JP2002226943A - High-yield-ratio and high-tensile hot-rolled steel plate having excellent workability, and its manufacturing method - Google Patents

High-yield-ratio and high-tensile hot-rolled steel plate having excellent workability, and its manufacturing method

Info

Publication number
JP2002226943A
JP2002226943A JP2001025280A JP2001025280A JP2002226943A JP 2002226943 A JP2002226943 A JP 2002226943A JP 2001025280 A JP2001025280 A JP 2001025280A JP 2001025280 A JP2001025280 A JP 2001025280A JP 2002226943 A JP2002226943 A JP 2002226943A
Authority
JP
Japan
Prior art keywords
phase
less
ratio
bainite
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001025280A
Other languages
Japanese (ja)
Inventor
Tetsuya Mega
哲也 妻鹿
Takashi Sakata
坂田  敬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2001025280A priority Critical patent/JP2002226943A/en
Publication of JP2002226943A publication Critical patent/JP2002226943A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a high-yield-ratio and high-tensile hot-rolled steel plate having excellent workability, particularly elongation and stretch-flange formability, in an as-hot-rolled state, having excellent weldability and chemical convertibility. SOLUTION: A chemical composition consisting of, by mass, 0.02-0.15% C, 0.2-1.5% Si, 1.0-3.5% Mn, 0.1-1.0% Mo, <=0.03% P, <=0.001% S and the balance Fe with inevitable impurities is provided, and a steel structure which contains ferrite as a principal phase and 10-40% by volume fraction of a secondary phase composed of bainite or bainite partially containing martensite is also provided. Further, the average grain size (d2) of the secondary phase is <=8 μm, and the ratio of the (d2) to the average grain size (d1) of the principal phase, d2/d1, is controlled to 0.7-1.3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】自動車の構造部材や、ホイー
ル・リム・シャーシなど足回り部材、バンパー・ドアガ
ードバーなど強度部材には、引張り強さだけでなく、剛
性も併せて必要とされ、 かかる剛性を確保するためには
高降伏比型の材料が求められる。この発明は、 かような
高降伏比型の高張力熱延鋼板およびその製造方法に関す
るもので、 引張り強さが 590 MPa級〜980 MPa 級で、 加
工性とくに伸びおよび伸びフランジ性に優れた高張力熱
延鋼板を提供しようとするものである。
BACKGROUND OF THE INVENTION Structural members of automobiles, undercarriage members such as wheels, rims and chassis, and strength members such as bumpers and door guard bars require not only tensile strength but also rigidity. In order to secure a high yield ratio, a material having a high yield ratio type is required. The present invention relates to a high-strength hot-rolled steel sheet having such a high yield ratio and a method for producing the same, having a tensile strength of 590 MPa class to 980 MPa class, and having excellent workability, particularly excellent stretchability and stretch flangeability. It is intended to provide a tension hot-rolled steel sheet.

【0002】[0002]

【従来の技術】従来、自動車用鋼板の材質強化方法とし
ては、フェライト単相鋼では、主としてSi,Mn,Pとい
った置換型元素の添加による固溶強化、あるいはフェラ
イト相中にマルテンサイト、ベイナイトまたは残留オー
ステナイト等を析出させて強化を図る方法が一般的であ
った。
2. Description of the Related Art Conventionally, as a method of strengthening the quality of steel sheets for automobiles, ferrite single-phase steel is mainly made of solid solution strengthening by adding a substitution element such as Si, Mn, or P, or martensite, bainite or bainite in a ferrite phase. A method of strengthening by precipitating retained austenite or the like was generally used.

【0003】例えば、特開昭56−139654号公報等に記載
されているように、加工性や時効性を改善するために、
極低炭素鋼にTi,Nbを含有させて高強度化を図ることに
ついては数多くの提案がなされている。その他にも、例
えば特開昭60−52528 号公報には、低炭素鋼を高温で焼
鈍し、冷却後にマルテンサイト相を析出させることによ
って延性に優れた高強度鋼板を製造する方法が提案され
ている。また、特公昭61−12008 号公報には、極低炭素
鋼にSi,Mn,Pの他、Nb,Bを添加することによって、
高強度化を図ると共に、低降伏比で高い焼付硬化性と高
r値と延性とを兼ね備えた鋼板を製造する方法が提案さ
れている。
For example, as described in JP-A-56-139654 and the like, in order to improve processability and aging,
Many proposals have been made to increase the strength by adding Ti and Nb to ultra-low carbon steel. In addition, for example, Japanese Patent Application Laid-Open No. Sho 60-52528 proposes a method of producing a high-strength steel sheet having excellent ductility by annealing low-carbon steel at a high temperature and precipitating a martensite phase after cooling. I have. In Japanese Patent Publication No. 61-12008, by adding Nb and B in addition to Si, Mn and P to ultra-low carbon steel,
There has been proposed a method for producing a steel sheet which achieves high strength and has both high bake hardenability at a low yield ratio and high r-value and ductility.

【0004】上記のような方法で高強度化を図ることに
よって、確かに自動車用鋼板の薄肉化は、ある程度進め
られるようになった。しかしながら、上記の提案では、
高強度化、さらには延性、r値の向上については考慮が
払われているものの、ホイールディスクなどの各種構造
部材で特に重要となる伸びフランジ性については、ほと
んど記載されてなく、また記載されているにしても、要
求特性を満足するほどには十分な改善がなされていな
い。従って、上記した従来技術は、自動車車体の軽量化
に対して、真に有効な手段を提供するものとは言えなか
った。
[0004] By increasing the strength by the above-described method, the thickness of automobile steel sheets has certainly been reduced to some extent. However, in the above proposal,
Although high strength, furthermore ductility, improvement of r value is taken into consideration, stretch flangeability, which is particularly important in various structural members such as wheel discs, is hardly described or described. However, it has not been sufficiently improved to satisfy the required characteristics. Therefore, the above-mentioned prior art cannot be said to provide a truly effective means for reducing the weight of an automobile body.

【0005】[0005]

【発明が解決しようとする課題】この発明は、上記の実
状に鑑み開発されたもので、鋼成分および熱間圧延条件
さらには鋼組織を最適化して、熱延ままで、加工性、特
に伸びと伸びフランジ性に優れ、しかも溶接性や化成処
理性にも優れた高降伏比型高張力熱延鋼板を、その有利
な製造方法と共に提案することを目的とする。
SUMMARY OF THE INVENTION The present invention has been developed in view of the above-mentioned circumstances, and optimizes the steel composition and hot rolling conditions and the steel structure so that the workability, particularly the elongation, can be improved while hot rolling. It is an object of the present invention to propose a high-yield-ratio high-strength hot-rolled steel sheet having excellent stretch flangeability, and also excellent weldability and chemical conversion treatment properties, together with its advantageous production method.

