JP2010043360A - High-strength and high-ductility hot-dip galvanized steel sheet superior in hole expandability, and manufacturing method therefor - Google Patents

High-strength and high-ductility hot-dip galvanized steel sheet superior in hole expandability, and manufacturing method therefor Download PDF

Info

Publication number
JP2010043360A
JP2010043360A JP2009251223A JP2009251223A JP2010043360A JP 2010043360 A JP2010043360 A JP 2010043360A JP 2009251223 A JP2009251223 A JP 2009251223A JP 2009251223 A JP2009251223 A JP 2009251223A JP 2010043360 A JP2010043360 A JP 2010043360A
Authority
JP
Japan
Prior art keywords
steel sheet
strength
ductility
hot
dip galvanized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009251223A
Other languages
Japanese (ja)
Inventor
Nobuhiro Fujita
展弘 藤田
Manabu Takahashi
学 高橋
Kunio Hayashi
邦夫 林
Takehide Senuma
武秀 瀬沼
Yuichi Taniguchi
裕一 谷口
Toshiki Nonaka
俊樹 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2009251223A priority Critical patent/JP2010043360A/en
Publication of JP2010043360A publication Critical patent/JP2010043360A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-strength galvanized steel sheet having a tensile strength of 850 MPa or higher, and improved hole expandability together with improved ductility. <P>SOLUTION: The high-strength hot-dip galvanized steel sheet includes, by mass, 0.03 to 0.20% C, ≤1.0% Si, 0.01 to 3% Mn, 0.0010 to 0.1% P, 0.0010 to 0.05% S, 0.3 to 2.0% Al and 0.01 to 5.0% Mo, and further includes one or more selected from 0.001 to 0.5% Ti, 0.001 to 0.5% Nb, 0.0001 to 0.0050% B and 0.01 to 5% Cr, and the balance Fe with inevitable impurities, and has a microstructure containing ferrite of ≥30% by area ratio. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、建材、家電製品、自動車などに適する穴拡げ性および延性に優れ、引張強度
が850MPa以上の高強度亜鉛めっき鋼板およびその製造方法に関する。
The present invention relates to a high-strength galvanized steel sheet having excellent hole expansibility and ductility suitable for building materials, home appliances, automobiles, etc., and a tensile strength of 850 MPa or more, and a method for producing the same.

近年、特に自動車車体において燃費向上や耐久性向上の観点を目的とした加工性の良い高強度鋼板の需要が高まっている。加えて、衝突安全性やキャビンスペースの拡大のニーズからこれら部材用鋼板の高強度化が望まれている。実際、自動車の衝突安全に関しては規制がN−CAPに代表される如く年々厳しくなっている。この様な背景から、これまで780MPa級の高強度鋼板を使用する動きが活発であった。しかし更なる規制の厳化に耐え得るには高強度引張り強度にして980MPa級クラスの鋼板が、一部レインフォースなどの部材には必要と考えられる。   In recent years, there has been an increasing demand for high-strength steel sheets with good workability for the purpose of improving fuel efficiency and durability particularly in automobile bodies. In addition, it is desired to increase the strength of the steel sheets for the members because of the need for collision safety and expansion of cabin space. In fact, regulations regarding automobile collision safety are becoming stricter year by year, as represented by N-CAP. Against this background, there has been an active movement to use high strength steel sheets of 780 MPa class. However, in order to withstand stricter regulations, it is considered that a steel sheet of 980 MPa class with high tensile strength is required for some components such as reinforcement.

このような高強度材を用いて部材を組みあげる時には延性、曲げ性、穴拡げ性および耐食性などが、大きな問題となるため、これらに対する対策が必要となる。   When a member is assembled using such a high-strength material, ductility, bendability, hole expansibility, corrosion resistance, and the like become major problems, and measures for these are required.

穴拡げ性と延性とは相反する特性であるものの個々の特性向上については、以下のような対策が各々講じられている。   Although hole expansibility and ductility are contradictory characteristics, the following measures have been taken to improve individual characteristics.

たとえば、穴拡げ性については、非特許文献1にあるように、主相をベイナイトとして穴拡げ性を向上させ、さらには張り出し性形成性についても、第2相に残留オーステナイトを生成させることで現行の残留オーステナイト鋼並の張り出し性を示すことが開示されている。さらには、Ms温度以下でオーステンパ処理をすることで面積率2〜3%の残留オーステナイトを生成させると、引張り強度×穴拡率が最大となることも示されている。しかし、これらは現状の連続亜鉛めっき工程を考慮したものではなく、めっきによる耐食性向上について考慮に欠ける。   For example, as described in Non-Patent Document 1, with regard to hole expansibility, the main phase is bainite to improve the hole expansibility, and the extension property is formed by generating retained austenite in the second phase. It is disclosed that it exhibits the same stretchability as that of the remaining austenitic steel. Furthermore, it is also shown that when retained austenite having an area ratio of 2 to 3% is generated by austempering at a temperature equal to or lower than the Ms temperature, the tensile strength × the hole expansion ratio is maximized. However, these do not take into account the current continuous galvanizing process, and lack consideration for improving corrosion resistance by plating.

また、高強度亜鉛めっき鋼板の穴拡げ性向上については、特許文献1にあるように鋼板のミクロ組織をベイナイトまたは低炭素マルテンサイトの占積率を連続めっき工程の中で高める事で高い穴拡げ率を達成させている。しかしながら、延性に関しては鋼板のミクロ組織をベイナイトまたは低炭素マルテンサイトの占積率を高めることは極めて悪影響である。実際、この発明では800MPaを超える引張り強度レベルで80%を超える優れた穴拡げ率を達成しているものの延性確保についての考慮は一切ない。また高強度高延性めっき鋼板に関しては、特許文献2にあるように主に残留オーステナイトを連続めっき工程中にいかにして確保させて延性向上を図るのかに主眼が置かれている。また、残留オーステナイトでなくマルテンサイトも第2相として許容している。しかし、強度レベルが高々780MPaレベルであることや主相をフェライトとしていることなどから本発明の目的とする850MPa以上での高強度材については考慮されていない。   Moreover, about the hole expansibility improvement of a high-strength galvanized steel plate, as it is in patent document 1, high hole expansion is attained by raising the space ratio of a bainite or a low carbon martensite in the microstructure of a steel plate in a continuous plating process. The rate is achieved. However, with regard to ductility, increasing the space factor of bainite or low carbon martensite in the microstructure of the steel sheet is extremely detrimental. In fact, the present invention achieves an excellent hole expansion rate exceeding 80% at a tensile strength level exceeding 800 MPa, but there is no consideration for ensuring ductility. As for the high-strength, high-ductile plated steel sheet, as disclosed in Patent Document 2, the main focus is on how to ensure retained austenite during the continuous plating process to improve ductility. Further, martensite as well as retained austenite is allowed as the second phase. However, since the strength level is at most 780 MPa and the main phase is ferrite, the high strength material at 850 MPa or more which is the object of the present invention is not considered.

特開2003−193190号公報JP 2003-193190 A 特開2003−105492号公報JP 2003-105492 A

CAMP−ISIJ vol.13 (2000) p.395CAMP-ISIJ vol. 13 (2000) p. 395

本発明は、上記課題を解決し、引張り強度が850MPa以上で主には980MPa級以上の高強度鋼板の穴拡げ性および延性を同時に改善した高強度鋼板およびその製造方法を提供することを目的とする。   An object of the present invention is to solve the above-mentioned problems, and to provide a high-strength steel sheet having improved tensile strength and ductility of a high-strength steel sheet having a tensile strength of 850 MPa or more and mainly a 980 MPa class or more and a method for producing the same. To do.

本発明者らは、種々検討を行った結果、引張り強度を850MPa以上で主には980MPa級以上の領域で穴拡げ性および延性を同時に改善する手法として、鋼板成分およびミクロ組織構成を規定することで、850MPa以上の高強度を保ちつつ穴拡げ性および延性を確保できることを見出した。   As a result of various investigations, the present inventors have specified the steel plate components and the microstructure structure as a technique for simultaneously improving the hole expandability and ductility in the region where the tensile strength is 850 MPa or higher and mainly 980 MPa or higher. Thus, it was found that hole expandability and ductility can be secured while maintaining a high strength of 850 MPa or more.

