is an element added for the purpose of promoting the formation of ferrite as the main phase and suppressing the formation of carbides that deteriorate the strength-ductility balance, and the lower limit thereof was set to 0.001% by mass. Further, excessive addition has an adverse effect on weldability and plating wettability. For this reason, the upper limit was made 2.5 mass%.
[0024]
Mn is added for the purpose of increasing the strength in addition to controlling the plating wettability and adhesion. Further, when a second phase such as martensite or austenite is included, it is added for the purpose of suppressing carbide precipitation and pearlite formation, which are one cause of strength reduction and ductility deterioration. From these things, it was set as 0.01 mass% or more. On the other hand, when the second phase is austenite, the upper limit is 3% by mass because the bainite transformation that contributes to the improvement of ductility is delayed and the weldability is deteriorated.
[0025]
The amount of P was set in the range of 0.0001 to 0.05% by mass because the strengthening effect appears at 0.0001% by mass or more and the extremely low is economically disadvantageous. . The reason why the upper limit is 0.3% by mass is that the addition exceeding this amount adversely affects weldability and manufacturability during casting and hot rolling.
[0026]
Al is a deoxidizing element important for controlling oxides and sulfides of Rem and Y. In order to control the amount of oxygen before the addition of Rem and Y to control the oxide and sulfide forms of these elements, the addition was made 0.0001% by mass or more. On the other hand, excessive addition impairs weldability and plating wettability, so 4% was made the upper limit.
[0027]
S was added in an amount of 0.0001 to 0.1% by mass from the viewpoint of controlling the sulfides of Rem and Y. Further, in order to obtain the effect of improving the ductility of the addition of Rem and Y, the addition was made within the range satisfying the above-mentioned formula (2). On the other hand, extremely low is also economically disadvantageous. In addition, the addition exceeding 0.1% by mass not only adversely affects weldability and manufacturability during casting or hot rolling, but also prevents the Rem and Y addition effects of the present invention from being recognized. It was.
[0028]
N, like C, has sufficient area fraction of the second phase to ensure a good balance of strength and ductility, and Ti, Zr, Hf and nitride that affect the formation of oxides and sulfides of Rem and Y. The lower limit is made 0.0001% because it is an element that has the role of indirectly promoting the formation of oxides and sulfides of Rem and Y, and further, the range satisfying the formula (2) is set for the above reason. On the other hand, the upper limit for maintaining weldability was set to 0.3% by mass.
[0029]
O was added in the range of 0.0001 to 0.1% by mass from the viewpoint of controlling the oxides of Rem and Y as in S. Further, in order to obtain the effect of improving the ductility of the addition of Rem and Y, the addition was made within the range satisfying the above-mentioned formula (2). On the other hand, extremely low is also economically disadvantageous. In addition, addition of more than 0.1% by mass not only adversely affects ductility, weldability, manufacturability during casting or hot rolling, but also the Rem and Y addition effects of the present invention are not recognized. Was the upper limit.
[0030]
Rem and Y are elements important for improving ductility by controlling the form of oxides and sulfides in the present invention. The fracture ductility and uniform elongation can be improved by forming oxides and sulfides containing these elements as main components. For this reason, 0.0005% was made into the minimum, respectively. On the other hand, excessive addition lowers the manufacturability such as castability and hot workability, and the ductility of the steel sheet product, so the upper limit was 0.3% by mass.
[0031]
Ti, Zr, Hf, and Ca, like Al, are important deoxidation elements for controlling the oxides and sulfides of Rem and Y, but depending on the amount and timing of addition, the oxides of Rem and Y and Inhibits good morphogenesis of sulfides. The range of not inhibiting is 0.0001% by mass or more and 1% or less, respectively, and the addition satisfies the above formula (1).
