JP4528137B2 - Manufacturing method of high strength and high ductility steel sheet with excellent hole expandability - Google Patents

Manufacturing method of high strength and high ductility steel sheet with excellent hole expandability Download PDF

Info

Publication number
JP4528137B2
JP4528137B2 JP2005006422A JP2005006422A JP4528137B2 JP 4528137 B2 JP4528137 B2 JP 4528137B2 JP 2005006422 A JP2005006422 A JP 2005006422A JP 2005006422 A JP2005006422 A JP 2005006422A JP 4528137 B2 JP4528137 B2 JP 4528137B2
Authority
JP
Japan
Prior art keywords
ductility
strength
steel
mass
addition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005006422A
Other languages
Japanese (ja)
Other versions
JP2005298964A (en
Inventor
展弘 藤田
学 高橋
邦夫 林
武秀 瀬沼
裕一 谷口
俊樹 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005006422A priority Critical patent/JP4528137B2/en
Publication of JP2005298964A publication Critical patent/JP2005298964A/en
Application granted granted Critical
Publication of JP4528137B2 publication Critical patent/JP4528137B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、建材、家電製品、自動車などに適する穴拡げ性および延性に優れ、引張強度が850MPa以上の高強度薄鋼板の製造方法に関する。 The present invention, building materials, household appliances, excellent hole expandability and ductility suitable for automotive, tensile strength method of manufacturing a more high-strength thin steel plate 850 MPa.

近年、特に自動車車体において燃費向上や耐久性向上の観点を目的とした加工性の良い高強度鋼板の需要が高まっている。加えて、衝突安全性やキャビンスペースの拡大のニーズからこれら部材用鋼板の高強度化が望まれている。実際、自動車の衝突安全に関しては規制がN−CAPに代表される如く年々厳しくなっている。この様な背景から、これまで780MPa級の高強度鋼板を使用する動きが活発であった。   In recent years, there has been an increasing demand for high-strength steel sheets with good workability for the purpose of improving fuel efficiency and durability particularly in automobile bodies. In addition, it is desired to increase the strength of the steel sheets for the members because of the need for collision safety and expansion of cabin space. In fact, regulations regarding automobile collision safety are becoming stricter year by year, as represented by N-CAP. Against this background, there has been an active movement to use high strength steel sheets of 780 MPa class.

しかし、更なる規制の厳化に耐え得るには高強度引張り強度にして980MPa級クラスの鋼板が、特に側面衝突対応としてシート部材や一部レインフォースなどの部材には必要と考えられる。このような高強度材を用いて部材を組みあげる時には延性、曲げ性、穴拡げ性および衝突時のエネルギー吸収性などが、大きな問題となるため、これらに対する対策が必要となる。   However, in order to withstand further stringent regulations, a steel plate of 980 MPa class with a high tensile strength is considered necessary particularly for members such as a sheet member and a part of reinforcement for side collision. When a member is assembled using such a high-strength material, ductility, bendability, hole expansibility, energy absorption at the time of collision, and the like become serious problems, and measures for these are required.

穴拡げ性と延性とは相反する特性であるものの個々の特性向上については、以下のような対策が各々講じられている。たとえば、穴拡げ性については、CAMP−ISIJ vol.13(2000)p.391(非特許文献1)にあるように、主相をマルテンサイトとしてその体積率を増加させる事で980MPa以上の引張り強度での穴拡げ性向上が可能である事が開示されている。   Although hole expansibility and ductility are contradictory characteristics, the following measures have been taken to improve individual characteristics. For example, regarding hole expansibility, CAMP-ISIJ vol. 13 (2000) p. As disclosed in 391 (Non-Patent Document 1), it is disclosed that the hole expandability can be improved with a tensile strength of 980 MPa or more by increasing the volume ratio of martensite as the main phase.

しかし、マルテンサイトが主相である事から延性が低く、穴拡げと延性を両立させるために、Si添加としている。ここでSi添加量も1%を超えることから、冷延鋼板では使用時に必要な化成・電着塗装性は明かに劣化する。さらには、熱処理として水焼入れが必要なことから、水焼き入れしない熱処理パターンに比べて板形状が悪くなる事は避けられない。   However, since martensite is the main phase, the ductility is low, and Si is added in order to achieve both hole expansion and ductility. Here, since the addition amount of Si exceeds 1%, the chemical conversion and electrodeposition coating properties necessary for use in cold-rolled steel sheets are clearly deteriorated. Furthermore, since water quenching is required as the heat treatment, it is inevitable that the plate shape becomes worse than a heat treatment pattern without water quenching.

また、CAMP−ISIJ vol.13(2000)p.395(非特許文献2)にあるように、主相をベイナイトとして穴拡げ性を向上させ、さらには張り出し性形成性についても、第2相に残留オーステナイトを生成させることで現行の残留オーステナイト鋼並の張り出し性を示すことが開示されている。さらには、Ms温度以下でオーステンパ処理をすることで面積率2〜3%の残留オーステナイトを生成させると、引張り強度×穴拡率が最大となることも示されている。しかし、鋼板としての延性についての言及は無く、さらには、これらについても1%を超えるSi添加であることから化成・電着塗装性劣化の問題が残る。   In addition, CAMP-ISIJ vol. 13 (2000) p. As shown in 395 (Non-patent Document 2), the main phase is bainite and the hole expandability is improved. Furthermore, with regard to the formability, the austenite is formed in the second phase to form the retained austenite steel. It is disclosed to exhibit the overhanging property. Furthermore, it is also shown that when retained austenite having an area ratio of 2 to 3% is generated by austempering at a temperature equal to or lower than the Ms temperature, the tensile strength × the hole expansion ratio is maximized. However, there is no mention of ductility as a steel sheet, and furthermore, since these are additions of Si exceeding 1%, the problem of chemical conversion and electrodeposition coating property deterioration remains.

CAMP−ISIJ vol.13(2000)p.391CAMP-ISIJ vol. 13 (2000) p. 391 CAMP−ISIJ vol.13(2000)p.395CAMP-ISIJ vol. 13 (2000) p. 395

本発明は、上記課題を解決し、引張り強度が850MPa以上で主には980MPa級の高強度鋼板の穴拡げ性および延性を同時に改善した高強度薄鋼板の製造方法を提供することを目的とする。 The present invention, above problems to resolve, primarily in tensile strength than 850MPa is the object to provide a method for producing a high strength thin steel plate having improved simultaneously hole expandability and ductility of high-strength steel sheet 980MPa grade To do.

本発明者らは、種々検討を行った結果、引張り強度を850MPa以上で主には980MPa級以上の領域で穴拡げ性および延性を同時に改善する手法として、鋼板成分およびミクロ組織構成を規定することで、850MPa以上の高強度を保ちつつ穴拡げ性および延性を確保できることを見出した。
本発明は、上記知見に基づいて完成されたもので、その要旨とするところは以下の通りである。
As a result of various studies, the present inventors have specified the steel plate components and the microstructure structure as a method for simultaneously improving the hole expansibility and ductility in a region where the tensile strength is 850 MPa or higher and mainly 980 MPa or higher. Thus, it was found that hole expandability and ductility can be secured while maintaining a high strength of 850 MPa or more.
The present invention has been completed based on the above findings, and the gist thereof is as follows.