本発明は、上記知見に基づいて完成されたもので、その要旨とするところは以下の通り
である。
(1) 質量%で、
C :0.03〜0.20%、
Si:1.0%以下、
Mn:0.01〜3%、
P :0.0010〜0.1%、
S :0.0010〜0.05%、
Al:0.3〜2.0%、
Mo:0.01〜5.0%を含有し、さらに、
B :0.0001〜0.0050%、
Ti:0.001〜0.5%、
Nb:0.001〜0.5%、
Cr:0.01〜5%
の1種又は2種以上を含有し、残部Feおよび不可避的不純物よりなり、ミクロ組織が、面積率で30%以上のフェライトを含み、引張り強度が850MPa以上であることを特徴とする穴拡げ性および延性に優れた溶融亜鉛めっき高強度鋼板。
(2)さらに、質量%で、V、Zr、Hf、Taの1種または2種以上を、Nb、Tiを含めた合計で0.001〜0.50%含有することを特徴とする(1)に記載の穴拡げ性に優れた高強度高延性溶融亜鉛めっき鋼板。
(3)さらに、質量%で、Ni、Cu、Co、Wの1種または2種以上を、Crを含めた合計で0.001〜5%含有することを特徴とする(1)または(2)に記載の穴拡げ性に優れた高強度高延性溶融亜鉛めっき鋼板。
(4)さらに、質量%で、Y、Rem、Ca、Mgの1種又は2種以上を0.0001〜0.5%含有することを特徴とする(1)〜(3)のいずれか1項に記載の穴拡げ性に優れた高強度高延性溶融亜鉛めっき鋼板。
(5)鋼板表面のめっき相中に、質量%でFe:5〜20%を含有することを特徴とする(1)〜(4)のいずれか1項に記載の穴拡げ性に優れた高強度高延性溶融亜鉛めっき鋼板。
(6)鋼板表面のめっき相中に、質量%でFe:5%未満を含有することを特徴とする(1)〜(5)のいずれか1項に記載の穴拡げ性に優れた高強度高延性溶融亜鉛めっき鋼板。
(7) (1)〜(6)のいずれか1項に記載の高強度高延性溶融亜鉛めっき鋼板を製造する方法であって、(1)〜(4)の何れか1項に記載の成分からなる鋳造スラブを鋳造まままたは一旦冷却した後に再度加熱し、熱延を仕上げ温度で850℃〜970℃にて終了し、その後550℃以下の温度域まで平均で10〜100℃/sで冷却した後550℃以下で巻取った熱延鋼板を酸洗後冷延し、その焼鈍時の最高温度が0.1×(Ac3 −Ac1 )+Ac1 (℃)以上0.8×(Ac3 −Ac1 )+Ac1 (℃)以下で焼鈍した後に、平均で0.1〜100℃/秒の冷却速度で亜鉛めっき浴温度−20℃〜亜鉛めっき浴温度+50℃の温度域に冷却し、引き続いて同温度域でめっき浸漬を含めて1秒〜1000秒保持を行うことを特徴とする穴拡げ性および延性に優れた溶融亜鉛めっき高強度鋼板の製造方法。
(8) (7)に記載の高強度高延性溶融亜鉛めっき鋼板を製造する方法であって、めっき浴浸漬および保持処理後に、合金化処理を400〜550℃の温度域で行い、室温まで冷却することを特徴とする加工性に優れた高強度高延性溶融亜鉛めっき鋼板の製造方法。
The present invention has been completed based on the above findings, and the gist thereof is as follows.
(1) In mass%,
C: 0.03-0.20%,
Si: 1.0% or less,
Mn: 0.01 to 3%
P: 0.0010 to 0.1%,
S: 0.0010 to 0.05%,
Al: 0.3 to 2.0%,
Mo: contains 0.01 to 5.0%,
B: 0.0001 to 0.0050%,
Ti: 0.001 to 0.5%,
Nb: 0.001 to 0.5%,
Cr: 0.01 to 5%
Hole expandability characterized by containing one or more of the following, the balance Fe and inevitable impurities, the microstructure contains ferrite with an area ratio of 30% or more, and the tensile strength is 850 MPa or more Hot-dip galvanized high-strength steel sheet with excellent ductility.
(2) Further, it is characterized by containing 0.001 to 0.50% in total of Vb, Zr, Hf, and Ta, including Nb and Ti, by mass% (1) ) High-strength, high-ductility hot-dip galvanized steel sheet excellent in hole expansibility.
(3) Further, it contains 0.001 to 5% of Ni, Cu, Co, or W in a total of 0.001 to 5% including Cr in mass% (1) or (2) ) High-strength, high-ductility hot-dip galvanized steel sheet excellent in hole expansibility.
(4) Further, 0.001 to 0.5% of one or more of Y, Rem, Ca and Mg is contained by mass%, and any one of (1) to (3) A high-strength, high-ductility hot-dip galvanized steel sheet excellent in hole expansibility described in the item.
(5) Fe: 5 to 20% in mass% in the plating phase on the surface of the steel sheet, characterized by high hole expansibility according to any one of (1) to (4) High strength ductile hot dip galvanized steel sheet.
(6) High strength excellent in hole expansibility according to any one of (1) to (5), wherein the plating phase on the steel sheet surface contains Fe: less than 5% by mass. High ductility hot dip galvanized steel sheet.
(7) A method for producing the high-strength and high-ductility hot-dip galvanized steel sheet according to any one of (1) to (6), wherein the component according to any one of (1) to (4) The cast slab made of is heated as it is or after being cooled again, and the hot rolling is finished at a finishing temperature of 850 ° C. to 970 ° C., and then cooled to a temperature range of 550 ° C. or lower at an average of 10 to 100 ° C./s. Then, the hot-rolled steel sheet wound at 550 ° C. or lower is pickled and cold-rolled, and the maximum temperature during annealing is 0.1 × (Ac 3 −Ac 1) + Ac 1 (° C.) or higher and 0.8 × (Ac 3 −Ac 1). After annealing at + Ac1 (° C.) or less, it is cooled to a temperature range of galvanizing bath temperature −20 ° C. to zinc plating bath temperature + 50 ° C. at an average cooling rate of 0.1 to 100 ° C./second, and then the same temperature range Holds for 1 to 1000 seconds including plating immersion Lower resistance and a manufacturing method excellent hot dip galvanized high strength steel sheet ductility.
(8) A method for producing the high-strength, high-ductility hot-dip galvanized steel sheet according to (7), wherein after the plating bath immersion and holding treatment, the alloying treatment is performed in a temperature range of 400 to 550 ° C. and cooled to room temperature. A method for producing a high-strength, high-ductility hot-dip galvanized steel sheet excellent in workability, characterized in that:

本発明の高強度溶融亜鉛めっき鋼板はめっき、穴拡げおよび延性が共に良好であり、自動車骨格やその補強部材を初めとして建材、家電製品等の用途に極めて有効である。   The high-strength hot-dip galvanized steel sheet of the present invention has good plating, hole expansion, and ductility, and is extremely effective for uses such as automobile frameworks and their reinforcing members as well as building materials and home appliances.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

発明者らは、各合金元素を添加した鋼塊を溶製し、鋳造まま又は一旦冷却した後に再度加熱し、熱延後巻取った熱延鋼板を酸洗後冷延し、その後焼鈍し、冷延焼鈍板を作成した。   The inventors have melted the steel ingot added with each alloy element, heated again as cast or once cooled, hot-rolled hot-rolled steel sheet after hot rolling, cold-rolled after pickling, and then annealed, A cold-rolled annealed plate was created.

その鋼板について、ミクロ組織観察、鉄鋼連盟規定の穴拡げ試験、JISに準拠した引張り試験を行い、各特性を比較評価した。   The steel sheet was subjected to microstructural observation, hole enlargement test specified by the Federation of Iron and Steel, and tensile test based on JIS, and each characteristic was compared and evaluated.

その結果、最終的に得られるミクロ組織制御により850MPa以上の引張り強度を得、穴拡げ性および延性に優れた高強度鋼板が製造可能なことを見出した。   As a result, it was found that a tensile strength of 850 MPa or more was obtained by the microstructure control finally obtained, and a high-strength steel sheet excellent in hole expansibility and ductility could be produced.

鋼板の好ましいミクロ組織について述べる。   A preferable microstructure of the steel sheet will be described.

穴拡げ性を十分に確保するためには一般的には主組織をベイナイト相(ベイナイトともいう)またはベイニティックフェライトとするのが有効である。しかし、この様な硬質相を増やすと延性が劣化してしまう。一方、比較的軟質のフェライト相(フェライトともいう)を増やすと延性は向上する傾向にあるものの強度確保や穴拡げ性確保には適さない。したがって、これらの各ミクロ組織を現状の連続めっき工程で上手くバランスさせる事が強度−穴拡げ性−延性を十分なレベルに確保するには重要である。   In general, it is effective to use a bainite phase (also referred to as bainite) or bainitic ferrite as the main structure in order to ensure sufficient hole expandability. However, when such a hard phase is increased, the ductility deteriorates. On the other hand, when the number of relatively soft ferrite phases (also called ferrite) is increased, the ductility tends to be improved, but it is not suitable for securing the strength and hole expandability. Therefore, it is important to ensure that these microstructures are well balanced in the current continuous plating process in order to ensure a sufficient level of strength, hole expansibility, and ductility.