[0032]
Furthermore, the steel targeted by the present invention can contain one or more of Cr, Mo, Ni, Cu, Co, and W for the purpose of further improving the strength.
[0033]
Cr is an element added for the purpose of strengthening and suppressing the formation of carbides, and is 0.001% by mass or more, and if added in an amount exceeding 5% by mass, the workability is adversely affected, so this was made the upper limit.
[0034]
Mo is an element that can be added for the purpose of suppressing the formation of carbide and pearlite that deteriorates the strength and ductility balance, and is an important additive element for obtaining a good strength and ductility balance. The lower limit was 0.001% by mass. Moreover, excessive addition causes ductility deterioration, so the upper limit was made 5%.
[0035]
Ni is made 0.001% by mass or more for the purpose of strengthening the structure, and if added in an amount exceeding 5% by mass, the workability is adversely affected, so this was made the upper limit.
[0036]
Cu is added in an amount of 0.001% by mass or more for the purpose of strengthening, and if added in an amount exceeding 5% by mass, the workability is adversely affected.
[0037]
Co was added in an amount of 0.001% by mass or more in order to improve the strength ductility balance. On the other hand, since it is an expensive element, the addition of a large amount impairs the economy, so it is desirable to make it 5% by mass or less.
[0038]
The amount of W in the range of 0.001 to 5% by mass is that the strengthening effect appears at 0.001% by mass or more, and the upper limit of 5% by mass is the workability when the amount exceeds this. This is to adversely affect
[0039]
Furthermore, the steel targeted by the present invention can contain one or more of Nb, V and Ta, which are strong carbide forming elements, for the purpose of further improving the strength.
[0040]
These elements form fine carbides, nitrides or carbonitrides, and are extremely effective for strengthening steel sheets. Therefore, one or more elements are added in amounts of 0.001% by mass or more as required. It was. On the other hand, since it inhibits ductile deterioration and concentration of C in retained austenite, the upper limit of each addition amount is set to 1% by mass.
[0041]
B can also be added as needed. B is effective for strengthening grain boundaries and increasing the strength of steel by adding 0.0001% by mass or more. However, when the amount of addition exceeds 0.1% by mass, the effect is not only saturated but also necessary. Since the steel sheet strength is increased and the workability is lowered as described above, the upper limit is set to 0.1% by mass.
[0042]
Inevitable impurities include, for example, Sn, but even if these elements are contained in the range of Sn ≦ 0.01 mass% or less, the effect of the present invention is not impaired.
[0043]
The steel sheet of the present invention has been found to exhibit its effect with respect to hot-rolled steel sheets, cold-rolled steel sheets, galvanized steel sheets, and galvannealed steel sheets.
[0044]
When these steel plates are manufactured, in the final adjustment of the molten steel adjusted to a predetermined component, strong deoxidation such as Al, Ti, Si, Mn, etc. is performed before adding Rem, La, Y. It is necessary to sufficiently reduce oxygen in the molten steel with elements. Thereafter, one or more of Rem, La, and Y are added and cast, and the casting speed is preferably 0.1 to 5 m / min. In this way, by controlling the refining and casting methods, the form of oxides and sulfides containing Rem, La, and Y as main components is controlled, and the effect of improving ductility appears. Is important in the present invention.
[0045]
If the casting speed is slower than 0.01 m / min or faster than 5 m / min, the oxide and / or sulfide forms of Rem and Y do not contribute to the improvement of ductility and ductile improvement hardening cannot be obtained.
[0046]
Thereafter, as cast or once cooled to 700 ° C. or lower, the steel slab is reheated and hot rolled. It is preferable to heat and heat-roll the as-cast steel slab as it is to reduce the heating unit, and it is preferable to cool the steel slab to 700 ° C. or less when the slab surface needs to be maintained.