(1)質量%で、C:0.001〜0.3%、Si:0.001〜0.60%、Mn:0.01〜3%、Al:0.001〜4.0%、Mo:0.001〜0.30%、P:0.0001〜0.3%、S:0.0001〜0.1%、B:0.0001〜0.0050%、N:0.0001〜0.0070%、O:0.0021〜0.0037%を含有し、かつ、B/11+(Al/27−O/16)−N/14>0を満たし、残部Feおよび不可避的不純物からなる鋼の鋳造スラブを鋳造ままもしくは一旦冷却した後に1150〜1250℃に再度加熱し、800〜950℃で熱延を終了させた後平均冷速で5〜200℃/sにて550℃以下に冷却して、550℃以下で巻取った熱延鋼板を酸洗後冷延し、その後、Ac 1 (℃)以上Ac 3 +50(℃)以下の温度域で10秒〜30分焼鈍した後に、0.1〜20℃/秒の平均冷却速度で750〜600℃の温度域まで冷却し、引き続き20〜200℃/秒の平均冷却速度で450〜250℃の温度まで冷却したのちその温度域で100秒超3000秒未満保持した後、室温まで冷却することを特徴とする穴拡げ性に優れた高強度高延性薄鋼板の製造方法。 (1) By mass%, C: 0.001 to 0.3%, Si: 0.001 to 0.60%, Mn: 0.01 to 3%, Al: 0.001 to 4.0%, Mo : 0.001 to 0.30%, P: 0.0001 to 0.3%, S: 0.0001 to 0.1%, B: 0.0001 to 0.0050%, N: 0.0001 to 0 .0070%, O: 0.0021% to 0.0037%, satisfying B / 11 + (Al / 27−O / 16) −N / 14> 0, and the balance being Fe and inevitable impurities The cast slab is cast as it is or once cooled and then heated again to 1150 to 1250 ° C., and after hot rolling is finished at 800 to 950 ° C., it is cooled to 550 ° C. or lower at an average cooling rate of 5 to 200 ° C./s. Te, the hot-rolled steel sheet was wound at 550 ° C. or less rolled pickling after cold, then, Ac 1 (° C.) or higher Ac 3 After annealing at a temperature range of 50 (° C) or lower for 10 seconds to 30 minutes, it is cooled to a temperature range of 750 to 600 ° C at an average cooling rate of 0.1 to 20 ° C / second, and subsequently 20 to 200 ° C / second. A high-strength, high-ductility sheet steel excellent in hole expansibility, characterized by cooling to a temperature of 450 to 250 ° C. at an average cooling rate and holding in that temperature range for more than 100 seconds and less than 3000 seconds, and then cooling to room temperature . Production method.

)鋼が、さらに質量%で、Nb、Ti、V、Zr、Hf、Taの1種または2種以上を合計で0.001〜0.50%含有することを特徴とする前記(1)に記載の穴拡げ性に優れた高強度高延性薄鋼板の製造方法( 2 ) The steel further contains 0.001 to 0.50% of one or more of Nb, Ti, V, Zr, Hf, and Ta in a total mass of 0.001 to 0.50%. The manufacturing method of the high intensity | strength high ductility thin steel plate excellent in the hole expansibility described in ) .

)鋼が、さらに質量%で、Cr、Ni、Cu、Co、Wの1種または2種以上を合計で0.001〜5%含有することを特徴とする前記(1)または(2)項に記載の穴拡げ性に優れた高強度高延性薄鋼板の製造方法
)鋼が、さらに質量%で、Y、Rem、Ca、Mgの1種または2種以上を合計で0.0001〜0.5%含有することを特徴とする前記(1)〜()のいずれか1項に記載の穴拡げ性に優れた高強度高延性薄鋼板の製造方法にある。
( 3 ) The steel according to (1) or (2 ), wherein the steel further contains 0.001 to 5% in total of one or more of Cr, Ni, Cu, Co, and W in mass%. The method for producing a high-strength and high-ductility thin steel sheet excellent in hole expansibility described in the item ) .
( 4 ) The above-mentioned (1) to ( 3 ), wherein the steel further contains 0.0001 to 0.5% in total of one or more of Y, Rem, Ca and Mg in mass%. The method for producing a high-strength, high-ductility thin steel sheet excellent in hole expansibility described in any one of items 1) .

本発明の高強度薄鋼板は穴拡げおよび延性が共に良好であり、自動車骨格やその補強部材を初めとして建材、家電製品等の用途に極めて有効である。   The high-strength thin steel sheet of the present invention has both excellent hole expansion and ductility, and is extremely effective for applications such as automobile frames and its reinforcing members, as well as building materials and home appliances.

以下、本発明を詳細に説明する。
発明者らは、各合金元素を添加した鋼塊を溶製し、鋳造まま又は一旦冷却した後に再度加熱し、熱延後巻取った熱延鋼板を酸洗後冷延し、その後焼鈍し、冷延焼鈍板を作成した。その鋼板について、ミクロ組織観察、鉄鋼連盟規定の穴拡げ試験、JISに準拠した引張り試験を行い、各特性を比較評価した。その結果、最終的に得られるミクロ組織制御により850MPa以上の引張り強度を得、穴拡げ性および延性に優れた高強度鋼板が製造可能なことを見出した。
Hereinafter, the present invention will be described in detail.
The inventors have melted the steel ingot added with each alloy element, heated again as cast or once cooled, hot-rolled hot-rolled steel sheet after hot rolling, cold-rolled after pickling, and then annealed, A cold-rolled annealed plate was created. The steel sheet was subjected to microstructural observation, hole enlargement test specified by the Federation of Iron and Steel, and tensile test based on JIS, and each characteristic was compared and evaluated. As a result, it was found that a tensile strength of 850 MPa or more was obtained by the microstructure control finally obtained, and a high-strength steel sheet excellent in hole expansibility and ductility could be produced.

鋼板の好ましいミクロ組織について述べる。
穴拡げ性を十分に確保するためには一般的には主組織をベイナイト相(ベイナイトともいう)またはベイニティックフェライトまたはマルテンサイト単相とするのが有効である。しかし、この様な硬質相を増やすと延性が劣化してしまう。一方、比較的軟質のフェライト相(フェライトともいう)を増やすと延性は向上する傾向にあるものの強度確保や穴拡げ性確保には適さない。したがって、これらの各ミクロ組織を化成・電着性を劣化させず、加えて連続焼鈍工程で水焼入れなどの板形状悪化が懸念されるような処理無しに上手くバランスさせる事が強度−穴拡げ性−延性を十分なレベルに確保するには重要である。
A preferable microstructure of the steel sheet will be described.
In general, it is effective to make the main structure a bainite phase (also referred to as bainite), bainitic ferrite, or a martensite single phase in order to ensure sufficient hole expandability. However, when such a hard phase is increased, the ductility deteriorates. On the other hand, when the number of relatively soft ferrite phases (also called ferrite) is increased, the ductility tends to be improved, but it is not suitable for securing the strength and hole expandability. Therefore, strength-hole expansibility can be achieved by balancing each of these microstructures without degrading chemical formation and electrodeposition, and in addition, without any treatment that may cause plate shape deterioration such as water quenching in the continuous annealing process. -It is important to ensure a sufficient level of ductility.

すなわち、各ミクロ組織の占積率を、体積分率で軟質のフェライト相を20%以上、ベイナイト相を10%以上、マルテンサイト相(マルテンサイトともいう)を5%以上、残留オーステナイト相(残留オーステナイトともいう)を5%以下とする事で、良好な材質が得られる。フェライトとマルテンサイトのバランスで強度−延性を、ベイナイトとマルテンサイトのバランスで強度−穴拡げ性を確保するものである。ここで、残留オーステナイトは延性確保には効力があるが、穴拡げ向上には効果が小さく、むしろ劣化させる傾向にある事から、3%未満である事が望ましい。0%であることが最も好ましい。   That is, the space factor of each microstructure is 20% or more of the soft ferrite phase, 10% or more of the bainite phase, 5% or more of the martensite phase (also called martensite), and the residual austenite phase (residual). By setting the austenite) to 5% or less, a good material can be obtained. Strength-ductility is ensured by the balance between ferrite and martensite, and strength-hole expansibility is ensured by the balance between bainite and martensite. Here, retained austenite is effective in securing ductility, but is less effective in improving hole expansion, and rather tends to deteriorate, so it is desirable that it be less than 3%. Most preferably, it is 0%.

例えば、引張強度で980〜1180MPa級の強度を確保しつつ、良好な穴拡げ−延性バランスを得るためには、フェライトを20〜70%、ベイナイトを20〜60%、マルテンサイトを5〜20%、残留オーステナイトを3%未満とすることが望ましい。
さらに、主相である軟質のフェライトの体積分率が比較的高いことは延性向上に、細粒である事は強度−穴拡げ性バランス向上に有効である。このため、フェライトの平均粒径の上限を3μmとした。また、上記の他にミクロ組織の残部組織として、炭化物、窒化物、硫化物、酸化物などの1又は2種以上を体積分率で1%以下含有する場合も本発明に含まれる。
For example, in order to obtain a good hole expansion-ductility balance while ensuring a tensile strength of 980 to 1180 MPa, ferrite is 20 to 70%, bainite is 20 to 60%, and martensite is 5 to 20%. The retained austenite is preferably less than 3%.
Furthermore, the relatively high volume fraction of the soft ferrite, which is the main phase, is effective for improving ductility, and the fact that it is fine is effective for improving the balance between strength and hole expansibility. For this reason, the upper limit of the average particle diameter of the ferrite was set to 3 μm. In addition to the above, the present invention includes a case in which one or two or more of carbides, nitrides, sulfides, oxides, and the like are contained as a remaining structure of the microstructure in a volume fraction of 1% or less.