例えば、各ミクロ組織の占積率を、体積分率で軟質のフェライト相を20%以上、ベイナイト相を10%以上、マルテンサイト相(マルテンサイトともいう)を5%以上、残留オーステナイト相(残留オーステナイトともいう)を5%以下とする事で、良好な材質が得られる。フェライトとマルテンサイトのバランスで強度−延性を、ベイナイトとマルテンサイトのバランスで強度−穴拡げ性を確保するものである。ここで、残留オーステナイトは延性確保には効力があるが、穴拡げ向上には効果が小さく、むしろ劣化させる傾向にある事から、3%未満である事が望ましい。0%であることが最も好ましい。
引張強度で980〜1180MPa級の強度を確保しつつ、良好な穴拡げ−延性バランスを得るためには、フェライトを20〜70%、ベイナイトを20〜60%、マルテンサイトを5〜20%、残留オーステナイトを3%未満とすることが望ましい。
本発明では、特に、主相である軟質のフェライトの体積分率を、十分な強度−延性が確保できる30%以上とした。
For example, the space factor of each microstructure is 20% or more of the soft ferrite phase, 10% or more of the bainite phase, 5% or more of the martensite phase (also called martensite), and the residual austenite phase (residual). By setting the austenite) to 5% or less, a good material can be obtained. Strength-ductility is ensured by the balance between ferrite and martensite, and strength-hole expansibility is ensured by the balance between bainite and martensite. Here, retained austenite is effective in securing ductility, but is less effective in improving hole expansion, and rather tends to deteriorate, so it is desirable that it be less than 3%. Most preferably, it is 0%.
In order to obtain a good hole expansion-ductility balance while securing a tensile strength of 980-1180 MPa class, ferrite is 20-70%, bainite is 20-60%, martensite is 5-20%, residual Desirably, austenite is less than 3%.
In the present invention, in particular, the volume fraction of the soft ferrite that is the main phase is set to 30% or more that can ensure sufficient strength-ductility.

さらに、主相である軟質のフェライトの体積分率が比較的高いことは延性向上に、細粒である事は強度−穴拡げ性バランス向上に有効である。このため、フェライトの平均粒径の上限を30μmとするのが好ましい。   Furthermore, the relatively high volume fraction of the soft ferrite, which is the main phase, is effective for improving ductility, and the fact that it is fine is effective for improving the balance between strength and hole expansibility. For this reason, it is preferable that the upper limit of the average particle diameter of ferrite is 30 μm.

また、上記の他にミクロ組織の残部組織として、炭化物、窒化物、硫化物、酸化物などの1又は2種以上を体積分率で1%以下含有する場合も本発明に含まれる。   In addition to the above, the present invention includes a case in which one or two or more of carbides, nitrides, sulfides, oxides, and the like are contained as a remaining structure of the microstructure in a volume fraction of 1% or less.

なお、上記ミクロ組織の各相、フェライト、ベイナイト、オーステナイト、マルテンサイト、界面酸化相および残部組織の同定、存在位置の観察および占積率の測定は、ナイタール試薬および特開昭59−219473号公報に開示された試薬により鋼板圧延方向断面または圧延直角方向断面を腐食して500倍〜1000倍の光学顕微鏡観察および1000〜100000倍の電子顕微鏡(走査型および透過型)により定量化が可能である。各20視野以上の観察を行い、ポイントカウント法や画像解析により各組織の占積率および主相の平均粒径を求めることができる。また、フォーマスタなどによる膨張・収縮曲線から各相変態挙動調査から各ミクロ組織の占積率を求める事も出来る。
なお、ミクロ組織の各相の合計は100%となるが、炭化物、酸化物、硫化物等の光学顕微鏡や膨張曲線では観察・同定ができない相については主相の面積率に含めている。
In addition, identification of each phase of the above microstructure, ferrite, bainite, austenite, martensite, interfacial oxidation phase and remaining structure, observation of the existing position, and measurement of the space factor are performed using the Nital reagent and Japanese Patent Application Laid-Open No. 59-219473. Can be quantified by observing the cross section in the rolling direction of the steel sheet or the cross section in the direction perpendicular to the rolling direction with the reagent disclosed in, and observing with an optical microscope of 500 to 1000 times and an electron microscope (scanning type and transmission type) of 1000 to 100,000 times. . Observation of 20 or more fields of view can be performed, and the space factor of each tissue and the average particle size of the main phase can be obtained by a point counting method or image analysis. Moreover, the space factor of each microstructure can be obtained from the investigation of each phase transformation behavior from the expansion / contraction curve by Formaster.
The total of each phase of the microstructure is 100%, but phases that cannot be observed or identified by an optical microscope or an expansion curve such as carbides, oxides, and sulfides are included in the area ratio of the main phase.

次に、本発明における鋼板成分の好適な範囲の限定理由について述べる。   Next, the reason for limiting the preferable range of the steel plate component in the present invention will be described.

Cは、良好な材質バランスを確保するために重要な添加元素である。フェライト、ベイナイトおよびマルテンサイトの分率制御に最も重要な添加元素である。強度および延性確保の点からは、下限を0.03質量%以上とし、980MPa以上を狙う場合には0.1%以上の添加が望ましい。一方、添加量が増加すると穴拡げ性の劣化を招くため、穴拡げ性を保持可能な上限として0.20%とすることが好ましい。980〜1180MPa級の強度レベルでの穴拡げ性および延性の良好なバランスを得るためには0.05〜0.15%の範囲が望ましい。   C is an important additive element in order to ensure a good material balance. It is the most important additive element for controlling the fraction of ferrite, bainite and martensite. From the viewpoint of securing strength and ductility, the lower limit is set to 0.03% by mass or more, and when aiming at 980 MPa or more, addition of 0.1% or more is desirable. On the other hand, when the amount added increases, the hole expandability deteriorates. Therefore, the upper limit for maintaining the hole expandability is preferably 0.20%. In order to obtain a good balance between hole expansibility and ductility at a strength level of 980 to 1180 MPa, a range of 0.05 to 0.15% is desirable.

Siは、強度延性バランスを劣化させる比較的粗大な炭化物の生成を抑制する目的で添加する元素であるが、めっき性を著しく劣化させる。このため1.0%以下まで添加しても良い。また、過剰添加は溶接性にも悪影響を及ぼすので、上限を1.0質量%とすることが好ましい。一方で、精錬能力や原料組成などを考慮すると、Siの極低下は製造コストの高騰を招くことから、めっき性を大きくは悪化させない0.005%以上の添加とすることが望ましく、めっき品質確保や合金化抑制低減の点からは、0.1%以下とすることが望ましい。   Si is an element added for the purpose of suppressing the formation of relatively coarse carbides that deteriorate the strength-ductility balance, but significantly deteriorates the plateability. For this reason, you may add to 1.0% or less. Moreover, since excessive addition has a bad influence also on weldability, it is preferable to make an upper limit into 1.0 mass%. On the other hand, considering the refining capacity and raw material composition, the extreme decrease in Si leads to an increase in manufacturing cost. Therefore, it is desirable to add 0.005% or more, which does not greatly deteriorate the plating performance, and ensures plating quality. And from the point of reduction of alloying suppression, it is desirable to set it as 0.1% or less.

Mnは、高強度化の目的で添加する。また、強度低下と材質劣化の1つの原因である炭化物析出やパーライト生成を抑制する目的で添加する。これらのことから、0.01質量%以上とした。一方では、穴拡げ性向上に寄与するベイナイト変態を遅滞させることから3質量%を上限とした。好ましくは、1.5〜3.0%とすることにより良好な強度−穴広げ性のバランスが得られる。   Mn is added for the purpose of increasing the strength. Further, it is added for the purpose of suppressing carbide precipitation and pearlite formation, which are one cause of strength reduction and material deterioration. From these things, it was set as 0.01 mass% or more. On the other hand, 3 mass% was made the upper limit because it delayed the bainite transformation that contributes to improving hole expansibility. Preferably, a good balance between strength and hole expandability can be obtained by setting the content to 1.5 to 3.0%.

Alは、脱酸元素であることに加えて、フェライト変態を促進させ、穴広げおよび延性のバランスを良好にするための重要な添加元素である。このため、0.3質量%以上の添加することが好ましい。一方過剰添加は溶接性およびめっき濡れ性を損なうだけでなく、穴広げ性の劣化を招くため2.0%を上限とすることが好ましい。また、特に良好な穴広げ−延性バランスを得るためには0.4%以上0.9%以下の範囲が望ましい。   In addition to being a deoxidizing element, Al is an important additive element for promoting ferrite transformation and improving the balance between hole expansion and ductility. For this reason, it is preferable to add 0.3 mass% or more. On the other hand, excessive addition not only impairs weldability and plating wettability, but also causes deterioration of hole expansibility, so the upper limit is preferably made 2.0%. In order to obtain a particularly good hole expansion-ductility balance, a range of 0.4% to 0.9% is desirable.