[0047]
At this time, it is desirable to set the heating temperature to 1150 ° C. or higher or 1280 ° C. or lower in order to suppress a large amount of grain boundary oxidized phases. When the heating temperature is higher than 1150 ° C., an oxide scale is relatively uniformly formed on the entire surface, and grain boundary oxidation tends to be suppressed. Further, when the heating is performed at a temperature lower than 1150 ° C., the deformation resistance in hot rolling becomes high, which may cause scratches and cracks. On the other hand, when the heating temperature exceeds 1280 ° C., a large amount of oxide scale is generated or the particle size becomes coarse, so the above range is preferable. Also, by making the rolling reduction per pass during rolling at 1000 ° C. or more 30% or less, it is possible to prevent hot cracking and form oxide and / or sulfide forms that contribute to improving ductility. Can do.
[0048]
At this time, the hot rolling ending temperature is carried out in more than Ar3 transformation temperature determined by the chemical composition of steel is generally not degrade the properties of the final steel sheet so long from Ar 3 to 10 ° C. about cold. In addition, the coiling temperature after cooling is higher than the bainite transformation start temperature determined by the chemical composition of the steel, so that the load during cold rolling can be increased more than necessary, but when the total rolling reduction of cold rolling is small Is not limited to this, and even if the steel sheet is wound at a temperature lower than the bainite transformation temperature of the steel, the properties of the final steel sheet are not deteriorated.
[0049]
After that, if necessary, it is annealed after cold rolling or further through a plating process to obtain various final products. The total rolling reduction of cold rolling is set from the relationship between the final plate thickness and the cold rolling load, but if it is 50% or more, it is easy to obtain a good balance of strength and ductility in the product.
[0050]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
[0051]
In the steelmaking stage, Rem and Y are added after deoxidizing with Al, Ti, Si, Mn first, and finally adjusted to the molten steel having the composition shown in Table 1 and Table 2 (continued in Table 1), Casting was performed at 0.05 to 3 m / min. After the cast steel slab is cast or cooled to 700 ° C or lower, it is heated to 1020 to 1250 ° C and the rolling rate at 1000 ° C or higher is set to 10 to 30%, and the hot rolling is completed at the Ar 3 transformation temperature or higher. The steel strip wound up at 900 ° C. was pickled and subjected to each test. All products were 1.4mm thick. The hot-rolled sheet for cold-rolled and plated steel sheets was 3 mm, and after cold-rolling to 1.4 mm, products were prepared by continuous annealing for cold-rolling and hot-dip galvanizing for plating.
[0052]
As shown in Tables 3 and 4 (continued in Table 3), the inventive steel has a uniform elongation and a value of about 2 to 5% higher than the comparative steel having the same composition, structure, and strength in the values of uniform elongation and total elongation. Show.
[0053]
Tables 5 and 6 (continued in Table 5) affect the mechanical properties and the oxide and sulfide forms of Rem and Y when the casting speed and the heating temperature of hot rolling are changed for some steel materials. Show the impact. Inclusion density increases as the casting speed increases, and inclusion density decreases as the casting speed decreases. As a result, it can be seen that the effect of improving ductility is not sufficient. Further, when the heating temperature is low, sufficient strength cannot be obtained.
[0054]
[Table 1]
Figure 0004227431
[0055]
[Table 2]
Figure 0004227431
[0056]
[Table 3]
Figure 0004227431
[0057]
[Table 4]
Figure 0004227431
[0058]
[Table 5]
Figure 0004227431
[0059]
[Table 6]
Figure 0004227431
[0060]
【The invention's effect】
According to the present invention, it is possible to obtain a high-strength and high-ductility steel sheet having excellent ductility by adjusting the steel components within a specific range and adjusting their quantitative relationship so as to satisfy a specific relational expression.