なお、上記ミクロ組織の各相、フェライト、ベイナイト、オーステナイト、マルテンサイト、界面酸化相および残部組織の同定、存在位置の観察および占積率の測定は、ナイタール試薬および特開昭59−219473号公報に開示された試薬により鋼板圧延方向断面または圧延直角方向断面を腐食して500倍〜1000倍の光学顕微鏡観察および1000〜100000倍の電子顕微鏡(走査型および透過型)により定量化が可能である。各20視野以上の観察を行い、ポイントカウント法や画像解析により各組織の占積率および主相の平均粒径を求めることができる。また、フォーマスタなどによる膨張・収縮曲線から各相変態挙動調査から各ミクロ組織の占積率を求める事も出来る。なお、ミクロ組織の各相の合計は100%となるが、炭化物、酸化物、硫化物等の光学顕微鏡や膨張曲線では観察・同定ができない相については主相の面積率に含めている。   In addition, identification of each phase of the above microstructure, ferrite, bainite, austenite, martensite, interfacial oxidation phase and remaining structure, observation of the existing position, and measurement of the space factor are performed using the Nital reagent and Japanese Patent Application Laid-Open No. 59-219473. Can be quantified by observing the steel sheet in the rolling direction or in the direction perpendicular to the rolling direction with an optical microscope of 500 to 1000 times and an electron microscope (scanning type and transmission type) of 1000 to 100,000 times. . Observation of 20 or more fields of view can be performed, and the space factor of each tissue and the average particle size of the main phase can be obtained by a point counting method or image analysis. Moreover, the space factor of each microstructure can be obtained from the investigation of each phase transformation behavior from the expansion / contraction curve by Formaster. The total of each phase of the microstructure is 100%, but phases that cannot be observed or identified by an optical microscope or an expansion curve such as carbides, oxides, and sulfides are included in the area ratio of the main phase.

次に、本発明における鋼板成分の好適な範囲の限定理由について述べる。
Cは、良好な材質バランスを確保するために重要な添加元素である。フェライト、ベイナイトおよびマルテンサイトの分率制御に最も重要な添加元素である。強度確保のために0.001%以上の添加とし、980MPa以上を狙う場合には0.1%以上の添加が望ましい。一方、添加量が増加すると穴拡げ性の劣化を招くため0.3%以下とした。980〜1180MPa級の強度レベルでの穴拡げ性および延性の良好なバランスを得ることや溶接性劣化を極力避けるためには0.15%以下が望ましい。好ましくは、C:0.05〜0.15%とすることにより良好な延性−穴拡げ性バランスが得られる。
Next, the reason for limiting the preferable range of the steel plate component in the present invention will be described.
C is an important additive element in order to ensure a good material balance. It is the most important additive element for controlling the fraction of ferrite, bainite and martensite. Addition of 0.001% or more to ensure strength, and when aiming for 980 MPa or more, addition of 0.1% or more is desirable. On the other hand, if the amount added is increased, the hole expandability is deteriorated, so the content was made 0.3% or less. In order to obtain a good balance between hole expandability and ductility at a strength level of 980 to 1180 MPa class and to avoid deterioration of weldability as much as possible, 0.15% or less is desirable. Preferably, C: 0.05 to 0.15% can provide a good balance between ductility and hole expansibility.

Siは、化成・電着性を劣化させるため低い事が望ましい。一方、強化因子であることから0.01〜0.6%とした。しかしながら、精錬能力や原料組成などを考慮すると、0.03%未満にすることは大幅なコストアップにつながる懸念がある。また、化成・電着性と特に考慮する場合には0.1%以下である事が望ましい。また、特に比較的多量のAlとの複合添加では、溶接品質確保点から、0.001〜0.1%とすることが望ましい。   Si is desirable to be low because it deteriorates chemical conversion and electrodeposition properties. On the other hand, since it is a strengthening factor, it was set to 0.01 to 0.6%. However, considering the refining ability and the raw material composition, there is a concern that making it less than 0.03% leads to a significant cost increase. Moreover, when considering especially with chemical conversion and electrodeposition property, it is desirable that it is 0.1% or less. In addition, in the case of complex addition with a relatively large amount of Al, it is desirable that the content be 0.001 to 0.1% from the viewpoint of securing the welding quality.

Mnは、高強度化の目的で添加する。また、強度低下と材質劣化の1つの原因である炭化物析出やパーライト生成を抑制する目的で添加する。これらのことから、0.01質量%以上とした。一方では、穴拡げ性向上に寄与するベイナイト変態を遅滞させることから3質量%を上限とした。好ましくは、Mn:1.5〜3.0%とすることにより良好な強度−穴拡げ性バランスが得られる。   Mn is added for the purpose of increasing the strength. Further, it is added for the purpose of suppressing carbide precipitation and pearlite formation, which are one cause of strength reduction and material deterioration. From these things, it was set as 0.01 mass% or more. On the other hand, 3 mass% was made the upper limit because it delayed the bainite transformation that contributes to improving hole expansibility. Preferably, a good balance between strength and hole expandability can be obtained by setting Mn to 1.5 to 3.0%.

Alは、脱酸元素に加えて、フェライトおよびベイナイトの制御の目的で添加する。フェライト促進による延性向上やベイナイト促進による穴拡げ性の向上に効果的である。このため、0.001質量%以上の添加とした。一方、過剰添加はフェライトの過剰促進に伴うベイナイト分率の低下やマルテンサイトの過剰化を招き、穴拡げ性劣化を伴うだけでなく溶接性も損なうため4%を上限とした。また、特に980〜1180MPa級の強度レベルにおいて延性・穴拡げ性の良好なバランスを得るためには、0.20%以上1.5%以下の添加が望ましい。また、特に高延性を得るためには0.75%以上の添加が望ましい。   In addition to the deoxidizing element, Al is added for the purpose of controlling ferrite and bainite. It is effective in improving ductility by promoting ferrite and improving hole expandability by promoting bainite. For this reason, it was set as 0.001 mass% or more addition. On the other hand, excessive addition causes a decrease in the bainite fraction and excessive martensite accompanying the excessive promotion of ferrite, which not only deteriorates hole expandability but also deteriorates weldability, so the upper limit was made 4%. In addition, in order to obtain a good balance between ductility and hole expansibility, particularly at a strength level of 980 to 1180 MPa, addition of 0.20% to 1.5% is desirable. Moreover, in order to obtain especially high ductility, addition of 0.75% or more is desirable.

Moは、強度延性バランスを劣化させる炭化物やパーライトの生成を抑制する目的で添加する元素で、0.001%以上とした。また、過剰添加は、フェライトやベイナイト生成を遅延させて延性劣化を招くことから、1.0%とした。特に、連続焼鈍工程でのパーライトや炭化物析出を極力抑制するためには0.05%以上の添加が望ましく、特に980〜1180MPa級の強度レベルにおいて延性・穴拡げ性の良好なバランスを得るためには0.30%以下の添加が望ましい。一方、700℃〜400℃までの冷却速度が50℃/s以上の場合には低めの添加(0.15%以下)でもかまわない。また、特に良好な穴拡げ−延性バランスを得るためには0.01%以上、好ましくは0.1%以上、0.3%以下の範囲が望ましい。 Mo is an element added for the purpose of suppressing the formation of carbide and pearlite which deteriorates the strength and ductility balance, and is made 0.001% or more. Furthermore, excessive addition, since it leads to ductility degradation by delaying the ferrite and bainite, 1. 0%. In particular, in order to suppress pearlite and carbide precipitation in the continuous annealing process as much as possible, addition of 0.05% or more is desirable, especially to obtain a good balance of ductility and hole expansibility at a strength level of 980 to 1180 MPa class. Is preferably added in an amount of 0.30% or less. On the other hand, when the cooling rate from 700 ° C. to 400 ° C. is 50 ° C./s or more, a lower addition (0.15% or less) may be used. Further, in order to obtain a particularly good hole expansion-ductility balance, a range of 0.01% or more, preferably 0.1% or more and 0.3% or less is desirable.

Pは、強化元素であり極低化は経済的にも不利であることから0.001質量%、好ましくは0.0001質量%を下限とした。また、多量添加では、溶接性や鋳造時や熱延時の製造性に悪影響を及ぼすため、0.3%、好ましくは0.1%を上限とした。更に好ましくは0.03%以下が望ましい。
Sは、極低化は経済的に不利であることから、0.001質量%、好ましくは0.0001質量%を下限とし、また、0.1質量%、好ましくは0.05%を上限としたのは、これを超える量の添加では、溶接性や鋳造時や熱延時の製造性に悪影響を及ぼすためである。
P is a strengthening element, and extremely low reduction is economically disadvantageous, so 0.001% by mass, preferably 0.0001% by mass was set as the lower limit. Moreover, since addition in a large amount adversely affects weldability, manufacturability at the time of casting or hot rolling, 0.3%, preferably 0.1% was made the upper limit. More preferably, it is 0.03% or less.
Since S is extremely disadvantageous because it is economically disadvantageous, 0.001% by mass, preferably 0.0001% by mass is set as the lower limit, and 0.1% by mass, preferably 0.05% is set as the upper limit. This is because addition of an amount exceeding this adversely affects weldability and manufacturability during casting and hot rolling.