Moは、Al同様、延性−穴拡げ性バランスを向上させる重要な添加元素である。炭化物やパーライトの生成を抑制するだけでなく、比較的硬質なフェライトを形成させる上でも重要であることから、その下限を0.01質量%とすることが好ましい。特に、連続めっき工程での穏冷プロセス(焼鈍後の平均冷速が10℃/s以下)や合金化温度の高温化(520℃以上)においてもパーライトや炭化物析出を極力抑制するためには0.05%以上の添加が望ましい。さらに、過剰添加は、延性劣化を招くことから、上限を5.0%とする。1.0%以下とすることが好ましい。また、特に良好な穴広げ−延性バランスを得るためには0.1%以上0.3%以下の範囲が望ましい。   Mo, like Al, is an important additive element that improves the ductility-hole expansibility balance. It is important not only to suppress the formation of carbides and pearlite, but also to form a relatively hard ferrite, so the lower limit is preferably 0.01% by mass. In particular, in order to suppress pearlite and carbide precipitation as much as possible even in a mild cooling process in a continuous plating process (average cooling rate after annealing is 10 ° C./s or less) and a high alloying temperature (520 ° C. or more). Addition of 0.05% or more is desirable. Further, excessive addition causes ductility deterioration, so the upper limit is made 5.0%. It is preferable to set it to 1.0% or less. In order to obtain a particularly good hole expansion-ductility balance, a range of 0.1% to 0.3% is desirable.

Pは強化元素であり、低P化は穴拡げ性を向上させるが、Pの極低化は経済的にも不利であることから0.0010質量%を下限とすることが好ましい。また、多量添加では、溶接性や鋳造時や熱延時の製造性に悪影響を及ぼすため、0.1%を上限とすることが好ましい。好ましくは、0.03%以下が望ましい。   P is a strengthening element, and lowering P improves hole expansibility. However, since extremely low P is economically disadvantageous, 0.0010% by mass is preferable as the lower limit. Moreover, since addition in a large amount adversely affects weldability and manufacturability during casting or hot rolling, it is preferable to set the upper limit to 0.1%. Preferably, 0.03% or less is desirable.

Sは、低S化することにより穴拡げ性向上に有効である。一方、極低化は経済的に不利であることから、0.0010質量%を下限とし、また、0.05質量%を上限とすることが好ましいのは、これを超える量の添加では、溶接性や鋳造時や熱延時の製造性に悪影響を及ぼすためである。   S is effective in improving hole expansibility by lowering S. On the other hand, since extremely low is economically disadvantageous, the lower limit is preferably 0.0010% by mass and the upper limit is preferably 0.05% by mass. This is because it adversely affects the productivity and manufacturability during casting and hot rolling.

本発明では、以上の成分に加え、さらに、B、Ti、Nb、Crの1種又は2種以上を含有する。
Bは、熱延板組織の微細均一化を促し、結果として焼鈍後の穴広げの向上に有効な元素である。このため、0.0001%以上の添加とした。また、この効果は、Tiとの複合添加時に特に効果的である。一方、過剰添加は延性劣化を招くことから上限を0.0050%とした。また、特に良好な穴広げ−延性バランスを得るためには0.0003%以上0.0020%以下の範囲が望ましい。
In the present invention, in addition to the above components, one or more of B, Ti, Nb, and Cr are further contained.
B is an element that promotes fine homogenization of the hot-rolled sheet structure and, as a result, is effective for improving the hole expansion after annealing. For this reason, it was made into 0.0001% or more of addition. This effect is particularly effective when combined with Ti. On the other hand, excessive addition causes ductility deterioration, so the upper limit was made 0.0050%. In order to obtain a particularly good hole expansion-ductility balance, a range of 0.0003% to 0.0020% is desirable.

なお、NはBの添加効果を発揮させる上で好ましい元素ではないので、0.0070%以下とするのが好ましい。   Note that N is not a preferable element for exhibiting the effect of addition of B, and therefore is preferably 0.0070% or less.

Nbは、微細な炭化物、窒化物または炭窒化物を形成または固溶状にて、鋼板の強化に有効である。また、硬質フェライトを形成させるためには重要な添加元素であり、0.001質量%以上の添加とし、0.01%以上の添加が硬質フェライト形成には望ましい。一方で、過剰添加は、延性や熱間加工性を劣化させることから、上限として0.5質量%とした。また、特に良好な穴広げ−延性バランスを得るためには0.005%以上0.020%以下の範囲が望ましい。   Nb forms fine carbides, nitrides or carbonitrides or is in a solid solution state, and is effective for strengthening the steel sheet. Further, it is an important additive element for forming hard ferrite, and 0.001% by mass or more is added, and 0.01% or more is desirable for forming hard ferrite. On the other hand, excessive addition deteriorates ductility and hot workability, so the upper limit was made 0.5 mass%. In order to obtain a particularly good hole expansion-ductility balance, a range of 0.005% to 0.020% is desirable.

Tiは、微細な炭化物、窒化物または炭窒化物を形成して、鋼板の強化に有効である。また、Bとの複合添加により硬質フェライトを形成させるために特に有効であることから、0.001質量%以上の添加とした。また、Bとの複合添加の場合には、0.01%以上の添加が硬質フェライト形成には望ましい。一方で、過剰添加は、延性や熱間加工性を劣化させることから、上限として0.5質量%とした。また、特に良好な穴広げ−延性バランスを得るためには0.005%以上0.020%以下の範囲が望ましい。   Ti forms fine carbides, nitrides or carbonitrides and is effective for strengthening the steel sheet. Further, since it is particularly effective for forming hard ferrite by composite addition with B, the addition was made 0.001% by mass or more. Further, in the case of composite addition with B, addition of 0.01% or more is desirable for forming hard ferrite. On the other hand, excessive addition deteriorates ductility and hot workability, so the upper limit was made 0.5 mass%. In order to obtain a particularly good hole expansion-ductility balance, a range of 0.005% to 0.020% is desirable.

Crは、硬質フェライトの形成および炭化物微細化を促すため、穴広げ性を向上させるのに有効な添加元素であるため、0.01%以上の添加とした。また、過剰添加は延性低下を招くため上限を5%とした。また、特に良好な穴広げ−延性バランスを得るためには0.1%以上0.8%以下の範囲が望ましい。   Cr is an additive element effective for improving the hole expansion property in order to promote the formation of hard ferrite and the refinement of carbides, so it was added in an amount of 0.01% or more. Moreover, since excessive addition causes ductility fall, the upper limit was made 5%. In order to obtain a particularly good hole expansion-ductility balance, a range of 0.1% to 0.8% is desirable.

B、Al、OおよびNの関係:Bを添加する場合は、その効果を十分発揮させるために、BをNとなるべく結合させない事が効果的である。したがって、Bよりも強い窒化物生成元素としてOと結合していないAl量およびB添加量との和がN量よりも大きいことがBの効果を発揮させ材質バランス向上を図るためには重要である。このことから、これらの元素の含有量が、式:B/11+(Al/27−O/16)−N/14>0を満たすことが望ましく、さらに、同式が0.02以上の値であるとより良好な穴拡げ−延性バランスが得られる。   Relationship between B, Al, O and N: When B is added, it is effective not to combine B with N as much as possible in order to fully exhibit the effect. Therefore, it is important for exhibiting the effect of B and improving the material balance that the sum of the amount of Al not bonded to O as a nitride-forming element stronger than B and the amount of B added is larger than the amount of N. is there. Therefore, it is desirable that the content of these elements satisfies the formula: B / 11 + (Al / 27−O / 16) −N / 14> 0, and the formula is a value of 0.02 or more. If there is, a better hole expansion-ductility balance can be obtained.

さらに、本発明が対象とする鋼は、強度のさらなる向上や組織の微細化を目的として強炭化物形成元素であるV、Zr、Hf、Taの1種または2種を含有できる。これらの元素は、微細な炭化物、窒化物または炭窒化物を形成して、鋼板の強化にとって極めて有効であるため、必要に応じて1種または2種以上を、Nb、Tiとの合計で0.001質量%以上の添加とした。   Furthermore, the steel targeted by the present invention can contain one or two of strong carbide forming elements V, Zr, Hf, and Ta for the purpose of further improving the strength and refining the structure. These elements form fine carbides, nitrides or carbonitrides and are extremely effective for strengthening the steel sheet. Therefore, one or more of these elements may be added in a total amount of Nb and Ti as needed. Addition of 0.001% by mass or more.

一方で、延性劣化や残留オーステナイト中へのCの濃化を阻害することから、1種または2種以上のNb、Tiとの合計添加量の上限として0.50質量%とした。また、この中でもBよりも強窒化物形成元素であるZr、Hf、TaはB添加効果の活用についても有効であり、経済性を考慮しつつ添加することは望ましい。   On the other hand, since it inhibits ductile deterioration and concentration of C in retained austenite, the upper limit of the total amount of addition of one or more of Nb and Ti is set to 0.50% by mass. Of these, Zr, Hf, and Ta, which are stronger nitride-forming elements than B, are also effective in utilizing the B addition effect, and it is desirable to add them in consideration of economy.

さらに、本発明が対象とする鋼は、強度のさらなる向上を目的としてNi、Cu、Co、Wの1種または2種以上を含有できる。   Furthermore, the steel targeted by the present invention can contain one or more of Ni, Cu, Co, and W for the purpose of further improving the strength.