Claims (8)

質量%で、
C :0.0001〜0.3%、
Si:0.001〜2.5%、
Mn:0.01〜3%、
P :0.0001〜0.3%、
Al:0.0001〜4%、
S :0.0001〜0.1%、
N :0.0001〜0.3%、
O :0.0001〜0.1%、
を含有し、
Rem:0.0005〜0.3%、
Y :0.0005〜0.3%、
の一方又は両方を式(2)を満たす範囲で含有し、残部Fe及び不可避不純物からなり、RemまたはYの酸化物および/または硫化物が、
平均粒子径d:0.01〜10.0μm、
密度ρ:1平方mあたり107〜109個、
平均粒子径dと主相平均粒径dmとの比d/dm; 10-4〜100、
を満たす分布形態を有することを特徴とする高強度高延性鋼板
O/16+S/32+N/14) /(Rem/140+Y/89)=0〜10 …(2)
% By mass
C: 0.0001 to 0.3%,
Si: 0.001 to 2.5%,
Mn: 0.01 to 3%
P: 0.0001 to 0.3%,
Al: 0.0001 to 4%
S: 0.0001 to 0.1%,
N: 0.0001 to 0.3%
O: 0.0001 to 0.1%
Containing
Rem: 0.0005 to 0.3%,
Y: 0.0005 to 0.3%
One or both of them in a range satisfying the formula ( 2), the balance consisting of Fe and inevitable impurities, and the oxide and / or sulfide of Rem or Y,
Average particle diameter d: 0.01-10.0 μm,
Density ρ: 10 7 to 10 9 per square meter,
Ratio d / dm of average particle diameter d and main phase average particle diameter dm; 10 −4 to 100,
A high strength and high ductility steel sheet characterized by having a distribution form satisfying.
( O / 16 + S / 32 + N / 14) / (Rem / 140 + Y / 89) = 0-10 (2)
さらに、質量%で、
Ti:0.0001〜1%、
Zr:0.0001〜1%、
Hf:0.0001〜1%、
Ca:0.0001〜1%、
の1種又は2種以上を式(1)を満たす範囲で含有することを特徴とする請求項1記載の高強度高延性鋼板。
(Ti/48+Zr/91+Hf/178+Ca/40)/(Rem/140+Y/89)=0〜20 …(1)
Furthermore, in mass%,
Ti: 0.0001 to 1%
Zr: 0.0001 to 1%,
Hf: 0.0001 to 1%
Ca: 0.0001 to 1%,
The high-strength and highly ductile steel sheet according to claim 1, wherein one or more of the above are contained in a range satisfying the formula (1) .
(Ti / 48 + Zr / 91 + Hf / 178 + Ca / 40) / (Rem / 140 + Y / 89) = 0-20 ... (1)
鋼板のミクロ組織が、主相としてフェライト又はフェライト及びベイナイトを面積分率で50〜97%含有し、第2相としてマルテンサイト、オーステナイトの一方又は両方を、面積分率で合計3〜50%未満含むことを特徴とする請求項1又は2記載の高強度高延性鋼板。  The microstructure of the steel sheet contains ferrite or ferrite and bainite as the main phase in an area fraction of 50 to 97%, and one or both of martensite and austenite as the second phase in a total area of less than 3 to 50%. The high-strength and high-ductility steel sheet according to claim 1, comprising: さらに、質量%で、
Cr:0.001〜5%、
Mo:0.001〜5%、
Ni:0.001〜5%、
Cu:0.001〜5%、
Co:0.001〜5%、
W :0.001〜5%、
の1種又は2種以上を含有することを特徴とする請求項1〜3のいずれか1項に記載の高強度高延性鋼板。
Furthermore, in mass%,
Cr: 0.001 to 5%,
Mo: 0.001 to 5%,
Ni: 0.001 to 5%,
Cu: 0.001 to 5%,
Co: 0.001-5%
W: 0.001 to 5%,
The high-strength and high-ductility steel sheet according to any one of claims 1 to 3, characterized by containing one or more of the following.
さらに質量%で、
Nb:0.001〜1%、
V :0.001〜1%、
Ta:0.001〜1%、
の1種又は2種以上を含有することを特徴とする請求項1〜4のいずれか1項に記載の高強度高延性鋼板。
In addition,
Nb: 0.001 to 1%,
V: 0.001 to 1%,
Ta: 0.001 to 1%,
The high-strength and highly ductile steel sheet according to any one of claims 1 to 4, characterized by containing one or more of the following.
さらに質量%で、B:0.0001〜0.1%を含有することを特徴とする請求項1〜5のいずれか1項に記載の高強度高延性鋼板。  The high-strength and high-ductility steel sheet according to any one of claims 1 to 5, further comprising B: 0.0001 to 0.1% by mass%. 鋼板の表面にZnめっきが施されていることを特徴とする請求項1〜6のいずれか1項に記載の高強度高延性鋼板。  The high-strength and high-ductility steel sheet according to any one of claims 1 to 6, wherein the surface of the steel sheet is subjected to Zn plating. 溶鋼にAl、Ti、Si、Mnの1種以上を添加して脱酸した後Remおよび/またはYを添加し、請求項1、2、4〜6の何れか1項に記載の成分からなる溶鋼に調整した後、0.01〜5m/minの鋳造速度で鋳込み、その鋼片を鋳造まま又は一旦700℃以下まで冷却した後に、1150〜1280℃に加熱し、続いて熱延を行う際に、1000℃以上の圧延時の1パス当たり圧下率を30%以下とすることを特徴とする高強度高延性鋼板の製造方法。  7. One or more of Al, Ti, Si, and Mn are added to molten steel, and after deoxidation, Rem and / or Y is added, and the molten steel comprises the component according to any one of claims 1, 2, 4 to 6. After adjusting to molten steel, casting is performed at a casting speed of 0.01 to 5 m / min, and when the steel piece is cast as it is or once cooled to 700 ° C. or lower, it is heated to 1150 to 1280 ° C., followed by hot rolling. And a reduction rate per pass at the time of rolling at 1000 ° C. or higher is set to 30% or less.
JP2003033746A 2003-02-12 2003-02-12 High strength and high ductility steel sheet and method for producing the same Expired - Fee Related JP4227431B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003033746A JP4227431B2 (en) 2003-02-12 2003-02-12 High strength and high ductility steel sheet and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003033746A JP4227431B2 (en) 2003-02-12 2003-02-12 High strength and high ductility steel sheet and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004244665A JP2004244665A (en) 2004-09-02
JP4227431B2 true JP4227431B2 (en) 2009-02-18