【0006】この発明において、高降伏比を目指した理
由は、高強度化に伴って成形性は劣化するが、結晶粒径
をある程度まで微細化し、降伏比を高くすることによ
り、同一強度での伸びは向上し、低降伏比のものに比べ
ると、強度−伸びバランスが改善されるからである。こ
のように、高降伏比型を指向したのは、伸びや伸びフラ
ンジ特性を含めて、従来よりも、さらに強度−伸び特性
の向上を図るためである。なお、この発明において、高
降伏比とは、降伏比(降伏強度/引張強度×100)が70%
以上であることを意味する。
In the present invention, the reason for aiming for a high yield ratio is that formability deteriorates with increasing strength, but by reducing the crystal grain size to some extent and increasing the yield ratio, the same strength is achieved. This is because the elongation is improved, and the strength-elongation balance is improved as compared with those having a low yield ratio. The purpose of the high yield ratio type is to further improve the strength-elongation characteristics, including the elongation and the stretch flange characteristics, as compared with the related art. In the present invention, the high yield ratio means that the yield ratio (yield strength / tensile strength × 100) is 70%.
It means above.

【0007】また、この発明では、引張り強さが 590 M
Pa級〜980 MPa 級の鋼板を目標とするが、より具体的に
説明すると、引張り強さが 590〜880 MPa の鋼板は、引
張り強さと共に優れた伸びおよび伸びフランジ性を得る
場合であり、一方引張り強さが 880 MPaを超え、1050 M
Pa未満の鋼板は、伸び特性は若干犠牲にしてもより高い
引張り強さが要求される場合である。ここに、各場合に
おける目標特性は次のとおりである。 ・引張り強さ(TS):590 〜880 MPa の場合 TS×El≧ 20000 MPa・%、 TS×λ≧ 50000 MPa・% ・引張り強さ(TS):880 MPa 超え、1050 MPa未満の場合 TS×El≧ 14000 MPa・%、 TS×λ≧ 30000 MPa・% ただし、λ:穴拡げ率(%)
Further, according to the present invention, the tensile strength is 590 M
Although the target is a steel sheet of Pa class to 980 MPa class, more specifically, a steel sheet having a tensile strength of 590 to 880 MPa obtains excellent elongation and stretch flangeability together with tensile strength. On the other hand, the tensile strength exceeds 880 MPa and 1050 M
A steel sheet less than Pa is a case where higher tensile strength is required at the expense of some elongation properties. Here, the target characteristics in each case are as follows.・ Tensile strength (TS): 590 to 880 MPa TS × El ≧ 20000 MPa ・%, TS × λ ≧ 50000 MPa ・% ・ Tensile strength (TS): Over 880 MPa, less than 1050 MPa TS × El ≧ 14000 MPa ・%, TS × λ ≧ 30,000 MPa ・% where λ: hole expansion rate (%)

【0008】[0008]

【課題を解決するための手段】さて、発明者らは、上記
の目的を達成すべく鋭意研究を重ねた結果、鋼成分を適
正に調整すると共に、熱間圧延条件およびその後の冷却
条件を的確に制御して鋼組織を適正に調整することによ
って、所期した目的が有利に達成されることの知見を得
た。具体的に述べると次のとおりである。 (1) Moを添加することにより、初期オーステナイト粒が
細粒化され、最終製品での結晶粒が細かくなり、強度−
伸びバランス特性が改善されるだけでなく、高降伏比と
なる結果、伸びフランジ性が改善される。 (2) 圧延温度を高くすることにより、オーステナイト粒
の再結晶が促進されて、フェライト変態後の主相と第2
相の平均粒径の差が小さくなり、その結果、伸びフラン
ジ性が改善される。 (3) Moに加えて、CrやB等を複合含有させると、フェラ
イト、パーライト変態が抑制され、主相と第2相との平
均粒径差が小さくなるだけでなく、第2相がべイナイト
を主体とする組織となるため、伸びフランジ性が改善さ
れる。 (4) また、CrとBは、熱延時の圧延荷重を低減させ、同
時に未再結晶オーステナイト域での圧延を少なくするこ
とが可能になり、これによる変形帯の減少により、フェ
ライト形成サイトが低減し、フェライト変態が抑制され
るため、主相と第2相との平均粒径差が小さくなり、ま
た第2相がべイナイトを主体とする組織となるため、伸
びフランジ性が改善される。 (5) PおよびSの含有量に上限を設けることにより、伸
びフランジ性および溶接性が改善される。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies in order to achieve the above-mentioned object, and as a result, have properly adjusted the steel composition, and have properly adjusted the hot rolling conditions and the subsequent cooling conditions. It has been found that the intended purpose can be advantageously achieved by controlling the steel structure appropriately and controlling the steel structure appropriately. The details are as follows. (1) By adding Mo, the initial austenite grains are refined, the crystal grains in the final product are refined, and the strength −
Not only is the elongation balance property improved, but also the high yield ratio results in improved stretch flangeability. (2) By increasing the rolling temperature, recrystallization of austenite grains is promoted, and the main phase after ferrite transformation and the second phase
The difference in average particle size of the phases is reduced, resulting in improved stretch flangeability. (3) When Cr and B are added in addition to Mo, ferrite and pearlite transformation are suppressed, and not only the average particle size difference between the main phase and the second phase becomes small, but also the second phase becomes Since the structure is mainly composed of inite, stretch flangeability is improved. (4) In addition, Cr and B can reduce the rolling load during hot rolling, and at the same time, reduce the rolling in the unrecrystallized austenite region, thereby reducing the deformation zone and reducing the ferrite formation site. However, since the ferrite transformation is suppressed, the difference in the average grain size between the main phase and the second phase is reduced, and the second phase has a structure mainly composed of bainite, so that the stretch flangeability is improved. (5) By setting upper limits for the contents of P and S, stretch flangeability and weldability are improved.

【0009】この発明は、上記の知見に立脚するもので
ある。すなわち、この発明の要旨構成は次のとおりであ
る。 1.質量百分率でC:0.02〜0.15%、Si:0.2 〜1.5
%、Mn:1.0 〜3.5 %、Mo:0.1 〜1.0 %、Al:0.01〜
0.1 %、P:0.03%以下およびS:0.001 %以下を含有
し、残部はFeおよび不可避的不純物の組成になり、主相
がフェライトで、ベイナイトまたは一部マルテンサイト
を含むベイナイトからなる第2相を体積分率で10〜40%
含む鋼組織になり、しかも第2相の平均粒径が8μm 以
下で、かつ主相との平均粒径の比が、次式 1.3 ≧d2 /d1 ≧ 0.7 ただし、d1 :主相の平均粒径、 d2 :第2相の平均粒径 の範囲を満足することを特徴とする、加工性に優れた高
降伏比型高張力熱延鋼板。
The present invention is based on the above findings. That is, the gist configuration of the present invention is as follows. 1. C: 0.02 to 0.15% by mass percentage, Si: 0.2 to 1.5
%, Mn: 1.0 to 3.5%, Mo: 0.1 to 1.0%, Al: 0.01 to
The second phase contains 0.1%, P: 0.03% or less and S: 0.001% or less, with the balance being a composition of Fe and unavoidable impurities, the main phase being ferrite and bainite or bainite partially containing martensite. 10 to 40% by volume fraction
And the average particle size of the second phase is 8 μm or less, and the ratio of the average particle size to the main phase is as follows: 1.3 ≧ d 2 / d 1 ≧ 0.7 where d 1 is the main phase A high-yield-ratio high-tensile-strength hot-rolled steel sheet excellent in workability, characterized by satisfying a range of an average particle diameter, d 2 : an average particle diameter of the second phase.