Niは、焼き入れ性の向上による強化目的で0.001質量%以上の添加で効果を発現し、Cr、Ni、Cu、Co、Wの1種または2種以上の合計で5質量%を超える量の添加では、加工性、特にマルテンサイトの硬度上昇に寄与して悪影響を及ぼすため、これを上限とした。   Ni exhibits an effect by addition of 0.001% by mass or more for the purpose of strengthening by improving hardenability, and exceeds 5% by mass in total of one or more of Cr, Ni, Cu, Co, and W. The addition of the amount contributes to the workability, particularly the hardness increase of martensite, and has an adverse effect, so this was made the upper limit.

Cuは、強化目的で0.01質量%以上の添加で効果を発現し、Cr、Ni、Cu、Co、Wの1種または2種以上の合計で5質量%を超える量の添加では、加工性および製造性に悪影響を及ぼす。   Cu is effective when added in an amount of 0.01% by mass or more for the purpose of strengthening, and when added in an amount exceeding 5% by mass in total of one or more of Cr, Ni, Cu, Co, and W, it is processed. Adversely affects performance and manufacturability.

Coは、ベイナイト変態制御による強度延性バランスの向上のため、0.01質量%以上の添加で効果を発現する。一方、高価な元素であるため多量添加は経済性を損なうため、Cr、Ni、Cu、Co、Wの1種または2種以上の合計で5質量%以下にすることが望ましい。   Co exhibits an effect when added in an amount of 0.01% by mass or more in order to improve the strength ductility balance by controlling bainite transformation. On the other hand, since it is an expensive element, the addition of a large amount impairs the economy, so it is desirable that the total of one or more of Cr, Ni, Cu, Co, and W be 5% by mass or less.

Wは、0.01質量%以上の添加で強化効果が現れ、Cr、Ni、Cu、Co、Wの1種または2種以上の合計で5質量%を超える量の添加では、加工性に悪影響を及ぼす。   When W is added in an amount of 0.01% by mass or more, a strengthening effect appears. Addition of more than 5% by mass of one or more of Cr, Ni, Cu, Co, and W adversely affects workability. Effect.

Y、Rem(Rare Earth Metal)の略でLaから始まるランタノイド系の元素を示す。工業的はミッシュメタルの形で添加されることがおおく、この場合には中でもLaおよびCeの含有が主体となる)、Ca、Mgは、適量添加により介在物の形態制御、特に微細分散化の観点から0.001%以上とし、一方で過剰添加は鋳造性や熱間加工性などの製造性および鋼板製品の延性を低下させるため0.5質量%を上限とした。また、この中でもBよりも強窒化物形成元素であるLaやCeはB添加効果の活用についても有効であり、製造性を考慮しつつ添加することは望ましい。   Y, an abbreviation for Rem (Rare Earth Metal), and a lanthanoid element starting from La. Industrially, it is added in the form of misch metal. In this case, it is mainly composed of La and Ce). Ca, Mg are added in appropriate amounts to control the form of inclusions, especially finely dispersed. From the viewpoint, the content is made 0.001% or more. On the other hand, excessive addition lowers the manufacturability such as castability and hot workability and the ductility of the steel sheet product, so the upper limit is made 0.5 mass%. Of these, La and Ce, which are stronger nitride forming elements than B, are also effective in utilizing the B addition effect, and it is desirable to add them while considering manufacturability.

不可避的不純物として、例えばSnなどがあるがこれら元素を0.02質量%以下の範囲で含有しても本発明の効果を損なうものではない。   Inevitable impurities include, for example, Sn, but even if these elements are contained in the range of 0.02% by mass or less, the effect of the present invention is not impaired.

また、めっき層に関しては、合金化処理によって亜鉛めっき層中にFeが取り込まれ、塗装性やスポット溶接性に優れた高強度溶融亜鉛めっき鋼板を得ることができる。亜鉛めっき層のFe量が5質量%未満ではスポット溶接性が不十分となる。一方、Fe量が20質量%を超えるとめっき層自体の密着性を損ない、加工の際めっき層が破壊・脱落し金型に付着することで、成形時の疵の原因となる。したがって、合金化処理を行う場合の亜鉛めっき層中Fe量の範囲は5〜20質量%とする。   Moreover, regarding a plating layer, Fe is taken in in a galvanization layer by alloying process, and the high intensity | strength hot-dip galvanized steel plate excellent in coating property and spot weldability can be obtained. When the Fe content of the galvanized layer is less than 5% by mass, spot weldability is insufficient. On the other hand, if the amount of Fe exceeds 20% by mass, the adhesion of the plating layer itself is impaired, and the plating layer breaks and drops during processing and adheres to the mold, thereby causing defects during molding. Therefore, the range of the amount of Fe in the galvanized layer when performing the alloying treatment is 5 to 20% by mass.

一方、溶融亜鉛めっき層のFe量が5質量%未満でも、前述の合金化による効果以外の耐食性向上効果は得ることが出来る。   On the other hand, even if the Fe content of the hot dip galvanized layer is less than 5% by mass, an effect of improving the corrosion resistance other than the effect of the alloying described above can be obtained.

めっき付着量については、特に制約は設けないが、耐食性の観点から片面付着量で5g/m2 以上であることが望ましい。本発明の溶融Znめっき鋼板上に塗装性、溶接性を改善する目的で上層めっきを施すことや、各種の処理、例えば、クロメート処理、りん酸塩処理、潤滑性向上処理、溶接性向上処理等を施しても、本発明を逸脱するものではない。   The plating adhesion amount is not particularly limited, but is preferably 5 g / m 2 or more in terms of single-sided adhesion from the viewpoint of corrosion resistance. For the purpose of improving the paintability and weldability on the hot-dip Zn plated steel sheet of the present invention, various treatments such as chromate treatment, phosphate treatment, lubricity improvement treatment, weldability improvement treatment, etc. However, the present invention does not depart from the present invention.

このような組織を有する穴拡げ性に優れた高強度高延性亜鉛めっき鋼板の製造方法について以下に説明する。   A method for producing a high-strength, high-ductility galvanized steel sheet having such a structure and excellent hole expansibility will be described below.

熱延後冷延・焼鈍して本発明の鋼板を製造する場合には、所定の成分に調整されたスラブを鋳造ままもしくは一旦冷却した後再加熱して熱延を行う。このときの再加熱温度は1150℃以上1250℃以下とすることが望ましい。再加熱温度が高温になると粗粒化や厚い酸化スケールが形成され、一方、低温加熱では圧延抵抗が高くなってしまう。また熱延後は、高圧デスケーリング装置や酸洗することなどで表面スケール削除を行うと製品での表面清浄がよくなり、めっき性に有利な傾向にある。   When the steel sheet of the present invention is manufactured by cold rolling and annealing after hot rolling, the slab adjusted to a predetermined component is cast as it is or once cooled and then reheated for hot rolling. In this case, the reheating temperature is desirably 1150 ° C. or higher and 1250 ° C. or lower. When the reheating temperature is high, coarse grains and thick oxide scales are formed. On the other hand, low temperature heating increases the rolling resistance. Moreover, after hot rolling, if the surface scale is removed by using a high-pressure descaling device or pickling, the surface of the product is better cleaned, which tends to be advantageous for plating properties.

また、特に延性および穴広げ性の両立には熱延からの組織制御が重要で、熱延板組織を均一かつ微細にすることが連続溶融亜鉛めっき鋼板での延性および穴広げ性向上に大きな寄与を及ぼす。このためには、熱延の仕上げ温度を850℃〜970℃とする。   In addition, it is particularly important to control the structure from hot rolling to achieve both ductility and hole expandability. Making the hot rolled sheet structure uniform and fine contributes greatly to improving the ductility and hole expandability of continuous hot-dip galvanized steel sheets. Effect. For this purpose, the hot rolling finishing temperature is set to 850 ° C. to 970 ° C.

その後の冷却は、パーライト変態を抑制し、より良好な材質得るためには、仕上げ熱延後の平均冷速を10〜100℃/sで550℃以下の温度域にまで冷却することが望ましい。冷却停止は、ベイナイト生成温度域までとして、550℃以下とした。   Subsequent cooling suppresses pearlite transformation, and in order to obtain a better material, it is desirable to cool the average cooling rate after finish hot rolling to a temperature range of 550 ° C. or lower at 10 to 100 ° C./s. The cooling stop was 550 ° C. or less up to the bainite generation temperature range.

その後は、ベイナイトまたはマルテンサイト生成による熱延組織の均質化を図る目的で、550℃以下に巻き取る事とした。この熱延板の均質化はBの添加効果と同様に穴拡げ性および延性の同じ確保に特に重要である。一方では、冷延時の反力増加の問題からなるべく高温側で巻き取る事が望ましく、500〜400℃での巻取りが望ましい。   After that, it was decided to wind up to 550 ° C. or less for the purpose of homogenizing the hot rolled structure by bainite or martensite formation. The homogenization of the hot-rolled sheet is particularly important for ensuring the same hole expandability and ductility as well as the effect of adding B. On the other hand, it is desirable to wind as high a temperature as possible from the problem of an increase in reaction force during cold rolling, and winding at 500 to 400 ° C. is desirable.

その後の冷延については、最終板厚と冷延荷重の関係から設定される全圧下率は、40%以上であれば再結晶・変態制御の点から十分で、最終的な鋼板の特性を劣化させないので好ましい。   For the subsequent cold rolling, if the total reduction ratio set from the relationship between the final sheet thickness and the cold rolling load is 40% or more, it is sufficient from the viewpoint of recrystallization and transformation control, and the final steel sheet characteristics deteriorate. This is preferable because it is not allowed to occur.

また、溶融亜鉛めっき、溶融合金化亜鉛めっき工程における焼鈍において、良好な組織分率を得るためには、0.1×(Ac3−Ac1)+Ac1〜0.9×(Ac3−Ac1)+Ac1の温度域での焼鈍が望ましい。ここで、Ac1及びAc3は、鋼の化学成分によって決まるAc1 温度(℃)及びAc3 温度(℃)(例えば「鉄鋼材料学」:W. C. Leslie著、幸田成康監訳、丸善P273参照)である。 Moreover, in order to obtain a favorable structure fraction in the annealing in the hot dip galvanizing and hot galvannealed galvanizing processes, 0.1 × (Ac 3 −Ac 1 ) + Ac 1 to 0.9 × (Ac 3 −Ac 1 ) Annealing in the temperature range of + Ac 1 is desirable. Here, Ac 1 and Ac 3 are the Ac 1 temperature (° C.) and Ac 3 temperature (° C.) determined by the chemical composition of the steel (for example, “Steel Material Science”: WC Leslie, translated by Koyasu Naruyasu, Maruzen P273) is there.

さらに、良好な材質を得るためには、焼鈍温度の上限を0.8×(Ac3−Ac1)+Ac1 (℃)とすることが好ましい。この温度域での焼鈍時間は鋼板の温度均一化とオーステナイトの確保のために10秒以上とすることが好ましい。一方、30分超では、粒界酸化相生成が促進されるうえ、コストの上昇を招くので、30分以下とすることが好ましい。また、より良好な穴広げ性を確保するためには、0.3×(Ac3−Ac1)+Ac1 (℃)以上の温度域で60〜200秒の範囲で焼鈍することが望ましい。 Furthermore, in order to obtain a good material, it is preferable to set the upper limit of the annealing temperature to 0.8 × (Ac 3 −Ac 1 ) + Ac 1 (° C.). The annealing time in this temperature range is preferably 10 seconds or more in order to make the temperature of the steel plate uniform and to secure austenite. On the other hand, if it exceeds 30 minutes, formation of a grain boundary oxidation phase is promoted and cost increases, and therefore, it is preferably 30 minutes or less. Moreover, in order to ensure better hole expansibility, it is desirable to anneal in a temperature range of 0.3 × (Ac 3 −Ac 1 ) + Ac 1 (° C.) or more for 60 to 200 seconds.

ここで、昇温および焼鈍時の雰囲気が酸素濃度が50ppm以下で露点が−20℃以下とすることがめっき品質を向上させるためには望ましい雰囲気である。酸素濃度が50ppmを超えたり、露点が−20℃を超えると、鋼板のめっき性、特に濡れ性が劣化し、不めっきの原因となる場合がある。   Here, in order to improve the plating quality, it is desirable that the atmosphere at the time of temperature rise and annealing is an oxygen concentration of 50 ppm or less and a dew point of −20 ° C. or less. If the oxygen concentration exceeds 50 ppm or the dew point exceeds −20 ° C., the plateability of the steel sheet, particularly the wettability, deteriorates and may cause non-plating.

その後の一次冷却はオーステナイト相からフェライト相への変態をある程度抑しつつ、ベイナイトまたはベイニティックフェライトを生成させる、またはマルテンサイトを生成させるのに重要である。この冷却速度を0.1℃/秒未満にすることは、フェライトやパーライトの生成を促進して強度低下を招く懸念があることから、冷却速度の下限を0.1℃/秒とした。一方、冷却速度が100℃/秒超の場合には最終的な鋼板中のマルテンサイト相などの硬質相が多量になってしまうことや、操業上困難なため、これを上限とした。   Subsequent primary cooling is important for generating bainite or bainitic ferrite or martensite while suppressing the transformation from the austenite phase to the ferrite phase to some extent. Setting this cooling rate to less than 0.1 ° C./second may promote the formation of ferrite and pearlite and cause a decrease in strength, so the lower limit of the cooling rate was set to 0.1 ° C./second. On the other hand, when the cooling rate is higher than 100 ° C./second, the hard steel phase such as the martensite phase in the final steel sheet becomes large and operation is difficult.

上記の焼鈍後の冷却において、冷却がめっき浴温度−20℃未満まで行われると、めっき浴浸入時の抜熱が大きいことなどの操業上の問題がある。一方、冷却停止温度がめっき浴+50℃を超えると、操業上の問題に加え、その後の保持時に炭化物が生成してしまい、強度低下を招く。このため、冷却停止温度は、めっき浴温度−20℃〜めっき浴温度+50℃とすることが好ましい。   In the cooling after the annealing described above, if the cooling is performed to a temperature lower than −20 ° C., there are operational problems such as a large heat removal at the time of entering the plating bath. On the other hand, if the cooling stop temperature exceeds the plating bath + 50 ° C., in addition to operational problems, carbides are generated during subsequent holding, leading to a decrease in strength. For this reason, it is preferable that cooling stop temperature shall be plating bath temperature-20 degreeC-plating bath temperature +50 degreeC.

また、次にベイナイト変態の進行を促すため、この温度域での保持を行う。この停留時間が長時間になると生産性上好ましくないうえ、炭化物が生成してしまうことから1000秒以内とすることが望ましい。また、ベイナイト変態進行させるため、1秒以上保持し、好ましくは15秒から10分保持することが望ましい。保持温度が、めっき浴温度−20℃未満ではベイナイト変態が起こりにくく、めっき浴温度+50℃を超えると炭化物が生じて材質劣化してしまう。   Next, in order to promote the progress of the bainite transformation, the temperature range is maintained. If the retention time is long, it is not preferable in terms of productivity, and carbides are generated. Further, in order to cause the bainite transformation to proceed, it is desirable to hold for 1 second or longer, preferably 15 seconds to 10 minutes. If the holding temperature is lower than the plating bath temperature −20 ° C., the bainite transformation hardly occurs, and if it exceeds the plating bath temperature + 50 ° C., carbides are generated and the material is deteriorated.

マルテンサイト相を生成させるには、ベイナイト変態を生じさせる必要はないが、炭化物やパーライトの生成は、抑制する必要があるため、上記の保持後、十分な合金化処理を行うため400〜550℃の温度域で合金化処理することが好ましい。   In order to generate the martensite phase, it is not necessary to cause the bainite transformation, but since it is necessary to suppress the formation of carbide and pearlite, 400 to 550 ° C in order to perform sufficient alloying treatment after the above holding. It is preferable to perform the alloying treatment in the temperature range.

また、合金化処理を行う場合には、400℃以上580℃以下とした。合金化処理温度が400℃未満であると合金化の進行が遅く、生産性が悪い。また、580℃を超えると炭化物析出を伴い、材質劣化する。好ましくは430℃以上550℃以下とする。   Moreover, when performing an alloying process, it was set as 400 degreeC or more and 580 degrees C or less. When the alloying treatment temperature is less than 400 ° C., the progress of alloying is slow and the productivity is poor. Moreover, when it exceeds 580 degreeC, a carbide | carbonized_material precipitation will accompany and material quality will deteriorate. Preferably it is set as 430 degreeC or more and 550 degrees C or less.

以下、実施例によって本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

表1、表2に示すような組成の鋼板を、1100〜1250℃に加熱し、Ar3 変態温度以上で熱延を完了し、巻き取った鋼帯を酸洗後、冷延して1.2mm厚とした。   The steel sheets having the compositions shown in Tables 1 and 2 were heated to 1100 to 1250 ° C., the hot rolling was completed at the Ar3 transformation temperature or higher, the wound steel strip was pickled, cold rolled, and then cold rolled to 1.2 mm. Thickness.

その後、各鋼の成分(質量%)から下記式にしたがってAc1 とAc3 変態温度を計算により求めた。
Ac1 =723−10.7×Mn%+29.1×Si%、
Ac3 =910−203×(C%)1/2−15.2×Ni%
+44.7×Si%+104×V%+31.5×Mo%
−30×Mn%−11×Cr%+400×Al%、
これらのAc1 およびAc3 変態温度から計算される焼鈍温度に10%H2 −N2 雰囲気中で昇温・保定したのち、0.02〜10℃/秒の冷却速度でめっき浴温度付近の420〜670℃まで冷却し、引き続いて、亜鉛めっき浴に3秒間浸漬することでめっきを行った。その際、鋼板は、450℃〜465℃、650℃の各温度で、めっき時の浸漬時間を含め3〜15000秒保持された。
また、一部の鋼板については、Fe−Zn合金化処理として、めっき後の鋼板を500〜650℃の温度域で5〜25秒保持し、めっき層中のFe含有率を調節した。
Thereafter, it was determined by calculating the Ac 1 and Ac 3 transformation temperature according to the following equation from a component of the steel (mass%).
Ac 1 = 723-10.7 × Mn% + 29.1 × Si%,
Ac 3 = 910−203 × (C%) 1/2 −15.2 × Ni%
+ 44.7 × Si% + 104 × V% + 31.5 × Mo%
−30 × Mn% −11 × Cr% + 400 × Al%,
After raising and maintaining the annealing temperature calculated from these Ac1 and Ac3 transformation temperatures in a 10% H 2 -N 2 atmosphere, a temperature of 420 to around the plating bath temperature at a cooling rate of 0.02 to 10 ° C./sec. After cooling to 670 ° C., plating was performed by immersing in a galvanizing bath for 3 seconds. In that case, the steel plate was hold | maintained for 3 to 15000 second at each temperature of 450 to 465 degreeC and 650 degreeC including the immersion time at the time of plating.
Moreover, about some steel plates, as a Fe-Zn alloying process, the steel plate after plating was hold | maintained for 5 to 25 seconds in the temperature range of 500-650 degreeC, and Fe content rate in a plating layer was adjusted.

これらの鋼板からJIS5号引張り試験片を採取して、機械的性質を測定した。さらに、鉄鋼連盟規格に準拠して穴拡げ試験を行い、穴拡げ率を求めた。また、めっき性の試験は、外観観察して5段階の評点をつけた。   JIS No. 5 tensile test specimens were collected from these steel plates and measured for mechanical properties. In addition, a hole expansion test was performed in accordance with the Steel Federation standard, and the hole expansion rate was obtained. In addition, the plating test was evaluated by observing the appearance and giving a five-point score.

表4にミクロ組織と各材質について、また表3に各製造条件について示す。本願発明の要綱を満たす発明鋼は、延性、強度(引張り強度で800MPa以上)、穴拡げ性に優れていることがわかる。   Table 4 shows the microstructure and each material, and Table 3 shows each manufacturing condition. It can be seen that the invention steel that satisfies the outline of the present invention is excellent in ductility, strength (tensile strength of 800 MPa or more), and hole expandability.

一方、本発明の条件から外れる比較例は、穴拡げ性、延性やめっき性も劣勢である。   On the other hand, the comparative example which deviates from the conditions of the present invention is inferior in hole expansibility, ductility and plating properties.

Figure 2010043360
Figure 2010043360

Figure 2010043360
Figure 2010043360

Figure 2010043360
Figure 2010043360

Figure 2010043360
Figure 2010043360

Claims (8)

質量%で、
C :0.03〜0.20%、
Si:1.0%以下、
Mn:0.01〜3%、
P :0.0010〜0.1%、
S :0.0010〜0.05%、
Al:0.3〜2.0%、
Mo:0.01〜5.0%を含有し、さらに、
Ti:0.001〜0.5%、
Nb:0.001〜0.5%、
B :0.0001〜0.0050%、
Cr:0.01〜5%
の1種又は2種以上を含有し、残部Feおよび不可避的不純物よりなり、ミクロ組織が、面積率で30%以上のフェライトを含み、引張り強度が850MPa以上であることを特徴とする穴拡げ性および延性に優れた溶融亜鉛めっき高強度鋼板。
% By mass
C: 0.03-0.20%,
Si: 1.0% or less,
Mn: 0.01 to 3%
P: 0.0010 to 0.1%,
S: 0.0010 to 0.05%,
Al: 0.3 to 2.0%,
Mo: contains 0.01 to 5.0%,
Ti: 0.001 to 0.5%,
Nb: 0.001 to 0.5%,
B: 0.0001 to 0.0050%,
Cr: 0.01 to 5%
Hole expandability characterized by containing one or more of the following, the balance Fe and inevitable impurities, the microstructure contains ferrite with an area ratio of 30% or more, and the tensile strength is 850 MPa or more Hot-dip galvanized high-strength steel sheet with excellent ductility.
さらに、質量%で、V、Zr、Hf、Taの1種または2種以上を、Nb、Tiを含めた合計で0.001〜0.50%含有することを特徴とする請求項1に記載の穴拡げ性に優れた高強度高延性溶融亜鉛めっき鋼板。   Furthermore, 0.001 to 0.50% of the total containing 1 type, or 2 or more types of V, Zr, Hf, Ta including Nb and Ti is contained by the mass%. High strength and high ductility hot dip galvanized steel sheet with excellent hole expandability. さらに質量%で、Ni、Cu、Co、Wの1種または2種以上を、Crを含めた合計で0.001〜5%含有することを特徴とする請求項1または2に記載の穴拡げ性に優れた高強度高延性溶融亜鉛めっき鋼板。   Furthermore, 0.001-5% of the total containing 1 type (s) or 2 types or more of Ni, Cu, Co, and W including Cr is contained by mass%, The hole expansion of Claim 1 or 2 characterized by the above-mentioned. High strength and high ductility hot dip galvanized steel sheet with excellent properties. さらに、質量%で、Y、Rem、Ca、Mgの1種又は2種以上を0.0001〜0.5%含有することを特徴とする請求項1〜3のいずれか1項に記載の穴拡げ性に優れた高強度高延性溶融亜鉛めっき鋼板。   Furthermore, 0.0001-0.5% of 1 type (s) or 2 or more types of Y, Rem, Ca, Mg is contained by the mass%, The hole of any one of Claims 1-3 characterized by the above-mentioned. High strength and high ductility hot dip galvanized steel sheet with excellent spreadability. 鋼板表面のめっき相中に、質量%でFe:5〜20%を含有することを特徴とする請求項1〜4のいずれか1項に記載の穴拡げ性に優れた高強度高延性溶融亜鉛めっき鋼板。   The high strength and high ductility molten zinc excellent in hole expansibility according to any one of claims 1 to 4, wherein the plating phase on the surface of the steel sheet contains Fe: 5 to 20% by mass. Plated steel sheet. 鋼板表面のめっき相中に、質量%でFe:5%未満を含有することを特徴とする請求項1〜5のいずれか1項に記載の穴拡げ性に優れた高強度高延性溶融亜鉛めっき鋼板。   The high strength and high ductility hot dip galvanizing excellent in hole expansibility according to any one of claims 1 to 5, wherein the plating phase on the surface of the steel sheet contains Fe: less than 5% by mass. steel sheet. 請求項1〜6のいずれか1項に記載の高強度高延性溶融亜鉛めっき鋼板を製造する方法であって、請求項1〜4の何れか1項に記載の成分からなる鋳造スラブを鋳造まままたは一旦冷却した後に再度加熱し、熱延を仕上げ温度で850℃〜970℃にて終了し、その後550℃以下の温度域まで平均で10〜100℃/sで冷却した後550℃以下で巻取った熱延鋼板を酸洗後冷延し、その焼鈍時の最高温度が0.1×(Ac3 −Ac1 )+Ac1 (℃)以上0.8×(Ac3 −Ac1 )+Ac1 (℃)以下で焼鈍した後に、平均で0.1〜100℃/秒の冷却速度で亜鉛めっき浴温度−20℃〜亜鉛めっき浴温度+50℃の温度域に冷却し、引き続いて同温度域でめっき浸漬を含めて1秒〜1000秒保持を行うことを特徴とする穴拡げ性および延性に優れた溶融亜鉛めっき高強度鋼板の製造方法。   A method for producing the high-strength and high-ductility hot-dip galvanized steel sheet according to any one of claims 1 to 6, wherein a cast slab comprising the component according to any one of claims 1 to 4 is cast as it is. Or after cooling once, it heats again, finishes hot rolling at a finishing temperature at 850 ° C. to 970 ° C., and then cools to a temperature range of 550 ° C. or lower at an average of 10 to 100 ° C./s, and then winds at 550 ° C. or lower. The picked hot-rolled steel sheet is pickled and cold-rolled and annealed at a maximum annealing temperature of 0.1 × (Ac3−Ac1) + Ac1 (° C.) to 0.8 × (Ac3−Ac1) + Ac1 (° C.). After cooling to a temperature range of galvanizing bath temperature −20 ° C. to galvanizing bath temperature + 50 ° C. at an average cooling rate of 0.1 to 100 ° C./second, and subsequently including plating immersion in the same temperature range 1 Hole expansibility characterized by holding for 2 seconds to 1000 seconds and A method for producing hot-dip galvanized high-strength steel sheets with excellent ductility. 請求項7に記載の高強度高延性溶融亜鉛めっき鋼板を製造する方法であって、めっき浴浸漬および保持処理後に、合金化処理を400〜550℃の温度域で行い、室温まで冷却することを特徴とする加工性に優れた高強度高延性溶融亜鉛めっき鋼板の製造方法。   A method for producing the high-strength, high-ductility hot-dip galvanized steel sheet according to claim 7, wherein after the plating bath immersion and holding treatment, the alloying treatment is performed in a temperature range of 400 to 550 ° C and cooled to room temperature. A method for producing a high-strength, high-ductility hot-dip galvanized steel sheet with excellent processability.
JP2009251223A 2004-03-01 2009-10-30 High-strength and high-ductility hot-dip galvanized steel sheet superior in hole expandability, and manufacturing method therefor Pending JP2010043360A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009251223A JP2010043360A (en) 2004-03-01 2009-10-30 High-strength and high-ductility hot-dip galvanized steel sheet superior in hole expandability, and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004056332 2004-03-01
JP2009251223A JP2010043360A (en) 2004-03-01 2009-10-30 High-strength and high-ductility hot-dip galvanized steel sheet superior in hole expandability, and manufacturing method therefor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005002481A Division JP4528135B2 (en) 2004-03-01 2005-01-07 High strength and high ductility hot dip galvanized steel sheet excellent in hole expansibility and method for producing the same

Publications (1)

Publication Number Publication Date
JP2010043360A true JP2010043360A (en) 2010-02-25

Family

ID=42014946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009251223A Pending JP2010043360A (en) 2004-03-01 2009-10-30 High-strength and high-ductility hot-dip galvanized steel sheet superior in hole expandability, and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2010043360A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101412311B1 (en) 2012-06-28 2014-06-25 현대제철 주식회사 Method for manufacturing high strength cold rolled steel sheet
WO2014156141A1 (en) 2013-03-28 2014-10-02 Jfeスチール株式会社 High-strength alloyed molten-zinc-plated steel sheet and method for manufacturing same
WO2014156140A1 (en) 2013-03-28 2014-10-02 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet and method for manufacturing same
WO2018138898A1 (en) * 2017-01-30 2018-08-02 新日鐵住金株式会社 Steel sheet
JP2019502822A (en) * 2015-12-15 2019-01-31 タタ、スティール、アイモイデン、ベスローテン、フェンノートシャップTata Steel Ijmuiden Bv High-strength hot-dip galvanized steel strip
TWI662138B (en) * 2018-03-31 2019-06-11 日商新日鐵住金股份有限公司 High-strength steel sheet with excellent ductility and hole expansion
CN114672717A (en) * 2022-02-28 2022-06-28 日照钢铁控股集团有限公司 Production method of high-hole-expansion hot-galvanized plate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001234281A (en) * 2000-02-21 2001-08-28 Nippon Steel Corp High strength thin steel sheet excellent in adhesion for galvanizing and formability and producing method therefor
JP2004018971A (en) * 2002-06-18 2004-01-22 Nippon Steel Corp High-strength, high-ductility hot dip galvanized steel sheet of excellent burring machinability, and method for manufacturing the same
JP2004018970A (en) * 2002-06-18 2004-01-22 Nippon Steel Corp High-strength high-ductility hot dip galvanized steel plate having excellent burring machinability, and method for manufacturing the same
JP2004269947A (en) * 2003-03-07 2004-09-30 Nippon Steel Corp High strength and high ductility galvanized sheet plate excellent in workability, and method for manufacturing the same
JP2005220430A (en) * 2004-02-09 2005-08-18 Jfe Steel Kk High strength hot dip galvanized steel sheet having excellent surface quality

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001234281A (en) * 2000-02-21 2001-08-28 Nippon Steel Corp High strength thin steel sheet excellent in adhesion for galvanizing and formability and producing method therefor
JP2004018971A (en) * 2002-06-18 2004-01-22 Nippon Steel Corp High-strength, high-ductility hot dip galvanized steel sheet of excellent burring machinability, and method for manufacturing the same
JP2004018970A (en) * 2002-06-18 2004-01-22 Nippon Steel Corp High-strength high-ductility hot dip galvanized steel plate having excellent burring machinability, and method for manufacturing the same
JP2004269947A (en) * 2003-03-07 2004-09-30 Nippon Steel Corp High strength and high ductility galvanized sheet plate excellent in workability, and method for manufacturing the same
JP2005220430A (en) * 2004-02-09 2005-08-18 Jfe Steel Kk High strength hot dip galvanized steel sheet having excellent surface quality

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101412311B1 (en) 2012-06-28 2014-06-25 현대제철 주식회사 Method for manufacturing high strength cold rolled steel sheet
WO2014156141A1 (en) 2013-03-28 2014-10-02 Jfeスチール株式会社 High-strength alloyed molten-zinc-plated steel sheet and method for manufacturing same
WO2014156140A1 (en) 2013-03-28 2014-10-02 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet and method for manufacturing same
US10100394B2 (en) 2013-03-28 2018-10-16 Jfe Steel Corporation High-strength galvannealed steel sheet and method for manufacturing the same
US10266906B2 (en) 2013-03-28 2019-04-23 Jfe Steel Corporation High-strength galvanized steel sheet and method for manufacturing the same
US10927429B2 (en) 2015-12-15 2021-02-23 Tata Steel Ijmuiden B.V. High strength hot dip galvanised steel strip
JP2019502822A (en) * 2015-12-15 2019-01-31 タタ、スティール、アイモイデン、ベスローテン、フェンノートシャップTata Steel Ijmuiden Bv High-strength hot-dip galvanized steel strip
JP7019574B2 (en) 2015-12-15 2022-02-15 タタ、スティール、アイモイデン、ベスローテン、フェンノートシャップ High-strength hot-dip galvanized steel strip
WO2018138898A1 (en) * 2017-01-30 2018-08-02 新日鐵住金株式会社 Steel sheet
US10895002B2 (en) 2017-01-30 2021-01-19 Nippon Steel Corporation Steel sheet
JPWO2018138898A1 (en) * 2017-01-30 2019-07-18 日本製鉄株式会社 steel sheet
TWI662138B (en) * 2018-03-31 2019-06-11 日商新日鐵住金股份有限公司 High-strength steel sheet with excellent ductility and hole expansion
CN114672717A (en) * 2022-02-28 2022-06-28 日照钢铁控股集团有限公司 Production method of high-hole-expansion hot-galvanized plate

Similar Documents

Publication Publication Date Title
JP4072090B2 (en) High-strength steel sheet with excellent stretch flangeability and manufacturing method thereof
JP4659134B2 (en) High-strength steel sheet and galvanized steel sheet with excellent balance between hole expansibility and ductility and excellent fatigue durability, and methods for producing these steel sheets
JP4737319B2 (en) High-strength galvannealed steel sheet with excellent workability and fatigue resistance and method for producing the same
KR101218448B1 (en) High-strength hot-dip galvanized steel sheet with excellent processability and process for producing the same
KR101615463B1 (en) Hot-dip galvanized steel sheet and method for producing same
JP5709151B2 (en) High-strength hot-dip galvanized steel sheet with excellent formability and method for producing the same
JP4901617B2 (en) Alloyed hot-dip galvanized high-strength steel sheet having a tensile strength of 700 MPa or more and excellent in corrosion resistance, hole expansibility and ductility, and method for producing the same
JP5114747B2 (en) Manufacturing method of high-strength steel sheet with extremely good balance between hole expansibility and ductility and manufacturing method of galvanized steel sheet
JP4528137B2 (en) Manufacturing method of high strength and high ductility steel sheet with excellent hole expandability
JP3887308B2 (en) High strength and high ductility hot dip galvanized steel sheet and its manufacturing method
JP2007231373A (en) High-strength steel sheet having excellent hydrogen brittleness resistance in weld zone and its production method
JP2007211279A (en) Ultrahigh strength steel sheet having excellent hydrogen brittleness resistance, method for producing the same, method for producing ultrahigh strength hot dip galvanized steel sheet and method for producing ultrahigh strength hot dip alloyed galvanized steel sheet
JP2011168816A (en) Galvannealed steel sheet excellent in ductility and corrosion resistance and method for producing the same
JP4501699B2 (en) High-strength steel sheet excellent in deep drawability and stretch flangeability and method for producing the same
JP6237960B1 (en) Thin steel plate and plated steel plate, method for producing hot rolled steel plate, method for producing cold rolled full hard steel plate, method for producing thin steel plate, and method for producing plated steel plate
JP4528135B2 (en) High strength and high ductility hot dip galvanized steel sheet excellent in hole expansibility and method for producing the same
JP4050991B2 (en) High-strength steel sheet with excellent stretch flangeability and manufacturing method thereof
JP2010043360A (en) High-strength and high-ductility hot-dip galvanized steel sheet superior in hole expandability, and manufacturing method therefor
KR20180119617A (en) Thin steel plate, coated steel sheet and manufacturing method of hot-rolled steel sheet, manufacturing method of cold-rolled full-hard steel sheet, manufacturing method of thin steel sheet, and manufacturing method of coated steel sheet
JP4227431B2 (en) High strength and high ductility steel sheet and method for producing the same
JP5853884B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JP2012031466A (en) High strength steel sheet, and method of manufacturing the same
JP4351465B2 (en) Hot-dip galvanized high-strength steel sheet excellent in hole expansibility and method for producing the same
JP4288085B2 (en) Hot-dip galvanized high-strength steel sheet excellent in hole expansibility and method for producing the same
JP7063414B2 (en) Steel plate

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130305