Family

ID=33019635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003033746A Expired - Fee Related JP4227431B2 (en) 2003-02-12 2003-02-12 High strength and high ductility steel sheet and method for producing the same

Country Status (1)

Country Link
JP (1) JP4227431B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111455282B (en) * 2020-05-11 2021-03-16 武汉钢铁有限公司 Quenching distribution steel with tensile strength more than or equal to 1500MPa produced by adopting short process and method

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4873921B2 (en) * 2005-02-18 2012-02-08 新日本製鐵株式会社 Method for producing ultra-low carbon steel sheet and ultra-low carbon cast slab excellent in surface properties, workability and formability
JP4676923B2 (en) * 2006-06-05 2011-04-27 新日本製鐵株式会社 High strength and high ductility hot dip galvanized steel sheet excellent in corrosion resistance and welding strength and method for producing the same
JP5053186B2 (en) * 2008-06-13 2012-10-17 新日本製鐵株式会社 High-strength steel sheet with excellent stretch flangeability and fatigue characteristics and method for producing the molten steel
KR20100097652A (en) 2008-12-19 2010-09-03 신닛뽄세이테쯔 카부시키카이샤 Steel for machine structure for surface hardening and machine structure steel part
KR101313373B1 (en) * 2009-05-22 2013-10-01 신닛테츠스미킨 카부시키카이샤 Steel for machine structure use attaining excellent cutting-tool life and method for cutting same
JP5368885B2 (en) * 2009-06-05 2013-12-18 株式会社神戸製鋼所 Machine structural steel with excellent hot workability and machinability
KR101294900B1 (en) * 2010-03-16 2013-08-08 신닛테츠스미킨 카부시키카이샤 Steel for nitrocarburization, nitrocarburized components, and production method for same
JP5667472B2 (en) 2011-03-02 2015-02-12 株式会社神戸製鋼所 High-strength steel sheet excellent in deep drawability at room temperature and warm, and its warm working method
BR112014002023B1 (en) * 2011-07-29 2019-03-26 Nippon Steel & Sumitomo Metal Corporation EXCELLENT HIGH RESISTANCE STEEL SHEET IMPACT RESISTANCE AND ITS PRODUCTION METHOD.
JP6540111B2 (en) * 2015-03-11 2019-07-10 日本製鉄株式会社 Ferritic steel
CN108374126B (en) * 2018-04-17 2019-12-03 东北大学 A kind of high intensity fine grain reinforcing bar and preparation method thereof
CN110029278B (en) * 2019-03-28 2020-06-05 江苏利淮钢铁有限公司 High-purity ultralow-carbon low-aluminum steel and production method thereof
KR102484992B1 (en) * 2020-11-18 2023-01-05 주식회사 포스코 Plated steel sheet having excellent strength, formability and surface property and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111455282B (en) * 2020-05-11 2021-03-16 武汉钢铁有限公司 Quenching distribution steel with tensile strength more than or equal to 1500MPa produced by adopting short process and method