【0010】2.上記1において、鋼が、質量百分率
で、さらにCr:0.3 %以下、B:0.0005〜 0.01 %、C
a:0.001 〜0.005 %およびREM:0.001 〜0.005 %のう
ちから選んだ1種または2種以上を含有する組成になる
ことを特徴とする、加工性に優れた高降伏比型高張力熱
延鋼板。
[0010] 2. In the above item 1, the steel further contains, by mass percentage, Cr: 0.3% or less, B: 0.0005 to 0.01%, C:
a: high yield ratio type high tensile strength hot-rolled steel sheet excellent in workability, characterized by having a composition containing one or more selected from a: 0.001 to 0.005% and REM: 0.001 to 0.005%. .

【0011】3.質量百分率でC:0.02〜0.15%、Si:
0.2 〜1.5 %、Mn:1.0 〜3.5 %、Mo:0.1 〜1.0 %、
Al:0.01〜0.1 %、P:0.03%以下およびS:0.001 %
以下を含有する組成になる鋼スラブを、仕上げ温度:82
0 〜970 ℃の条件で熱間圧延し、熱間圧延終了後1秒以
内に5〜50℃/sの速度で 750〜700 ℃まで冷却し、つい
で 750〜650 ℃のフェライト相析出温度域に2〜30秒滞
留させたのち、5〜50℃/sの速度で冷却し、 350〜650
℃の温度で巻取ることを特徴とする、加工性に優れた高
降伏比型高張力熱延鋼板の製造方法。
3. C: 0.02 to 0.15% by mass percentage, Si:
0.2-1.5%, Mn: 1.0-3.5%, Mo: 0.1-1.0%,
Al: 0.01 to 0.1%, P: 0.03% or less and S: 0.001%
A steel slab with a composition containing: finishing temperature: 82
Hot rolling at 0 to 970 ° C, cooling to 750 to 700 ° C at a rate of 5 to 50 ° C / s within 1 second after completion of hot rolling, and then reducing the temperature of ferrite phase precipitation to 750 to 650 ° C After staying for 2 to 30 seconds, cool at a rate of 5 to 50 ° C / s, 350 to 650
A method for producing a high-yield-ratio high-strength hot-rolled steel sheet excellent in workability, characterized by winding at a temperature of ° C.

【0012】以下、この発明を具体的に説明する。ま
ず、この発明において鋼の成分組成を上記の範囲に限定
した理由について説明する。なお、以下に示す成分組成
の%表示は「質量%」である。 C:0.02〜0.15% Cは、強度の向上に有効に寄与し、この発明で所期した
引張り強さを得るためには少なくとも0.02%を必要とす
るが、0.15%を超えると溶接性が急激に劣化するため、
Cは0.02〜0.15%の範囲に限定した。
Hereinafter, the present invention will be described specifically. First, the reason why the composition of steel in the present invention is limited to the above range will be described. The percentages of the component compositions shown below are “% by mass”. C: 0.02 to 0.15% C effectively contributes to the improvement of the strength, and at least 0.02% is required to obtain the expected tensile strength in the present invention, but if it exceeds 0.15%, the weldability sharply increases. To deteriorate,
C was limited to the range of 0.02 to 0.15%.

【0013】Si:0.2 〜1.5 % Siは、固溶強化能が大きく、降伏比および強度−伸びバ
ランスを損なうことなしに強度上昇を図れる有用元素で
ある。また、γ→α変態を活性化して、γ相へのC濃化
を促進させるなど、混合組織の形成には不可欠な元素で
ある。さらに、製鋼時の脱酸元素として、鋼の清浄化に
も有効に寄与する。しかしながら、含有量が 0.2%に満
たないとその添加効果に乏しく、一方 1.5%を超えると
その効果は飽和に達するだけでなく、表面性状の劣化、
化成処理性の悪化などの不利が生じるので、Siは 0.2〜
1.5 %の範囲に限定した。
Si: 0.2-1.5% Si is a useful element having a large solid solution strengthening ability and capable of increasing the strength without impairing the yield ratio and the strength-elongation balance. Further, it is an element indispensable for the formation of a mixed structure, for example, by activating the γ → α transformation and promoting the C concentration in the γ phase. Further, as a deoxidizing element at the time of steel making, it effectively contributes to cleaning of steel. However, if the content is less than 0.2%, the effect of the addition is poor. On the other hand, if the content exceeds 1.5%, the effect not only reaches saturation, but also deteriorates the surface properties,
Since disadvantages such as deterioration of chemical conversion property occur,
Limited to 1.5% range.

【0014】Mn:1.0 〜3.5 % Mnは、強度の向上に寄与するだけでなく、焼入れ性を向
上させる作用もあり、特に第2相を一部マルテンサイト
を含むベイナイト組織とするのに有用な成分である、し
かしながら、含有量が 1.0%に満たないと上記の効果が
期待できず、一方 3.5%を超えるとバンド状の圧延組織
を形成し易くなって、伸びフランジ性や溶接性の劣化を
招くので、Mnは 1.0〜3.5 %の範囲に限定した。
Mn: 1.0 to 3.5% Mn not only contributes to improvement in strength but also has an effect of improving hardenability, and is particularly useful for forming the second phase into a bainite structure partially containing martensite. However, if the content is less than 1.0%, the above effects cannot be expected. On the other hand, if the content exceeds 3.5%, it becomes easy to form a band-like rolled structure, and deterioration of stretch flangeability and weldability is caused. Therefore, Mn is limited to the range of 1.0 to 3.5%.

【0015】Mo:0.1 〜1.0 % Moは、この発明において特に重要な元素である。すなわ
ち、Moは、強度への寄与は勿論のこと、焼入れ性の向上
にも寄与し、また結晶粒を細粒化して、強度−伸びバラ
ンスを改善するだけでなく、パーライト変態を抑制して
第2相でのベイナイトの形成を容易にし、さらに高降伏
比とすることで伸びフランジ性の改善にも寄与する。上
記の効果を発揮させるには、少なくとも 0.1%の添加を
必要とするが、1.0 %を超えるとその効果は飽和に達
し、むしろコストの上昇や溶接性の劣化などの悪影響が
生じるので、Moは 0.1〜1.0 %とした。特に好ましくは
0.1〜0.5 %の範囲である。
Mo: 0.1-1.0% Mo is a particularly important element in the present invention. That is, Mo contributes not only to the strength but also to the improvement of hardenability, and not only to refine the crystal grains to improve the strength-elongation balance, but also to suppress the pearlite transformation to improve the pearlite transformation. The formation of bainite in two phases is facilitated, and the high yield ratio contributes to the improvement of stretch flangeability. To achieve the above effects, it is necessary to add at least 0.1%. However, if the content exceeds 1.0%, the effect reaches saturation, and adverse effects such as an increase in cost and deterioration in weldability occur. 0.1 to 1.0%. Particularly preferred
It is in the range of 0.1-0.5%.

【0016】Al:0.01〜0.1 % Alは、脱酸剤として有用な元素であるが、含有量が0.01
%未満では脱酸剤としての効果がなく、一方 0.1%を超
えるとこの効果が飽和するだけでなくコストの上昇を招
くので、Alは0.01〜0.1 %の範囲に限定した。
Al: 0.01 to 0.1% Al is an element useful as a deoxidizing agent, but has a content of 0.01 to 0.1%.
If it is less than 0.1%, there is no effect as a deoxidizing agent, while if it exceeds 0.1%, this effect not only saturates but also raises the cost. Therefore, Al was limited to the range of 0.01 to 0.1%.

【0017】P:0.03%以下 Pは、この発明では有害な元素であるので、その上限値
の設定は重要である。すなわち、Pが多量に含有される
と、溶接性が劣化し、また中心偏析に起因するフェライ
トバンドの形成により、伸びフランジ性の著しい劣化を
引き起こす。これらの現象は、P量が0.03%を超えると
顕著になるので、Pは0.03%以下に抑制するものとし
た。
P: 0.03% or less Since P is a harmful element in the present invention, setting the upper limit value is important. That is, when P is contained in a large amount, the weldability deteriorates, and the formation of a ferrite band due to the center segregation causes a significant deterioration in stretch flangeability. These phenomena become remarkable when the P content exceeds 0.03%, so that P is suppressed to 0.03% or less.

【0018】S:0.001 %以下 Sも、Pと同様、この発明では有害な成分である。すな
わち、Sが多量に含有されると、溶接性が劣化するだけ
でなく、MnSの形成による伸びフランジ性の劣化を招
く。この発明では、引張り強さを上昇させるために、Mn
を多量に添加する傾向にあるので、S量の上限値を限定
することは特に重要である。上記したような特性の劣化
は、S量が 0.001%を超えると顕著となるので、Sは
0.001%以下に抑制するものとした。
S: 0.001% or less S, like P, is a harmful component in the present invention. That is, when S is contained in a large amount, not only the weldability is deteriorated, but also the stretch flangeability is deteriorated due to the formation of MnS. In the present invention, in order to increase the tensile strength, Mn
It is particularly important to limit the upper limit of the amount of S because it tends to be added in a large amount. The deterioration of the characteristics as described above becomes remarkable when the amount of S exceeds 0.001%.
Suppressed to 0.001% or less.

【0019】以上、必須成分および抑制成分について説
明したが、この発明では、その他にも以下の元素を適宜
含有させることができる。 Cr:0.3 %以下 Crは、2相組織を得るために有用なだけでなく、パーラ
イト変態を抑制して第2相をベイナイト主体の組織とす
る上でも有用な元素である。しかしながら、含有量が
0.3%を超えると、化成処理性が著しく低下するだけで
なく、溶接性にも悪影響が生じ、また添加コストも増大
するので、Crは 0.3%以下で含有させるものとした。
Although the essential components and the inhibiting components have been described above, the present invention may further include the following elements as appropriate. Cr: 0.3% or less Cr is an element that is useful not only for obtaining a two-phase structure but also for suppressing the pearlite transformation to make the second phase a bainite-based structure. However, the content
If the content exceeds 0.3%, not only is the chemical conversion property significantly reduced, but also the weldability is adversely affected and the addition cost is increased. Therefore, the content of Cr is set to 0.3% or less.

【0020】B:0.0005〜 0.01 % Bは、べイナイトを主体とする第2相を出現させるのに
有用な元素であり、この効果は含有量が0.0005%以上で
得られるが、0.01%を超えるとこの効果は飽和し、むし
ろ熱延時に鋼板に割れが生じ易くなるので、Bは0.0005
〜0.01%の範囲で含有させるものとした。
B: 0.0005 to 0.01% B is an element useful for producing a second phase mainly composed of bainite. This effect is obtained when the content is 0.0005% or more, but exceeds 0.01%. And this effect is saturated, and rather, the steel sheet tends to crack during hot rolling.
It was made to contain in the range of -0.01%.

【0021】Ca:0.001 〜0.005 % Caは、硫化物の大きさを細かくする作用を有し、伸びお
よび伸びフランジ性の改善に有効に寄与する。しかしな
がら、含有量が 0.001%に満たないとその効果に乏し
く、一方 0.005%を超えると効果が飽和に達するだけで
なく、鋼の清浄度が劣化し、また経済的でもなくなるの
で、Caは 0.001〜0.005 %の範囲で含有させるものとし
た。
Ca: 0.001 to 0.005% Ca has the effect of reducing the size of the sulfide, and effectively contributes to the improvement of elongation and stretch flangeability. However, if the content is less than 0.001%, the effect is poor, while if it exceeds 0.005%, not only the effect reaches saturation, but also the cleanliness of the steel is deteriorated and it is not economical. The content was set in the range of 0.005%.

【0022】REM : 0.001 〜0.005 % REM (希土類元素)も、Caと同様、硫化物の大きさを制
御して伸びおよび伸びフランジ性を向上させる効果があ
るが、含有量が 0.001%に満たないとその効果に乏し
く、一方 0.005%を超えると効果が飽和に達するだけで
なく、鋼の清浄度が劣化し、また経済的でもなくなるの
で、REM は 0.001〜0.005 %の範囲で含有させるものと
した。
REM: 0.001 to 0.005% REM (rare earth element) also has an effect of controlling the size of sulfide to improve elongation and stretch flangeability, like Ca, but the content is less than 0.001%. And its effect is poor. On the other hand, if it exceeds 0.005%, not only does the effect reach saturation, but also the cleanliness of the steel deteriorates and it is not economical, so the REM should be contained in the range of 0.001 to 0.005%. .

【0023】以上、この発明の好適成分組成範囲につい
て説明したが、この発明では、成分組成を上記の範囲に
制限するだけでは不十分で、鋼組織も併せて調整するこ
とが重要である。すなわち、主相をフェライトとし、か
つ第2相をベイナイトまたは一部マルテンサイトを含む
ベイナイト組織とすることが重要である。ここに、第2
相をべイナイト主体(一部マルテンサイトを含む)の組
織としたのは、高い降伏比を得るためと、マルテンサイ
ト、パーライトより軟質な第2相とすることで、フェラ
イトとの硬度差を小さくして、伸びフランジ変形時の初
期クラックの発生を少なくするためである。さらに、第
2相の分率が10%に満たないと、十分な強度レベルが得
られず、一方40%を超えると伸びが著しく低下し、プレ
ス成形性の劣化を招く。従って、この発明では、第2相
の分率は10〜40%の範囲とした。好ましくは、20〜30%
の範囲である。なお、この発明において、主相であるフ
ェライトの分率は60〜90%望ましくは70〜80%とするの
が好ましい。また、第2相中におけるベイナイトの分率
は70%以上とすることが好ましい。
The preferred component composition range of the present invention has been described above. However, in the present invention, it is not sufficient to limit the component composition to the above range, and it is important to adjust the steel structure as well. That is, it is important that the main phase be ferrite and the second phase be bainite or a bainite structure partially containing martensite. Here, the second
The reason why the phase was composed mainly of bainite (including some martensite) was to reduce the hardness difference from ferrite by obtaining a high yield ratio and by using a second phase softer than martensite and pearlite. This is to reduce the occurrence of initial cracks during deformation of the stretch flange. Further, if the fraction of the second phase is less than 10%, a sufficient strength level cannot be obtained, while if it exceeds 40%, the elongation is remarkably reduced, and the press formability is deteriorated. Therefore, in the present invention, the fraction of the second phase is in the range of 10 to 40%. Preferably, 20-30%
Range. In the present invention, the fraction of the main phase ferrite is preferably 60 to 90%, more preferably 70 to 80%. Further, the fraction of bainite in the second phase is preferably 70% or more.

【0024】また、第2相の平均粒径を8μm 以下とし
たのは、8μm を超えると高降伏比で良好な強度−伸び
特性が得られないからである。さらに、主相と第2相と
の平均粒径の差を次式 1.3 ≧d2 /d1 ≧ 0.7 ただし、d1 :主相の平均粒径、 d2 :第2相の平均粒径 の範囲に限定したのは、この範囲を外れると組織の均質
性が劣化する、すなわち主相と第2相との粒径差が大き
くなって、伸びフランジ変形時の初期クラックの発生が
多くなるためである。
The reason why the average particle size of the second phase is 8 μm or less is that if it exceeds 8 μm, good strength-elongation characteristics cannot be obtained at a high yield ratio. Further, the difference between the average particle diameter of the main phase and the average particle diameter of the second phase is expressed by the following equation: 1.3 ≧ d 2 / d 1 ≧ 0.7, where d 1 is the average particle diameter of the main phase, and d 2 is the average particle diameter of the second phase. The reason for limiting the range is that if the ratio is out of this range, the homogeneity of the structure is degraded, that is, the particle size difference between the main phase and the second phase is increased, and the number of initial cracks during stretch flange deformation is increased. It is.

【0025】次に、この発明に従う製造方法について説
明する。この発明において、熱間圧延仕上げ温度を 820
〜970 ℃としたのは、仕上げ温度が 970℃を超えると、
最終的な第2相の平均粒径が粗大となるため、粒径の微
細化が達成できず、一方 820℃未満では、歪みの蓄積が
大きくなり、引き続く急冷後の緩冷過程(フェライト相
の析出過程)においてフェライト相への変態が過度に進
行して、主相と第2相との粒径差が大きくなるだけでな
く、ベイナイトを主体とする第2相が形成され難くなる
からである。なお、さらに低温になると、2相域での圧
延となり、フェライト相が展伸粒となって、伸びフラン
ジ性に悪影響を及ぼす。この点、 820〜970 ℃の温度範
囲で圧延を終了すると、適度なオーステナイトの粒成長
と、引き続く急冷後の緩冷過程においてフェライト相へ
の変態と粒成長が起こり、主相と第2相の粒径差が小さ
くなる。なお、より好ましい仕上げ温度は 880〜930 ℃
である。
Next, a manufacturing method according to the present invention will be described. In the present invention, the hot rolling finishing temperature is set to 820.
The reason why it was set to ~ 970 ° C is that when the finishing temperature exceeds 970 ° C,
Since the final average particle size of the second phase is coarse, it is not possible to achieve a finer particle size. On the other hand, if the average particle size is lower than 820 ° C., the accumulation of strain increases, and the slow cooling process (the ferrite phase This is because the transformation into the ferrite phase proceeds excessively in the precipitation process), and not only the particle size difference between the main phase and the second phase becomes large, but also the formation of the second phase mainly composed of bainite becomes difficult. . If the temperature is further lowered, rolling occurs in the two-phase region, and the ferrite phase becomes wrought and extended, which adversely affects the stretch flangeability. In this regard, when rolling is completed in the temperature range of 820 to 970 ° C., moderate austenite grain growth and transformation to ferrite phase and grain growth occur in the slow cooling process after rapid cooling, and the main phase and the second phase The particle size difference becomes smaller. Note that a more preferable finishing temperature is 880 to 930 ° C.
It is.

【0026】ついで、上記の熱間圧延終了後、1秒以内
に5〜50℃/sの速度で冷却を開始するのは、急冷により
オーステナイト粒の過度な粗大化を抑制すると共に、オ
ーステナイトでの歪蓄積を図るためである。ここに、急
冷開始時間が1秒を超えたり、また冷却速度が5℃/s未
満では、圧延加工歪みが開放され、引き続く緩冷過程で
のフェライト相への変態が遅延し、逆に冷却速度が50℃
/sを超えると、過度の歪み蓄積により、フェライト変態
が促進され、主相と第2相との粒径差が大きくなるだけ
でなく、ベイナイトを主体とする第2相が形成され難く
なる。より好ましい急冷開始時間は 0.5秒以内、またよ
り好ましい冷却速度は10〜30℃/sである。
After the completion of the above-mentioned hot rolling, the cooling is started at a rate of 5 to 50 ° C./s within 1 second because the rapid cooling prevents the austenite grains from being excessively coarsened and the austenite. This is for accumulating distortion. Here, if the quenching start time exceeds 1 second or the cooling rate is less than 5 ° C./s, rolling distortion is released, and the transformation to the ferrite phase in the subsequent slow cooling process is delayed. Is 50 ℃
If the value exceeds / s, excessive strain accumulation promotes ferrite transformation, not only increases the particle size difference between the main phase and the second phase, but also makes it difficult to form a second phase mainly composed of bainite. A more preferred quenching start time is 0.5 seconds or less, and a more preferred cooling rate is 10 to 30 ° C / s.

【0027】次に、上記の冷却を停止する温度を 750〜
700 ℃としたのは、この温度が 700℃に満たなかった
り、750 ℃を超えると、フェライト相の析出ノーズから
外れて、緩冷過程でのフェライト変態が遅延するからで
ある。
Next, the temperature at which the cooling is stopped is set to 750 to
The reason for setting the temperature at 700 ° C. is that if the temperature is less than 700 ° C. or exceeds 750 ° C., the ferrite phase comes out of the precipitation nose and the ferrite transformation in the slow cooling process is delayed.

【0028】次に、 750〜650 ℃の範囲に2〜30秒間滞
留させるのは、この温度範囲が最適なフェライト相の析
出温度域だからである。また、この温度域での滞留時間
が2秒未満ではフェライトへの変態が充分起こらず、γ
→αの2相分離が進行せず、γ中へのC濃化が不十分
で、続く巻き取り工程での第2相のベイナイト変態が起
こりにくくなり、目的とする組織が得られない。一方、
滞留時間が30秒を超えるとフェライト変態が過度に進行
し、γ→αの2相分離が促進され、主相と第2相との粒
径差が大きくなるだけでなく、ベイナイトを主体とする
第2相が形成され難くなると共に、パーライト変態が始
まり、ベイナイト相の生成が減少するからである。より
好適な滞留時間は4〜10秒である。
Next, the temperature is kept in the range of 750 to 650 ° C. for 2 to 30 seconds, because this temperature range is an optimum ferrite phase precipitation temperature range. If the residence time in this temperature range is less than 2 seconds, transformation to ferrite does not sufficiently occur, and γ
→ The two-phase separation of α does not proceed, the C concentration in γ is insufficient, and the bainite transformation of the second phase in the subsequent winding step is unlikely to occur, and the desired structure cannot be obtained. on the other hand,
If the residence time exceeds 30 seconds, the ferrite transformation proceeds excessively, the two-phase separation of γ → α is promoted, and not only the particle size difference between the main phase and the second phase becomes large, but also bainite is mainly used. This is because the formation of the second phase becomes difficult, the pearlite transformation starts, and the formation of the bainite phase decreases. A more preferred residence time is between 4 and 10 seconds.

【0029】上記した緩冷過程(フェライト相析出過
程)でのγ→αの2相分離処理後、さらに5〜50℃/sの
速度で冷却し、 350〜650 ℃の温度でコイルに巻き取
る。というのは、上記の冷却速度が5℃/sに満たないと
パーライトが生成するため、巻取り後にベイナイトを主
体とする第2相が得られず、一方50℃/sを超える速度で
冷却すると、マルテンサイトが多く生成して、やはりベ
イナイトを主体とする第2相が得られず、降伏比が低下
して、伸びフランジ性が低下するからである。また、巻
取り温度が 350℃未満では、マルテンサイトが多く生成
して、降伏比が低下し、また過度の巻取り温度の低下
は、鋼板の形状が波打つような形状になり、その制御が
困難ともなる。一方、巻取り温度が 650℃超では、パー
ライトが析出して、ベイナイト相の生成量が減少し、伸
び一強度バランスが低下するだけでなく、高降伏比が得
られず、伸びフランジ性が著しく劣化する。より好まし
い巻取り温度は 550〜400 ℃の範囲である。
After the two-phase separation process of γ → α in the above-mentioned slow cooling process (ferrite phase precipitation process), it is further cooled at a speed of 5 to 50 ° C./s and wound around a coil at a temperature of 350 to 650 ° C. . This is because if the above cooling rate is less than 5 ° C./s, pearlite is generated, so that a second phase mainly composed of bainite cannot be obtained after winding, while cooling at a rate exceeding 50 ° C./s This is because a large amount of martensite is formed, a second phase mainly composed of bainite cannot be obtained, the yield ratio decreases, and the stretch flangeability decreases. If the winding temperature is lower than 350 ° C, a large amount of martensite is generated, and the yield ratio is lowered. Also. On the other hand, if the winding temperature is higher than 650 ° C, pearlite precipitates, the amount of bainite phase decreases, the elongation-strength balance is lowered, a high yield ratio is not obtained, and the stretch flangeability is markedly reduced. to degrade. A more preferred winding temperature is in the range of 550-400 ° C.

【0030】[0030]

【実施例】実施例1 表1に示す成分組成になる鋼スラブを、表2に示す条件
で、熱間圧延した後、冷却し、ついでコイルに巻取っ
た。表2中、FDTは熱間圧延仕上温度、t1 は熱延終
了後の冷却開始時間、v1 はその冷却速度、T1 はその
冷却停止温度、T 2 は緩冷温度(フェライト相析出温
度)、t2 はその温度域での滞留時間、v2はその温度
域からの冷却速度、そしてCTは巻取り温度である。か
くして得られた熱延板の組織、機械的特性および化成処
理性について調べた結果を表3に示す。
EXAMPLES Example 1 A steel slab having the composition shown in Table 1 was prepared under the conditions shown in Table 2.
Then, after hot rolling, cool and then wind it up into a coil
Was. In Table 2, FDT is hot rolling finishing temperature, t1 Is the end of hot rolling
Cooling start time after completion, v1 Is the cooling rate, T1 Is that
Cooling stop temperature, T Two Is the slow cooling temperature (the ferrite phase precipitation temperature
Degree), tTwo Is the residence time in that temperature range, vTwoIs its temperature
Cooling rate from the area, and CT is the winding temperature. Or
Structure, mechanical properties and chemical treatment of the hot rolled sheet thus obtained
Table 3 shows the results of the examination for reason.

【0031】なお、引張り特性は、圧延幅方向(C方
向)より採取した板厚:3.2 mmの JIS5 号引張試験片を
用いて、引張り試験を行い、降伏強度(Y.S.)、引張強度
(T.S.)、伸び(El)を測定し、また降伏比(Y.R.)を求め
た。また、伸びフランジ性の調査は穴拡げ試験により行
った。穴拡げ試験は、日本鉄鋼連盟規格 JFS-T1001-199
6 穴拡げ試験法に準拠し、試験材の鋼板に穴径=10mmφ
をクリアランス:12.5%で打ち抜いて初期穴(d0)を開
けたのち、初期穴のバリのある側をダイ側(パンチと反
対側)として、頂角:60°の円錐パンチを初期穴に挿入
して穴を拡げ、亀裂が板厚を貫通する時点での穴径
(d)を求め、次式により穴拡げ率λ(%)を算出し
た。 λ={(d−d0)/d0 }× 100 ここで、d:割れ発生時の径 d0 :打ち抜き径
The tensile properties were determined by using a JIS No. 5 tensile test piece with a thickness of 3.2 mm, which was sampled from the rolling width direction (C direction), and subjected to a tensile test to determine the yield strength (YS) and tensile strength.
(TS) and elongation (El) were measured, and the yield ratio (YR) was determined. The stretch flangeability was examined by a hole expansion test. Hole expansion test is based on JFS-T1001-199
6 According to the hole expansion test method, the hole diameter = 10 mmφ
Clearance: punch out at 12.5% to make an initial hole (d 0 ), then insert the conical punch with a vertex angle: 60 ° into the initial hole with the burr side of the initial hole as the die side (opposite to the punch) The hole diameter (d) at the time when the crack penetrated the plate thickness was determined, and the hole expansion ratio λ (%) was calculated by the following equation. λ = {(d−d 0 ) / d 0 } × 100 where d: diameter at the time of occurrence of crack d 0 : punching diameter

【0032】さらに、フェライトおよび第2相の粒径の
測定は、電子顕微鏡で写真撮影したのち、JIS G 0552に
示される鋼のフェライト結晶粒度試験方法中の、切断法
により求めた。また、第2相の分率は、電子顕微鏡写真
を画像解析することにより求めた。
Further, the particle diameters of the ferrite and the second phase were measured by taking a photograph with an electron microscope and then determining the cutting diameter in the method for testing the ferrite crystal grain size of steel shown in JIS G 0552. The fraction of the second phase was determined by image analysis of an electron micrograph.

【0033】化成処理性については、質量W0 の試験材
の鋼板を、洗浄・脱脂後、化成剤(りん酸亜鉛溶液)を
含む溶液中に一定時間浸漬し、さらに洗浄後、質量を測
定(W)し、りん酸亜鉛結晶の付着による単位面積当た
りの質量増加分(W−W0 )により評価した。目標は
2.0 g/m2 以上である。
Regarding the chemical conversion property, a steel sheet of a test material having a mass W 0 was washed and degreased, immersed in a solution containing a chemical conversion agent (zinc phosphate solution) for a certain period of time, and after washing, the mass was measured ( W), and the mass increase per unit area (W-W 0 ) due to the adhesion of zinc phosphate crystals was evaluated. The goal
2.0 g / m 2 or more.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【表2】 [Table 2]

【0036】[0036]

【表3】 [Table 3]

【0037】表3に示したとおり、この発明に従い得ら
れた発明例はいずれも、引張り強さ(TS)、伸び(El)
および穴拡げ率(λ)に優れていて、TS×Elが 20000 M
Pa・%以上という優れた強度−伸びバランスおよびTS×
λが 50000 MPa・%以上という優れた強度−穴拡げバラ
ンスを得ることができた。
As shown in Table 3, the invention examples obtained according to the present invention all have tensile strength (TS) and elongation (El).
Excellent in hole expansion ratio (λ), TS × El is 20000 M
Excellent strength-elongation balance and TS × over Pa ·%
Excellent strength-hole expansion balance with λ of 50,000 MPa ·% or more could be obtained.

【0038】実施例2 表4に示す成分組成になる鋼スラブを、表5に示す条件
で、熱間圧延した後、冷却し、ついでコイルに巻取っ
た。表5中、FDTは熱間圧延仕上温度、t1 は熱延終
了後の冷却開始時間、v1 はその冷却速度、T1 はその
冷却停止温度、T 2 は緩冷温度(フェライト相析出温
度)、t2 はその温度域での滞留時間、v2はその温度
域からの冷却速度、そしてCTは巻取り温度である。か
くして得られた熱延板の組織、機械的特性および化成処
理性について調べた結果を表6に示す。
Example 2 A steel slab having the composition shown in Table 4 was prepared under the conditions shown in Table 5.
Then, after hot rolling, cool and then wind it up into a coil
Was. In Table 5, FDT is hot rolling finishing temperature, t1 Is the end of hot rolling
Cooling start time after completion, v1 Is the cooling rate, T1 Is that
Cooling stop temperature, T Two Is the slow cooling temperature (the ferrite phase precipitation temperature
Degree), tTwo Is the residence time in that temperature range, vTwoIs its temperature
Cooling rate from the area, and CT is the winding temperature. Or
Structure, mechanical properties and chemical treatment of the hot rolled sheet thus obtained
Table 6 shows the results of the examination for reason.

【0039】[0039]

【表4】 [Table 4]

【0040】[0040]

【表5】 [Table 5]

【0041】[0041]

【表6】 [Table 6]

【0042】この例は、引張り強さが 880 MPa超えの場
合であるが、このように引張り強さが高くても、TS×El
≧ 14000 MPa・%という優れた強度−伸びバランスとTS
×λ≧ 30000 MPa・%という優れた強度−穴拡げバラン
スが得られている。
This example is a case where the tensile strength exceeds 880 MPa.
≧ 14000 MPa ・% Excellent strength-elongation balance and TS
An excellent strength-hole expansion balance of × λ ≧ 30000 MPa ·% is obtained.

【0043】[0043]

【発明の効果】かくして、この発明によれば、熱延まま
で、加工性、特に伸びと伸びフランジ性に優れ、しかも
溶接性や化成処理性にも優れた高降伏比型高張力熱延鋼
板を安定して得ることができる。
Thus, according to the present invention, a high-yield-ratio high-strength hot-rolled steel sheet excellent in workability, particularly in elongation and stretch flangeability, and also excellent in weldability and chemical conversion treatment, as hot-rolled. Can be obtained stably.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K037 EA01 EA02 EA05 EA06 EA09 EA11 EA15 EA16 EA17 EA23 EA25 EA27 EA28 EA36 EB05 EB08 EB09 EB11 FB00 FC03 FC04 FD02 FD03 FD04 FD08 FE01 FE02 JA07  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4K037 EA01 EA02 EA05 EA06 EA09 EA11 EA15 EA16 EA17 EA23 EA25 EA27 EA28 EA36 EB05 EB08 EB09 EB11 FB00 FC03 FC04 FD02 FD03 FD04 FD08 FE01 FE07 JA

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 質量百分率で C:0.02〜0.15%、 Si:0.2 〜1.5 %、 Mn:1.0 〜3.5 %、 Mo:0.1 〜1.0 %、 Al:0.01〜0.1 %、 P:0.03%以下および S:0.001 %以下 を含有し、残部はFeおよび不可避的不純物の組成にな
り、主相がフェライトで、ベイナイトまたは一部マルテ
ンサイトを含むベイナイトからなる第2相を体積分率で
10〜40%含む鋼組織になり、しかも第2相の平均粒径が
8μm 以下で、かつ主相との平均粒径の比が、次式 1.3 ≧d2 /d1 ≧ 0.7 ただし、d1 :主相の平均粒径、 d2 :第2相の平均粒径 の範囲を満足することを特徴とする、加工性に優れた高
降伏比型高張力熱延鋼板。
1. A mass percentage of C: 0.02 to 0.15%, Si: 0.2 to 1.5%, Mn: 1.0 to 3.5%, Mo: 0.1 to 1.0%, Al: 0.01 to 0.1%, P: 0.03% or less and S : 0.001% or less, the balance is composed of Fe and unavoidable impurities, the main phase is ferrite, and the second phase consisting of bainite or bainite partially containing martensite is expressed in volume fraction.
It has a steel structure containing 10 to 40%, the average grain size of the second phase is 8 μm or less, and the ratio of the average grain size to the main phase is as follows: 1.3 ≧ d 2 / d 1 ≧ 0.7 where d 1 A high yield ratio type high tensile strength hot rolled steel sheet excellent in workability, characterized by satisfying a range of: average particle size of main phase, and d 2 : average particle size of second phase.
【請求項2】 請求項1において、鋼が、質量百分率
で、さらに Cr:0.3 %以下、 B:0.0005〜 0.01 %、 Ca:0.001 〜0.005 %および REM:0.001 〜0.005 % のうちから選んだ1種または2種以上を含有する組成に
なることを特徴とする、加工性に優れた高降伏比型高張
力熱延鋼板。
2. The steel according to claim 1, wherein the steel is selected from a mass percentage of Cr: 0.3% or less, B: 0.0005 to 0.01%, Ca: 0.001 to 0.005%, and REM: 0.001 to 0.005%. A high-yield-ratio high-tensile-strength hot-rolled steel sheet having excellent workability, characterized by having a composition containing one or more kinds.
【請求項3】 質量百分率で C:0.02〜0.15%、 Si:0.2 〜1.5 %、 Mn:1.0 〜3.5 %、 Mo:0.1 〜1.0 %、 Al:0.01〜0.1 %、 P:0.03%以下および S:0.001 %以下 を含有する組成になる鋼スラブを、仕上げ温度:820 〜
970 ℃の条件で熱間圧延し、熱間圧延終了後1秒以内に
5〜50℃/sの速度で 750〜700 ℃まで冷却し、ついで 7
50〜650 ℃のフェライト相析出温度域に2〜30秒滞留さ
せたのち、5〜50℃/sの速度で冷却し、 350〜650 ℃の
温度で巻取ることを特徴とする、加工性に優れた高降伏
比型高張力熱延鋼板の製造方法。
3. Mass percentage: C: 0.02 to 0.15%, Si: 0.2 to 1.5%, Mn: 1.0 to 3.5%, Mo: 0.1 to 1.0%, Al: 0.01 to 0.1%, P: 0.03% or less and S : A steel slab having a composition containing 0.001% or less, finishing temperature: 820 ~
Hot-rolled at 970 ° C, cooled to 750-700 ° C at a rate of 5-50 ° C / s within 1 second after completion of hot rolling.
After staying in the ferrite phase precipitation temperature range of 50 to 650 ° C for 2 to 30 seconds, cooling at a rate of 5 to 50 ° C / s and winding at a temperature of 350 to 650 ° C. Manufacturing method of excellent high yield ratio type high tension hot rolled steel sheet.
JP2001025280A 2001-02-01 2001-02-01 High-yield-ratio and high-tensile hot-rolled steel plate having excellent workability, and its manufacturing method Pending JP2002226943A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001025280A JP2002226943A (en) 2001-02-01 2001-02-01 High-yield-ratio and high-tensile hot-rolled steel plate having excellent workability, and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001025280A JP2002226943A (en) 2001-02-01 2001-02-01 High-yield-ratio and high-tensile hot-rolled steel plate having excellent workability, and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2002226943A true JP2002226943A (en) 2002-08-14

Family

ID=18890303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001025280A Pending JP2002226943A (en) 2001-02-01 2001-02-01 High-yield-ratio and high-tensile hot-rolled steel plate having excellent workability, and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2002226943A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005028693A1 (en) * 2003-09-24 2005-03-31 Nippon Steel Corporation Hot rolled steel sheet for working
JP2005298964A (en) * 2004-03-19 2005-10-27 Nippon Steel Corp High strength and high ductility thin steel sheet having excellent hole expansibility and its production method
JP2007254887A (en) * 2006-02-23 2007-10-04 Kobe Steel Ltd High strength steel sheet having excellent formability
US8388771B2 (en) 2006-02-23 2013-03-05 Kobe Steel, Ltd. High strength steel sheet having excellent formability
WO2016132545A1 (en) * 2015-02-20 2016-08-25 新日鐵住金株式会社 Hot-rolled steel sheet
CN107779744A (en) * 2016-08-30 2018-03-09 宝山钢铁股份有限公司 A kind of bainite type X100 levels seamless line pipe and its manufacture method
US10689737B2 (en) 2015-02-25 2020-06-23 Nippon Steel Corporation Hot-rolled steel sheet
US10752972B2 (en) 2015-02-25 2020-08-25 Nippon Steel Corporation Hot-rolled steel sheet
US10889879B2 (en) 2016-08-05 2021-01-12 Nippon Steel Corporation Steel sheet and plated steel sheet
US10913988B2 (en) 2015-02-20 2021-02-09 Nippon Steel Corporation Hot-rolled steel sheet
US11236412B2 (en) 2016-08-05 2022-02-01 Nippon Steel Corporation Steel sheet and plated steel sheet
US11401571B2 (en) 2015-02-20 2022-08-02 Nippon Steel Corporation Hot-rolled steel sheet

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005028693A1 (en) * 2003-09-24 2005-03-31 Nippon Steel Corporation Hot rolled steel sheet for working
US7381478B2 (en) 2003-09-24 2008-06-03 Nippon Steel Corporation Hot rolled steel sheet for processing and method for manufacturing the same
JP2005298964A (en) * 2004-03-19 2005-10-27 Nippon Steel Corp High strength and high ductility thin steel sheet having excellent hole expansibility and its production method
JP4528137B2 (en) * 2004-03-19 2010-08-18 新日本製鐵株式会社 Manufacturing method of high strength and high ductility steel sheet with excellent hole expandability
JP2007254887A (en) * 2006-02-23 2007-10-04 Kobe Steel Ltd High strength steel sheet having excellent formability
US8388771B2 (en) 2006-02-23 2013-03-05 Kobe Steel, Ltd. High strength steel sheet having excellent formability
WO2016132545A1 (en) * 2015-02-20 2016-08-25 新日鐵住金株式会社 Hot-rolled steel sheet
JPWO2016132545A1 (en) * 2015-02-20 2017-11-30 新日鐵住金株式会社 Hot rolled steel sheet
US11401571B2 (en) 2015-02-20 2022-08-02 Nippon Steel Corporation Hot-rolled steel sheet
US10913988B2 (en) 2015-02-20 2021-02-09 Nippon Steel Corporation Hot-rolled steel sheet
US10689737B2 (en) 2015-02-25 2020-06-23 Nippon Steel Corporation Hot-rolled steel sheet
US10752972B2 (en) 2015-02-25 2020-08-25 Nippon Steel Corporation Hot-rolled steel sheet
US10889879B2 (en) 2016-08-05 2021-01-12 Nippon Steel Corporation Steel sheet and plated steel sheet
US11236412B2 (en) 2016-08-05 2022-02-01 Nippon Steel Corporation Steel sheet and plated steel sheet
CN107779744B (en) * 2016-08-30 2019-07-23 宝山钢铁股份有限公司 A kind of bainite type X100 grades of seamless line pipes and its manufacturing method
CN107779744A (en) * 2016-08-30 2018-03-09 宝山钢铁股份有限公司 A kind of bainite type X100 levels seamless line pipe and its manufacture method

Similar Documents

Publication Publication Date Title
JP4306202B2 (en) High tensile cold-rolled steel sheet and method for producing the same
CA2941202C (en) Method for producing a high-strength flat steel product
JP4062118B2 (en) High-tensile hot-rolled steel sheet with excellent stretch characteristics and stretch flange characteristics and manufacturing method thereof
KR101607041B1 (en) Method for producing high-strength cold-rolled steel sheet having excellent anti-aging property and bake hardening property
WO2012002566A1 (en) High-strength steel sheet with excellent processability and process for producing same
EP2792762B1 (en) High-yield-ratio high-strength cold-rolled steel sheet and method for producing same
JP2001081533A (en) High tensile strength cold rolled steel sheet and its manufacture
US20150027594A1 (en) Thin steel sheet and process for producing the same
JP5394306B2 (en) High-strength steel plate with excellent plating properties and manufacturing method thereof
JP3790135B2 (en) High-strength hot-rolled steel sheet with excellent stretch flangeability and manufacturing method thereof
JP3433687B2 (en) High-strength hot-rolled steel sheet excellent in workability and method for producing the same
JP4311049B2 (en) Cold-rolled steel sheet having an ultrafine grain structure and excellent shock absorption characteristics and method for producing the same
JP3417878B2 (en) High-strength hot-rolled steel sheet excellent in stretch flangeability and fatigue properties and its manufacturing method
KR20200011742A (en) High-strength steel sheet having excellent impact resistant property and method for manufacturing thereof
JP4772431B2 (en) Manufacturing method of hot-dip galvanized high-strength steel sheet with excellent elongation and hole expansion
JP2002226943A (en) High-yield-ratio and high-tensile hot-rolled steel plate having excellent workability, and its manufacturing method
JP3945367B2 (en) Hot-rolled steel sheet and manufacturing method thereof
JP6264861B2 (en) High Young&#39;s modulus cold-rolled steel sheet excellent in workability, electrogalvanized cold-rolled steel sheet, hot-dip galvanized cold-rolled steel sheet, alloyed hot-dip galvanized cold-rolled steel sheet, and production methods thereof
KR100782785B1 (en) Hot-rolled dual-phase steel with fine-grain and the method for production thereof
KR20210047334A (en) Hot rolled steel sheet and its manufacturing method
KR100859303B1 (en) High tensile hot-rolled steel sheet excellent in resistance to scuff on mold and in fatigue characteristics
JPH06240356A (en) Production of high strength hot rolled steel plate excellent in workability
JP3540134B2 (en) High strength hot rolled steel sheet and method for producing the same
JP4205893B2 (en) High-strength hot-rolled steel sheet excellent in press formability and punching workability and manufacturing method thereof
JP2010100896A (en) High strength cold rolled steel sheet having excellent stability in mechanical property and method of producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041005

A02 Decision of refusal

Effective date: 20050222

Free format text: JAPANESE INTERMEDIATE CODE: A02