Bもまた、穴拡げ性および延性のバランスを良好に保つ上で必要添加元素である。Bは、0.0001質量%以上の添加で粒界の強化や鋼材の高強度化、穴拡げ性および延性のバランスを良好に有効ではある。しかし、その添加量が0.0050質量%を超えるとその効果が飽和するばかりでなく、加工性が低下するため、これを上限とした。
Nは、Bの添加効果を発揮させる上で好ましい元素ではない。したがって、0.0070%以下の添加とし、極低化は経済的に不利であることから、0.0001質量%を下限とした。
B is also an additional element necessary for maintaining a good balance between hole expansibility and ductility. When B is added in an amount of 0.0001% by mass or more, the grain boundary is strengthened, the strength of the steel material is increased, and the balance between hole expansibility and ductility is effectively improved. However, when the addition amount exceeds 0.0050 mass%, not only the effect is saturated but also the workability is lowered, so this was made the upper limit.
N is not a preferable element for exhibiting the effect of addition of B. Therefore, 0.0070% or less is added, and extremely low is economically disadvantageous, so 0.0001% by mass was made the lower limit.

Tiは、微細な炭化物、窒化物または炭窒化物を形成して、鋼板の強化に有効である。また、Bとの複合添加により硬質フェライトを形成させるために特に有効であることから、0.001質量%以上の添加とした。また、Bとの複合添加の場合には、0.01%以上の添加が硬質フェライト形成には望ましい。一方で、過剰添加は、延性や熱間加工性を劣化させることから、上限として0.5質量%とした。また、特に良好な穴広げ−延性バランスを得るためには0.005%以上0.020%以下の範囲が望ましい。   Ti forms fine carbides, nitrides or carbonitrides and is effective for strengthening the steel sheet. Further, since it is particularly effective for forming hard ferrite by composite addition with B, the addition was made 0.001% by mass or more. Further, in the case of composite addition with B, addition of 0.01% or more is desirable for forming hard ferrite. On the other hand, excessive addition deteriorates ductility and hot workability, so the upper limit was made 0.5 mass%. In order to obtain a particularly good hole expansion-ductility balance, a range of 0.005% to 0.020% is desirable.

Nbは、微細な炭化物、窒化物または炭窒化物を形成または固溶状にて、鋼板の強化に有効である。また、硬質フェライトを形成させるためには重要な添加元素であり、0.001質量%以上の添加とし、0.01%以上の添加が硬質フェライト形成には望ましい。 一方で、過剰添加は、延性や熱間加工性を劣化させることから、上限として0.5質量%とした。また、特に良好な穴広げ−延性バランスを得るためには0.005%以上0.020%以下の範囲が望ましい。   Nb forms fine carbides, nitrides or carbonitrides or is in a solid solution state, and is effective for strengthening the steel sheet. Further, it is an important additive element for forming hard ferrite, and 0.001% by mass or more is added, and 0.01% or more is desirable for forming hard ferrite. On the other hand, excessive addition deteriorates ductility and hot workability, so the upper limit was made 0.5 mass%. In order to obtain a particularly good hole expansion-ductility balance, a range of 0.005% to 0.020% is desirable.

前述に加えて、Bは、熱延板組織の微細均一化を促し、結果として焼鈍後の穴広げの向上に有効な元素である。このため、0.0001%以上の添加とした。また、この効果は、Tiとの複合添加時に特に効果的である。一方、過剰添加は延性劣化を招くことから上限を0.0050%とした。また、特に良好な穴広げ−延性バランスを得るためには0.0003%以上0.0020%以下の範囲が望ましい。
Crは、硬質フェライトの形成および炭化物微細化を促すため、穴広げ性を向上させるのに有効な添加元素であるため、0.01%以上の添加とした。また、過剰添加は延性低下を招くため上限を5%とした。また、特に良好な穴広げ−延性バランスを得るためには0.1%以上0.8%以下の範囲が望ましい。
In addition to the above, B is an element that promotes the fine homogenization of the hot-rolled sheet structure and, as a result, is effective in improving the hole expansion after annealing. For this reason, it was made into 0.0001% or more of addition. This effect is particularly effective when combined with Ti. On the other hand, excessive addition causes ductility deterioration, so the upper limit was made 0.0050%. In order to obtain a particularly good hole expansion-ductility balance, a range of 0.0003% to 0.0020% is desirable.
Cr is an additive element effective for improving the hole expansion property in order to promote the formation of hard ferrite and the refinement of carbides, so it was added in an amount of 0.01% or more. Moreover, since excessive addition causes ductility fall, the upper limit was made 5%. In order to obtain a particularly good hole expansion-ductility balance, a range of 0.1% to 0.8% is desirable.

B、Al、OおよびNの関係:上述の様にB添加は本発明の重要な項目であり、この効果を十分発揮させるためには、BをNとなるべく結合させない事が効果的である。したがって、Bよりも強い窒化物生成元素としてOと結合していないAl量およびB添加量との和がN量よりも大きいことがBの効果を発揮させ材質バランス向上を図るためには重要であることからB/11+(Al/27−O/16)−N/14>0である事が望ましく、さらに、同式が0.02以上の値であるとより良好な穴拡げ−延性バランスが得られる。   Relationship between B, Al, O and N: As described above, addition of B is an important item of the present invention, and in order to sufficiently exhibit this effect, it is effective not to combine B with N as much as possible. Therefore, it is important for exhibiting the effect of B and improving the material balance that the sum of the amount of Al not bonded to O as a nitride-forming element stronger than B and the amount of B added is larger than the amount of N. Therefore, it is desirable that B / 11 + (Al / 27−O / 16) −N / 14> 0. Further, when the formula is a value of 0.02 or more, a better hole expansion-ductility balance is obtained. can get.

さらに、本発明が対象とする鋼は、強度のさらなる向上や組織の微細化を目的として強炭化物形成元素であるNb、Ti、V、Zr、Hf、Taの1種または2種を含有できる。これらの元素は、微細な炭化物、窒化物または炭窒化物を形成して、鋼板の強化にとって極めて有効であるため、必要に応じて1種または2種以上を合計で0.001質量%以上の添加とした。一方で、延性劣化や残留オーステナイト中へのCの濃化を阻害することから、1種または2種以上の合計添加量の上限として0.50質量%とした。また、この中でもBよりも強窒化物形成元素であるNb、Ti、Zr、Hf、TaはB添加効果の活用についても有効であり、経済性を考慮しつつ添加することは望ましい。   Furthermore, the steel targeted by the present invention can contain one or two of Nb, Ti, V, Zr, Hf, and Ta, which are strong carbide forming elements, for the purpose of further improving the strength and refining the structure. These elements form fine carbides, nitrides or carbonitrides and are extremely effective for strengthening the steel sheet. Therefore, if necessary, one or more of these elements may be added in a total amount of 0.001% by mass or more. It was set as addition. On the other hand, since it inhibits ductility deterioration and concentration of C in retained austenite, the upper limit of the total amount of one or more types is set to 0.50% by mass. Of these, Nb, Ti, Zr, Hf, and Ta, which are stronger nitride-forming elements than B, are also effective in utilizing the B addition effect, and it is desirable to add them in consideration of economy.

さらに、本発明が対象とする鋼は、強度のさらなる向上を目的としてCr、Ni、Cu、Co、Wの1種または2種以上を含有できる。
Crは、強化目的および炭化物生成の抑制とベイナイトおよびベイニティックフェライト生成の目的から添加する元素で、0.001%以上の添加で効果を発現し、Cr、Ni、Cu、Co、Wの1種または2種以上の合計で5%を超える量の添加では、加工性に悪影響を及ぼすため、これを上限とした。
Furthermore, the steel targeted by the present invention can contain one or more of Cr, Ni, Cu, Co, and W for the purpose of further improving the strength.
Cr is an element added for the purpose of strengthening and suppressing the formation of carbides and the purpose of forming bainite and bainitic ferrite. The addition of 0.001% or more exhibits an effect, and Cr, Ni, Cu, Co, W 1 Addition of more than 5% in total of seeds or two or more kinds adversely affects processability, so this was made the upper limit.

Niは、焼き入れ性の向上による強化目的で0.001質量%以上の添加で効果を発現し、Cr、Ni、Cu、Co、Wの1種または2種以上の合計で5質量%を超える量の添加では、加工性、特にマルテンサイトの硬度上昇寄与して悪影響を及ぼすため、これを上限とした。
Cuは、強化目的で0.01質量%以上の添加で効果を発現し、Cr、Ni、Cu、Co、Wの1種または2種以上の合計で5質量%を超える量の添加では、加工性および製造性に悪影響を及ぼす。
Ni exhibits an effect by addition of 0.001% by mass or more for the purpose of strengthening by improving hardenability, and exceeds 5% by mass in total of one or more of Cr, Ni, Cu, Co, and W. Addition of the amount has an adverse effect by contributing to the increase in workability, in particular the hardness of martensite, so this was made the upper limit.
Cu is effective when added in an amount of 0.01% by mass or more for the purpose of strengthening, and when added in an amount exceeding 5% by mass in total of one or more of Cr, Ni, Cu, Co, and W, it is processed. Adversely affects performance and manufacturability.

Coは、ベイナイト変態制御による強度延性バランスの向上のため、0.001質量%以上の添加で効果を発現する。一方、高価な元素であるため多量添加は経済性を損なうため、Cr、Ni、Cu、Co、Wの1種または2種以上の合計で5質量%以下にすることが望ましい。
Wは、0.001質量%以上の添加で強化効果が現れ、Cr、Ni、Cu、Co、Wの1種または2種以上の合計で5質量%を超える量の添加では、加工性に悪影響を及ぼす。
Co exhibits an effect when added in an amount of 0.001% by mass or more in order to improve the strength ductility balance by controlling the bainite transformation. On the other hand, since it is an expensive element, the addition of a large amount impairs the economy, so it is desirable that the total of one or more of Cr, Ni, Cu, Co, and W be 5% by mass or less.
When W is added in an amount of 0.001% by mass or more, a strengthening effect appears. Addition of more than 5% by mass of one or more of Cr, Ni, Cu, Co, and W adversely affects workability. Effect.

Y、Rem(Rare Earth Metal)の略でLaから始まるランタノイド系の元素を示す。工業的にミッシュメタルの形で添加されることがおおく、この場合には中でもLaおよびCeの含有が主体となる)、Ca、Mgは、適量添加により介在物の形態制御、特に微細分散化の観点から、Y,Rem,Ca,Mgの1種又は2種以上の合計で0.0001%以上とし、一方で過剰添加は鋳造性や熱間加工性などの製造性および鋼板製品の延性を低下させるためY,Rem,Ca,Mgの1種又は2種以上の合計で0.5質量%を上限とした。また、この中でもBよりも強窒化物形成元素であるLaやCeはB添加効果の活用についても有効であり、製造性を考慮しつつ添加することは望ましい。不可避的不純物として、例えばSnなどがあるがこれら元素を0.02質量%以下の範囲で含有しても本発明の効果を損なうものではない。   Y, an abbreviation for Rem (Rare Earth Metal), a lanthanoid element starting from La. Industrially, it is added in the form of misch metal. In this case, the main component is La and Ce.) Ca, Mg are added in appropriate amounts to control the form of inclusions, especially finely dispersed. From the viewpoint, the total of one or more of Y, Rem, Ca and Mg is 0.0001% or more, while excessive addition reduces the manufacturability such as castability and hot workability and the ductility of the steel sheet product. Therefore, the total of one or more of Y, Rem, Ca, and Mg is set to 0.5 mass%. Of these, La and Ce, which are stronger nitride forming elements than B, are also effective in utilizing the B addition effect, and it is desirable to add them while considering manufacturability. Inevitable impurities include, for example, Sn, but even if these elements are contained in the range of 0.02% by mass or less, the effect of the present invention is not impaired.

このような組織を有する穴拡げ性に優れた高強度高延性薄鋼板の製造方法について以下に説明する。
熱延後冷延・焼鈍して本発明の鋼板を製造する場合には、所定の成分に調整されたスラブを鋳造ままもしくは一旦冷却した後再加熱して熱延を行う。このときの再加熱温度は1150℃以上1250℃以下とすることが望ましい。再加熱温度が高温になると粗粒化や厚い酸化スケールが形成され、一方、低温加熱では圧延抵抗が高くなってしまう。また熱延後は、高圧デスケーリング装置や酸洗することなどで表面スケール削除を行うと製品での表面清浄がよくなり、めっき性に有利な傾向にある。
A method for producing a high-strength and high-ductility thin steel sheet having such a structure and excellent hole expansibility will be described below.
When the steel sheet of the present invention is manufactured by cold rolling and annealing after hot rolling, the slab adjusted to a predetermined component is cast as it is or once cooled and then reheated for hot rolling. In this case, the reheating temperature is desirably 1150 ° C. or higher and 1250 ° C. or lower. When the reheating temperature is high, coarse grains and thick oxide scales are formed. On the other hand, low temperature heating increases the rolling resistance. Moreover, after hot rolling, if the surface scale is removed by using a high-pressure descaling device or pickling, the surface of the product is better cleaned, which tends to be advantageous for plating properties.

また、延性および穴広げ性の両立には熱延からの組織制御が重要で、熱延板組織を均一かつ微細にすることが連続溶融亜鉛めっき鋼板での延性および穴広げ性向上に大きな寄与を及ぼすことから熱延の仕上げ温度は800〜950℃とし、さらに良好な材質を得るためには850℃〜970℃とした。仕上温度が970℃、好ましくは950℃を超えると、組織の粗大化や冷却中の変態制御性が難しくなるなどの問題が懸念される。
一方、800℃未満、好ましくは850℃未満では、2相域圧延になる懸念があり、狙いゲージ厚み精度の確保が困難となる場合がある。
In addition, it is important to control the structure from hot rolling in order to achieve both ductility and hole expansibility. Making the hot rolled sheet structure uniform and fine contributes greatly to improving the ductility and hole expansibility of continuous hot-dip galvanized steel sheets. Therefore, the finishing temperature for hot rolling is set to 800 to 950 ° C., and in order to obtain a better material, it is set to 850 to 970 ° C. When the finishing temperature exceeds 970 ° C., and preferably exceeds 950 ° C., there are concerns that the structure becomes coarse and the transformation controllability during cooling becomes difficult.
On the other hand, if it is less than 800 ° C., preferably less than 850 ° C., there is a concern that two-phase region rolling occurs, and it may be difficult to ensure the target gauge thickness accuracy.

その後の冷却は、パーライト変態を抑制する目的で、平均冷速として5℃/s以上とする。一方、速冷側は特別な冷却装置無しで可能な範囲として200℃/s以下とした。冷却停止は、ベイナイト生成温度域までとして、550℃以下とした。その後は、ベイナイトまたはマルテンサイト生成による熱延組織の均質化を図る目的で、550℃以下に巻き取る事とした。この熱延板の均質化はBの添加効果と同様に穴拡げ性および延性の同じ確保に特に重要である。   Subsequent cooling is performed at an average cooling rate of 5 ° C./s or more for the purpose of suppressing pearlite transformation. On the other hand, the fast cooling side was set to 200 ° C./s or less as a possible range without a special cooling device. The cooling stop was 550 ° C. or less up to the bainite generation temperature range. After that, it was decided to wind up to 550 ° C. or less for the purpose of homogenizing the hot rolled structure by bainite or martensite formation. The homogenization of the hot-rolled sheet is particularly important for ensuring the same hole expandability and ductility as well as the effect of adding B.

一方では、冷延時の反力増加の問題からなるべく高温側で巻き取る事が望ましく、500〜400℃での巻取りが望ましい。良好な延性と孔拡げ性を得るためには、仕上げ後の冷速を10〜100℃/sとして550℃以下の温度域にまで冷却して550℃以下で巻き取ることで、層状パータイト組織の形成を抑制することが望ましい。その後、冷延は、最終板厚と冷延荷重の関係から設定される全圧下率は、40%以上であれば再結晶・変態制御の点から十分で、最終的な鋼板の特性を劣化させない。   On the other hand, it is desirable to wind as high a temperature as possible from the problem of an increase in reaction force during cold rolling, and winding at 500 to 400 ° C. is desirable. In order to obtain good ductility and hole expansibility, the cooling rate after finishing is set to 10 to 100 ° C./s, cooled to a temperature range of 550 ° C. or less, and wound at 550 ° C. or less, thereby forming a layered partite structure. It is desirable to suppress formation. After that, for cold rolling, if the total reduction ratio set from the relationship between the final sheet thickness and the cold rolling load is 40% or more, it is sufficient from the viewpoint of recrystallization and transformation control, and the final steel sheet characteristics are not deteriorated. .

また、連続焼鈍工程の条件については、焼鈍温度が鋼の化学成分によって決まる温度Ac1及びAc3温度(例えば「鉄鋼材料学」:W.C.Leslie著、幸田成康監訳、丸善P273)で、表現されるAc1(℃)未満の場合には、焼鈍温度で得られるオーステナイト量が少なく、最終的な鋼板中にベイナイトやマルテンサイトを残すことができない。このため、これを焼鈍温度の下限とした。また、焼鈍温度がAc3+50(℃)を超えると組織の粗大化や製造コストの上昇を招くために、焼鈍温度の上限をAc3+50(℃)とした。この温度での焼鈍時間は鋼板の温度均一化と再結晶やオーステナイト化の確保のために10秒以上が必要である。しかし、30分超では、効果が飽和するばかりでなくコストの上昇や組織の粗大化を招くのでこれを上限とした。 As for the conditions of the continuous annealing process, the temperatures Ac 1 and Ac 3 are determined depending on the chemical components of the steel (for example, “Steel Material Science” by W.C. Leslie, translated by Koyasu Naruyasu, Maruzen P273) When it is less than the expressed Ac 1 (° C.), the amount of austenite obtained at the annealing temperature is small, and bainite and martensite cannot be left in the final steel sheet. For this reason, this was made into the minimum of annealing temperature. In addition, when the annealing temperature exceeds Ac 3 +50 (° C.), the structure becomes coarse and the manufacturing cost increases, so the upper limit of the annealing temperature is set to Ac 3 +50 (° C.). The annealing time at this temperature requires 10 seconds or more in order to ensure uniform temperature of the steel sheet and to ensure recrystallization and austenite. However, if it exceeds 30 minutes, not only will the effect be saturated, but also an increase in cost and coarsening of the structure will be caused, so this was made the upper limit.

また、良好な組織分率を得るためには、0.1×(Ac1−Ac3)+Ac1〜0.8×(Ac1−Ac3)+Ac1の温度域での焼鈍が望ましい。また、穴広げ性−延性のバランスをより良好にするためには0.2×(Ac3−Ac1)+Ac1(℃)〜0.5×(Ac3−Ac1)+Ac1(℃)の温度域で60〜200Sの範囲で焼鈍することが望ましい。 Moreover, in order to obtain a favorable structure fraction, annealing in the temperature range of 0.1 × (Ac 1 −Ac 3 ) + Ac 1 to 0.8 × (Ac 1 −Ac 3 ) + Ac 1 is desirable. Moreover, in order to make the balance of hole expansion property and ductility better, 0.2 × (Ac 3 −Ac 1 ) + Ac 1 (° C.) to 0.5 × (Ac 3 −Ac 1 ) + Ac 1 (° C.) It is desirable to anneal in the range of 60-200S in the temperature range.

その後の一次冷却はオーステナイトからフェライト、ベイナイトおよびマルテンサイトへの変態を制御して、最適な組織分率を得るのに重要である。焼鈍に続く一次冷却速度を平均で0.1℃/秒未満にすることは、必要な生産ライン長を長くしたり、生産速度を極めて遅くするといった製造上のデメリットを生じるうえ冷却中に過剰にフェライトが生成したりパーライトが生成を促進する結果となるために、この冷却速度の下限を0.1℃/秒とした。一方、この一次冷却速度が20℃/秒超の場合にはフェライト変態が十分に起こらず、硬質相が過剰になることから、これを上限とした。   Subsequent primary cooling is important to control the transformation from austenite to ferrite, bainite and martensite to obtain the optimum structure fraction. Setting the average primary cooling rate following annealing to less than 0.1 ° C / second causes manufacturing disadvantages such as lengthening the required production line length and extremely slowing the production rate, and excessively during cooling. The lower limit of the cooling rate was set to 0.1 ° C./second in order to generate ferrite or promote pearlite formation. On the other hand, when the primary cooling rate exceeds 20 ° C./second, ferrite transformation does not occur sufficiently and the hard phase becomes excessive, so this was made the upper limit.

一次冷却の停止温度については、600℃未満であると過剰にフェライトが生成したりパーライトが生成を促進するため600℃以上とし、750℃を超えると逆にフェライトが十分に制御・確保できないため、適正な一次冷却停止温度範囲として750〜600℃とした。フェライト制御や生産ライン長の観点から一次冷却は、3〜10℃/sで700〜650℃の停止とすることが望ましい。これに続く二次冷却であるが、平均で20℃/秒未満であるとパーライト生成の懸念があること、200℃/秒超にすることは、パーライト抑制効果が飽和する事に加えて板形状悪化抑制および操業上困難であることから、20〜200℃/sとした。   About the primary cooling stop temperature, if it is less than 600 ° C., ferrite is excessively generated or pearlite promotes the generation, so that it is 600 ° C. or more, and if it exceeds 750 ° C., ferrite cannot be sufficiently controlled and secured. The appropriate primary cooling stop temperature range was set to 750 to 600 ° C. From the viewpoint of ferrite control and production line length, the primary cooling is desirably stopped at 700 to 650 ° C. at 3 to 10 ° C./s. Subsequent secondary cooling, but if the average is less than 20 ° C / second, there is a concern about the formation of pearlite, and if it exceeds 200 ° C / second, the pearlite suppression effect is saturated and the plate shape It was set to 20 to 200 ° C./s because deterioration was difficult and operation was difficult.

さらには、オーステナイト相からフェライト相への変態をある程度抑しつつ、ベイナイトまたはベイニティックフェライト生成またはマルテンサイトの生成させるために、この冷却速度を0.1℃/秒未満にすることは、フェライトやパーライトの生成を促進して強度低下を招く懸念があることから、冷却速度の下限を0.1℃/秒とすることが好ましい。一方、冷却速度が100℃/秒超の場合には最終的な鋼板中のマルテンサイト相などの硬質相が多量になってしまうことや、操業上困難なため、これを上限とすることが好ましい。また、冷却時には、少量のフェライト量をコントロールする目的で、焼鈍後一旦600〜750℃の温度域まで穏冷したのちパーライトや炭化物析出を避けるため急冷する2段の冷却パターンを取ってもよい。   Furthermore, in order to generate bainite or bainitic ferrite or martensite while suppressing the transformation from the austenite phase to the ferrite phase to some extent, it is possible to reduce the cooling rate to less than 0.1 ° C./second. In addition, there is a concern that the generation of pearlite is promoted and the strength is lowered, so that the lower limit of the cooling rate is preferably 0.1 ° C./second. On the other hand, when the cooling rate is higher than 100 ° C./second, the hard steel phase such as the martensite phase in the final steel sheet becomes large and it is difficult to operate. . Further, at the time of cooling, for the purpose of controlling a small amount of ferrite, a two-stage cooling pattern may be taken in which, after annealing, it is once cooled to a temperature range of 600 to 750 ° C. and then rapidly cooled to avoid pearlite and carbide precipitation.

二次冷却の停止温度は250℃未満であるとマルテンサイト量過剰や板形状が悪化の懸念があることから250℃を下限とした。また、450℃を超えると、ベイナイト変態の制御性や炭化物析出の懸念があり、450℃を上限とした。ベイナイト変態や既に生成したマルテンサイトの焼戻しによる硬度調整から、二次冷却停止以降に250〜450℃の温度域で100〜3000秒の保持を行う。100秒未満であると十分にベイナイト変態が生じず3000秒を超えると炭化物析出による穴拡げおよび延性の低下が懸念される。   When the secondary cooling stop temperature is less than 250 ° C., there is a concern that the amount of martensite is excessive or the plate shape is deteriorated. Moreover, when it exceeds 450 degreeC, there exists a concern of controllability of a bainite transformation and carbide precipitation, and 450 degreeC was made into the upper limit. From the bainite transformation and the hardness adjustment by tempering the already generated martensite, the secondary cooling is stopped and the holding is performed in the temperature range of 250 to 450 ° C. for 100 to 3000 seconds. If it is less than 100 seconds, bainite transformation does not occur sufficiently, and if it exceeds 3000 seconds, there is a concern that hole expansion and ductility decrease due to carbide precipitation.

この二次冷却およびその後の保持をふくむ処理は、主にベイナイト変態の制御と大量の炭化物生成(パーライト組織を含む)の抑制が目的であり、二次平均冷速で30〜150℃/s、停止温度で270〜400℃、保持時間で200〜600秒が望ましい条件である。また、冷却の時に、400℃を超える温度域で穏冷されたり比較的長い時間停留されると、穴広げ性には有効な傾向にあるものの強度低下や延性低下をまねく懸念がるとことから平均冷速を確保しつつ400℃以下の温度域まで冷却・停留することが好ましい。   The treatment including the secondary cooling and the subsequent holding is mainly for the purpose of controlling the bainite transformation and suppressing a large amount of carbide formation (including pearlite structure), with a secondary average cooling rate of 30 to 150 ° C./s, It is desirable that the stop temperature is 270 to 400 ° C. and the holding time is 200 to 600 seconds. In addition, when cooling, if it is moderately cooled in a temperature range exceeding 400 ° C. or retained for a relatively long time, there is a concern that although it tends to be effective for hole expansibility, it may lead to a decrease in strength and ductility. It is preferable to cool and stop to a temperature range of 400 ° C. or lower while securing the average cooling speed.

一方、冷却停止温度の下限については、操業上、板形状の問題に加え、強度が上昇して結果として延性低下を招くため、250℃以上での停留が望ましい。また、特に延性を重視する場合には、冷却停止および停留は350℃以下の温度域が望ましい。
この停留時間としては、長時間になると生産性上好ましくないうえ、炭化物が生成してしまうことから1000秒以内とすることが望ましい。また、穴広げ性−延性のバランスをより良好にするためには200〜450秒の停留が望ましい。
On the other hand, the lower limit of the cooling stop temperature is preferably stopped at 250 ° C. or higher because, in addition to the problem of plate shape, the strength increases and the ductility is lowered as a result. In addition, when emphasizing ductility in particular, it is desirable that the cooling stop and stop be in a temperature range of 350 ° C. or lower.
The retention time is preferably not longer than 1000 seconds because a long time is not preferable in terms of productivity and carbides are generated. Moreover, in order to make the balance between hole expandability and ductility better, it is desirable to stop for 200 to 450 seconds.

(実施例1)
以下、実施例によって本発明をさらに詳細に説明する。
表1に示すような組成の鋼板を、1180〜1250℃に加熱し、800〜950℃で熱延を完了し、冷却後巻き取って、酸洗後、冷延して1.2mm厚とした。
その後、各鋼の成分(質量%)から下記式にしたがってAc1とAc3変態温度を計算により求めた。
Ac1=723−10.7×Mn%−16.9×Ni%+29.1×Si%+16.9 ×Cr%、
Ac3=910−203×(C%)×1/2−15.2×Ni%+44.7×Si%+ 104×V%+31.5×Mo%−30×Mn%−11×Cr%−20×Cu %+700×P%+400×Al%+400×Ti%、
Example 1
Hereinafter, the present invention will be described in more detail with reference to examples.
A steel plate having a composition as shown in Table 1 was heated to 1180 to 1250 ° C., completed in hot rolling at 800 to 950 ° C., wound up after cooling, pickled and then cold rolled to a thickness of 1.2 mm. .
Thereafter, it was determined by calculating the Ac 1 and Ac 3 transformation temperature according to the following equation from a component of the steel (mass%).
Ac 1 = 723-10.7 × Mn% -16.9 × Ni% + 29.1 × Si% + 16.9 × Cr%,
Ac 3 = 910-203 × (C%) × 1 / 2-15.2 × Ni% + 44.7 × Si% + 104 × V% + 31.5 × Mo% −30 × Mn% −11 × Cr% − 20 × Cu% + 700 × P% + 400 × Al% + 400 × Ti%,

Figure 0004528137
Figure 0004528137

これらのAc1およびAc3変態温度から計算される焼鈍温度に5%H2−N2雰囲気中で昇温・保定したのち、0.1〜100℃/秒の冷却速度範囲で250〜450℃の温度域で保持処理を行った。これらの鋼板からJIS5号引張り試験片を採取して、機械的性質を測定した。さらに、鉄鋼連盟規格に準拠して穴拡げ試験を行い、穴拡げ率を求めた。表2〜表3より、本発明鋼は、すべて850MPa以上の引張り強度を有し、低Si含有でも穴拡げ・伸びバランスにも優れる。一方、本発明の範囲を満たさない比較例は、いずれも強度・穴拡げ・伸びバランスに劣る。また、本発明の請求項の範囲で製造した鋼板はミクロ組織も上述した組織になっており強度・穴拡げ・伸びバランスに優れている。 After raising and maintaining the annealing temperature calculated from these Ac 1 and Ac 3 transformation temperatures in a 5% H 2 —N 2 atmosphere, 250 to 450 ° C. in the cooling rate range of 0.1 to 100 ° C./second. The holding treatment was performed in the temperature range. JIS No. 5 tensile test specimens were collected from these steel plates and measured for mechanical properties. In addition, a hole expansion test was performed in accordance with the Steel Federation standard, and the hole expansion rate was obtained. From Tables 2 to 3, the steels of the present invention all have a tensile strength of 850 MPa or more, and are excellent in hole expansion / elongation balance even with a low Si content. On the other hand, all the comparative examples not satisfying the scope of the present invention are inferior in strength, hole expansion, and elongation balance. Moreover, the steel sheet manufactured in the scope of the claims of the present invention has the microstructure described above, and is excellent in strength, hole expansion, and elongation balance.

Figure 0004528137
Figure 0004528137

Figure 0004528137
Figure 0004528137

Claims (4)

質量%で、
C:0.001〜0.3%、
Si:0.001〜0.60%、
Mn:0.01〜3%、
Al:0.001〜4.0%、
Mo:0.001〜0.30%、
P:0.0001〜0.3%、
S:0.0001〜0.1%、
B:0.0001〜0.0050%、
N:0.0001〜0.0070%、
O:0.0021〜0.0037%、
を含有し、かつ、B/11+(Al/27−O/16)−N/14>0を満たし、残部Feおよび不可避的不純物からなる鋼の鋳造スラブを鋳造ままもしくは一旦冷却した後に1150〜1250℃に再度加熱し、800〜950℃で熱延を終了させた後平均冷速で5〜200℃/sにて550℃以下に冷却して、550℃以下で巻取った熱延鋼板を酸洗後冷延し、その後、Ac 1 (℃)以上Ac 3 +50(℃)以下の温度域で10秒〜30分焼鈍した後に、0.1〜20℃/秒の平均冷却速度で750〜600℃の温度域まで冷却し、引き続き20〜200℃/秒の平均冷却速度で450〜250℃の温度まで冷却したのちその温度域で100秒超3000秒未満保持した後、室温まで冷却することを特徴とする穴拡げ性に優れた高強度高延性薄鋼板の製造方法。
% By mass
C: 0.001 to 0.3%,
Si: 0.001 to 0.60%,
Mn: 0.01 to 3%
Al: 0.001 to 4.0%,
Mo: 0.001 to 0.30%,
P: 0.0001 to 0.3%,
S: 0.0001 to 0.1%,
B: 0.0001 to 0.0050%,
N: 0.0001 to 0.0070%,
O: 0.0021 to 0.0037%,
1150-1250 after casting or once cooling a cast slab of steel that contains B and 11+ (Al / 27-O / 16) -N / 14> 0, and the balance is Fe and inevitable impurities. After heating at 800 to 950 ° C, the hot rolled steel sheet was cooled to 550 ° C or lower at an average cooling rate of 5 to 200 ° C / s and wound up at 550 ° C or lower. It is cold-rolled after washing, and then annealed in a temperature range of Ac 1 (° C.) or higher and Ac 3 +50 (° C.) or lower for 10 seconds to 30 minutes, and then 750 to 600 at an average cooling rate of 0.1 to 20 ° C./second. Cooling to a temperature range of ℃, subsequently cooling to a temperature of 450 to 250 ℃ at an average cooling rate of 20 to 200 ℃ / second, holding in that temperature range for more than 100 seconds and less than 3000 seconds, and then cooling to room temperature High strength with excellent hole expansibility Method of manufacturing a sex thin steel plate.
鋼が、さらに質量%で、Nb、Ti、V、Zr、Hf、Taの1種または2種以上を合計で0.001〜0.50%含有することを特徴とする請求項1に記載の穴拡げ性に優れた高強度高延性薄鋼板の製造方法。 The steel according to claim 1, further comprising 0.001 to 0.50% of Nb, Ti, V, Zr, Hf, and Ta in a total of 0.001 to 0.50% by mass. A method for producing a high-strength, high-ductility sheet steel with excellent hole expansibility . 鋼が、さらに質量%で、Cr、Ni、Cu、Co、Wの1種または2種以上を合計で0.001〜5%含有することを特徴とする請求項1または2項に記載の穴拡げ性に優れた高強度高延性薄鋼板の製造方法。 The hole according to claim 1 or 2 , wherein the steel further contains 0.001 to 5% in total of one or more of Cr, Ni, Cu, Co, and W in mass%. A method for producing a high-strength, high-ductility thin steel sheet with excellent spreadability . 鋼が、さらに質量%で、Y、Rem、Ca、Mgの1種または2種以上を合計で0.0001〜0.5%含有することを特徴とする請求項1〜のいずれか1項に記載の穴拡げ性に優れた高強度高延性薄鋼板の製造方法Steel, with further mass%, Y, Rem, Ca, any one of claims 1 to 3, characterized in that it contains from 0.0001 to 0.5 percent by total one or two or more of Mg A method for producing a high-strength and high-ductility thin steel sheet excellent in hole expansibility described in 1.
JP2005006422A 2004-03-19 2005-01-13 Manufacturing method of high strength and high ductility steel sheet with excellent hole expandability Active JP4528137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005006422A JP4528137B2 (en) 2004-03-19 2005-01-13 Manufacturing method of high strength and high ductility steel sheet with excellent hole expandability

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004079482 2004-03-19
JP2005006422A JP4528137B2 (en) 2004-03-19 2005-01-13 Manufacturing method of high strength and high ductility steel sheet with excellent hole expandability

Publications (2)

Publication Number Publication Date
JP2005298964A JP2005298964A (en) 2005-10-27
JP4528137B2 true JP4528137B2 (en) 2010-08-18

Family

ID=35330869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005006422A Active JP4528137B2 (en) 2004-03-19 2005-01-13 Manufacturing method of high strength and high ductility steel sheet with excellent hole expandability

Country Status (1)

Country Link
JP (1) JP4528137B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5167487B2 (en) * 2008-02-19 2013-03-21 Jfeスチール株式会社 High strength steel plate with excellent ductility and method for producing the same
JP5213643B2 (en) * 2008-03-26 2013-06-19 株式会社神戸製鋼所 High strength cold-rolled steel sheet and high-strength galvannealed steel sheet with excellent ductility and hole expansibility
JP5375001B2 (en) * 2008-09-29 2013-12-25 Jfeスチール株式会社 High-strength cold-rolled steel sheet and manufacturing method thereof
KR101159896B1 (en) * 2009-03-26 2012-06-25 현대제철 주식회사 Ultra high strength steel having excellent formability and galvanizing property, and method for producing the same
KR101129863B1 (en) 2009-03-26 2012-03-23 현대제철 주식회사 High strength steel having excellent formability and galvanizing property, and method for producing the same
JP5347739B2 (en) * 2009-06-11 2013-11-20 新日鐵住金株式会社 Method for producing precipitation-strengthened double-phase cold-rolled steel sheet
KR101246391B1 (en) 2009-06-26 2013-03-21 현대제철 주식회사 Transformation einforcement type ultra high strength steel sheet having excellent formability, and method for producing the same
US8882938B2 (en) * 2009-12-21 2014-11-11 Tata Steel Ijmuiden B.V. High strength hot dip galvanised steel strip
JP5516057B2 (en) * 2010-05-17 2014-06-11 新日鐵住金株式会社 High-strength hot-dip galvanized steel sheet and manufacturing method thereof
KR101597473B1 (en) * 2011-07-29 2016-02-24 신닛테츠스미킨 카부시키카이샤 High-strength galvanized steel sheet having superior bendability and method for producing same
MX2014002922A (en) * 2011-09-13 2014-05-21 Tata Steel Ijmuiden Bv High strength hot dip galvanised steel strip.
CN103122435A (en) * 2011-11-18 2013-05-29 江苏省沙钢钢铁研究院有限公司 Hot-rolled titanium-containing high-strength steel plate with yield strength of more than 700MPa and manufacturing method thereof
TWI468534B (en) 2012-02-08 2015-01-11 Nippon Steel & Sumitomo Metal Corp High-strength cold rolled steel sheet and manufacturing method thereof
IN2015DN00401A (en) 2012-07-31 2015-06-19 Nippon Steel & Sumitomo Metal Corp
EP2987883B1 (en) * 2013-04-15 2019-05-08 JFE Steel Corporation High-strength hot-rolled steel sheet and method for manufacturing same
CN111394656B (en) * 2020-05-06 2022-03-18 合肥易知谷机械设计有限公司 Crystallizer
CN114107789B (en) * 2020-08-31 2023-05-09 宝山钢铁股份有限公司 780 MPa-grade high-surface high-performance stability ultrahigh-reaming steel and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002226943A (en) * 2001-02-01 2002-08-14 Kawasaki Steel Corp High-yield-ratio and high-tensile hot-rolled steel plate having excellent workability, and its manufacturing method
JP2004068050A (en) * 2002-08-02 2004-03-04 Sumitomo Metal Ind Ltd High tensile strength cold rolled steel sheet and its manufacturing method
JP2005281854A (en) * 2004-03-01 2005-10-13 Nippon Steel Corp High-strength and high-ductility hot-dip galvanized steel sheet superior in hole expandability, and manufacturing method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002226943A (en) * 2001-02-01 2002-08-14 Kawasaki Steel Corp High-yield-ratio and high-tensile hot-rolled steel plate having excellent workability, and its manufacturing method
JP2004068050A (en) * 2002-08-02 2004-03-04 Sumitomo Metal Ind Ltd High tensile strength cold rolled steel sheet and its manufacturing method
JP2005281854A (en) * 2004-03-01 2005-10-13 Nippon Steel Corp High-strength and high-ductility hot-dip galvanized steel sheet superior in hole expandability, and manufacturing method therefor

Also Published As

Publication number Publication date
JP2005298964A (en) 2005-10-27

Similar Documents

Publication Publication Date Title
JP4528137B2 (en) Manufacturing method of high strength and high ductility steel sheet with excellent hole expandability
JP6654698B2 (en) Ultra-high-strength steel sheet excellent in formability and hole expandability and method for producing the same
JP4324072B2 (en) Lightweight high strength steel with excellent ductility and its manufacturing method
JP5233142B2 (en) High-stiffness and high-strength steel sheet excellent in hole expansibility and method for producing the same
JP5157215B2 (en) High rigidity and high strength steel plate with excellent workability
JP2022160585A (en) Cold-rolled steel sheet and method for manufacturing the same
JP2023011852A (en) Cold rolled and heat treated steel sheet and method of manufacturing thereof
JP5245259B2 (en) High strength steel sheet with excellent ductility and method for producing the same
KR102119332B1 (en) High-strength steel sheet and its manufacturing method
JP5320798B2 (en) High-strength steel sheet with excellent bake hardenability with very little deterioration of aging and method for producing the same
KR20210149145A (en) Cold-rolled martensitic steel sheet and manufacturing method thereof
JP2021502484A (en) Cold-rolled heat-treated steel sheet and its manufacturing method
JP6519016B2 (en) Hot rolled steel sheet and method of manufacturing the same
KR101626233B1 (en) High strength cold rolled steel sheet with high yield ratio and method for producing the same
KR20120113806A (en) High-strength steel sheet and method for producing same
JP2008156680A (en) High-strength cold rolled steel sheet having high yield ratio, and its production method
JP2010275627A (en) High-strength steel sheet and high-strength hot-dip galvanized steel sheet having excellent workability, and method for producing them
JP2012041573A (en) High strength thin steel sheet having excellent elongation and press forming stability
JP2010248565A (en) Ultrahigh-strength cold-rolled steel sheet superior in formability for extension flange, and method for manufacturing the same
WO2017168957A1 (en) Thin steel sheet, plated steel sheet, method for producing hot-rolled steel sheet, method for producing cold-rolled full hard steel sheet, method for producing thin steel sheet, and method for producing plated steel sheet
JP6763479B2 (en) High-strength hot-dip galvanized steel sheet and its manufacturing method
JP4528135B2 (en) High strength and high ductility hot dip galvanized steel sheet excellent in hole expansibility and method for producing the same
KR20220005572A (en) Cold-rolled martensitic steel sheet and manufacturing method thereof
JP2009030091A (en) High-strength cold-rolled steel sheet with excellent manufacturing stability, and its manufacturing method
JP4910898B2 (en) High strength steel plate and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20100126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4528137

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350