Also Published As

Publication number Publication date
JP2004244665A (en) 2004-09-02

Similar Documents

Publication Publication Date Title
JP6830539B2 (en) Cold-rolled heat-treated steel sheet with high strength and high formability and manufacturing method
KR101399741B1 (en) High-strength hot-dip zinc plated steel sheet excellent in workability and process for manufacturing the same
KR101218448B1 (en) High-strength hot-dip galvanized steel sheet with excellent processability and process for producing the same
JP5578289B2 (en) Cold-rolled steel sheet, method for producing the same, and hot stamping molded body
KR101528080B1 (en) High-strength hot-dip-galvanized steel sheet having excellent moldability, and method for production thereof
JP5780171B2 (en) High-strength cold-rolled steel sheet with excellent bendability, high-strength galvanized steel sheet, high-strength galvannealed steel sheet, and manufacturing method thereof
JP4959161B2 (en) Hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet with excellent corrosion resistance, elongation and hole expansibility
JP4072090B2 (en) High-strength steel sheet with excellent stretch flangeability and manufacturing method thereof
JP2019506530A (en) High strength steel plate having excellent formability and method of manufacturing the same
JP5245259B2 (en) High strength steel sheet with excellent ductility and method for producing the same
JP5251208B2 (en) High-strength steel sheet and its manufacturing method
JP5114747B2 (en) Manufacturing method of high-strength steel sheet with extremely good balance between hole expansibility and ductility and manufacturing method of galvanized steel sheet
JP5487916B2 (en) High-strength galvanized steel sheet having a tensile maximum strength of 900 MPa or more excellent in impact absorption energy and a method for producing the same
JP7220715B2 (en) Cold-rolled annealed steel sheet and its manufacturing method
KR102157430B1 (en) Thin steel sheet and plated steel sheet, and manufacturing method of hot rolled steel sheet, cold rolled full hard steel sheet manufacturing method, thin steel sheet manufacturing method, and plated steel sheet manufacturing method
JP2018031077A (en) Hot rolled steel plate production method, cold rolled full hard steel plate production method and heat-treated plate production method
JP2022510873A (en) Cold-rolled heat-treated steel sheet and its manufacturing method
JP5256690B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and impact resistance and method for producing the same
JP4227431B2 (en) High strength and high ductility steel sheet and method for producing the same
JP4528135B2 (en) High strength and high ductility hot dip galvanized steel sheet excellent in hole expansibility and method for producing the same
JP4644077B2 (en) Hot-dip galvanized high-strength steel sheet and alloyed hot-dip galvanized high-strength steel sheet excellent in corrosion resistance and formability, and methods for producing them
JP2010043360A (en) High-strength and high-ductility hot-dip galvanized steel sheet superior in hole expandability, and manufacturing method therefor
JP2022501504A (en) Cold-rolled coated steel sheet and its manufacturing method
JP4010131B2 (en) Composite structure type high-tensile cold-rolled steel sheet excellent in deep drawability and manufacturing method thereof
KR102698066B1 (en) High-strength steel plates, high-strength members and their manufacturing methods

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4227431

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees